Виды диодов фото. Полупроводниковые диоды: виды, характеристики и принцип работы

Что такое полупроводниковый диод и как он работает. Какие бывают виды диодов. Каковы основные характеристики и области применения различных типов диодов. Как выбрать подходящий диод для конкретной задачи.

Содержание

Что такое полупроводниковый диод и как он устроен

Полупроводниковый диод — это электронный компонент с двумя выводами, который проводит электрический ток преимущественно в одном направлении. Он состоит из полупроводникового кристалла (обычно кремния или германия) с p-n переходом и двух электродов — анода и катода.

Основные элементы конструкции диода:

  • Полупроводниковый кристалл с p-n переходом
  • Анод — положительный электрод
  • Катод — отрицательный электрод
  • Корпус для защиты кристалла
  • Выводы для подключения

Принцип работы диода основан на свойствах p-n перехода пропускать ток только в одном направлении. При прямом включении (анод «+» , катод «-«) диод хорошо проводит ток. При обратном включении сопротивление диода очень велико, и ток практически не протекает.


Основные виды полупроводниковых диодов

Существует множество типов диодов, различающихся конструкцией и назначением. Рассмотрим основные виды:

Выпрямительные диоды

Предназначены для преобразования переменного тока в постоянный. Способны работать с большими токами и напряжениями. Применяются в источниках питания, зарядных устройствах, сварочных аппаратах.

Стабилитроны

Используются для стабилизации напряжения. При обратном включении поддерживают постоянное напряжение на своих выводах в широком диапазоне токов. Применяются в стабилизаторах напряжения, ограничителях напряжения.

Светодиоды

Излучают свет при прохождении через них электрического тока. Бывают различных цветов. Широко применяются в системах освещения, индикации, подсветки.

Фотодиоды

Преобразуют световой поток в электрический ток. Используются в фотоприемниках, датчиках освещенности, оптических линиях связи.

Варикапы

Обладают свойством изменять емкость p-n перехода при изменении приложенного напряжения. Применяются в системах автоматической подстройки частоты, параметрических усилителях.


Основные характеристики и параметры диодов

При выборе диода для конкретного применения необходимо учитывать его основные характеристики:

  • Максимальный прямой ток
  • Максимальное обратное напряжение
  • Прямое падение напряжения
  • Обратный ток утечки
  • Емкость p-n перехода
  • Быстродействие
  • Температурный диапазон

Важно не превышать предельно допустимые значения тока и напряжения, указанные производителем. Это может привести к выходу диода из строя.

Области применения различных типов диодов

Благодаря своим уникальным свойствам, диоды нашли широкое применение в электронике и электротехнике:

  • Выпрямление переменного тока
  • Стабилизация напряжения
  • Защита от перенапряжений
  • Детектирование сигналов
  • Генерация и преобразование СВЧ сигналов
  • Оптоэлектронные системы
  • Импульсные источники питания
  • Системы освещения

Правильный выбор типа диода позволяет оптимально решить поставленную техническую задачу.

Как выбрать подходящий диод

При выборе диода для конкретного применения необходимо учитывать следующие факторы:


  1. Требуемые электрические параметры (ток, напряжение, мощность)
  2. Тип сигнала (постоянный, переменный, импульсный)
  3. Частотный диапазон
  4. Температурные условия эксплуатации
  5. Требования к габаритам и стоимости

Важно внимательно изучить даташит (техническое описание) выбранного диода и убедиться, что его параметры соответствуют требованиям схемы. При необходимости следует проконсультироваться со специалистом.

Маркировка и обозначение диодов

Для идентификации диодов используется буквенно-цифровая маркировка. Она содержит информацию о типе диода, материале, области применения и других параметрах. Например:

  • КД202 — кремниевый выпрямительный диод
  • Д814Д — германиевый импульсный диод
  • КС168А — кремниевый стабилитрон

На корпусе диода обычно наносится полоска, указывающая расположение катода. Это позволяет правильно установить диод в схему.

Проверка исправности диодов

Для проверки работоспособности диода можно использовать следующие методы:

  1. Прозвонка мультиметром — в прямом направлении диод должен показывать небольшое сопротивление, в обратном — очень большое.
  2. Измерение прямого падения напряжения — для исправного диода оно должно составлять 0.6-0.7 В для кремниевых диодов.
  3. Проверка обратного тока утечки — он не должен превышать значений, указанных в документации.

При обнаружении отклонений от нормы диод следует заменить на исправный. Неисправный диод может привести к некорректной работе всего устройства.



Полупроводники (Диоды). Виды и особенности. Неисправности

Существуют полупроводники в зависимости от их применения и назначения. Рассмотрим основные виды диодов.

Диоды Шоттки

Эти полупроводниковые диоды имеют незначительное падение напряжения, имеют высокую скорость работы, в отличие от обычных диодов, которые не смогут заменить в действии диод Шоттки и выйдут из строя. Свое название диод имеет по изобретателю из Германии. В конструкции в качестве потенциального барьера используется переход «металл-полупроводник» вместо р-n перехода. Его допустимое напряжение при обратном подключении 1200 В. Практически они применяются в цепях низкого напряжения.

Стабилитроны

Они предотвращают увеличение напряжения свыше допустимого значения на участке схемы, могут защищать и ограничивать схему от повышенных значений тока. Стабилитроны могут работать только на постоянном токе, поэтому при включении их в цепь соблюдение полярности является обязательным. Стабилитроны одного типа можно соединять по последовательной схеме для увеличения напряжения, либо создания делителя напряжения.

Основным свойством таких полупроводников является стабилизирующее напряжение.

Варикапы

Этот полупроводник еще называют емкостным диодом. Он изменяет значение сопротивления при изменении напряжения питания. Используется в качестве управляемого конденсатора с изменяемой емкостью. Может применяться для настраивания контуров колебаний высокой частоты.

Тиристоры
Полупроводники могут находиться в двух устойчивых положениях:
  1. Закрытое (низкая проводимость).
  2. Открытое (высокая проводимость).

То есть, он может переходить под воздействием сигнала из одного состояния в другое.

У тиристора имеется три электрода. Кроме обычных катода и анода, есть еще и электрод управления, который служит для подачи сигнала управления для перевода полупроводника в состояние включения. Современные тиристоры иностранного производства производятся в различных корпусах.

Такие полупроводники включают в схемы для регулирования мощности, плавного запуска электромоторов, подключения освещения. Тиристоры дают возможность включать большие токи, достигающие наибольшего тока 5 кА, напряжением до 5 киловольт в закрытом виде. Мощные силовые приборы на основе тиристоров используются в управляющих панелях электромоторами и других устройствах.

Симисторы

Эти полупроводники применяются в схемах, подключенных к переменному напряжению. Прибор условно состоит из двух тиристоров, подключенных встречно-параллельно, и пропускающих ток в любую сторону.

Светодиоды

Они испускают световой поток при подключении к ним напряжения, используются для создания индикации параметров, в электронных схемах, различных электронных гаджетах, дисплеях, в качестве источников света, при этом бывают многоцветными и одного цвета.

Инфракрасные диоды

Это светодиоды, выдающие световой поток в инфракрасном спектре. Они используются для измерительных и контрольных приборов оптического вида, в пультах управления, коммутационных устройствах, линиях связи без проводов и т.д. Обозначаются на схемах как обычные светодиоды. Инфракрасные лучи не видны человеку. Их можно увидеть с помощью смартфона в камеру.

Фотодиоды

Они работают при попадании на их чувствительный элемент света, преобразуя его в электрический ток. Используются для преобразования потока света в сигнал электрического тока.

Фотодиоды обычно сравнивают по принципу работы с батареями на солнечных элементах.

Неисправности диодов
Полупроводники иногда могут выходить из строя вследствие естественного старения и амортизации внутренних материалов, либо по другим причинам:
  • Пробивание перехода кристалла. Его следствием является то, что по сути полупроводник приобретает свойства обычного проводника, так как он лишен основных качеств полупроводимости и уже пропускает ток практически в любую сторону. Такая неисправность быстро обнаруживается с помощью обычного мультитестера. Измерительный прибор выдает сигнал звука и на дисплее видно значение очень малого сопротивления диода.
  • Обрыв. В этом случае действует обратный процесс – полупроводник не пропускает ток ни в каком направлении, так как внутри кристалла нарушена проводимость, вследствие полного обрыва проводника, то есть, диод, по сути, стал диэлектриком. Чтобы точно выяснить обрыв, нужно применять мультиметры с исправными щупами. Иначе можно получить ложную диагностику этой неисправности. У диодов на основе сплавов эта неисправность является редкой.
  • Утечка. Эта поломка возникает из-за повреждения корпуса полупроводника, вследствие чего нарушается герметичность корпуса диода, и его нормальное функционирование становится невозможным.
Пробой перехода

При чрезмерном повышении обратного напряжения может возникнуть пробой электронного прибора. Существуют специальные полупроводники, в которых используется это свойство, которые называются стабилитронами.

Такие неисправности возникают в случаях, когда величина обратного тока резко возрастает из-за достижения обратного напряжения чрезмерных значений, выше допустимых.

Существует несколько типов пробоя переходов:
  • Тепловые пробои. Они вызываются внезапным возрастанием температуры с дальнейшим перегревом.
  • Электрические пробои. Появляются от действия большого электрического тока на полупроводниковый переход.
Электрический пробой

Такой вид пробоя не является фатальным, и является обратимым процессом, так как при этом не произошло разрушения кристалла полупроводника. Поэтому при медленном снижении напряжения возможно восстановление характеристик диода и его рабочего состояния.

Такие пробои разделяют на два подвида:
  • Туннельные пробои. Они возникают при протекании повышенного напряжения по узким проходам кристалла полупроводника. Это позволяет отдельным электронам проскакивать через него. Чаще всего туннельные пробои образуются в случае наличия в полупроводнике большого числа различных недопустимых примесей. При таком пробое обратный ток внезапно стремится к возрастанию, а напряжение продолжает оставаться на прежнем уровне.
  • Лавинные пробои. Они могут возникнуть вследствие действия повышенных значений электрических полей, которые разгоняют электроны выше допустимой границы скорости. Поэтому они выбивают из атомов некоторое количество валентных электронов, вылетающих в область проводимости. Такой процесс происходит с лавинообразной скоростью, поэтому и получил такое название.
Тепловой пробой

Образование теплового пробоя может происходить из-за возникновения различных причин. Это может быть недостаточный отвод тепла от корпуса полупроводника, а также перегрева перехода кристалла, возникающего по причине прохождения электрического тока повышенной величины, выше допустимого.

Вследствие увеличения режима температуры в переходе полупроводника и областях, находящихся рядом, появляются такие отрицательные последствия:
  • Возрастание колебания атомов, которые входят в состав материала кристалла диода.
  • Залетание электронов в зону проводимости.
  • Чрезмерное внезапное возрастание температуры.
  • Повреждение и деформация кристаллической решетки полупроводника.
  • Неисправность и выход из строя диода.
Похожие темы:

Какими бывают виды диодов, характеристики, применение

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

Светодиод

Особенность данного типа диодов заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

Диоды и триоды (транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

Плюсы:

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Немного интересных сведений о диодах

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

Виды и типы светодиодов — обзор основных характеристик

С каждым годом все больше расширяется ассортимент светодиодных осветительных приборов. Да и развитие элементов освещения на кристаллах не стоит на месте. Хотя они и были изобретены более полувека назад, применяться в бытовом освещении стали сравнительно недавно. Сейчас практически каждый знает, что потребление электроэнергии светодиодами значительно меньше, чем их предшественниками, описание этого факта можно найти где угодно.

Но перед тем как выполнить монтаж, SMD-светодиоды необходимо правильно выбрать, а как это сделать при всем предлагаемом многообразии? Как выбрать такие, которые подойдут именно под нужные параметры и какие бывают LED SMD? Ведь даже выучив наизусть все маркировки, нельзя быть уверенным в том, что купленный осветительный прибор будет соответствовать заявленным характеристикам. А бывает, что на упаковке светодиодов такие отметки вообще отсутствуют.

Нужно попытаться разобраться, возможно ли определить тип и технические характеристики светодиода, не обращая внимания на метки, проставленные производителем, заявленный им световой поток и т. п.

Таблица подскажет характеристики некоторых, наиболее распространенных. Целесообразно иметь некоторое понятие и о терминах, с которыми можно столкнуться при выборе LED-источников света.

Обозначения в технической характеристике

Каждый человек, впервые столкнувшись с выбором любого осветительного прибора, в том числе и светодиодов, находит на упаковке множество непонятной для него информации. Как раз с ней и нужно разобраться в первую очередь.

Пример диаграммы коэффициента излучения SMD 5730

Виды светодиодов

Многие думают, что все светодиоды одинаковы, но это в корне неверно. Классификация светодиодов различает их не только по цветам, но и по режимам работы. Световые приборы на кристаллах могут быть нескольких разновидностей:

  • Моргающими – такие элементы применяются для того, чтобы привлечь внимание. По своей структуре они мало отличны от обычных, но при их производстве применена немного другая технология, которая позволяет светодиоду моргать с интервалом в секунду. Чаще такие элементы однотонные, но существуют и более сложные, многоцветные, которые работают благодаря RGB.
  • Многоцветными моргающими – их показатели довольно обширны. Обычно изготовлены в виде двух кристаллов, функционирующих во встречных направлениях, т. е. при включении одного выключается другой. По причине такой работы при смешивании основных цветов может образоваться еще один.
  • Трехцветными – в одном корпусе совмещены несколько кристаллов, которые друг с другом не связаны. Работать могут как отдельно, так и все вместе, при этом управляясь по разным каналам.
  • RGB-диодами с красным, синим и зеленым цветом, связанными при помощи четырех проводов и одним анодом (либо катодом).
  • В виде монохромного дисплея на семь сегментов. Способны показывать определенные символы. В восьмидесятые пользовались популярностью дисплеи на их основе, но с появлением экранов на жидких кристаллах такие мониторы ушли в прошлое.
Виды светодиодов

Маркировки LED-диодов

На светильниках обычно при помощи маркировки указываются типы светодиодов, используемых в нем. Какими могут быть виды этих световых элементов и каковы их особенности – вопрос, который требует разъяснений.

Светодиоды SMD

Расшифровывается маркировка светодиодов SMD как Surface Mounted Device, что по-русски звучит как «поверхностное оборудование». Иными словами, такой LED SMD-прибор находится на поверхности светильника. Для примера можно взять световую полосу, над уровнем которой находятся именно такие SMD-диоды. Маркировка в виде чисел указывает на размеры светодиодов. К примеру, имеется название прибора – SMD 3528 LED (или 3528 SMD LED). Его размер 3.5 х 2.8 мм. Светодиодные полосы с такими диодами прекрасно гнутся, за счет чего очень удобны в случае установки. Также и их подключение не представляет никаких сложностей.

Многоцветная светодиодная лента

Светодиоды DIP LED

Еще один тип светодиода с очень похожими SMD-характеристиками. Выглядят они как цилиндр, размещенный по ленте. Отличается наличием хорошей силиконовой защиты. Цифровое обозначение указывает так же на размеры элемента (тот же пример, как и с SMD 3528). Применяется он только для стекла, к примеру, для полок гарнитура из этого материала. В отличие от ленты с SMD, светодиодная полоса с DIP сгибается не только вдоль, но и поперек.

Краткая характеристика ленты SMD 5050

Элементы этой ленты, как видно из маркировки, величиной 5.0 х 5.0 миллиметров. Прародителем этого светодиода стал диод 3528. В зависимости от цвета интервал светового потока 2–8 лм. Потребители на таких полосах светодиодов SMD разделяются по влагозащищенности, имея маркировки: IP 20 – покрытие из полиуретана, или IP 65 – из силикона. IP 20 нужно устанавливать лишь в закрытых помещениях, в то время как IP 65 не боятся влаги, и разместить их можно даже на улице. В своем составе такие элементы имеют три разных или одинаковых по цвету кристалла. Подключение контроллера к многоцветному варианту исполнения 5050 позволяет получить освещение самых разных цветов. Среди основных характеристик данных светодиодов 5050 можно назвать:

  1. прозрачный и очень жесткий материал из полиуретана;
  2. эти элементы качественно пропаяны;
  3. плотность диодов – 60 шт/м;
  4. питание от 12 или 24 В.

По сравнению с прародителем – SMD 3528 – характеристики практически те же, с той лишь разницей, что «потомок» получился крупнее, мощнее и ярче.

Краткая характеристика ленты SMD 5730

Светодиоды, относящиеся к довольно высокоэффективным. Многие даже считают 5730 одной из лучших марок в линейке SMD-светодиодов. Основные плюсы их в хорошей проводимости тепла и очень невысоком сопротивлении. Служат они довольно продолжительное время. Весьма неплохо переносят вибрацию, сырость и резкое изменение температур. Реализуются в основном лентой в катушке. Обладают комфортной светопередачей и высокой энергоэффективностью, в результате чего завоевали доверие предпринимателей, использующих 5730 в основном в торговых и офисных помещениях, в качестве надежных и мощных светодиодов. Также у них есть несколько преимуществ перед более ранними моделями:

  1. значительный срок службы, стабильные показатели и качественное исполнение;
  2. уменьшение освещаемости – не более одного процента после 3 000 часов;
  3. материал, из которого они изготовлены, способен выдержать температуру до 260 градусов.
Одноцветная лента с LED SMD 5730

Каким бывает белый цвет?

Для домашнего освещения в основном применяются светодиоды белого цвета. Но тон его может быть разным. Нередко можно услышать, как кто-либо говорит: «Купил лампу, а она слишком холодная, нужно поменять, взять что-то потеплее». Так как же распределяются оттенки белого цвета?

Световой поток лампы имеет разную цветовую температуру. К примеру, если она составляет 2 700 кельвин, то оттенок будет чуть желтоватым, больше походящим на свечение лампы накаливания или на солнечный свет. Такой цвет называют теплым, он оказывает расслабляющее, успокаивающее действие. Для основного освещения такой оттенок не подойдет, другое дело – подсветка спальни.

Следующий за теплым – оттенок натурального (нейтрального) белого, с уровнем цветовой температуры в 4 200 кельвин. Это самый популярный и часто используемый тон. Он хорош в виде основного освещения вне зависимости от назначения помещения. Если же порог цветовой температуры остановился на 6 000 кельвин, такой оттенок будет называться холодным. У такого освещения слегка синеватый цвет. Используется в основном для рабочих помещений, т. к. свет таких ламп очень ярок. Также применим на таких объектах, как парковки, подъезды, придомовая территория, парки, аллеи и скверы.

Светодиод SMD 5050

При выборе светодиодного освещения необходимо обратить внимание на упаковку. Если она неровная, надписи нечеткие или просто вызывают подозрение – от такого приобретения лучше отказаться. Купив китайский вариант подделки известного бренда можно испортить себе настроение и впустую потратить деньги. Светить они, конечно, будут, но с меньшими показателями, чем заявлено по маркировке.

Принцип работы полупроводникового диода

Полупроводниковые диоды: виды,  характеристики, принцип работы

Для контроля направления электрического тока необходимо применять разные радио и электро детали.

В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц.

Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами.

Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Принцип работы диодов

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

//www.youtube.com/embed/NqCaJhS0HGU?feature=oembed&wmode=opaque

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Принцип работы

Понять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

Аноды с положительным зарядом воздействуют на электроны и притягивают их, а образованное поле выступает в качестве катализатора такой реакции. Также в этот момент формируется эмиссионный ток.

В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

Конструкция диода

Одна из возможных конструкций диода показана ниже:

Рассмотрим одну из возможных конструкций прибора. Кристалл полупроводника 1 (например, с электронной проводимостью) размещен на металлической основе 3. На верхней части кристалла размещена примесь 2 (например индий), который обеспечивает наличие дырочной проводимости. Кристалл закрыт корпусом 4 во избежание различных механических повреждений p-n перехода.

С индиевой наплавки сделан изолированный вывод через стеклянный изолятор 5 – это анод прибора. Выводом же катода будет металлический корпус 3, которая также обеспечивает отвод тепла при работе устройства, чем защищает его от теплового пробоя и перегрева.

В свою очередь полупроводниковые элементы делят на:

  • Малая мощность – ток до 0,3 А;
  • Средняя – от 0,3 до 10 А;
  • Мощные – от 10 А;

Схемы включения диодов

Если возникнет необходимость пропускать через полупроводники токи, которые больше их номинальных, соединяют их параллельно, что позволит пропустить больший ток, но возникает необходимость использовать индуктивные делители, для выравнивания токов элементов, схема ниже:

При больших напряжениях – соединяют последовательно. Но для таких соединений необходимо применять специальных схемы коммутации, чтоб не допустить выход элементов из строя, они показаны ниже:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

отзывы, фото и характеристики на Aredi.ru

1.​​Ищите по ключевым словам, уточняйте по каталогу слева

Допустим, вы хотите найти фару для AUDI, но поисковик выдает много результатов, тогда нужно будет в поисковую строку ввести точную марку автомобиля, потом в списке категорий, который находится слева, выберите новую категорию (Автозапчасти — Запчасти для легковых авто – Освещение- Фары передние фары). После, из предъявленного списка нужно выбрать нужный лот.

2. Сократите запрос

Например, вам понадобилось найти переднее правое крыло на KIA Sportage 2015 года, не пишите в поисковой строке полное наименование, а напишите крыло KIA Sportage 15 . Поисковая система скажет «спасибо» за короткий четкий вопрос, который можно редактировать с учетом выданных поисковиком результатов.

3. Используйте аналогичные сочетания слов и синонимы

Система сможет не понять какое-либо сочетание слов и перевести его неправильно. Например, у запроса «стол для компьютера» более 700 лотов, тогда как у запроса «компьютерный стол» всего 10.

4. Не допускайте ошибок в названиях, используйте​​всегда​​оригинальное наименование​​продукта

Если вы, например, ищете стекло на ваш смартфон, нужно забивать «стекло на xiaomi redmi 4 pro», а не «стекло на сяоми редми 4 про».

5. Сокращения и аббревиатуры пишите по-английски

Если приводить пример, то словосочетание «ступица бмв е65» выдаст отсутствие результатов из-за того, что в e65 буква е русская. Система этого не понимает. Чтобы автоматика распознала ваш запрос, нужно ввести то же самое, но на английском — «ступица BMW e65».

6. Мало результатов? Ищите не только в названии объявления, но и в описании!

Не все продавцы пишут в названии объявления нужные параметры для поиска, поэтому воспользуйтесь функцией поиска в описании объявления! Например, вы ищите турбину и знаете ее номер «711006-9004S», вставьте в поисковую строку номер, выберете галочкой “искать в описании” — система выдаст намного больше результатов!

7. Смело ищите на польском, если знаете название нужной вещи на этом языке

Вы также можете попробовать использовать Яндекс или Google переводчики для этих целей. Помните, что если возникли неразрешимые проблемы с поиском, вы всегда можете обратиться к нам за помощью.

принцип действия и основные параметры

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Выпрямительный диод изменяет ток переменный на постоянный. Помимо этого, выпрямительные диоды повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.


ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Коэффициент выпрямления отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.


Коэффициент выпрямления можно рассчитать. Он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.


Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.


Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Существует множество приборов и устройств, которые преобразовывают электрический ток. Предлагаем рассмотреть, что такое выпрямительные диоды большой мощности и средней, их принцип работы, а также характеристики и применение.

Описание выпрямительных диодов

Выпрямительный электрический диод высокой и средней мощности (СВЧ) – это устройство, которое позволяет электрическому току двигаться только в одном направлении, в основном он используется для работы определенного источника питания. Выпрямительные диоды могут перерабатывать более высокий ток, чем обычные проводники. Как правило, они применяются для преобразования переменного тока в постоянный, частота которого не превышает 20 кгц. Схема их работы имеет следующий вид:

Фото — Принцип работы выпрямительного диода

Многие электрические приборы нуждаются в данных дискретных компонентах из-за того, что они могут выступать в роли интегральных схем. Чаще всего выпрямительные мощные диоды изготавливают из кремния, благодаря чему их поверхность PN-перехода довольно велика. Такой подход обеспечивает отличную передачу тока, при этом гарантируя отсутствие замыканий или перепадов.


Фото — Выпрямительные диодыВыпрямительные диоды

Кремниевые полупроводниковые выпрямители, ламповые термоэлектронные диоды изготавливаются при использовании таких соединений, как оксид меди или селена. С введением полупроводниковой электроники, выпрямители типа вакуумных трубок с металлической основой устарели, но до сих пор их аналоги используются в аудио и теле-аппаратуре. Сейчас для питания аппаратов от очень низкого до очень высокого тока в основном используются полупроводниковые диоды различных типов (быстродействующие блоки, иностранные германиевые приборы, отечественные устройства таблеточного исполнения, диоды Шоттки и т.д.).

Другие устройства, которые оснащены управляющими электродами, где требуется более простой способ ректификации или переменное выходное напряжение (как пример, для сварочных аппаратов) используют более мощные выпрямители. Это могут кремниевые или германиевые приборы. Это тиристоры, стабилитроны или другие контролируемые коммутационные твердотельные переключатели, которые функционируют как диоды, пропуская ток только в одном направлении. Их использует промышленная электроника, также они широко применяются для инженерной электротехники, сварки или контроля работы линий передач тока.


Фото — Выпрямительный диод и катод с анодом

Типы стандартных выпрямителей

Существуют различные силовые выпрямительные полупроводниковые диоды в зависимости от типа монтажа, материала, формы, количества диодов, уровня пропускаемого тока. Самыми распространенными считаются:

  1. Устройства средней силы, которые могут передавать ток силы от 1 до 6 Ампер. При этом технические параметры большинства приборов говорят, что такие диоды могут изменить ток с напряжение до 1,3 килоВольт;
  2. Выпрямительные диоды максимальной серии могут пропускать ток от 10 Ампер до 400, в основном они применяются как сверхбыстрые преобразователи, для контроля промышленной сферы деятельности. Эти устройства называются также высоковольтные;
  3. Низкочастотные диоды или маломощные.

Перед тем, как купить какие либо устройств данного типа, очень важно правильно подобрать основные параметры выпрямительных диодов. К ним относятся: характеристики ВАХ (максимальный обратный ток, максимальный пиковый ток), максимальное обратное напряжение, прямое напряжение, материал корпуса и средняя сила выпрямленного тока

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода. Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца.


Фото — Таблица низкочастотных диодов

Импортные (зарубежные) выпрямительные диоды (типа КВРС, SMD):


Фото — Таблица импортных диодов

Данные про силовые или высокочастотные диоды:


Фото — Силовые диоды

Выпрямительные схемы включения также бывают разные. Они могут быть однофазными (например, автомобильные и лавинные диоды) или многофазными (трехфазные считаются самыми популярными). Большинство выпрямители малой мощности для отечественного оборудования однофазны, но трехфазный очень важен для промышленного оборудования. Для генератора, трансформатора, станочных приспособлений.

Но при этом, для неконтролируемого мостового трехфазного выпрямителя используются шесть диодов. Поэтому его часто называют шестидиодным выпрямительным прибором. Мосты считаются импульсными и способны нормализовать и выпрямить даже нестабильный ток.

Для маломощных аппаратов (зарядного устройства) двойные диоды, соединенные последовательно с анодом первого диода, также соединены с катодом второго, а изготовлены в едином корпусе. Некоторые имеющиеся в продаже двойные диоды имеют в доступе все четыре терминала, которые можно настроить по своим потребностям.

Фото — Выпрямительный диод средней мощности

Для более высокой мощности одним дискретным устройством обычно используется каждый из шести диодов моста. Его можно применять как для поверхностного оборудования, так и для контроля более сложных приспособлений. Нередко шестидиодные мосты используют ограничительные схемы.

Видео: Принцип работы диодов

Маркировка выпрямительных диодов

В зависимости от конструкций и назначения, выпрямительные диоды маркируются следующим образом:

Исходя из таких данных, мы имеем следующие расшифровки:

КД – импульсный или выпрямительный диод кремниевого исполнения;

КЦ – кремниевые блоки выпрямительного типа.

Перед тем, как купить выпрямительные диоды в Харькове, Москве и любых других городах, обязательно уточняйте справочные характеристики у продавцов-консультантов.

Выпрямительный диод — это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой — выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности — от 300 mA до 10 А;
  • большой — более 10 А.

Германий или кремний


По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.


Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые — только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления


Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция


Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max — прямой ток, который максимально допустим, А.
  • U обрат max — обратное напряжение, которое максимально допустимо, В.
  • I обрат — обратный ток постоянный, мкА.
  • U прям — прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max — рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока


Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост


Диодный мост — это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

Как проверить диод? Всё, что необходимо об этом знать.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

Измеренное пороговое напряжение, мВ (mV)

Тип диода, материал полупроводника

1N5822

167

выпрямительный диод Шоттки

1N5819

200

выпрямительный диод Шоттки

RU4

419

быстрый выпрямительный диод

Д20

358

точечный германиевый диод

Д9

400

точечный германиевый диод

2Д106А

559

диффузионный кремниевый диод

Д104

717

точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;

  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;

  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Обзор, символы, работа и применение

Диод — это электрическое устройство с двумя выводами, которое позволяет передавать ток только в одном направлении. Диод также известен своим свойством однонаправленного тока, когда электрический ток может течь в одном направлении. В основном диод используется для выпрямления сигналов в радиодетекторах или в источниках питания. Они также могут использоваться в различных электрических и электронных схемах, где требуется «односторонний» результат диода.Большинство диодов изготовлено из полупроводников, таких как Si (кремний), но в некоторых случаях также используется Ge (германий). Иногда полезно резюмировать существующие типы диодов. Некоторые из типов могут перекрываться, но различные определения могут оказаться полезными, чтобы сузить область и предложить обзор различных типов диодов.


Какие бывают типы диодов?

Существует несколько типов диодов, и они доступны для использования в разработке электроники, а именно: обратный диод, диод БАРРИТТ, диод Ганна, лазерный диод, светодиоды, легированные золотом диоды , кристаллический диод , PN переход, диод Шокли , ступенчатый восстанавливающий диод, туннельный диод, варакторный диод и стабилитрон .

Типы диодов

Подробное описание диодов

Расскажем подробнее о принципе работы диода .

Обратный диод

Этот тип диода также называют обратным диодом, и он не очень широко используется. Обратный диод представляет собой диод с PN-переходом, который работает аналогично туннельному диоду. Сценарий квантового туннелирования несет важную ответственность за проведение тока в основном в обратном направлении. С помощью изображения энергетической зоны можно узнать точную работу диода.

Работа обратного диода

Полоса, которая лежит на самом верхнем уровне, называется зоной проводимости, тогда как полоса нижнего уровня называется валентной зоной. Когда происходит приложение энергии к электронам, они стремятся набрать энергию и двигаться к зоне проводимости. Когда электроны переходят из валентной зоны в зону проводимости, их место в валентной зоне остается с дырками.

В состоянии нулевого смещения занятая валентная зона противоположна занятой зоне проводимости.В то время как в состоянии обратного смещения P-область имеет движение вверх, соответствующее N-области. Теперь занятая полоса в P-секции контрастирует с пустой полосой в N-секции. Таким образом, электроны начинают туннелировать из занятой зоны в P-секции в свободную зону в N-секции.

Итак, это означает, что протекание тока происходит также и при обратном смещении. В состоянии прямого смещения N-область имеет движение вверх, соответствующее P-области. Теперь занятая полоса в N-секции контрастирует с вакантной полосой в P-секции.Таким образом, электроны начинают туннелировать из занятой зоны в N-секции в свободную зону в P-секции.

В этом типе диода формируется область отрицательного сопротивления, которая используется в основном для работы диода.

Обратный диод
Диод BARITT

Расширенный член этого диода — диод времени прохождения через барьер, который является диодом BARITT. Он применим в микроволновых приложениях и позволяет проводить много сравнений с более широко используемым диодом IMPATT.Эта ссылка показывает четкое описание того, что такое диод BARRITT, его работа и реализации.

Диод Ганна

Диод Ганна — это диод с PN переходом, этот тип диода представляет собой полупроводниковое устройство с двумя выводами. Обычно он используется для создания микроволновых сигналов. Пожалуйста, обратитесь к приведенной ниже ссылке, чтобы узнать о работе, характеристиках и применении диода Ганна.


Диоды Ганна
Лазерный диод

Лазерный диод не имеет аналогичного процесса, как у обычного светодиода (светоизлучающего диода), потому что он излучает когерентный свет.Эти диоды широко используются для различных целей, таких как DVD, CD-приводы и лазерные указатели для PPT. Хотя эти диоды недорогие, чем другие типы лазерных генераторов, они намного дороже светодиодов. У них тоже неполная жизнь.

Лазерный диод
Светоизлучающий диод

Термин LED означает светоизлучающий диод, это один из самых стандартных типов диодов. Когда диод подключен с прямым смещением, ток течет через переход и генерирует свет.Есть также много новых светодиодных разработок, которые меняются, они представляют собой светодиоды и OLED. Одна из основных концепций светодиода — это его ВАХ. Разберемся подробнее с характеристиками светодиодов.

Характеристики светоизлучающих диодов

Прежде чем светодиод излучает свет, он требует прохождения тока через диод, потому что это диод, основанный на токе. Здесь интенсивность света прямо пропорциональна прямому направлению тока, протекающего через диод.

Когда диод проводит ток в прямом смещении, тогда должен быть установлен резистор, ограничивающий ток, чтобы защитить диод от дополнительного протекания тока. Следует отметить, что не должно быть прямого соединения между источником питания и светодиодом, когда это вызывает мгновенное повреждение, потому что это соединение позволяет протекать чрезмерно сильному току и сжигать устройство.

LED Working

Каждый тип светодиодного устройства имеет свои собственные потери прямого напряжения через PN переход, и это ограничение определяется типом используемого полупроводника.Это определяет величину падения напряжения для соответствующей величины передаваемого тока, как правило, для значения тока 20 мА.

В большинстве сценариев светодиоды работают от минимальных уровней напряжения при последовательном включении резистора, Rs используется для ограничения прямого тока до защищенного уровня, который обычно составляет от 5 мА до 30 мА, когда требуется усиление. яркость.

Различные светодиоды излучают свет в соответствующих областях УФ-спектра, поэтому они генерируют разные уровни интенсивности света.О конкретном выборе полупроводника можно узнать по всей длине волны излучения фотонов и, следовательно, по произведенному соответствующему свету. Цвета светодиода следующие:

Тип полупроводника

Длина волны Расстояние Цвет

прямое напряжение при 20 мА

GaAS 850-940 нм Инфракрасный 1.2v
GaAsP 630-660 нм Красный 1,8 В
GaAsP 605-620 нм Янтарь 2,0 В
GaAsP: N585-595нм Желтый 2,2 В
АИГАП 550-570 нм Зеленый 3,5 В
SiC 430-505 нм Синий 3,6 В
GalnN 450 нм Белый 4.0v

Таким образом, точный цвет светодиода определяется расстоянием излучаемой длины волны. А длина волны известна по определенному составу полупроводника, который используется в PN-переходе во время его производственного процесса. Таким образом, стало ясно, что цвет свечения светодиода не связан с используемым мутным пластиком. Но также они увеличивают яркость света, когда они не освещаются источником тока. С помощью комбинации различных полупроводниковых, газообразных и металлических веществ можно получить следующие светодиоды:

  • Арсенид галлия (GaAs) инфракрасный
  • Фосфид арсенида галлия (GaAsP) варьируется от красного до инфракрасного и оранжевого
  • Фосфид арсенида галлия алюминия (AlGaAsP), который имеет ярко-красный, оранжевый тип красного, оранжевого и желтого цветов.
  • Фосфид галлия (GaP) существует в красном, желтом и зеленом цветах
  • Фосфид алюминия-галлия (AlGaP) — в основном зеленого цвета
  • Нитрид галлия (GaN), доступный в зеленом и изумрудно-зеленом цветах
  • Нитрид галлия-индия (GaInN), близкий к ультрафиолетовому, смешанный цвет синего, зеленого и синего
  • Карбид кремния (SiC) доступен в синем цвете в качестве подложки
  • Селенид цинка (ZnSe) существует в синем цвете
  • Нитрид алюминия-галлия (AlGaN), ультрафиолетовый
Фотодиод

Фотодиод используется для обнаружения света.Обнаружено, что когда свет попадает на PN-переход, он может создавать электроны и дырки. Как правило, фотодиоды работают в условиях обратного смещения, когда даже небольшое количество тока, проистекающего из света, можно просто заметить. Эти диоды также можно использовать для выработки электроэнергии.

Фото диод
PIN диод

Этот тип диодов отличается своей конструкцией. Он имеет стандартные области P-типа и N-типа, но область между двумя областями, а именно собственный полупроводник, не имеет легирования.Область собственного полупроводника имеет эффект увеличения площади обедненной области, что может быть полезно для переключения приложений.

PIN-диод

Отрицательные и положительные носители заряда из областей N- и P-типа, соответственно, перемещаются во внутреннюю область. Когда эта область полностью заполнена электронными дырками, диод начинает проводить. В состоянии обратного смещения широкий внутренний слой диода может предотвращать и выдерживать высокие уровни напряжения.

На повышенных уровнях частоты PIN-диод будет работать как линейный резистор. Он работает как линейный резистор, потому что у этого диода недостаточное время обратного восстановления . Это причина того, что сильно заряженная электрическим током область «I» не успевает разрядиться во время быстрых циклов. А на минимальных частотах диод работает как выпрямительный диод, где у него достаточно времени для разрядки и выключения.

PN Соединительный диод

Стандартный PN переход можно рассматривать как обычный или стандартный тип диодов, используемых сегодня.Это самый известный из различных типов диодов, используемых в электрической сфере. Но эти диоды могут применяться как малосигнальные для использования в ВЧ (радиочастоты) или других слаботочных приложениях, которые можно назвать сигнальными диодами. Другие типы могут быть спроектированы для приложений высокого напряжения и высокого тока и обычно называются выпрямительными диодами. В диоде с PN-переходом необходимо избегать условий смещения. В основном существует три условия смещения, и это зависит от приложенного уровня напряжения.

  • Прямое смещение — здесь положительная и отрицательная клеммы подключены к типам P и N.
  • Обратное смещение — здесь положительная и отрицательная клеммы подключены к типам N и P диода.
  • Нулевое смещение — это называется смещением «0», потому что на диод не подается внешнее напряжение.
Прямое смещение PN переходного диода

В состоянии прямого смещения PN-переход возникает, когда положительный и отрицательный края батареи подключены к типам P и N.Когда диод работает в режиме прямого смещения, тогда внутренние и приложенные электрические поля на переходе имеют противоположные пути. Когда эти электрические поля суммируются, то уровень величины последующей выходной мощности меньше, чем у приложенного электрического поля.

Прямое смещение в типах PN-переходов диодов

Это соединение приводит к минимальному резистивному пути и меньшей площади истощения. Сопротивление области истощения становится более незначительным, когда значение приложенного напряжения больше.Например, в кремниевом полупроводнике, когда значение приложенного напряжения составляет 0,6 В, значение сопротивления обедненного слоя становится совершенно незначительным, и ток через него будет беспрепятственно протекать.

Обратное смещение PN переходного диода

Здесь соединение состоит в том, что положительный и отрицательный края батареи подключены к областям N-типа и P-типа. Это формирует PN-переход с обратным смещением. В этой ситуации приложенные и внутренние электрические поля имеют одинаковое направление.Когда оба электрических поля суммируются, тогда результирующая траектория электрического поля аналогична траектории внутреннего электрического поля. В результате образуется более толстая и увеличенная резистивная область истощения. Область истощения становится более чувствительной и толстой, когда прикладываемый уровень напряжения становится все больше и больше.

Обратное смещение в PN-переходном типе диодов
Характеристики V-I PN-переходного диода

Кроме того, еще более важно знать характеристики V-I диода с PN переходом.

Когда диод работает в состоянии смещения «0», что означает, что на диод не подается внешнее напряжение. Это означает, что потенциальный барьер ограничивает прохождение тока.

Тогда как, когда диод работает в условиях прямого смещения, будет более тонкий потенциальный барьер. В диодах силиконового типа, когда значение напряжения составляет 0,7 В, и в диодах германиевого типа, когда значение напряжения составляет 0,3 В, ширина потенциального барьера уменьшается, и это позволяет току течь через диод.

Характеристики VI в PN-диоде

При этом будет происходить постепенное увеличение значения тока, и результирующая кривая будет нелинейной, поскольку уровень приложенного напряжения преодолевает потенциальный барьер. Когда диод преодолевает этот потенциальный барьер, диод функционирует в нормальном состоянии, и форма кривой постепенно становится резкой (приобретает линейную форму) с увеличением значения напряжения.

Когда диод работает в режиме обратного смещения, будет повышенный потенциальный барьер.Поскольку в переходе будут присутствовать неосновные носители заряда, это позволяет протекать обратному току насыщения. Когда есть повышенный уровень приложенного напряжения, неосновные носители заряда обладают повышенной кинетической энергией, которая оказывает влияние на основные носители заряда. На этом этапе происходит пробой диода, что может привести к его повреждению.

Диод Шоттки

Диод Шоттки имеет меньшее прямое падение напряжения, чем обычные кремниевые диоды с PN переходом.При малых токах падение напряжения может составлять от 0,15 до 0,4 вольт, в отличие от 0,6 вольт для диода a-Si. Для достижения этих характеристик они разработаны иначе, чем обычные диоды, имеющие контакт металл-полупроводник. Эти диоды широко используются в выпрямителях, ограничивающих диодах, а также в ВЧ приложениях.

Диод Шоттки
Шаг восстанавливающий диод

Ступенчатый восстанавливающий диод — это разновидность микроволнового диода, используемого для генерации импульсов на очень ВЧ (высоких частотах).Эти диоды зависят от диода, который имеет очень быструю характеристику выключения для их работы.

Пошаговые восстанавливающие диоды
Tunnel Diode

Туннельный диод используется в микроволновых устройствах, где его характеристики превосходят характеристики других устройств того времени.

Туннельный диод

В электрической области туннелирование означает прямое движение электронов через минимальную ширину обедненной области от зоны проводимости к валентной зоне. В диоде с PN-переходом обедненная область создается как электронами, так и дырками.Из-за этих положительных и отрицательных носителей заряда в обедненной области создается внутреннее электрическое поле. Это создает силу на пути, противоположном внешнему напряжению.

При туннельном эффекте, когда есть минимальное значение прямого напряжения, значение прямого тока будет больше. Он может работать как в прямом, так и в обратном смещении. Из-за высокого уровня легирования он также может работать в режиме обратного смещения. С уменьшением барьерного потенциала напряжение пробоя в обратном направлении также уменьшается и приближается к нулю.При таком минимальном обратном напряжении диод может дойти до пробоя. Из-за этого образуется область отрицательного сопротивления.

Варакторный диод или варикап диод

Варакторный диод — это один из видов полупроводникового твердотельного СВЧ-устройства, который используется там, где выбирается переменная емкость, которая может быть достигнута путем управления напряжением. Эти диоды еще называют варикозными диодами. Даже при том, что o / p переменной емкости может быть продемонстрировано обычными диодами с PN-переходом.Но этот диод выбран для получения предпочтительных изменений емкости, поскольку это разные типы диодов. Эти диоды сконструированы и усовершенствованы таким образом, чтобы допускать широкий диапазон изменений емкости.

Варакторный диод
Стабилитрон

Стабилитрон используется для обеспечения стабильного опорного напряжения. В результате он используется в огромных количествах. Он работает в условиях обратного смещения и обнаружил, что при достижении определенного напряжения он выходит из строя. Если ток ограничен резистором, он активирует стабильное напряжение, которое будет генерироваться.Этот тип диодов широко используется в качестве опорного напряжения в источниках питания.

Стабилитрон

В составе стабилитрона существуют различные методы. Некоторые из них используются для увеличения рассеиваемой мощности, тогда как другие используются для монтажа на краю. Обычно стабилитрон состоит из минимального стеклянного покрытия. У этого диода есть полоса на одном крае, которая обозначает его как катод.

Стабилитрон

работает так же, как диод, при работе в режиме прямого смещения.В то время как при обратном смещении будет возникновение минимального тока утечки. Когда происходит увеличение обратного напряжения до напряжения пробоя, это создает ток, протекающий через диод. Текущее значение будет достигнуто до максимума, и это будет зафиксировано последовательным резистором.

Применение стабилитрона

Стабилитроны находят широкое применение, и лишь немногие из них:

  • Используется как ограничитель напряжения для регулирования уровней напряжения при минимальном значении нагрузки
  • Применяется в приложениях, требующих защиты от перенапряжения
  • Используется в схемах отсечки

Ниже приведены некоторые другие типы диодов, которые критически используются в различных приложениях:

  • Лазерный диод
  • Лавинный диод
  • Диод подавления переходных напряжений
  • Золото легированный тип диода
  • Тип диода постоянного тока
  • Диод Пельтье
  • Выпрямительный диод с кремниевым управлением

У каждого диода есть свои преимущества и применение.Немногие из них широко используются в различных приложениях в нескольких областях, тогда как некоторые из них используются только в нескольких приложениях. Таким образом, речь идет о различных типах диодов и их использовании. Мы надеемся, что вы лучше понимаете эту концепцию или для реализации электрических проектов, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, Какая функция диода?

Типы диодов и их применение

Различные типы диодов с их характеристиками и применением

Диод является наиболее часто используемым полупроводниковым устройством в электронных схемах. Это двухконтактный электрический обратный клапан, позволяющий протекать току в одном направлении. . В основном они состоят из кремния, но также используется германий. Обычно их используют для ректификации. Но есть разные свойства и характеристики диодов, которые можно использовать для разных целей. Эти характеристики изменены для формирования диодов разных типов. В настоящее время доступно несколько различных типов диодов с разными свойствами.

Некоторые из различных типов диодов с их свойствами и областями применения обсуждаются ниже:

Диод с P-N переходом

Диод с P-N переходом изготовлен из полупроводникового материала.Он состоит из двух слоев полупроводников. Один слой легирован материалом P-типа, а другой слой — материалом N-типа. Комбинация этих слоев P- и N-типа образует соединение, известное как соединение P-N. Отсюда и название P-N диод .

Он позволяет току течь в прямом направлении и блокирует его в обратном направлении. Они также известны как выпрямительные диоды, используемые для выпрямления.

Существуют различные типы диодов, в которых используется P-N переход с изменением концентрации легирования.Они обсуждаются ниже.

Малый сигнальный диод

Это тип диода с P-N переходом, который работает с сигналами низкого напряжения. Площадь стыка очень мала. Благодаря этому переход имеет меньшую емкость и низкую емкость накопления заряда. Это позволяет малому сигнальному диоду иметь высокую скорость переключения с очень коротким временем восстановления. Однако его ограничениями являются низковольтных и токовых параметров.

Из-за высокой скорости переключения эти типы диодов используются в цепях с высокими частотами.

Выпрямительный диод

Выпрямительный диод — это тип диода с P-N переходом, у которого площадь P-N перехода очень велика. Это приводит к высокой емкости в обратном направлении. Имеет низкую скорость переключения.

Это наиболее распространенный и наиболее часто используемый тип диодов. Эти типы диодов могут выдерживать большие токи и используются для преобразования переменного тока в постоянный ( Rectification ).

Диод Шоттки

Диод Шоттки, названный в честь немецкого физика Вальтера Х.Schottky, — это тип диода, который состоит из небольшого перехода между полупроводником N-типа и металлом. Он имеет без перекрестка P-N.

Плюс диода Шоттки в том, что он имеет очень низкое прямое падение напряжения и быстрое переключение . Поскольку нет емкостного перехода (P-N переход), скорость переключения диода Шоттки очень высока.

Ограничение диода Шоттки заключается в том, что он имеет низкое обратное напряжение пробоя и высокий обратный ток утечки.

Супербарьерные диоды

Супербарьерные диоды (SBR) также являются выпрямительными диодами, но у них низкое прямое падение напряжения , как и у диодов Шоттки. У них низкая обратная утечка тока, как и у нормального диода с P-N переходом.

SBR использует полевой МОП-транзистор путем короткого контакта между его затвором и истоком.

SBR имеет низкое прямое падение напряжения, меньший обратный ток утечки и возможность быстрого переключения.

Светоизлучающий диод (LED)

Светоизлучающий диод также относится к типу диодов с P-N переходом, которые излучают свет в конфигурации прямого смещения.

Светодиод состоит из полупроводника с прямой полосой пропускания. Когда носители заряда (электроны) пересекают барьер и рекомбинируют с электронными дырками на другой стороне, они испускают фотонные частицы (свет). В то время как цвет света зависит от запрещенной зоны полупроводника.

Светодиод преобразует электрическую энергию в световую.

Фотодиод

Фотодиод — это тип диода с P-N переходом, который преобразует световую энергию в электрический ток. Его работа противоположна таковой у LED .

На каждый полупроводниковый диод влияют оптические носители заряда. Вот почему они упакованы в легкий блокирующий материал.

В фотодиоде есть специальное отверстие, через которое свет проникает в его чувствительную часть.

Когда свет (частицы фотона) попадает на PN-переход, он создает пару электрон-дырка.Эти электрон и дырка вытекают как электрический ток. Для повышения его эффективности используется диод PIN junction .

Фотодиод используется в обратном смещении, и они могут использоваться в солнечных элементах.

Лазерный диод

Лазерный диод похож на светодиод, поскольку он преобразует электрическую энергию в световую. Но в отличие от светодиода, лазерный диод излучает когерентный свет.

Лазерный диод состоит из PIN-перехода, , где электрон и дырки объединяются во внутренней (I) области.когда они объединяются, он генерирует лазерный луч.

Лазерные диоды используются в оптической связи, лазерной указке, приводах компакт-дисков, лазерном принтере и т. Д.

Туннельный диод

Туннельный диод был изобретен Лео Эсаки в 1958 году , за который он получил Нобелевскую премию в 1973 году, а именно почему он также известен как диод Эсаки .

Туннельный диод — это сильно легированный диод с P-N переходом . Он работает по принципу туннельного эффекта .Из-за высокой концентрации легирования переходной барьер становится очень тонким. Это позволяет электрону легко уходить через барьер. Это явление известно как туннельный эффект .

Туннельный диод имеет область на кривой VI , где ток уменьшается с увеличением напряжения. Эта область известна как область отрицательного сопротивления . Туннельный диод работает в этой области в различных приложениях, таких как генератор и микроволновый усилитель .

Обозначение с VI характеристикой кривой туннельного диода приведено ниже:

Туннельный диод также проводит ток в обратном направлении и является устройством быстрого переключения.

Стабилитрон

Стабилитрон назван в честь Кларенса Малвина Зенера , открывшего эффект стабилитрона .

Это тип диода, который пропускает ток не только в прямом, но и в обратном направлении.когда обратное напряжение достигает напряжения пробоя, известного как напряжение стабилитрона , оно позволяет протекать току.

Стабилитрон имеет более высокую концентрацию легирования, чем обычный диод с P-N переходом. Следовательно, он имеет очень тонкую область истощения.

При прямом смещении он работает как простой диод с P-N переходом (выпрямитель).

При обратном смещении он блокируется, пока обратное напряжение не достигнет пробоя. После этого он позволяет току течь с постоянным падением напряжения.

Обратный пробой стабилитрона вызван двумя причинами: i.е. квантовое туннелирование электронов и Лавинный пробой .

Стабилитрон в основном используется в конфигурации с обратным смещением. Он обеспечивает стабилизированное напряжение для защиты цепей от перенапряжения.

Обратный диод

Обратный диод или задний диод представляет собой диод с P-N переходом, который работает аналогично туннельному диоду и стабилитрону . Но рабочие напряжения намного ниже.

Обратный диод — это, по сути, туннельный диод, у которого одна сторона перехода имеет относительно меньшую концентрацию легирования по сравнению с другой стороной.

В прямом смещении он работает как туннельный диод , но его туннельный эффект значительно снижен по сравнению с туннельным диодом. В противном случае он работает как обычный диод с фазовым переходом.

В с обратным смещением он работает как стабилитрон , но напряжения пробоя намного ниже.

Широко не используется, но может использоваться для выпрямления сигнала слабого напряжения (от 0,1 до 0,6 В). Благодаря высокой скорости переключения его можно использовать в качестве переключателя в ВЧ-смесителе и умножителе.

Лавинный диод

Лавинный диод представляет собой диод с P-N переходом, который специально разработан для работы в области лавинного пробоя .

Лавинный пробой — это явление, при котором на переход P-N подается достаточное обратное напряжение. За счет этого неосновной носитель ионизируется и запускает сильный ток в обратном направлении.

Лавинный диод электрически аналогичен стабилитрону. Однако концентрация легирования стабилитрона относительно выше по сравнению с лавинным диодом.

Сильное легирование внутри стабилитрона создает небольшой переход, и низкие напряжения могут легко его сломать. Однако лавинный диод имеет широкий переход из-за концентрации легкого легирования. Таким образом, для его пробоя требуется высокое напряжение. Этот широкий переход делает его лучшим устройством защиты от перенапряжения по сравнению с простым стабилитроном.

Диод подавления переходного напряжения (TVS)

Диод подавления переходного напряжения или TVS-диод — это тип лавинного диода, который защищает цепь от скачков напряжения.

TVS-диод способен выдерживать высокие напряжения по сравнению с лавинным диодом.

Однонаправленный TVS-диод работает аналогично лавинному диоду. он действует как выпрямитель при прямом смещении и как устройство защиты от перенапряжения при обратном смещении.

Двунаправленный TVS-диод действует как два лавинных диода, последовательно противостоящих друг другу. Он изготавливается как однокомпонентный. Он работает в обоих направлениях и обеспечивает защиту от перенапряжения при использовании параллельно с цепью.

Диод, легированный золотом

В диодах такого типа в качестве легирующей примеси (легирующего материала) используется золото или платина.Это позволяет диоду работать с высокой скоростью переключения, но за счет увеличения прямого падения напряжения. Кроме того, его обратный ток утечки выше, чем у обычного диода с P-N переходом.

Диод постоянного тока

Диод постоянного тока AKA токоограничивающий диод (CLD) представляет собой двухконтактный диод, сделанный из JFET. Он регулирует ток через него до фиксированного уровня.

CLD создается путем короткого контакта между затвором и истоком JFET.Он ограничивает ток так же, как стабилитрон ограничивает напряжение.

Ступенчатый восстанавливающий диод

Ступенчатый восстанавливающий диод или отключающий диод — это диод с P-N переходом, который резко прекращает прохождение тока при изменении его направления.

SRD (ступенчатый восстанавливающий диод) состоит из P-N перехода с очень низкой концентрацией легирования вблизи перехода. За счет этого уменьшается количество носителей заряда (электронов и дырок) вблизи перехода. Следовательно, емкость накопления заряда вблизи перехода становится незначительной.Это позволяет SRD очень быстро переключаться с ВКЛ на ВЫКЛ.

В нормальном диоде, когда он переключается с прямой проводимости на обратную отсечку, ток кратковременно течет из-за накопленного заряда. Из-за чего нормальному диоду требуется некоторое время на переключение. SRD не накапливает заряд, поэтому может мгновенно прекратить прохождение тока.

Пельтье или термодиоды

Пельтье или термодиоды — это тип диодов, тепловое сопротивление которых в одном направлении отличается от другого.Таким образом, выделяемое тепло течет в одном направлении в одну сторону (терминал) и оставляет другую сторону более холодной.

Этот диод используется для контроля температуры в микропроцессоре и в холодильниках для эффекта охлаждения.

Вакуумный диод

Это простейшая форма диода, состоящая из вакуумной трубки и двух электродов (катода и анода). Анод и катод заключены внутри вакуумной трубки (пустой стакан).

Когда катод нагревается, он испускает электроны, анод улавливает электроны, и поток продолжается.

Катод может нагреваться прямо или косвенно.

При прямом смещении свободный электрон на катоде выделяется в вакуум после нагрева. Анод собирает эти электроны, и ток течет.

При обратном смещении свободный электрон в вакууме отталкивается анодом, поскольку он подключен к отрицательной клемме, поэтому ток не течет.

Таким образом, ток течет только в одном направлении.

Варакторный диод

Варакторный диод, также известный как диод Верикапа, представляет собой конденсаторы с регулируемым напряжением.У них есть переход P-N с переменной емкостью перехода.

Варакторный диод работает в условиях обратного смещения. Слой обеднения между материалами P- и N-типа варьируется путем изменения обратного напряжения.

Емкость перехода всех диодов зависит от обратного напряжения, но варакторный диод может использовать этот эффект с большим диапазоном емкости.

Диоды Varactor применяются в качестве генератора , управляемого напряжением, в контуре фазовой синхронизации, в фильтрах настройки RF и умножителях частоты .

Сообщение по теме: Типы микросхем. Классификация интегральных схем и их ограничения

Диод Ганна

Диод Ганна AKA « Transferred Electron Device » (TED) — это тип диода, имеющего отрицательное сопротивление, как туннельный диод. Он назван в честь британского физика Дж. Б. Ганна , открывшего «эффект Ганна » в 1962 году.

Диод Ганна не имеет P-N перехода. Фактически, он состоит только из материала типа N, поэтому он не выпрямляет переменный ток и не работает как обычный диод.Это также причина, по которой многие люди называют его «устройством с переносом электронов» (TED) вместо диода.

Состоит из трех слоев N-типа; два из них, которые находятся на стороне вывода, имеют более высокую концентрацию легирования, тогда как средний тонкий слой имеет меньшую концентрацию легирования.

Когда напряжение подается на диод Ганна, сначала его ток увеличивается с увеличением напряжения.

При более высоком напряжении сопротивление среднего слоя начинает увеличиваться с увеличением напряжения.Это приводит к падению тока. Это область отрицательного сопротивления . В этой области работает и диод Ганна.

Диод Ганна используется в генераторе для генерации микроволн высокой частоты .

PIN-диод

PIN-диод — это трехслойный диод, то есть P-слой, I-слой и N-слой. Собственный полупроводниковый слой « I » помещен между сильно легированным P и полупроводником N-типа.

Электрон и дырки из области N- и P-типа соответственно текут во внутреннюю область (I).Как только область «I» полностью заполняется электронными дырками, диод начинает проводить.

При обратном смещении широкий внутренний слой диода может блокировать и выдерживать высокие обратные напряжения.

При более высокой частоте PIN-диод действует как линейный резистор. Это из-за того, что PIN-диод имеет плохое время обратного восстановления . Причина в том, что сильно заряженная область «I» не успевает разрядиться во время быстрых циклов.

На низкой частоте действует как выпрямительный диод.Потому что у него достаточно времени, чтобы разрядиться и выключиться во время цикла.

Если фотон попадает в область «I» PIN-диода с обратным смещением, он создает пару электрон-дырка. Эта электронно-дырочная пара течет как ток. Таким образом, он также используется в фотодетекторах и фотоэлектрических элементах .

PIN-диоды используются в выпрямлении высокого напряжения, в ВЧ приложениях в качестве аттенюатора и переключающего элемента.

Кремниевый управляемый выпрямитель (SCR)

SCR — это четырехслойное полупроводниковое переключающее устройство типа P-N-P-N.Он имеет три терминала: анод, катод и затвор.

SCR — это, по сути, диод с входом внешнего управления, известным как вход затвора. Это позволяет току течь в одном направлении.

Когда тиристор подключен в прямом смещении, он еще не позволяет протекать току. Это известно как режим прямой блокировки .

Для того, чтобы тиристор работал в прямом режиме, ему необходимо либо напряжение, необходимое для пересечения его предела отключения, либо подача положительного импульса на вход затвора.

Чтобы выключить SCR, либо уменьшите ток ниже точки удерживающего тока, либо выключите вход затвора и на мгновение закоротите анод-катод.

При обратном смещении тиристор не пропускает ток даже после подачи затвора. Но если обратное напряжение достигает обратного напряжения пробоя, SCR начинает проводить из-за лавинных явлений.

SCR используется для управления цепями большой мощности, выпрямления переменного тока большой мощности

Диод Шокли

Диод Шокли представляет собой четырехслойный диод PNPN.Он похож на SCR, но у него нет входа управления или затвора.

Диод Шокли имеет тенденцию оставаться «ВКЛЮЧЕННЫМ», когда он включен «ВКЛЮЧЕННЫМ», и имеет тенденцию оставаться «ВЫКЛЮЧЕННЫМ», когда он «ВЫКЛЮЧЕН».

Как мы знаем, диод Шокли не имеет входа затвора, поэтому единственный способ включить его — подать прямое напряжение, превышающее его напряжение пробоя.

После подачи напряжения, превышающего его напряжение пробоя, он пропускает ток.

В состоянии проводимости он не выключится, даже если напряжение снизится от напряжения пробоя.Чтобы он отключился, напряжение должно быть достаточно ниже, чем его напряжение пробоя.

Диод с точечным контактом

Он также известен как диод Cat Whisker или кристаллический диод .

Это тип диода, в котором небольшой точечный переход образован между металлической проволокой и полупроводниковым кристаллом N-типа.

« кошачий ус » представляет собой тонкую пружинящую проволоку из фосфорной бронзы или вольфрама. Он образует точечный переход с полупроводником N-типа, отсюда и название точечный диод .

Поскольку образующийся переход очень мал, емкость перехода точечного диода очень мала. Таким образом, емкость накопителя для заряда очень мала, что делает его устройством быстрого переключения.

Во время производства пропускание относительно большого тока через провод кошачьего уса приводит к образованию небольшой P-области на полупроводнике N-типа . Этот небольшой переход действует как переход P-N.

Точечные контактные диоды используются для сигналов низкого напряжения, а также в микроволновых смесителях и детекторах.

Это одни из наиболее распространенных типов диодов, используемых при проектировании и эксплуатации электронных схем. Если вы хотите добавить другие типы диодов, сообщите нам об этом в поле для комментариев ниже.

Фотодиод — символ, работа и типы

Введение

А Фотодиод — это p-n-переход или штыревой полупроводниковый прибор, который потребляет световую энергию для выработки электрического тока.Это также иногда называют фотодетектором, фотодатчиком или светом детектор.

Фотодиоды находятся специально предназначен для работы в условиях обратного смещения. Обратное смещение означает, что сторона p фотодиода подключена к отрицательная клемма батареи и n-сторона подключена к положительный полюс аккумуляторной батареи.

Фотодиод очень чувствителен к свету, поэтому, когда свет или фотоны падают на Фотодиод легко преобразует свет в электрический ток.Солнечный элемент также известен как фотодиод большой площади, потому что он преобразует солнечную или световую энергию в электрическую. Однако солнечная батарея работает только при ярком свете.

строительство и работа фотодиода почти аналогична нормальному p-n переходной диод. PIN (p-тип, внутренний и n-тип) структура в основном используется для построения фотодиода вместо структуры соединения p-n (p-тип и n-тип), потому что Структура PIN-кода обеспечивает быстрое время отклика.PIN-фотодиоды в основном используется в высокоскоростных приложениях.

В нормальный диод p-n переход, напряжение используется как энергия источник для выработки электрического тока, тогда как в фотодиоды, как напряжение, так и свет используются в качестве источника энергии для выработки электрического тока.

Фотодиод символ

символ фотодиода аналогичен нормальному p-n переходу диод, за исключением того, что он содержит стрелки, указывающие на диод.В стрелки, попадающие на диод, представляют свет или фотоны.

А Фотодиод имеет два вывода: катод и анод.

Цели и ограничения фотодиода

  1. Фотодиод всегда должен работать в режиме обратного смещения.
  2. Прикладной напряжение обратного смещения должно быть низким.
  3. Создать низкий уровень шума
  4. Высокое усиление
  5. Высокий скорость отклика
  6. Высокий светочувствительность
  7. Низкий чувствительность к температуре
  8. Низкая стоимость
  9. Малый размер
  10. Длинный срок службы

Как фотодиод работает?

А нормальный диод с p-n переходом допускает небольшое количество электрического ток в условиях обратного смещения.Для увеличения электрического ток в условиях обратного смещения, нам нужно генерировать больше миноритарные перевозчики.

внешнее обратное напряжение, приложенное к диоду p-n перехода будет поставлять энергию неосновным носителям, но не увеличивать население миноритарных перевозчиков.

Однако небольшое количество неосновных носителей генерируется из-за внешнее обратное напряжение смещения.Неосновные перевозчики генерировали на n-стороне или p-стороне будет рекомбинировать в том же материале перед они пересекают перекресток. В результате отсутствует электрический ток. потоки за счет этих носителей заряда. Например, меньшинство носители, генерируемые в материале p-типа, испытывают a сила отталкивания от внешнего напряжения и попытка сдвинуться с места в сторону n. Однако перед пересечением перекрестка свободные электроны рекомбинируют с дырками внутри одного материал.В результате не протекает электрический ток.

Кому преодолеть эту проблему, нам нужно применить внешнюю энергию непосредственно к истощению область для генерации большего количества носителей заряда.

А специальный тип диода, называемый фотодиодом, предназначен для генерировать большее количество носителей заряда в области истощения. В фотодиодах мы используем свет или фотоны в качестве внешней энергии. для генерации носителей заряда в обедненной области.

Типы фотодиодов

рабочая работа всех типов фотодиодов одинакова. Различные типы фотодиодов разрабатываются на основе конкретных заявление. Например, фотодиоды с PIN-кодом разработаны для увеличить скорость отклика. Фотодиоды с PIN-кодом используются там, где нужна высокая скорость отклика.

другой типов фотодиодов

  • PN переход фотодиод
  • PIN фотодиод
  • Лавина фотодиод

Среди все три фотодиода, фотодиоды с PN переходом и PIN наиболее широко используется.

PN переходной фотодиод

PN переходные фотодиоды — это первая разновидность фотодиодов. Они являются наиболее широко используемыми фотодиодами до разработка ПИН-фотодиодов. Фотодиод на PN переходе также просто фотодиод. В настоящее время фотодиоды с PN-переходом не получили широкого распространения.

Когда внешний световая энергия поступает на фотодиод p-n перехода, валентный электроны в обедненной области приобретают энергию.

Если световая энергия, приложенная к фотодиоду, больше, чем запрещенная зона полупроводникового материала, валентные электроны приобретают достаточно энергии и разорвать связь с родительским атомом. Валентность электрон, который разрывает связь с родительским атомом, станет свободный электрон. Свободные электроны свободно перемещаются из одного места в другое. другое место, проводя электрический ток.

Когда валентный электрон покидает валентную оболочку пустое пространство создается в валентной оболочке, на которой ушел валентный электрон. Это пустое пространство в валентной оболочке называется дырой. Таким образом, как свободные электроны, так и дырки образуются парами. В механизм генерации электронно-дырочной пары с помощью света энергия известна как внутренний фотоэлектрический эффект.

неосновные носители в области истощения испытывают силу из-за в область истощения электрического поле и внешнее электрическое поле. Например, бесплатно электроны в области обеднения испытывают отталкивание и сила притяжения от присутствующих отрицательных и положительных ионов на краю обедненной области на p-стороне и n-стороне.Как в результате свободные электроны движутся к n-области. Когда свободные электроны достигают n области, они притягиваются к положительные клеммы аккумуляторной батареи. Аналогичным образом отверстия движутся в противоположном направлении.

электрическое поле в области сильного обеднения и внешнее электрическое поле увеличивает скорость дрейфа свободного электроны.Из-за этой высокой скорости дрейфа меньшинство носители (свободные электроны и дырки), образующиеся при обеднении область пересечет p-n-переход, прежде чем они рекомбинируют с атомы. В результате ток неосновных носителей увеличивается.

Когда на фотодиод обратного смещения не подается свет, он несет небольшой обратный ток из-за внешнего напряжения. Этот маленький электрический ток при отсутствии света называется темным Текущий.Обозначается I . λ .

В фотодиод, обратный ток не зависит от обратного смещения Напряжение. Обратный ток в основном зависит от света интенсивность.

В фотодиоды, большая часть электрического тока переносится носителями заряда генерируется в обедненной области, потому что носители заряда в области истощения имеет высокую скорость дрейфа и низкую скорость рекомбинации, тогда как носители заряда на n-стороне или p-сторона имеет низкую скорость дрейфа и высокую скорость рекомбинации.В электрический ток, генерируемый в фотодиоде из-за применение света называется фототоком.

полный ток через фотодиод — это сумма темновых ток и фототок. Темновой ток необходимо уменьшить для увеличения чувствительности устройства.

электрический ток, протекающий через фотодиод, напрямую пропорционально количеству падающих фотонов.

PIN фотодиод

PIN Фотодиоды разработаны на основе фотодиодов с PN переходом. PIN-фотодиод работает аналогично PN-переходу. фотодиод, за исключением того, что фотодиод PIN изготавливается иначе улучшить его производительность.

ПИН-фотодиод разработан для увеличения неосновной несущей. ток и скорость отклика.

PIN фотодиоды генерируют больше электрического тока, чем PN переходные фотодиоды с таким же количеством световой энергии.

слоев ПИН-фотодиода

А Фотодиод с PN-переходом состоит из двух слоев: p-типа и полупроводник n-типа, тогда как фотодиод PIN состоит из трех слои, а именно p-тип, n-тип и собственный полупроводник.

В PIN-фотодиод, дополнительный слой, называемый внутренним полупроводник помещается между p-типом и n-типом полупроводник для увеличения тока неосновных носителей.

P-типа полупроводник

Если трехвалентные примеси добавляются к собственному полупроводнику, р-тип полупроводник.

В Полупроводники p-типа, количество свободных электронов в зона проводимости меньше, чем количество дырок в валентная полоса. Следовательно, дырки являются основными носителями заряда и свободными электроны являются неосновными носителями заряда. В р-типе В полупроводниках дырки несут большую часть электрического тока.

тип N полупроводник

Если пятивалентный примеси добавляются к собственному полупроводнику, n-тип полупроводник.

В Полупроводники n-типа, количество свободных электронов в зона проводимости больше, чем количество дырок в валентная полоса. Следовательно, свободные электроны являются основными носителями заряда и дырки являются неосновными носителями заряда. В n-типе полупроводники, свободные электроны несут большую часть электрического Текущий.

Внутренний полупроводник

Внутренний Полупроводники — это чистая форма полупроводников.В собственный полупроводник, количество свободных электронов в зона проводимости равна количеству дырок в валентной группа. Следовательно, собственный полупроводник не имеет заряда. носители для проведения электрического тока.

Однако при комнатной температуре небольшое количество носителей заряда сгенерировано. Это небольшое количество носителей заряда будет нести электрический ток.

PIN работа фотодиода

А PIN-фотодиод состоит из p-области и n-области, разделенных внутренний слой с высоким сопротивлением. Собственный слой помещается между областью p и областью n для увеличения ширины области истощения.

Полупроводники p-типа и n-типа сильно легированы.Следовательно, p-область и n-область фотодиода PIN имеют большие количество носителей заряда для переноса электрического тока. Тем не мение, эти носители заряда не будут проводить электрический ток под условие обратного смещения.

Вкл. с другой стороны, собственный полупроводник — нелегированный полупроводниковый материал. Следовательно, собственная область не иметь носителей заряда для проведения электрического тока.

Менее задний ход условие смещения, основные носители заряда в области n и p регион удаляется от стыка. В результате ширина область истощения становится очень широкой. Таким образом, большинство носители не будут проводить электрический ток при обратном смещении состояние.

Однако неосновные носители будут переносить электрический ток, потому что они испытывают силу отталкивания от внешнего электрического поля.

В PIN-фотодиод, носители заряда, генерируемые при истощении по региону проходит большая часть электрического тока. Носители заряда генерируемые в p-области или n-области несут только небольшой электрический ток.

Когда к PIN-диоду прикладывается энергия света или фотона, большая часть энергии наблюдается внутренней или обедненной областью из-за большой ширины истощения.В результате большой количество электронно-дырочных пар.

Бесплатно электроны, генерируемые в собственной области, движутся в сторону n-сторону, в то время как дыры, образовавшиеся во внутренней области, перемещаются в сторону p. Свободные электроны и дырки переместились из одного от региона к другому региону проводят электрический ток.

Когда свободные электроны и дырки достигают n области и p области, они привлечены к положительным и отрицательным клеммам батарея.

численность населения неосновных носителей в фотодиоде PIN очень велико по сравнению с к фотодиоду PN перехода. Таким образом, фотодиод с PIN-кодом несет больший ток неосновных носителей, чем у фотодиода с PN-переходом.

Когда на фотодиод PIN подается напряжение прямого смещения, он ведет себя как резистор.

ср знайте, что емкость прямо пропорциональна размеру электродов и обратно пропорционально расстоянию между электроды.В фотодиоде с PIN-кодом действуют области p и n. как электроды и внутренняя область действует как диэлектрик.

разделительное расстояние между p-областью и n-областью в PIN-коде фотодиод очень большой из-за большой обедненной ширины. Таким образом, PIN-фотодиод имеет низкую емкость по сравнению с Фотодиод на PN переходе.

В PIN-фотодиод, большая часть электрического тока проходит через носители заряда, генерируемые в обедненной области.Заряд носители, генерируемые в области p или n, несут только небольшой электрический ток. Следовательно, увеличивая ширину истощения область увеличивает электрический ток неосновных носителей.

Преимущества из PIN фотодиод

  1. широкий полоса пропускания
  2. Высокий квант эффективность
  3. Высокий скорость отклика

Лавина фотодиод

операция лавинного фотодиода аналогичен PN переходу и PIN фотодиод, за исключением того, что прикладывается высокое обратное напряжение смещения в случае лавинного фотодиода для схода лавины умножение.

Применение высокий Напряжение обратного смещения на лавинный фотодиод не будет напрямую увеличивают генерацию носителей заряда. Тем не мение, он обеспечивает энергией электронно-дырочные пары, генерируемые падающий свет.

Когда на лавинный фотодиод подается световая энергия, при обеднении образуются электронно-дырочные пары.В генерируемые электронно-дырочные пары испытывают силу из-за электрическое поле обедненной области и внешнее электрическое поле.

В лавинный фотодиод, очень высокое напряжение обратного смещения большое количество энергии для неосновных носителей (электронно-дырочные пары). Неосновные перевозчики, которые получают большое количество энергия ускоряется до больших скоростей.

Когда свободные электроны движущиеся на большой скорости сталкиваются с атомом, они сбивают больше свободных электронов. Вновь образованные свободные электроны снова ускоряется и сталкивается с другими атомами. Из-за это непрерывное столкновение с атомами, большое количество генерируются неосновные носители. Таким образом, лавинные фотодиоды генерирует большее количество носителей заряда, чем PN и PIN фотодиоды.

Лавина фотодиоды используются в приложениях, где важно высокое усиление фактор.

Преимущества из лавинный фотодиод

  1. Высокая чувствительность
  2. Больше прирост

Недостатки из лавинный фотодиод

генерирует высокий уровень шума, чем у фотодиода PN

Фотодиод операция режимы

А Фотодиод может работать в одном из двух режимов: фотоэлектрический режим или фотопроводящий режим.

Эксплуатация Режим выбор фотодиода зависит от скорости требования приложения и количество темнового тока это терпимо.

Фотоэлектрические режим

В фотоэлектрический режим, фотодиод несмещен. В других Другими словами, на фотодиод не подается внешнее напряжение. фотоэлектрический режим.

В фотоэлектрический режим темновой ток очень низкий. Фотодиоды работали в фотоэлектрический режим имеет низкую скорость отклика.

фотодиоды работают в фотоэлектрическом режиме, обычно используются для низкой скорости приложений или для обнаружения низкого уровня освещенности.

Фотопроводящий режим

В фотопроводящий в режиме внешнего обратного смещения фотодиод.

Применение напряжение обратного смещения увеличивает ширину обедненной области и уменьшает емкость перехода, что приводит к повышенная скорость отклика. Обратное смещение также увеличивает темное течение.

Фотодиоды при работе в фотопроводящем режиме имеет высокий ток шума. Этот возникает из-за обратного тока насыщения, протекающего через фотодиод.

Темное течение

Тьма ток — это ток утечки, протекающий в фотодиоде в отсутствие света. Темновой ток в фотодиоде увеличивается при повышении температуры. Материал, используемый для Построенный фотодиод также влияет на темновой ток.

другой материалы, используемые для изготовления фотодиодов, — кремний (Si), Германий, (Ge), фосфид галлия (GaP), индий галлий Арсенид (InGaAs), антимонид арсенида индия (InAsSb), Арсенид индия-галлия (InGaAs), ртуть Теллурид кадмия (MCT, HgCdTe).

Германий, Антимонид арсенида индия, арсенид галлия индия и Теллурид кадмия ртути генерирует большой темновой ток, потому что они очень чувствительны к температуре.

скорость отклика кремния, фосфида галлия, индия галлия Арсенид и арсенид индия-галлия с расширенным диапазоном высокий.

Производительность параметры фотодиода

Ответственность

Отзывчивость является отношение генерируемого фототока к падающему свету власть.

Квантовая эффективность

Квантовая эффективность определяется как отношение количества электронно-дырочных пар (фотоэлектроны) генерируются падающими фотонами.

Время отклика или время в пути

время отклика фотодиода определяется как время, которое требуется для световых носителей заряда, чтобы пересечь p-n переход.

Фотодиод приложения

различные применения фотодиодов

  1. Компакт-диск игроков
  2. Дым детекторы
  3. Космос приложения
  4. Фотодиоды используются в медицинских приложениях, таких как вычисленные томография, инструменты для анализа проб и пульс оксиметры.
  5. Фотодиоды используются для оптической связи.
  6. Фотодиоды используются для измерения очень низкой интенсивности света.

Типы диодов

различные типы диодов следующие:

  1. стабилитрон диод
  2. Лавинный диод
  3. Фотодиод
  4. Свет Излучающий диод
  5. Лазер диод
  6. Туннель диод
  7. Шоттки диод
  8. Варактор диод
  9. П-Н переходной диод

Типы диодов

Существует несколько различных типов диодов, которые используются в разработке электроники.Различные типы диодов позволяют удовлетворить различные требования к применению. В результате свойств этих разных типов диодов, разные типы полупроводниковых диодов могут использоваться для выполнения разных функций. Некоторые символы диодов показаны на изображении ниже.

Обозначения диодов

Лавинный диод

Этот тип диода проводит в обратном направлении, когда напряжение обратного смещения превышает напряжение пробоя. Эффект лавины возникает, когда обратное электрическое поле через переход P-N вызывает волну ионизации, напоминающую лавину, приводящую к сильному току.Лавинные диоды предназначены для пробоя при четко определенном обратном напряжении без разрушения.

Лавинный диод

Светоизлучающий диод (LED)

Светодиод — один из самых популярных типов диодов, который излучает свет, когда диод позволяет передавать электрический ток между электродами. Энергия выделяется в виде света, когда диод включен или смещен в прямом направлении, а электроны соединяются с дырками. Цвет света зависит от ширины запрещенной зоны полупроводника и создает волны с длиной волны от инфракрасного до ближнего ультрафиолета, в зависимости от материала.

Сопутствующие товары: Диоды, транзисторы и тиристоры | Мостовой выпрямитель |

Светоизлучающий диод (LED)

Лазерный диод

Этот тип диода излучает когерентный свет, что отличает его от обычного светодиода. Лазер образуется, когда структура, подобная светодиоду, содержится в резонансной полости, образованной полировкой параллельных торцевых поверхностей. Они обычно используются в оптических запоминающих устройствах и высокоскоростной оптической связи.

Лазерный диод

Фотодиод

Фотодиод используется для обнаружения света и имеет широкие прозрачные переходы, поскольку он работает в режиме обратного смещения, где протекает небольшой ток.Фотодиоды могут использоваться в солнечных элементах, в фотометрии, в оптической связи или для выработки электроэнергии.

Фотодиод

Диод Шоттки

Диод Шоттки состоит из контакта металл-полупроводник и имеет меньшее прямое падение напряжения, чем обычные диоды с P-N переходом. Его можно использовать в качестве выпрямителя с низкими потерями, хотя его обратный ток утечки обычно выше, чем у других диодов.

Диод Шоттки

Туннельный диод

Туннельный диод похож на стандартный P-N переход, за исключением того, что уровни легирования высоки с узкой областью обеднения.Туннелирование — это эффект, который вызывается квантово-механическими эффектами, когда электроны проходят через потенциальный барьер. Его можно найти во многих микроволновых устройствах.

Туннельный диод

Варикап или варакторный диод

Они используются в качестве конденсаторов с регулируемым напряжением, которые имеют обратное смещение, которое изменяет ширину истощения в соответствии с напряжением на диодах. Эти диоды действуют как конденсаторы, а обкладки конденсатора образованы протяженностью областей проводимости и областью обеднения как изолирующим диэлектриком.

Варикаповые диоды

Стабилитрон

Этот тип диода обеспечивает стабильное опорное напряжение и может проводить обратное направление. Стабилитроны и переключающие диоды включены последовательно и в противоположных направлениях, чтобы сбалансировать температурный коэффициент почти до нуля. Они широко используются для обеспечения опорного напряжения в источниках питания.

Стабилитрон

Типы диодов — обозначение схемы, характеристики и применение

Базовый диод состоит из двух выводов.Этот вывод называется анодом и катодом. Он имеет свойство проводить ток в едином и едином направлении. Это основное свойство диода делает его основным строительным блоком в блоках питания. потому что там он предпочтительнее в процессе исправления.

Используется во время модуляции сигналов. Существует множество применений диодов в зависимости от требований в различных областях электроники, а также в электротехнике. Обычно диоды изготавливают из полупроводников, таких как кремний или германий, в зависимости от того, какой тип полупроводникового материала является предпочтительным.

Различные типы диодов

Во-первых, он начался с базового диода, который состоит из p-n-перехода. Дальнейшее развитие и рост потребностей и требований к различным подсистемам проложили путь к созданию различных типов диодов. Каждый диод имеет свое значение в области электроники.

Использование диодов в электронных модулях очень велико. Однако особые случаи диодов были сконструированы так, чтобы они могли работать при обратном смещении, а также соответствовать соответствующей терминологии.

Давайте посмотрим на различные типы диодов, которые используются в базовой электронике. Это

1) P-N Junction Diode

Это основной диод, образованный при взаимодействии материалов p-типа и n-типа. Это касается концепции смещения. Это смещение позволяет классифицировать его по различным режимам работы.

Этот диод проводит только при прямом смещении. При обратном смещении нет очевидного протекания тока. Это указывает на то, что ток блокируется во время обратного смещения.

Обозначение диода P-N перехода

Они используются там, где предпочтительны приложения для малых токов, такие как сигнальные диоды. одно из основных применений этого в качестве выпрямителей.

2) Стабилитрон

Это диод, сконструированный таким образом, что он может работать в режиме обратного смещения. Для приложенного прямого смещения рабочие характеристики будут аналогичны характеристикам обычного диода с основным p-n переходом.

Стабилитрон

Когда диод находится в режиме обратного смещения после достижения минимального напряжения стабилитрона, мы можем видеть приращение значений тока, но после этой точки напряжение остается постоянным.

Это позволяет использовать его для регулирования напряжения. Особенность диода заключается в том, что он начинает проводить при обратном смещении. Наибольшее зен-напряжение этого типа диодов фиксируется производителями. По этой причине может быть изготовлено больше диодов Зен с различными напряжениями Зен

3) Диоды Шоттки

Диод, который может работать с малым временем переключения, называется диодом Шоттки. Падение напряжения, которое считается прямым, очень низкое.

Диод Шоттки

Применение этого типа диодов можно рассматривать как очевидное в схемах ограничения, которые являются достаточно быстрыми. Можно увидеть, что этот тип диодов работает в диапазоне гигагерц. То есть это может быть предпочтительным при высокочастотных приложениях.

4) Диоды Шокли

Это еще один тип диодов, которые также используются для коммутации. У него есть базовое напряжение, которое называется триггером.

Символ для диода Шокли

Если приложенное к нему напряжение меньше, чем базовое значение триггера, он не может переключиться, потому что остается в режиме высокого сопротивления.Когда приложенное напряжение превышает базовое значение срабатывания триггера, устанавливается цепь с низким сопротивлением. Таким образом работают диоды Шокли.

5) Варактор или варикап диод

Это еще одна особая категория диодов, в которых приложение обратного напряжения изменяет емкость на переходе. Поскольку это диод переменной емкости, его можно обозначить как варикап.

Символ варикапа

Приложенное значение обратного напряжения может повлиять на ширину перехода.Они прямо пропорциональны друг другу. Но они обратно пропорциональны емкости в переходе.

Это основная причина, по которой они применимы в генераторах. Изменение значения емкости заставляет схему работать как тюнер.

6) Диод Барретта

BARITT обозначает время прохождения через барьер впрыска. В диодах этого типа излучение происходит за счет тепловой энергии. Это меньше шума по сравнению с диодами другого типа.

Они применимы в различных устройствах, таких как смесители, это могут быть усилители, основанные на способности слабого сигнала, или это могут быть генераторы.

7) Диод Ганна

Это основной диод с двумя выводами. Он не имеет соединения P-N, как другие диоды. Генераторы на диодах Ганна используются при радиосвязи.

Диод Ганна

Они также используются в военных областях. Базовые тахометры состоят из этого диода в нем. В настоящее время в системах контроля открытия дверей требуются датчики, что стало возможным с помощью диодов Ганна. В схеме охранной сигнализации также предпочтительнее использовать этот диод.

8) Светоизлучающие диоды (светодиоды)

Это типы диодов, которые работают в рабочей области прямого смещения. Когда диод начинает проводить в этой области, возникает ток. Этот ток называется током пересылки. Во время этого процесса свет излучается диодом.

Светоизлучающий диод

К ним относятся различные типы светодиодов. А именно мигающий, который может включаться и выключаться в течение определенного времени. Они могут быть трехцветными выводами, излучаемыми более чем двумя цветами в зависимости от количества полученного положительного напряжения.

Кроме того, есть светодиоды, излучающие инфракрасный свет. Практическое применение можно увидеть в пультах дистанционного управления. Обсуждаемые выше — это некоторые из типов, присутствующих в светодиодах.

9) ЛАЗЕРНЫЙ диод

Его нельзя назвать тем же, что и обычный светодиод. Поскольку свет излучается отличным от обычного, этот тип диода называется когерентным светом. Этот свет фокусируется как пятно диаметром менее одного микрометра.

ЛАЗЕРНЫЙ диод

Поскольку время отклика у этого типа диодов меньше, они используются в качестве оптических запоминающих устройств, а также в проигрывателях компакт-дисков.Сегодня можно увидеть сканеры штрих-кода, это одно из применений ЛАЗЕРНОГО диода. Их также можно увидеть в принтерах ЛАЗЕРОВ, факсов и т. Д.…

10) Фотодиод

Как следует из названия, когда диод взаимодействует со светом, генерируется ток. Это означает, что во время темноты не может быть никакого протекания тока, указывающего на то, что это состояние разомкнутой цепи.

Когда диод соприкасается со светом, он взаимодействует, и в цепи протекает ток, который делает диод ярким.Функциональность фотодиода больше напоминает стабилитрон, потому что он также может проводить при обратном смещении.

Фотодиод

Текущее значение и значение силы света прямо пропорциональны друг другу. У них также есть достаточно быстрое время отклика, которое составляет наносекунды. Этот тип диодов также может генерировать электричество.

11) PIN-диод

Характеристики этого диода определяются во время его изготовления.В этом типе диодов есть как стандарты p-типа, так и n-типа. Но переход, образованный из-за его взаимодействий здесь, не будет иметь в нем концентрации легирования по отношению к собственному полупроводнику.

Символ для диода PiN

Эта область полезна во время таких приложений, как переключение.

12) Диод быстрого восстановления

Согласно названию, диод будет иметь более быстрое время восстановления. Во время выпрямления в качестве входного сигнала используется переменный ток. В этом есть положительный и отрицательный уровни.Для изменения полярности с положительной на отрицательную или с отрицательной на положительную время восстановления должно быть быстрым.

В высокочастотных приложениях это становится обязательным, чтобы иметь самое быстрое время восстановления. Следовательно, в таких случаях предпочтительнее использовать этот диод. Это приводит к тому, что представление должно быть точным и поддерживать целостность сигнала.

13) Туннельный диод

Это диод с основным переходом p-n, который обладает свойством отрицательного сопротивления.В этом типе диодов значения напряжения и тока обратно пропорциональны друг другу.

Туннельный диод

В диапазоне сверхвысоких скоростей в этих туннельных диодах используются переключатели. Время переключения будет в нано или пикосекундах. Из-за концепции отрицательного сопротивления, связанной с этим, это используется в терминологии схемы релаксационного генератора.

14) Ступенчатый восстанавливающий диод

Его можно назвать частью СВЧ-диода. В высокочастотном диапазоне это имеет тенденцию генерировать импульсы.Эти диоды зависят от типа диодов, которые имеют характеристики быстрого отключения в зависимости от их работы.

Обозначение ступенчатого восстанавливающего диода

Следовательно, различные типы диодов, а также их применение описаны выше. Каждый диод уникален как по способу представления, так и по применению. Выше мы обсудили различные типы диодов в зависимости от их применения. Можете ли вы описать функциональность различных типов диодов и диодного приближения?

Типы диодов »Электроника

Существует много различных типов диодов, различающихся не только технологиями, но и силовыми диодами, диодами для поверхностного монтажа и многим другим.


Diode Tutorial:
Типы диодов Характеристики и номиналы диодов PN переходный диод ВЕЛ PIN-диод Диод с барьером Шоттки Солнечный элемент / фотоэлектрический диод Варактор / варикап Стабилитрон


Полупроводниковый диод — это широко используемый компонент электроники, который сегодня можно найти во многих конструкциях электронных схем.

Несмотря на то, что существует много разных типов диодов, которые используют одну и ту же базовую структуру области материала p-типа, встречающейся с областью материала n-типа, разные типы оптимизированы для обеспечения разных характеристик, которые можно использовать по-разному. во многих конструкциях электронных схем.

Независимо от типа диода, основная идея диода важна сегодня в электронной промышленности, будь то использование для производства коммерческого или промышленного оборудования, для использования любителями или для тех, кто изучает электронику.

Диоды используются в самых разных областях. Они могут быть для простого исправления сигнала; они могут использоваться в качестве силовых диодов для выпрямления мощности, обнаружения сигналов, различных форм радиочастотного проектирования, генерации света, генерации лазерного излучения, обнаружения света и многого другого.

Диоды также могут иметь множество различных корпусов: диоды для поверхностного монтажа, диоды с обычными выводами и некоторые силовые диоды могут даже быть прикреплены болтами к радиатору. Диоды бывают всех форм и размеров.

Диоды поверхностного монтажа на печатной плате

История создания полупроводниковых диодов

Первые использованные диоды были обнаружены еще в начале 1900-х годов, когда технология беспроводной связи только зарождалась. The Cat’s Whisker был одним из первых диодов, которые начали использовать.Он состоял из очень тонкого куска проволоки (самого кошачьего уса), который можно было поместить на кусок материала полупроводникового типа (обычно минеральный кристалл), чтобы получился диод точечного контакта. Это широко использовалось до середины и конца 1920-х годов, когда термоэлектронная или вентильная технология стала достаточно дешевой, чтобы ее можно было широко использовать в радиоприемниках.

Примерно во время Второй мировой войны для разрабатываемых радаров потребовались новые диоды. Полупроводниковые диоды предоставили один вариант, поскольку их размер означал, что они могли лучше работать на частотах, необходимых для радара.

Обозначение диодной цепи

Как и все электронные компоненты, диоды имеют обозначение цепи, которое используется в электронных схемах. Базовое обозначение диода представляет собой треугольник, острием которого соприкасается короткая линия, перпендикулярная проводу на принципиальной схеме.

Иногда треугольник и даже линия показаны просто очертаниями, а в других случаях они показаны как закрашенные черные фигуры.

Обозначение базовой диодной цепи

Иногда символ диодной цепи отображается только в виде контура и без закрашенных фигур.Форма контура также приемлема.

Альтернативный символ диодной цепи

Существует много различных типов диодов, и некоторые из них используют символы цепи, которые немного изменены по сравнению с основным символом диода для обозначения их функции: диод Шоттки, варакторный диод и ряд других попадают в эту категорию.

Устройства для поверхностного монтажа или с выводами

Диоды бывают всех форм и размеров. Традиционно многие из этих электронных компонентов помещались в небольшую стеклянную трубку, в которой заключался сам полупроводниковый диод.Сейчас диоды содержатся в самых разных корпусах.

Все еще существуют свинцовые корпуса и стеклянные диоды, но есть также много пластиковых корпусов. Они могут различаться по размеру в зависимости от требуемой рассеиваемой мощности.

В наши дни, когда большая часть печатных плат собирается с использованием технологии поверхностного монтажа, существует целый ряд диодов, доступных в качестве компонентов для поверхностного монтажа, то есть диодов SMD. Существует множество стандартных корпусов для SMD-диодов, включая корпус SOT-23, который используется для множества небольших дискретных диодов.Используются только два из трех имеющихся контактов, что позволяет правильно сориентировать диод.

Поскольку эти SMD-диоды имеют небольшие размеры, на диоде нет места для включения полного номера детали, и для их различения используется сокращенный номер.

Хотя в большинстве сборок печатных плат используется технология поверхностного монтажа, существуют и другие области производства электроники, которые нуждаются в диодах с гораздо более высокой токовой нагрузкой. Эти диоды могут содержаться в корпусах, которые крепятся болтами к радиаторам.

Типы диодов

Существует множество различных типов диодов, которые производятся и используются в различных конструкциях электронных схем, ВЧ-схемах, а также часто и в цифровых схемах. Каждый тип имеет разные свойства, что делает их подходящими для разных схем.

  • Обратный диод: Этот тип диода иногда также называют обратным диодом. Хотя этот диод не получил широкого распространения, он представляет собой разновидность диода с PN переходом, который очень похож на туннельный диод по своей работе.Он находит несколько специализированных приложений, где могут быть использованы его особые свойства, как правило, на сверхвысоких частотах.

    Обратный диод — это, по сути, разновидность туннельного диода, в котором одна сторона перехода менее легирована, чем другая.


  • Диод BARITT: Этот вид диода получил свое название от слов «диод времени прохождения через барьер». Он используется в микроволновых приложениях и имеет много общего с более широко используемым диодом IMPATT.


  • Диод Ганна: Этот тип диода не является диодом в форме PN перехода, но представляет собой полупроводниковое устройство с двумя выводами. Обычно он используется для генерации микроволновых сигналов и использовался во многих радиотехнических схемах как простая и эффективная форма микроволнового генератора.

    Диоды Ганна

    также известны как устройства с переносом электронов или TED. Хотя этот электронный компонент называется диодом, он не имеет PN перехода и технически не является диодом в том смысле, в котором он используется в полупроводниковой технологии.Вместо этого устройство использует эффект, известный как эффект Ганна (названный в честь первооткрывателя Дж. Б. Ганна).

    Хотя диод Ганна обычно используется для генерации микроволновых радиочастотных сигналов, этот электронный компонент также может использоваться для усилителя в том, что иногда называют усилителем с переносом электронов или TEA.


  • Кошачий ус: Как уже упоминалось, этот тип диодов был первым типом, получившим широкое распространение.Он состоял из небольшой проволоки, помещенной на кусок минерального кристалла. Это привело к созданию небольшого точечного контактного диода, который, хотя и ненадежен, был достаточно хорош, чтобы можно было слышать радиопередачи при использовании в «кристаллическом наборе».

    Типичный кристаллический детектор / детектор кошачьих усов

    Хотя детекторы Cat Whisker не были особенно надежными, они были первой формой полупроводниковых диодов и указали путь к более поздним диодам. . . и принцип светодиода был даже соблюден Х. Дж. Раундом в 1908 году на одном из них.

  • Диод IMPATT: Диод IMPATT или СВЧ-диод IMPact с лавинной ионизацией, время прохождения, используется в некоторых ВЧ-схемах, где для микроволновых сигналов требуется простой генератор.

    Технология диодов IMPATT не так широко используется в наши дни, но этот электронный компонент способен генерировать сигналы обычно от 3 до 100 ГГц или более. Одним из основных преимуществ этого микроволнового диода является относительно высокая мощность (часто десять ватт и более), которая намного выше, чем у многих других типов микроволновых диодов.Его выходная мощность намного выше, чем у диода Ганна.


  • Лазерный диод: Этот тип диода отличается от обычного светоизлучающего диода тем, что излучает лазерный (когерентный) свет. Эти электронные компоненты используются во многих приложениях, включая приводы компакт-дисков и DVD-дисков. Хотя эти диоды намного дешевле, чем другие формы лазерных генераторов, они дороже обычных светодиодов.
  • Светодиоды: Светодиод или светодиод — это один из самых популярных типов диодов.При прямом смещении и токе, протекающем через переход, возникает свет. Первоначальный цвет этих диодов был красным, но сейчас доступно большинство цветов. Это достигается за счет использования различных смесей полупроводников по обе стороны от PN перехода.


  • Фотодиод: Когда свет попадает на PN-переход, он может создавать электроны и дырки, вызывая протекание тока. В результате можно использовать полупроводники для обнаружения света.Эти типы диодов также могут использоваться для выработки электроэнергии. Для некоторых приложений PIN-диоды очень хорошо работают в качестве фотоприемников.


  • PIN-диод: Этот тип диода имеет области кремния P-типа и N-типа, но между ними есть область собственного полупроводника (то есть без легирования). Это увеличивает размер так называемой области истощения. Этот тип диодов используется в ряде приложений, включая радиочастотные переключатели и фотодиоды.


  • Диод с точечным контактом: Этот тип диода работает так же, как и простой диод с PN переходом, но его конструкция намного проще. Они состоят из куска полупроводника n-типа, на который помещается острый конец металлической проволоки определенного типа (металл III группы для химиков). Часть металла мигрирует в полупроводник и образует PN-переход.

    Эти диоды имеют очень низкий уровень емкости и идеально подходят для многих радиочастотных (RF) приложений.У них также есть то преимущество, что они очень дешевы в производстве, хотя их характеристики не особенно воспроизводимы.

  • PN-переход: Стандартный PN-переход можно рассматривать как нормальный или стандартный тип используемых сегодня диодов. Этот электронный компонент встроен во многие конструкции электронных схем, а также используется во многих конструкциях радиочастотных схем. Эти диоды могут быть малосигнальными для использования в радиочастотах или других слаботочных приложениях, или другие типы могут быть сильноточными и высоковольтными, которые могут использоваться для силовых приложений.


  • Диоды Шоттки: Этот тип диодов имеет меньшее прямое падение напряжения, чем обычные кремниевые диоды с PN переходом. При низких токах падение может быть где-то между 0,15 и 0,4 вольт, в отличие от 0,6 вольт для кремниевого диода.

    Для достижения этих характеристик они сконструированы иначе, чем обычные диоды, имеющие контакт металл-полупроводник. Они широко используются в качестве ограничивающих диодов и в ВЧ конструкциях, часто как детекторы сигналов.Они также используются в качестве силовых диодов для выпрямления переменного тока в источниках питания и т.п. Меньшие потери, вызванные меньшим падением, имеют большое значение для повышения эффективности.


  • Солнечные элементы / фотоэлектрические диоды: Солнечные элементы используются все чаще, поскольку существует больше приложений для преобразования солнечной энергии в электрическую. Солнечные элементы основаны на диодах с PN-переходом и способны преобразовывать энергию света, падающего на диод, в электрическую энергию.Хотя уровни эффективности не особенно высоки, технология совершенствуется, а уровни эффективности повышаются.


  • Ступенчатый восстанавливающий диод: Форма микроволнового диода, используемого для генерации и формирования импульсов на очень высоких частотах. Для работы этих диодов требуется очень быстрое выключение диода.


  • Диод TRAPATT: Этот тип диода имеет много общего с IMPATT и фактически принадлежит к тому же семейству.Он предлагает более низкий уровень шума, но не достигает таких высоких частот.


  • Туннельный диод: Хотя сегодня он не получил широкого распространения, туннельный диод использовался в микроволновых приложениях, где его характеристики превосходили характеристики других устройств того времени.
  • Варикапные или варакторные диоды: Этот тип диодов используется в радиочастотных (RF) приложениях. На диод помещено обратное смещение, поэтому ток через переход не протекает.Однако ширина обедненного слоя варьируется в зависимости от величины смещения, приложенного к нему.

    Диод можно представить как две обкладки конденсатора с обедненным слоем между ними. Поскольку емкость изменяется в соответствии с шириной обедненного слоя, и это можно изменять, изменяя обратное смещение на диоде, можно управлять емкостью диода.


  • Стабилитрон / диод опорного напряжения: Стабилитрон — очень полезный тип диодов.Он работает под обратным смещением и при достижении определенного напряжения выходит из строя. Если ток ограничен резистором, это позволяет получить стабильное напряжение. Поэтому этот тип диодов широко используется для обеспечения опорного напряжения в регулируемых источниках питания.


Существует очень много разных типов диодов, каждый из которых подходит для своего применения. Мало того, что технология различается для разных типов диодов, они также могут содержаться в разных корпусах: некоторые могут быть свинцовыми, а другие могут крепиться болтами на радиаторах, а в зависимости от количества сборки печатной платы, в которой используются автоматизированные методы производства, диоды для поверхностного монтажа сейчас используется в огромных количествах.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Основы, типы, символы, характеристики, приложения и комплектации

Хотя резисторы, конденсаторы и индукторы образуют основные элементы схемы, именно полупроводниковое устройство фактически хранит магию внутри.В каждой электронной схеме есть десятки полупроводниковых устройств, таких как диоды, транзисторы, регуляторы, операционные усилители, переключатели питания и т. Д. Внутри них. У каждого из них есть свои свойства и применение. В этой статье давайте рассмотрим самый простой полупроводниковый прибор — диоды .

Возможно, вы уже слышали болтовню о том, что «Диоды — это полупроводниковые устройства с двумя выводами, которые проводят только в одном определенном направлении, позволяя току проходить через них…», но почему это так? И какое это имеет отношение к нам при разработке схемы? Что такое различных типов диодов и в каком приложении мы должны их использовать? Держитесь крепче, потому что вам ответят на все эти вопросы, когда вы прочитаете эту статью.

Что такое диод?

Начнем с ответа на самый простой вопрос. Что такое диод ?

A Диод, как я уже говорил ранее, представляет собой полупроводниковый цилиндрический элемент с двумя выводами. Существует много типов диодов , но наиболее часто используемый из них показан ниже.

Эти две клеммы называются , анод и , катод , мы рассмотрим символ и то, как идентифицировать клеммы позже, но пока просто помните, что любой диод будет иметь только две клеммы (по крайней мере, большинство из них) и они анод и катод.Еще одно золотое правило диодов заключается в том, что они позволяют току проходить через них только в одном направлении, а именно от анода к катоду. Это свойство диода делает его полезным во многих приложениях.

Чтобы понять, почему они действуют только в одном направлении, мы должны посмотреть, как они устроены. Диод изготавливается путем соединения двух одинаково легированных полупроводников P-типа и полупроводников N-типа. Когда эти два материала соединяются вместе, происходит что-то интересное, они образуют еще один небольшой промежуточный слой, называемый слоем истощения.Это связано с тем, что слой P-типа имеет избыточное отверстие, а слой N-типа имеет избыточные электроны, и они оба пытаются диффундировать друг в друга, образуя блокировку с высоким сопротивлением между обоими материалами, как на изображении, показанном ниже. Этот слой блокировки называется слоем истощения.

Этот слой истощения (блокировка) должен быть разрушен, если ток должен протекать через диод. Когда на анод подается положительное напряжение, а на катод — отрицательное напряжение, говорят, что диод находится в прямом смещенном состоянии.В этом состоянии положительное напряжение закачивает больше дырок в область P-типа, а отрицательное напряжение закачивает больше электронов в область N-типа, что вызывает пробой обедненного слоя, заставляя ток течь от анода к катоду. Это минимальное напряжение, необходимое для того, чтобы диод проводил в прямом направлении, называется напряжением прямого пробоя.

В качестве альтернативы, если отрицательное напряжение приложено к аноду, а положительное напряжение приложено к катоду, говорят, что диод находится в состоянии обратного смещения.В этом состоянии отрицательное напряжение будет накачивать больше электронов в материал P-типа, а материал N-типа получит больше дырок от положительного напряжения, что сделает слой обеднения еще более прочным и, таким образом, не позволит току течь через него. Имейте в виду, что эти характеристики применимы только к идеальному диоду (теоретическому), практически, даже в режиме обратного смещения будет течь небольшой ток. Об этом мы поговорим позже.

Приведенная выше анимация иллюстрирует работу диода в схеме , есть две схемы, в каждой из которых мы пытаемся зажечь светодиод от батареи.В одной схеме диод смещен в прямом направлении, а в другой — в обратном. Когда симуляция выполняется, вы можете заметить, что только диод с прямым смещением позволяет току течь, хотя он, таким образом, светит светодиодом, диод с обратным смещением не позволяет току проходить через него.

Типы диодов, расположение выводов и символы

Теперь, когда мы разобрались с основами диодов, важно знать, что существуют разные типы диодов, каждый из которых имеет свои особые свойства и применение.В этой статье мы рассмотрим только три основных типа диодов: выпрямительный диод, стабилитрон и диод Шоттки. Изображение, клеммы и символы всех диодов приведены в таблице ниже

.

Тип диода

Распиновка

Символ

Выпрямительный диод

Стабилитрон

Диод Шоттки

Как показано в таблице, выпрямительный диод и диод Шоттки похожи по внешнему виду, но диод Шоттки обычно больше по размеру, чем обычные диоды.С другой стороны, стабилитрон можно легко идентифицировать по его характерному оранжевому цвету и серой линии на нем, как показано в таблице выше.

Выводы анода и катода можно идентифицировать по серой линии на диоде, контакт рядом с серой линией будет катодом. Точно так же с символами нижняя часть треугольника всегда будет анодом, а другая — катодом. Это очень важно помнить, поскольку при интерпретации схемы подключения диода всегда считалось самооценкой.

Терминология и характеристики диодов

Когда вы выбираете диод для своей схемы или пытаетесь понять работу диода в цепи, вы должны учитывать спецификации диода, которые можно найти в его техническом описании. Чтобы понять, что на самом деле означают значения, давайте рассмотрим несколько часто используемых терминологий.

Падение напряжения в прямом направлении (Vf): Когда диод работает в режиме прямого смещения, он позволяет току течь через них.В этом состоянии на диоде будет некоторое падение напряжения, это падение напряжения называется прямым падением напряжения. Для идеального диода он должен быть как можно ниже.

Максимальный ток в прямом направлении (если): мы уже знаем, что диод позволяет току проходить через него, когда он находится в прямом смещении, то какой максимальный ток может быть разрешен, соответствует максимальному прямому току. Обычно следует убедиться, что этот ток больше, чем ток нагрузки вашей цепи.

Обратный ток пробоя (Vr): Хорошо, вот уловка, о которой я вам говорил: диод не пропускает ток через себя, когда он смещен в обратном направлении. Это верно, но не для всех значений напряжения. Таким образом, максимальное напряжение, до которого диод может выдержать пробой, называется обратным напряжением пробоя. Обычно значения такого напряжения будут очень высокими, например, если обратное напряжение пробоя составляет 500 В, диод не позволит току проходить через него в обратном смещенном состоянии, пока напряжение не превысит эти 500 В.

Обратный ток смещения (Ir): Хотя это правда, что диод не позволяет току течь, хотя в режиме обратного смещения значение тока не будет в идеале равным нулю. Через диод по-прежнему будет протекать очень небольшой и незначительный (в зависимости от схемы) ток. Этот ток называется током с обратным смещением. Значение этого тока будет в диапазоне мА или даже в мкА. Для идеального диода значение этого тока должно быть как можно меньше.Ток называется обратным током утечки.

Время обратного восстановления: предположим, что вы работаете с диодом в режиме прямого смещения, а затем переключаете его в режим обратного смещения, изменяя полярность напряжения. Теперь диод не будет внезапно останавливаться, ему потребуется некоторое время, чтобы перекрыть прохождение тока через него. Это время называется временем обратного восстановления.

Характеристики клемм (I-V) переходного диода: есть еще другие параметры, такие как рассеиваемая мощность, тепловое сопротивление и т. Д.связанный с диодом. Эти значения также можно найти в паспорте диода. Чтобы узнать больше о диоде, давайте посмотрим на важный график диода, который представляет собой кривую зависимости тока от напряжения. Кривая I-V идеального диода будет выглядеть примерно так.

Здесь в первом квадранте вы можете увидеть диод, работающий в режиме прямого смещения, а в третьем квадранте диод работает в области обратного смещения и пробоя. Ось X графика показывает напряжение на диоде, а ось Y показывает ток через диод.В режиме прямого смещения вы можете заметить, что диод начинает проводить (пропускать ток) только тогда, когда напряжение на диоде (V D ) больше 0,5 В, это значение прямого напряжения диода для кремния. На диоде это прямое напряжение может быть до 0,7 В, как показано на графике выше.

Во время обратного смещения напряжение на диоде имеет отрицательный потенциал, поэтому ток также отображается в отрицательном направлении. Здесь, как вы можете видеть, диод не пропускает ток (за исключением небольшого значения), пока не будет достигнуто напряжение пробоя (V BD ).

Цепи приложений

Диоды

имеют широкий спектр применения в зависимости от их свойств и типа. Давайте попробуем охватить наиболее важные применения выпрямителя, стабилитрона и диода Шоттки с их принципиальными схемами.

Выпрямительный диод

Выпрямительный диод, известный как общий диод, является наиболее часто встречающимся диодом в любой цепи питания, будь то простой линейный источник питания или цепь SMPS. Как следует из названия, эти диоды используются для выпрямления в таких схемах, как двухполупериодный и полуволновой выпрямитель.Кроме того, они также используются в качестве диодов свободного хода в коммутационных устройствах и схемах преобразователей.

Схема выпрямителя

Выпрямительные диоды используются как в полуволновых, так и в полнополупериодных выпрямительных диодах. Давайте посмотрим на схему полуволнового выпрямителя для простоты. Принципиальная схема и график для однополупериодного выпрямителя показаны ниже

.

Источник входного напряжения Vs представляет собой синусоидальную волну переменного тока со среднеквадратичным напряжением 220 В.Эта волна переменного тока может быть выпрямлена с помощью одного диода. Как показано на графике, во время положительного полупериода диод смещен в прямом направлении, и, следовательно, выходное напряжение присутствует на нагрузке, а ток течет в положительном направлении. Но во время отрицательного полупериода диод смещен в обратном направлении, и, следовательно, ток не достигает нагрузки, а выходное напряжение остается на уровне 0 В, как показано на графике выше. Таким образом, ток всегда может течь только в одном направлении и, таким образом, преобразовывать переменный ток в постоянный.

Конечно, у этой схемы много недостатков, например, выходное напряжение неравномерно и практически не используется. Но теперь, когда у вас есть идея, вы можете изучить полные мостовые выпрямители с четырьмя диодами, которые обычно используются в схемах линейных регуляторов. Также схема выпрямителя будет иметь конденсатор на конце для фильтрации пульсаций, если вы хотите узнать больше о конденсаторах, прочитайте введение в статью о конденсаторах.

Стабилитрон

Стабилитрон широко используется в двух схемах, одна — как грубый стабилизатор напряжения, а другая — как схема защиты от перенапряжения.У стабилитрона есть два важных параметра, на которые следует обратить внимание: напряжение стабилитрона и мощность. Обычно доступные значения диодов: 3,9 В, 4,7 В, 5,1 В, 6,8 В, 7,5 В и 15 В.

В приведенной ниже схеме входное напряжение может варьироваться от 0 В до 12 В, но выходное напряжение никогда не будет превышать 5,1 В, поскольку обратное напряжение пробоя (напряжение стабилитрона) стабилитрона составляет 5,1 В. Когда входное напряжение меньше 5,1 В, выходное напряжение будет равно входному напряжению, но когда оно превысит 5.1 В выходное напряжение будет регулироваться до 5,1 В.

Это свойство схемы можно использовать для защиты выводов АЦП (схема защиты от перенапряжения), которые имеют напряжение 5 В, поскольку вывод может считывать напряжение от 0 до 5 В, но если оно превышает 5 В, стабилитрон не допускает превышения напряжения. Точно так же ту же схему можно использовать для регулирования 5,1 В для нагрузки при высоком входном напряжении. Но ограничение по току для такой схемы намного меньше.

При разработке схемы с использованием стабилитрона следует учитывать одну важную вещь — стабилитрон.Этот резистор используется для ограничения тока через стабилитрон, защищая его от нагрева и повреждения. Величина стабилитрона зависит от напряжения стабилитрона и номинальной мощности стабилитрона. Формула для расчета последовательного резистора стабилитрона Rs показана ниже

.

Для стабилитрона 1N4734A значение Vz составляет 5,9 В, а Pz — 500 мВт, теперь при напряжении питания (Vs) 12 В значение Rs будет

.

Rs = (12-5.9) / Iz

Iz = Pz / Vz = 500 мВт / 5.9 В = ~ 85 мА

Следовательно, Rs = (12-5,9) / 85 = 71 Ом

Rs = 71 Ом (приблизительно)

Диод Шоттки

Диод Шоттки также используется в схемах защиты, таких как схема защиты от обратной полярности, из-за низкого падения напряжения в прямом направлении. Давайте посмотрим на общую схему защиты от обратной полярности

Когда Vcc и земля подключены с правильной полярностью, диод проводит в прямом направлении, и НАГРУЗКА получает питание.Преимущество здесь в том, что прямое падение напряжения на диоде очень меньше, скажем, около 0,04 В по сравнению с 0,7 В на выпрямительном диоде. Таким образом, на диоде не будет больших потерь мощности, также диод Шоттки может пропускать больший ток, чем обычный диод, и он также имеет более высокую скорость переключения, поэтому может использоваться в высокочастотной цепи. Теперь, когда я это сказал, у вас может возникнуть вопрос.

В чем разница между диодом Шоттки и общим диодом?

Ну да, диод Шоттки имеет более высокую скорость переключения, низкие потери проводимости и более высокий прямой ток, чем обычный диод.Это может звучать лучше, чем обычный диод, но у него есть один существенный недостаток. То есть он имеет низкое обратное напряжение пробоя, из-за этой особенности он не может использоваться в схемах выпрямителя, поскольку схемы выпрямителя всегда будут иметь высокое обратное напряжение, появляющееся на нем во время переключения.

Специальные диоды

Помимо широко используемых диодов типа Rectifier, Zener и Schottky существуют другие специальные диоды, которые имеют специальное применение, позволяющее быстро пробежать через них.

LED: Да, светодиод (LED), как следует из названия, является диодом. Вы должны быть уже знакомы с этими вещами, поскольку они обычно встречаются и используются. Опять же, существует много типов светодиодов, но круглый светодиод диаметром 5 мм является наиболее часто встречающимся.

Мостовой выпрямитель: как мы знаем, выпрямительный диод используется в схеме выпрямителя, а для полной мостовой схемы выпрямителя нам потребуются четыре диода, подключенные упорядоченным образом. Сама эта установка доступна в корпусе, называемом выпрямительным диодом.RB156 — один из таких примеров.

Фотодиод: Фотодиод — это диод, который позволяет току проходить через него в зависимости от падающего на него света. Он используется в качестве датчика для обнаружения света, его обычно можно найти в следящих за линией роботах, роботах, избегающих препятствий, и даже в качестве счетчика объектов или устройства датчика скорости. Вы можете узнать больше о фотодиоде по этой ссылке.

Лазерный диод: Лазерный свет также является разновидностью диода, подобного светодиоду. Они имеют те же свойства, что и диоды, но в режиме прямого смещения они излучают свет с падением напряжения на них, действуя как нагрузка.Лазерный диод 650 нм является наиболее распространенным лазерным диодом.

TVS-диод: Другой важный специальный тип диода — TVS-диод, который означает подавитель переходного напряжения. Это особый тип диода, который обычно используется в цепях питания для защиты от скачков напряжения и защиты цепи. Эти диоды также называются переходными диодами или тиректорами.

Варакторные диоды: Варакторные диоды используются как переменные конденсаторы.Когда этот диод работает в режиме обратного смещения, шириной обедненной области можно управлять, что заставляет его действовать как конденсатор. Эти диоды также называются варикаповыми диодами и обычно используются в радиочастотных схемах.

Различные типы комплектов диодов

Теперь, когда мы изучили все основы работы с диодами, я считаю, что теперь вы можете выбрать диод, который требуется для вашей схемы. Но до сих пор мы видели один диод со сквозным отверстием, который обычно доступен и хорош для прототипов, но в большинстве продуктов вы не найдете их в корпусах с отверстиями.Сейчас мы обсудим множество различных типов диодных пакетов.

Комплект для сквозных отверстий

Это обычно используемые макетные и перфорированные платы. Эти пакеты называются DO-7, DO-35, DO-41, DO-204 и т. Д., Из которых DO-41 является наиболее распространенным. Эти пакеты также называются осевыми свинцовыми диодами .

Стили поверхностного монтажа

В большинстве готовых к производству конечных продуктов используются компоненты SMD .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *