Виды магнитных пускателей: Виды магнитных пускателей | Electricity Help

Классификация магнитных пускателей | Электрика в квартире, ремонт бытовых электроприборов

Магнитный пускатель — это электрическое устройство, которое предназначено для управления силовыми нагрузками (электродвигатели, водонагреватели, индукционные печи и т.д.).

 

 

   Электрические магнитные пускатели подразделяются:

 

   — по назначению — обычные и реверсивные;

 

   — наличию или отсутствию теплового реле;

 

   — наличию или отсутствию кнопок управления;

 

   — степени защиты от внешних воздействий:

 

      — степень защиты IP00(открытые): размещаются в отапливаемых помещениях в закрытых шкафах, на панелях и других местах, имеющих защиту от попадания пыли, влаги и посторонних предметов;

      — степень защиты IP20 (открытые): размещаются в закрытых помещениях в шкафах управления, куда не попадает пыль, влага и посторонние предметы;

      — степень защиты IP40 (в оболочке): размещаются внутри помещений , которые не имеют отопления, там, где окружающая среда не содержит большого количества пыли и там , где попадание влаги на оболочку магнитного пускателя исключено;

      — степень защиты IP54 (в оболочке): применяются для внутренних и наружных установок в местах, защищённых от прямого воздействия солнечных лучей и атмосферных осадков;
 

   — наличию дополнительных (блокировочных, сигнальных) контактов;

 

   — по рабочему току на магнитные пускатели 0-й, 1-й, 2-й, 3-й, 4-й, 5-й и 6-й величины:

 

      — нулевая величина (0) — рабочий ток 6,3А;

      — первая величина (1) — 10-16А;

      — второй величины (2) — 25А;

      — третьей величины (3) — 40А;

      — четвёртой величины (4) — 63А;

      — пятой величины (5) — 100А;

      — шестой величины (6) — 160А.

 

   К магнитным пускателям предъявляются высокие требования по износостойкости. Пускатели выпускают в трёх классах коммутационной износостойкости — А, Б и В.

 

   — Класс А — наивысшая износостойкость.

   — Класс Б — средняя износостойкость.

   — Класс В — низкая износостойкость.

 

   Магнитные пускатели также могут различаться по напряжению катушки. Рабочее напряжение катушки пускателя должно соответствовать напряжению цепей управления. Стандартный ряд напряжений — 12, 24, 110, 220, 380 вольт.

 

   Категории применения магнитных пускателей:

 

   — АС-1 — нагрузка пускателя активная или малоиндуктивная;

   — АС-3 — режим прямого пуска электродвигателя с короткозамкнутым ротором, отключение вращающегося двигателя;

   — АС-4 — пуск электродвигателя с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

 

   При выборе магнитного пускателя часто применяется термин — «величина пускателя». Данный термин условный и характеризует допустимый ток контактов главной цепи пускателя. При этом подразумевается, что напряжение главной цепи составляет 380В и магнитный пускатель работает в режиме АС-3.

Типы и применение магнитных пускателей

Главная / Справочники

Поиск статьи

по словам:

Металлокорпуса

Монтаж оборудования

Электросчетчик

Производство щитового оборудования

Проектирование

Щитовое оборудование


12.01.2016

Магнитные пускатели (МП) — это модифицированные контакторы, с помощью которых коммутируют нагрузки. Они используются в цепях переменного и постоянного тока для частых подключений и отключений электрического оборудования. Универсальность и неприхотливость МП позволяют применять это коммутационное оборудование
не только для остановки и переключения режимов электродвигателей, но и для удаленного управления освещением, тепловыми печами, насосами и другими устройствами.

Конструкция МП

Основным элементом магнитного контактора является электромагнитная система, состоящая из якоря, катушки и сердечника. Устройство имеет прочный корпус. На сердечнике находится включающая катушка, благодаря которой происходит включение контактора. В верхней части корпуса расположены главные и блокировочные контакты.

Пускатель реверсивного типа собран из двух обычных ПМ, закрепленных на одном основании. Схема, соединяющая два пускателя, собрана через замкнутые блокировочные контакты аппаратов так, что не допускает их одновременного срабатывания. Для повышения надежности работы реверсивного пускателя контактор оборудуют механической блокировкой, которая расположена под панелью. Она также предназначена для предотвращения включений двух ПМ одновременно.
Магнитный контактор могут изготавливать в корпусе, защищенном от пыли и случайного попадания жидкости. Оболочка пускателя имеет резиновые уплотнения, а все отверстия плотно закрыты пробками.

Типы магнитных пускателей

Промышленность выпускает реверсивные, нереверсивные МП, аппараты, оборудованные тепловым реле, дополнительными кнопками управления, устройства с защищенными корпусами.

Магнитные пускатели отличаются по уровням коммутируемых токов и максимальному напряжению рабочих цепей.

Основные отличительные характеристики МП:

1.    номинальный ток главных контактов;
2.    максимальный отключаемый ток;
3.    номинальное напряжение коммутируемой схемы;
4.    напряжение включающей катушки;
5.    степень износостойкости;
6.    максимальное количество срабатываний в час;
7.    количество дополнительных контактов;
8.    собственное время срабатывания.

Принцип действия

Включение обычного пускателя происходит под воздействием электромагнитных волн катушки, по которой проходит ток. После намагничивания сердечника якорь втягивается, увлекая за собой главные контакты, которые замыкаются. Схема собирается и по главной цепи начинает течь ток. Чтобы отключить контактор, достаточно обесточить катушку. Якорь перестает удерживаться магнитным полем и под воздействием пружины принимает начальное положение, размыкая контакты.

Если аппарат полностью обесточить, то разомкнутся все его контакты.

Пускатель реверсивного типа предназначен для переключения фаз статорной обмотки двигателя. Для этого применяют два однотипных МП. Схема включения МП1 и МП2 защищена от случайного одновременного включения специальной блокировкой.

Защиту обеспечивает специальный контакт, установленный в цепи катушек первого и второго МП. Если при включенном первом контакторе попытаться подать питание на включающую катушку второго, то в цепи питания магнитной системы МП1 разомкнется контактор, обесточив катушку. Одновременно в схеме питания катушки МП2 замкнется контактор, подготовив его к включению.

Особенности установки пускателей

Монтаж МП следует производить на ровной жесткозакрепленной поверхности. Контактор, оборудованный тепловым реле, устанавливают ближе к электродвигателю, чтобы разница температуры среды возле двигателя и аппарата была минимальной.

Не рекомендуется монтировать пускатели с тепловой защитой на основании, которое подвергают сильным вибрациям, ударам. Например, не следует устанавливать МП рядом с электромагнитными устройствами, рассчитанными на высокие номинальные токи. При работе они создают существенные удары и сотрясения, которые могут влиять на правильную работу МП.

Перед подключением проводника к контакту пускателя жилу необходимо загнуть в форме буквы «П» или сделать кольцо. Это предотвратит перекос зажимающих контакт шайб. Если требуется к одному зажиму присоединить два проводника, то их жилы нужно оставить прямыми. Расположить концы проводников следует по разные стороны от зажимающего винта.

Концы проводов требуется залудить. Если используется многожильный провод, то перед лужением отдельные проводники необходимо плотно скрутить. Конец алюминиевого провода нужно зачистить надфилем с применением технического вазелина. Сами контакты пускателя должны быть чистыми от любых загрязнений и смазки.

Перед пуском контактор осматривают на наличие неисправностей и убеждаются в свободном перемещении подвижных элементов. Проверяют уровень напряжения, подаваемого к катушке, и все соединения согласно схеме подключения.

Перейти в раздел: Контакторы и пускатели

Типы пускателей электродвигателей — Руководство покупателя Thomas

Пускатели электродвигателей представляют собой электромеханические устройства, обеспечивающие пуск и останов электродвигателей с помощью ручных или автоматических переключателей и обеспечивающие защиту цепей двигателя от перегрузки. Ключевые характеристики включают предполагаемое применение, тип пускателя, электрические характеристики, включая количество фаз, ток, напряжение и номинальную мощность, а также характеристики. Пускатели двигателей используются везде, где работают электродвигатели мощностью более определенной лошадиной силы. Существует несколько типов пускателей, в том числе ручные, магнитные, с плавным пуском, многоскоростные и с полным напряжением. Некоторые пускатели двигателей также имеют функцию реверса, а также функции управления крутящим моментом и толчкового режима.

Большинство из них также имеют стандартные монтажные конфигурации, обозначенные в размерах NEMA.

Пример нескольких пускателей двигателей на монтажной панели.

Изображение предоставлено AndyPositive/Shutterstock.com

 

Модели и типы пускателей двигателей

Руководство

Ручные пускатели двигателей используются в так называемых приложениях полного напряжения, подключенных к сети, для однофазных и трехфазных двигателей малых и средних размеров. Ручной пускатель двигателя, состоящий из выключателя и реле перегрузки, обычно не обеспечивает отключения питания двигателя в случае прерывания питания, что может быть полезно для небольших насосов, вентиляторов и т. д., поскольку они возобновляют работу после восстановление власти. Ручные пускатели двигателей с защитой от пониженного напряжения обеспечивают средства обесточивания цепи пускателя после отключения питания и, следовательно, используются для конвейеров и т. д., где существует опасность автоматического перезапуска как для оборудования, так и для персонала. Ручные пускатели двигателей с защитой от пониженного напряжения используются на станках, деревообрабатывающем оборудовании и т. д., где требования безопасности требуют отключения двигателя после сбоя питания. Ручные пускатели двигателей доступны в конфигурациях NEMA и IEC, а также в стандартных размерах.

Магнитный

Магнитные пускатели электродвигателей полагаются на электромагниты для замыкания и удержания контакторов, а не на механическую фиксацию выключателей включения/выключения, как в ручных пускателях. Они используются в сетевых приложениях и в качестве пускателей пониженного напряжения для однофазных и трехфазных двигателей. Магнитные пускатели электродвигателей, в которых используются управляющие устройства мгновенного действия (переключатели, реле и т. д.), требуют перезапуска после отключения питания или низкого напряжения, вызывающих отключение контактора. Магнитные пускатели двигателей также могут быть подключены для автоматического перезапуска двигателей, если этого требует приложение, например, удаленный насос.

Магнитные пускатели двигателей доступны в конфигурациях NEMA и IEC и стандартных размеров.

Реверс

Реверсивные пускатели содержат два набора контакторов, которые обеспечивают реверсивные выводы двигателей, позволяя им вращаться в любом направлении. Реверсивные пускатели обычно обеспечивают как электрическую, так и механическую блокировки, которые предотвращают одновременное замыкание обоих наборов контактов. Они доступны в стандартных размерах NEMA.

Мягкий

Устройства плавного пуска вводят цифровое управление в электромеханические пускатели и позволяют последовательно доводить двигатели до скорости, чтобы предотвратить повреждение трансмиссии, продуктов и т. д., а также избежать перегрузки службы распределения электроэнергии, вызванной высоким пусковым током среды и большие двигатели, запускаемые при полном напряжении.

Комбинация

Комбинированные пускатели, как правило, представляют собой устройства в корпусе, которые включают в себя разъединители и защиту от короткого замыкания (в виде предохранителей или автоматических выключателей) вместе с компонентами пускателя двигателя

Приложения и отрасли

Пускатели электродвигателей представляют собой электрические устройства специального назначения, предназначенные для управления высоким электрическим током, который потребляют двигатели на мгновение, когда они запускаются из состояния покоя, при этом защищая двигатели от чрезмерного нагрева при перегрузках во время нормальной работы. Пусковой ток может быть в несколько раз больше, чем потребляет двигатель при его рабочей скорости. Если бы использовался только предохранитель или автоматический выключатель, это устройство перегорало бы или срабатывало при каждом запуске.

Вместо этого в двигателях используются тепловые или магнитные реле перегрузки для введения временной задержки во время запуска, когда двигатель подвергается воздействию высокого «пускового» тока. Если бы двигатель заклинил — так называемый сценарий с заблокированным ротором — он бы непрерывно потреблял такой же пусковой ток. В этом случае реле перегрузки будут нагреваться сверх времени, отведенного для нормальных мгновенных уровней пуска, и отключат выключатель или контактор и, следовательно, двигатель.

Пускатели двигателей

доступны в открытой конфигурации, которые устанавливаются в панели управления, или они могут быть автономными блоками с собственными корпусами, сертифицированными NEMA или IEC. Стандартные размеры NEMA варьируются от 00 до 9. для покрытия диапазона размеров двигателей, начиная с 1,5 л.с. и заканчивая 900 л.с.

Соображения

Ручные пускатели двигателей ограничены размером двигателя, который они могут запускать, начиная с дробных уровней л.с. и обычно увеличивая до максимума 10-15 л.с., в зависимости от напряжения. Они, как правило, используются с оборудованием, которое запускается нечасто или работает непрерывно с небольшим количеством остановок. Помимо этого, спецификаторы должны рассмотреть возможность использования магнитных пускателей или даже устройств плавного пуска. Особые случаи, такие как реверсивное или многоскоростное обслуживание, решаются с помощью стилей для конкретных приложений. Другие факторы, помимо размера двигателя и напряжения, включают взрывозащиту, класс защиты корпуса, защиту предохранителем или прерывателем и т. д.

Большинство производителей стартеров предлагают продукты, соответствующие рейтингам NEMA и IEC. Стартеры NEMA, как правило, больше и дороже, чем стартеры IEC, но могут быть указаны только на основе мощности и напряжения, тогда как спецификации стартеров IEC более точно настроены. См. ссылку ниже для обсуждения. Как правило, североамериканские инженеры-конструкторы указывают применимость NEMA или IEC, а для новых закупок спецификаторы могут выбирать из соответствующих предложений поставщиков в этих двух диапазонах. Машиностроители в Северной Америке часто используют пускатели IEC в своих панелях управления из-за их способности более точно настраивать пускатели в зависимости от применения, что обусловлено более сложными критериями выбора IEC.

При выборе комбинированного пускателя разработчики, как правило, выбирают конфигурацию корпуса, реле пускателя и перегрузки соответствующего размера, управляющие напряжения, варианты связи и соответствующие контрольные устройства (лампы, аварийные остановы, переключатели ручного/выключения/автоматического выбора, нажимные выключатели, и т. д.). Спецификаторы также могут выбирать между защитой от короткого замыкания с предохранителем и автоматическим выключателем. Многие производители имеют в наличии стандартные устройства, которые можно быстро доставить.

Устройства плавного пуска больше похожи на приводы двигателей переменного тока, чем на традиционные пускатели, поскольку в них используется твердотельная электроника для управления пусковыми токами. Часто их можно запрограммировать на управление разгоном двигателя. Их можно заказать в виде открытых или закрытых блоков.

Важные атрибуты

Промышленные стандарты/сертификация

Выбор NEMA или IEC сузит выбор среди этих двух организаций по стандартизации.

Типы пускателей

Выбор среди этих различных вариантов, как описано выше, сузит поле до конкретных типов пускателей, т. е. полного напряжения, ручного и т. д.

Начальный размер NEMA

Пускатели

NEMA упорядочены по размеру в зависимости от напряжения и мощности двигателя. Процесс выбора пускателей IEC более сложен, поэтому простого подхода «размер по количеству» не существует.

Характеристики

Элементы пускателей включают корпуса, вспомогательные контакты, взрывозащищенные корпуса и т. д.  

Связанные категории товаров

  • Двигатели см. в нашем Руководстве по покупке двигателей.
  • Контроллеры двигателей и приводы см. наше Руководство по покупке контроллеров двигателей и приводов.
  • Автоматические выключатели представляют собой электромеханические устройства, обычно устанавливаемые в электрических шкафах и используемые для защиты электрических цепей от перегрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перегрузок по напряжению, току или тепловым перегрузкам.
  • Электрические предохранители — это устройства, которые ограничивают протекание тока по электрическим цепям путем «размыкания» при заданном уровне тока, тем самым прерывая поток электричества .
  • Электрические контакторы представляют собой электронные или электромеханические устройства, используемые для переключения электрических нагрузок.
  • Реле защиты — это электромеханические переключатели, используемые для защиты различных устройств от перегрузок по напряжению, току или тепловым перегрузкам.

Ресурсы

Техническое обсуждение методов пуска двигателя

http://www05.abb.com/global/scot/scot234.nsf/veritydisplay/18cb6349632fe21583257861003d9507/$file/technical%20note%20tm008%20low.pdf

Загружаемое руководство по выбору пускателя двигателя от одного поставщика

http://www.schneider-electric.com/products/ww/en/5100-software/5110-electrical-design-software/61210-lv-motor-starter-solution-guide-v34/

Обсуждение различий между пускателями NEMA и IEC

http://www.ussg.com.sa/pdf1.pdf

http://ecmweb.com/content/дифференциация-между-nema-and-iec-style-products

Прочие пускатели двигателей Артикул

  • Все о ручных пускателях двигателей: что это такое и как они работают
  • Все о магнитных пускателях двигателей — что это такое и как они работают

Прочие «Типы» изделий

  • Типы систем сбора данных — Руководство для покупателей ThomasNet
  • Типы чистых помещений — руководство для покупателей ThomasNet
  • Типы тиристоров — Руководство для покупателей ThomasNet
  • Типы светильников
  • Типы изоляции — Руководство по покупке Томаса
  • Типы ламп и лампочек
  • Типы магнитов
  • Различные типы процессов литья, используемые в производстве
  • Лабораторная стеклянная посуда: типы лабораторных пробирок
  • Типы петель
  • Типы картонных коробок
  • Типы направляющих для ящиков
  • Типы бронзы
  • Типы генераторов
  • Типы медной проволоки
  • Типы пластиковых шнеков для экструзии
  • Типы термостатов
  • Типы припоя
  • Типы заклепок
  • Различные типы марок алюминия (свойства и применение)

Другие товары от Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Машины, инструменты и расходные материалы

Объяснение пускателя двигателя | Типы пускателей двигателей

Как инженеры по автоматизации, мы пишем логические программы для систем ПЛК и РСУ, которые отслеживают переменные процесса, открывают и закрывают клапаны, устанавливают режимы контура управления, а также запускают и останавливают двигатели для насосов, компрессоров и конвейерных систем. Большинство цифровых выходов систем управления работают от 24 В постоянного тока или 120 В переменного тока. Итак, как мы запускаем и останавливаем трехфазную сеть переменного тока 480 вольт промышленные двигатели ? Простой ответ заключается в использовании пускателя двигателя .

Типы пускателей двигателей

Доступны многие типы контроллеров двигателей, и все они имеют различные типы и стили для конкретного применения в промышленном управлении.

Все контроллеры двигателей сконструированы таким образом, чтобы двигатель не включался до тех пор, пока не будет получена команда на активацию контроллера. После активации ток может проходить к двигателю, который возбуждает обмотки двигателя и запускает вращение двигателя.

Активация контроллера мотора обычно осуществляется с помощью электромеханического устройства, встроенного в контроллер, также известного как контактор . Можно использовать и другие методы.

Контроллеры двигателей также называются пускателями двигателей. Эти устройства чаще всего предлагаются в виде единого блока со средствами отключения цепи, контактором или приводом двигателя другого типа, защитой цепи от перегрузки и защитой от перегрузки двигателя .

Контроллеры двигателей можно сгруппировать по способу пуска и по типу пускателя.

Методы пуска контроллера мотора

Контроллеры мотора можно классифицировать по методу пуска.

1) Полное напряжение, нереверсивный (FVNR)

Первый тип пуска — это контроллер полного напряжения, нереверсивный двигатель. Как следует из названия, при срабатывании одного контактора контроллера этот тип контроллера двигателя, также известный как FVNR позволяет подавать на двигатель полное линейное напряжение.

В контроллере двигателя FVNR положение фаз сети фиксировано, и двигатель может работать только в одном направлении вращения. FVNR можно рассматривать как контроллер на линии .

2) Реверсирование при полном напряжении

В контроллере двигателя с реверсированием при полном напряжении контроллер имеет два отдельных состояния срабатывания:

– одно для работы двигателя в прямом направлении и

— одно состояние, позволяющее двигателю работать в обратном направлении.

Это достигается добавлением второго контактора .

– Контактор прямого хода работает так же, как и в FVNR, а

– Контактор обратного хода меняет местами две фазы.

Это перепутывание двух фаз вызывает изменение направления магнитного поля в обмотках двигателя, в результате чего двигатель вращается в противоположном направлении.

Специальные физические средства защиты для предотвращения вредного воздействия одновременного срабатывания обоих контакторов.

3) Пониженное напряжение

Третий тип метода пуска двигателя называется пуском пониженным напряжением. Большие двигатели могут иметь очень высокий пусковой ток, который может нанести вред двигателю или самому контроллеру двигателя.

Этот тип контроллера двигателя ограничивает величину пускового тока путем подачи на двигатель пониженного напряжения при первом запуске.

Это можно сделать несколькими способами, например, с помощью автотрансформатора, схемы «звезда-треугольник» и устройства плавного пуска. Они будут описаны позже.

4) Многоскоростной

Последний тип метода пуска двигателя — многоскоростной. Многоскоростные контроллеры двигателей используют твердотельные или средства преобразования, позволяющие управлять двигателями на разных скоростях. Два из этих методов, привод с регулируемой скоростью и двухскоростное управление, будут описаны позже.

Типы пускателей контроллера двигателя

Теперь, когда мы описали четыре основные категории контроллера двигателя по методу пуска, мы теперь опишем шесть основных типов пускателя двигателя.

1) Ручной

Первый — это ручное включение двигателя, при котором оператор должен включать и выключать двигатель.

Из соображений безопасности ручной запуск двигателя ограничен двигателем мощностью 10 л.с. или менее. Их можно использовать в одно- или трехфазных приложениях.

2) Магнитный пускатель двигателя

Магнитные пускатели двигателей или пускатели прямого подключения являются наиболее распространенным типом односкоростных пускателей.

Для магнитных пускателей кнопка или переключатель, подключенный к цифровому входу ПЛК, используется для активации цифрового выхода ПЛК. Выход ПЛК будет втягивать катушку, которая магнитно удерживает контакты пускателя в замкнутом состоянии, позволяя току проходить к двигателю.

Магнитные пускатели двигателей используются с FVNR и полновольтными реверсивными контроллерами двигателей.

3) Пускатель двигателя с автотрансформатором

Пускатель двигателя с автотрансформатором обычно используется в пусковых устройствах с пониженным напряжением, особенно с большими двигателями.

1) При запуске двигателя включаются два контактора. Один из этих контакторов включает цепь трансформатора, а другой переводит трансформатор в звезду.
Ответвленный выход трансформатора при пуске подключается к проводам двигателя.

2) Как только двигатель достигает от 85 до 90 процентов от полного напряжения, контактор звезды размыкается, а трансформатор действует как дроссель, ограничивая напряжение и ток двигателя.

3) Затем главный контактор замыкается, и контроллер двигателя действует как FVNR с полным напряжением на двигателе.

4) Звезда-треугольник

Пуск двигателя пониженным напряжением по схеме звезда-треугольник связан с автотрансформаторным пуском, поскольку в схеме управления двигателем используются три отдельных контактора.
1) В схеме звезда-треугольник двигатель запускается в 9Конфигурация 0074 звезда , которая запускает двигатель примерно при одной трети номинального полного тока двигателя.

2) После того, как двигатель раскрутится почти до полной скорости, двигатель переключается на конфигурацию дельта для непрерывной работы.

5) Устройства плавного пуска

Устройства плавного пуска — это еще один метод, используемый для ограничения пускового тока. В устройствах плавного пуска используется твердотельная электроника, такая как симистор, для ограничения пускового напряжения и тока.

Устройство плавного пуска позволяет постепенно увеличивать напряжение во время запуска двигателя. Это позволяет двигателю медленно ускоряться и набирать скорость контролируемым образом.

6) Преобразователь частоты (ЧРП)

Преобразователь частоты или ЧРП аналогичен устройству плавного пуска, но позволяет изменять скорость двигателя путем изменения выходной частоты в мотор.

Поскольку в процессе также регулируется напряжение, пусковой ток также снижается при использовании частотно-регулируемого привода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *