Виды напряжений электрического тока. Виды напряжения электрического тока: постоянное и переменное, их особенности и применение

Что такое напряжение электрического тока. Какие бывают виды напряжения. Чем отличается постоянное напряжение от переменного. Где применяются разные виды напряжения. Как измеряется напряжение.

Содержание

Что такое напряжение электрического тока

Напряжение электрического тока — это физическая величина, характеризующая работу электрического поля по перемещению электрического заряда. Другими словами, напряжение показывает, какую энергию получит единичный положительный заряд, перемещаясь между двумя точками электрической цепи.

Основные характеристики напряжения:

  • Единица измерения — вольт (В)
  • Обозначается буквой U
  • Формула: U = A / q, где A — работа, q — величина заряда
  • Измеряется вольтметром

Основные виды напряжения электрического тока

Выделяют два основных вида напряжения электрического тока:

  1. Постоянное напряжение
  2. Переменное напряжение

Рассмотрим особенности каждого вида подробнее.

Постоянное напряжение

Постоянное напряжение — это напряжение, величина и направление которого не изменяются с течением времени. Его создают источники постоянного тока, такие как гальванические элементы, аккумуляторы, солнечные батареи.


Особенности постоянного напряжения:

  • Неизменно по величине и направлению
  • Создает постоянный электрический ток
  • Полярность источника всегда одинакова
  • График зависимости от времени — прямая линия

Где применяется постоянное напряжение

Постоянное напряжение широко используется в различных областях:

  • Электронные устройства и гаджеты
  • Автомобильная электрика
  • Электротранспорт (электромобили, электропоезда)
  • Системы автономного электроснабжения
  • Электролиз
  • Зарядка аккумуляторов

Переменное напряжение

Переменное напряжение — это напряжение, величина и направление которого периодически изменяются во времени. Его создают генераторы переменного тока на электростанциях.

Характеристики переменного напряжения:

  • Периодически меняется по величине и направлению
  • Создает переменный электрический ток
  • Полярность источника постоянно меняется
  • График зависимости от времени — синусоида

Применение переменного напряжения

Переменное напряжение используется:

  • В бытовой электросети (220 В, 50 Гц)
  • Для передачи электроэнергии на большие расстояния
  • В промышленных электроустановках
  • В электродвигателях переменного тока
  • В трансформаторах

Чем отличается постоянное напряжение от переменного

Основные отличия постоянного и переменного напряжения:


ХарактеристикаПостоянное напряжениеПеременное напряжение
Изменение во времениНе меняетсяПериодически меняется
Направление токаВсегда одинаковоеМеняется с частотой сети
ГрафикПрямая линияСинусоида
Передача на расстояниеСложно и неэффективноЭффективно
ПреобразованиеСложно менять величинуЛегко трансформируется

Как измеряется напряжение электрического тока

Для измерения напряжения используются специальные приборы — вольтметры. Существует несколько видов вольтметров:

  • Стрелочные (аналоговые)
  • Цифровые
  • Электронные (мультиметры)

Порядок измерения напряжения:

  1. Выбрать подходящий предел измерения на приборе
  2. Подключить щупы вольтметра параллельно участку цепи
  3. Соблюдать полярность при измерении постоянного напряжения
  4. Снять показания с дисплея или шкалы прибора

Формула напряжения электрического тока

Основная формула для расчета напряжения:

U = A / q

где:

  • U — напряжение (В)
  • A — работа электрического поля (Дж)
  • q — электрический заряд (Кл)

Также напряжение можно рассчитать по закону Ома:


U = I * R

где:

  • I — сила тока (А)
  • R — сопротивление участка цепи (Ом)

Единицы измерения напряжения

Основная единица измерения напряжения в Международной системе единиц (СИ) — вольт (В).

Кратные и дольные единицы:

  • Микровольт (мкВ) = 10^-6 В
  • Милливольт (мВ) = 10^-3 В
  • Киловольт (кВ) = 10^3 В
  • Мегавольт (МВ) = 10^6 В

1 вольт равен напряжению, при котором заряд в 1 кулон совершает работу в 1 джоуль.

Почему важно знать о видах напряжения

Понимание различий между постоянным и переменным напряжением важно по нескольким причинам:

  • Правильный выбор электроприборов и оборудования
  • Обеспечение электробезопасности
  • Эффективное использование электроэнергии
  • Грамотная эксплуатация электросетей
  • Возможность оптимизации энергопотребления

Знание особенностей разных видов напряжения позволяет избежать ошибок при работе с электрическими устройствами и системами.


Напряжение электрического тока – виды, формула, единица измерения

4.2

Средняя оценка: 4.2

Всего получено оценок: 126.

4.2

Средняя оценка: 4.2

Всего получено оценок: 126.

Электрическое напряжение между двумя точками электрической цепи или электрического поля равно разности потенциалов в этих точках. Эта величина эквивалентна работе, которую производит электрическое поле при перемещении единичного электрического заряда из начальной точки в конечную. В зависимости от вида приложенного напряжения (постоянного или переменного) в электрической цепи формируется ток, величина которого определяется по формуле закона Ома.

Закон Ома

Электрическая цепь состоит из отдельных участков — однородных и неоднородных. Участки цепи, на которых отсутствует действие сторонних сил, т.е.участки, без источников тока, называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.

Формула закона Ома для однородного участка цепи выглядит так:

$ I = {U \over R} $ (1).

Полностью формулировка закона Ома звучит следующим образом: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.

Для неоднородного участка цепи, содержащего источник тока с электродвижущей силой Еэдс ,закон Ома записывается в следующем виде:

$ I = {E_{эдс} \over R + r} $ (2),

где: R — сопротивление цепи, r — сопротивление источника тока. Уравнение (2) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Виды напряжений

В электрических цепях используются два основных напряжения электрического тока: постоянное и переменное.

Рис. 1. Постоянное и переменное напряжение.

Постоянное во времени напряжение создается источниками тока (батареи, аккумуляторы), на концах которых долгое время сохраняется одна и та же разность потенциалов (ЭДС).

Электрический ток в этом случае тоже постоянен во времени и течет в одном направлении. Постоянное напряжение используется, когда не требуется транспортировать электроэнергию на большие расстояния: в электрических схемах, на транспорте, в военной и космической технике и т.д.

При изменении полярности потенциалов на клеммах источника, электрический ток тоже будет менять свое направление (колебаться), следуя по закону Ома за временными изменениями напряжения. Количество таких колебаний за определенный промежуток времени (период) называется частотой. Чаще всего используется синусоидальная зависимость тока от времени.

В России стандартная частота составляет 50 Герц, что соответствует изменениям полярности напряжения (и направления тока) 50 раз в секунду. Эти мерцания (пульсации) человеческий глаз не чувствует при использовании в системах освещения. Но в телевизорах и дисплеях компьютеров эту частоту повышают (от 85 Гц и выше), так как при долгом, пристальном рассматривании глаза начинают уставать.

Рис. 2. Синусоидальный переменный ток.

Переменный ток применяется при передаче электроэнергии на большие расстояния. Для этих целей лучше всего подходят трехфазные сети, которые подключены к электростанциям (тепловым, атомным, гидро-), где турбины генерируют такой переменный вид напряжения электрического тока.

Рис. 3. Трехфазный переменный ток.

Единицы измерения

В международной системе единиц (системе СИ) единица измерения напряжения (В) названа в честь итальянского исследователя Алессандро Вольта (1745-1827г.). Так как работа измеряется в джоулях (Дж), а заряд в кулонах (К), то:

$$ [1В] ={ [1 Дж]\over [1 К] } $$

Единица измерения тока — ампер. Это одна из семи базовых единиц в системе СИ. Ток может изменяться (и измеряться) в широчайших пределах, поэтому часто используются такие внесистемные единицы, как:

  • 1 наноампер (нА) = 10-9 А;
  • 1 микроампер (мкА) = 0,000001 А;
  • 1 миллиампер (мА) = 0,001 А;
  • 1 килоампер (кА) = 1000 А.

Что мы узнали?

Итак, мы узнали, что величина напряжения равна работе, которую производит электрическое поле при перемещении единичного электрического заряда из начальной точки в конечную. В электрических цепях находят применение два основных вида напряжения электрического тока: постоянное и переменное. Передача электроэнергии на большие расстояния осуществляется с помощью переменного тока.

Тест по теме

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 126.


А какая ваша оценка?

Единица измерения напряжения тока. Электрическое напряжение. Определение, виды, единицы измерения. Определение величины напряжения

Под электрическим напряжением понимают работу, совершаемую электрическим полем для перемещения заряда напряженностью в 1 Кл (кулон) из одной точки проводника в другую.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

В чем измеряется

Температуры;

Виды напряжения


Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети , когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т. д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 означают, что полярность напряжения в сети меняется за секунду 50 раз.


Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Напряжение — известная величина, используемая во всех световых и аккумуляторных источниках. Что оно собой представляет, какие разновидности существуют, чем измеряют напряжение, в каких единицах измеряется электрическое напряжение и многое другое далее.

Напряжением называется электрическая движущая сила, которая призвана толкать свободные виды электронов от одного атома к другому в определенном направлении. Обязательное требование для протекания зарядов это наличие цепи с замкнутым контуром, который создает условия, для того чтобы их передвигать. Если имеется обрыв электроцепи, то процесс направленного перемещения частиц прекращается.

Обратите внимание! Стоит отметить, что единица напряжения электрической цепи зависит от того, какой проводник имеет материал, как подключена нагрузка, какая есть температура.

Что это такое

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия. Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт.

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.

Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах.

Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:

  • двухфазным;

Двухфазный

  • трехфазным;

Трехфазный

  • многофазным.

Многофазный

Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе.

Переменный ток

Единицы измерения

Измеряется напряженье в вольтах. Обозначается В или Вольт. Одно значение выражено в разности нескольких точек на электрическом поле. Значение 220 вольт говорит о том, что электрическое поле призвано тратить энергию, чтобы протаскивать заряды через всю электрическую цепь с нагрузкой.

Измерительные приборы

Чтобы измерить силу, используется стрелочный или аналоговый, цифровой или электронный вольтметр. Благодаря этим приборам можно измерять и контролировать характеристики сигналов. Также сделать измерения можно осциллографами. Они работают благодаря тому, что энергия отклоняется электронным лучом и поступает на прибор, выдающий показатель переменной величины.

Вольтметр как основной прибор измерения

Напряжение это физическая величина, показывающая размер тока в цепи и оборудовании в вольтах. Ток бывает постоянным и переменным. Отличие в том, что первое понятие обозначает, что ток постоянно меняет свою полярность и протекает в сети переменно. Во втором же случае ток проходит по электроцепи без перерывов. Измеряется вольтметром.

Единица напряжения названа вольтом (В) в честь итальянского учёного Алессандро Вольта, создавшего первый гальванический элемент.

За единицу напряжения принимают такое электрическое напряжение на концах проводника, при котором работа по перемещению электрического заряда в 1 Кл по этому проводнику равна 1 Дж.

1 В = 1 Дж / Кл

Кроме вольта применяют дольные и кратные ему единицы: милливольт (мВ) и киловольт (кВ).

1 мВ = 0,001 В;
1 кВ = 1000 В.

Высокое (большое) напряжение опасно для жизни. Допустим, что напряжение между одним проводом высоковольтной линии передачи и землёй 100 000 В. Если этот провод соединить каким-нибудь проводником с землёй, то при прохождении через него электрического заряда в 1 Кл будет совершена работа, равная 100 000 Дж. Примерно такую же работу совершит груз массой 1000 кг при падении с высоты 10 м. Он может произвести большие разрушения. Этот пример показывает, почему так опасен ток высокого напряжения.

Вольта Алессандро (1745-1827)
Итальянский физик, один из основателей учения об электрическом токе, создал первый гальванический элемент.

Но осторожность надо соблюдать и в работе с более низкими напряжениями. В зависимости от условий напряжение даже в несколько десятков вольт может оказаться опасным. Для работы в помещении безопасным считают напряжение не более 42 В.

Гальванические элементы создают невысокое напряжение. Поэтому в осветительной сети используется электрический ток от генераторов, создающих напряжение 127 и 220 В, т. е. вырабатывающих значительно большую энергию.

Вопросы

  1. Что принимают за единицу напряжения?
  2. Какое напряжение используют в осветительной сети?
  3. Чему равно напряжение на полюсах сухого элемента и кислотного аккумулятора?
  4. Какие единицы напряжения, кроме вольта, применяют на практике?

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии . То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:

где U — напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока ? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

Поэтому для диэлектриков не проходят наши доказательства свойств

проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

    Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

    Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10 −15 с). Не связана с потерями.

    Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10 −13 с, без потерь.

    Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

    Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

    Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

    Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

    Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10 −2)

    Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

    Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

Электричество воспринимается нами как данность и вряд ли кто задумывается над тем, что такое электрическое напряжение и какова его физическая сущность, когда включает свет, компьютер или стиральную машину. На самом же деле оно заслуживает гораздо большего внимания, и не только потому, что может быть смертельно опасным, но и из-за того, что Человечество, овладев этим видом энергии, совершило качественный цивилизационный скачок.

Вспомним один из наиболее интересных моментов на школьном уроке физики, когда преподаватель вращал диск электрической машины, а между металлическими шариками проскакивала искра. Это и есть видимое отражение природного феномена под названием электрический ток. Он возникает из-за того, что на одном шарике отрицательно заряженных ионов больше, а на другом меньше, из-за чего возникает разность потенциалов, то есть факт, нарушающий основной закон Природы – сохранения энергии.

Отрицательно заряженные частицы стремятся переместиться туда, где их меньше, тем самым обнулив разницу. Конечно же, электроны не проходят весь путь между заряженными шариками, называемых полюсами. Их пробег ограничивает кристаллическая решетка, узлов которой они не могут покинуть. Зато способны удариться о соседние частицы и передать импульс по цепочке дальше, создавая эффект домино. Каждое такое соударение порождает выплеск энергии, из-за чего система переходит из состояния покоя в возбужденное, которое и принято называть электрическим напряжением.

Сила, движущая заряженные частицы

Чтобы поставить себе на службу электрическое напряжение и ток, человеку надо было найти силу, которая могла возобновлять разницу потенциалов между полюсами, порождая непрерывное соударение частиц кристаллической решетки. Их оказалось целых три:

  1. Электромагнитная индукция – возникновение тока в результате взаимозависимого перемещения металлов в магнитном поле. Используется в генераторах постоянного и переменного тока.
  2. Электрохимическое взаимодействие, порождаемая разностью потенциалов кристаллических решеток веществ. Используется в аккумуляторах, батареях питания постоянного тока.
  3. Термохимическая реакция, повышающая активность электронов в результате нагрева.

Сила, порождающее движение заряженных частиц, получила наименование «электродвижущая» (аббревиатура ЭДС) и обозначается на схемах буквой «Е», обычно сопутствующей мнемосимволам разъемов, к которым подключается источник питания.

Вольты и амперы

ЭДС и напряжение измеряются в вольтах – условной единице, названной в честь итальянца Алессандро Вольты, официально признанного изобретателя гальванической батареи – источника постоянного тока. Это количество работы, которая совершается при перемещении единицы заряда (кулона), если при этом был потрачен 1 джоуль условной энергии.

Однако существует и вторая единица измерения электрического тока – ампер, названная в честь французского физика Андре-Мари Ампера. Традиционно ее называют силой тока, хотя правильнее применять термин «магнитодвижущая сила», что наиболее полно отражает двуединую физическую сущность заряженной частицы.

Магнитное и электрическое поля электрона стремятся к взаимной компенсации, а их зависимость определяется законом Ома, описываемого формулой I = U / R. Если сопротивление среды резко падает (например, при коротком замыкании), то сила тока растет по экспоненте. Это вызывает ответное падение напряжения, в результате чего система приходит в равновесное состояние. Подобный эффект можно заметить во время работы сварочного трансформатора, когда при возникновении дуги лампы накаливания почти гаснут.

Существует и другой эффект: при большом сопротивлении среды заряд одного знака копится на какой-либо поверхности до тех пор, пока напряжение не достигнет критического уровня, после чего происходит пробой (возникновение тока) в направлении поверхности с наибольшей разницей потенциала. Статическое напряжение чрезвычайно опасно, поскольку в момент разряда оно может порождать токи силой в сотни ампер. Поэтому металлические конструкции, длительное время находящиеся в магнитном поле, обязательно заземляются.

Постоянный или переменный?

Напряжение – это статическая составляющая электричества, а сила тока – динамическая, ведь его направление меняется вместе с полярностью на концах проводника. И это свойство оказалось очень полезным для распространения электричества по Миру. Дело в том, что любой ток затухает из-за внутреннего сопротивления среды, согласно всё тому же закону сохранения энергии. Но оказалось, что двигающийся в одну сторону поток электронов усилить очень сложно, а циклически изменяющий направление – просто, для этого применяется трансформатор с двумя обмотками на одном сердечнике.

Чтобы получить переменный ток, надо вывернуть наизнанку принцип, открытый Фарадеем, который в своем прообразе электрического генератора вращал медный диск в поле действия постоянного магнита. Никола Тесла сделал наоборот – поместил вращающийся электромагнит внутрь неподвижной обмотки, получив неожиданный эффект: в момент прохождения полюсов через нейтраль магнитного поля амплитуда напряжения падает до нуля, а потом снова растет, но уже с другим знаком. За один оборот направление движения электронов в проводнике меняется два раза, составляя рабочую фазу. Поэтому переменный ток называют еще и фазным. А порождающее его напряжение – синусоидальным.

Никола Тесла создал генератор с двумя обмотками, расположенными под углом в 90 0 друг к другу, а русский инженер М.О. Доливо-Добровольский усовершенствовал его, расположив на статоре три, что увеличило стабильность работы электрической машины. В результате этого промышленный переменный ток стал трехфазным.

Почему 220 вольт 50 Гц?

В нашей стране бытовая однофазная сеть имеет номиналы 220 вольт и 50 герц. Причина появления именно этих цифр весьма интересна.

Пальма первенства в бытовом освоении электричества принадлежит Томасу Эдисону. Он использовал исключительно постоянный ток, поскольку гениального изобретения Николой Тесла переменного еще не произошло.

Первым электрическим прибором оказалась лампа накаливания с угольной нитью. Опытным путем было установлено, что лучше всего она работает при напряжении в 45 вольт и включенном в цепь балластном сопротивлении, обеспечивающим рассеивание еще двадцати. Приемлемая длительность работы обеспечивалась последовательным включением двух ламп. Итого в бытовой сети, по мнению Эдисона, должно было быть 110 вольт.

Однако передача постоянного тока от электростанций к потребителям сопровождалась большими трудностями: через одну-две мили он затухал полностью. По Закон Джоуля — Ленца количество тепла, рассеиваемое проводником при прохождении тока, вычисляется по следующей формуле: Q = R . I 2 . Чтобы снизить потери вчетверо, напряжение увеличили до 220 вольт, а силовую линию построили из трех проводников – с двумя «плюсами» и одним «минусом». Потребитель получал все те же 110 вольт.

Противостояние Николы Теслы и Томаса Эдисона, названное «Войной токов», решилось в пользу переменного, поскольку его можно было передавать на большие расстояния с минимальными потерями. Тем не менее напряжение между силовыми проводниками осталось 220, а линейное, поступающее к потребителю – 127 вольт, поскольку из-за сдвига фаз на 120 градусов амплитуды напряжения не складываются арифметически, а умножаются на 1,73 – корень квадратный из трех.

В СССР сетевым номиналом 127 вольт в одной фазе пользовались до начала 60-х годов. В ходе усовершенствования электрических линий, проводимого с целью увеличения передаваемой мощности, конструкторы пошли по тому же пути, что и Эдисон – повысили напряжение.

За точку отсчета приняли 220 вольт, которые измерялись между фазами. Оно стало бытовым. А промышленное межфазное напряжение 380 вольт получилось умножением 220 на 1,73. Частота 50 Гц – это 3 тыс. колебаний в минуту, то есть, оптимальное количество оборотов коленвала дизеля или другого двигателя внутреннего сгорания, который приводит в действие машину переменного тока.

Теперь вы знаете, что такое напряжение и электрический ток, в каких единицах они измеряются и как зависят друг от друга, а также почему в вашей розетке именно 220 вольт. Приведенные факты не носят академического характера и не претендуют на истину в последней инстанции. Более подробно ознакомиться с природой этого феномена вы можете в учебниках по электротехнике.

Что такое электрический ток? | Hioki

Что такое электрический ток? Разница между напряжением и током, различные типы тока и методы измерения тока

Обзор

Мы ежедневно пользуемся силой электричества, не задумываясь об этом. Возможно, вы обнаружите, что в электричестве есть много такого, чего вы не знали. Вы также можете стесняться задавать вопросы о том, что, по вашему мнению, уже должны были понять. Не бойся! На этой странице представлены базовые знания об электрическом токе, а также простое для понимания введение в такие темы, как разница между током и напряжением, различные типы тока и методы измерения тока.

После прочтения у вас должно быть общее представление об электрическом токе.

Что такое электрический ток?

Электрический ток означает поток электричества в электронной цепи и количество электричества, протекающего через цепь. Измеряется в амперах (А). Чем больше значение в амперах, тем больше электричества протекает в цепи.

Электричество легко представить себе, если представить его себе как течение воды в реке. Частицы, называемые электронами, собираются вместе, и количество электронов, протекающих каждую секунду, и есть ток.

Разница между напряжением и током

Напряжение — это еще один термин, который используется в отношении электронных схем так же часто, как и ток. Напряжение измеряется в вольтах (В). Как и ток, напряжение также связано с потоком электронов в цепи. Ток относится к потоку электронов, а напряжение относится к величине силы, толкающей поток электронов.

Чем выше напряжение, тем больше ток; более низкое напряжение означает более слабый ток.

Сопротивление — еще одно свойство, увеличивающее ток. Думайте о сопротивлении как о ширине, через которую проходят электроны. Чем больше сопротивление, тем уже ширина, через которую должны протекать электроны, и, следовательно, меньше ток. Напротив, более низкое сопротивление увеличивает ширину, через которую могут протекать электроны, позволяя одновременно протекать большему току.

Если вы хотите, чтобы при заданном значении сопротивления протекал больший ток, вы можете добиться этого, повысив напряжение. Мощность обычно рассчитывается путем умножения тока (А) на напряжение (В), что дает результат, выраженный в ваттах (Вт). Таким образом, ток и напряжение совершенно разные, но оба являются важными элементами в мире электричества.

Постоянный ток и переменный ток

Термины «ток» и «напряжение» охватывают различные типы явлений, и одно из основных различий, которое можно сделать, это различие между постоянным и переменным током. Постоянный ток (DC) относится к току и напряжению, направление которых не меняется.

Типичным примером является электроэнергия, вырабатываемая сухими элементами и литий-ионными батареями, используемыми в автомобилях. При постоянном токе напряжение всегда положительное (или всегда отрицательное), а ток всегда течет в одном направлении. В результате устройство может не работать, если его батарея установлена ​​с обратной полярностью.

Напротив, переменный ток (AC) относится к току и напряжению, направление и величина которых регулярно изменяются во времени. Волны переменного тока отличаются разнообразием форм, включая синусоидальные волны, прямоугольные волны, пилообразные волны и треугольные волны.

Электричество переменного тока используется электросетью, например, в бытовых розетках. Однако большинство стандартных электронных устройств преобразуют его в постоянный ток с помощью своих внутренних схем. Почему же тогда в электросети используется переменный ток?

Причина связана с передачей. Сопротивление в линиях электропередач вызывает потери при передаче тока, но эти потери можно уменьшить, увеличив напряжение. Однако создать постоянный ток высокого напряжения сложно, поэтому электричество передается в виде переменного тока, а затем понижается до более низкого напряжения с помощью трансформаторов, прежде чем поступать на электрические устройства через энергосистему. Затем эти устройства в большинстве случаев преобразуют переменный ток в постоянный с помощью своей внутренней схемы, чтобы его можно было использовать.

Методы измерения электрического тока

Для измерения электрического тока вам потребуется такой инструмент, как цифровой мультиметр. Функциональность зависит от продукта, но цифровые мультиметры могут выполнять различные измерения, включая не только ток, но также напряжение и сопротивление.

При измерении электрического тока с помощью цифрового мультиметра перед выполнением измерений необходимо настроить прибор на функцию измерения тока. Прибор будет иметь несколько единиц отображения, например, мкА, мА и А, поэтому вам нужно будет выбрать диапазон измерения, который лучше всего подходит для измеряемого тока.

При измерении тока подключите отрицательную клемму к разъему COM, а положительную клемму к разъему A на приборе так, чтобы мультиметр был последовательно включен в цепь.

Соблюдайте осторожность, чтобы не подавать напряжение, когда выбрана функция тока. Это может привести к повреждению прибора из-за протекания через него сверхтока. На самом деле в приборах используются предохранители для защиты их цепей, но рекомендуется проявлять осторожность, поскольку перегрузка по току может повредить прибор. Некоторые цифровые мультиметры не имеют входной клеммы тока, чтобы избежать этой опасности.

Использование цифрового мультиметра для измерения тока

Ток относится к потоку электричества в электронной цепи, причем большие цифры указывают на большее количество электричества. Хотя ток отличается от напряжения, оба являются важными понятиями, и необходимо понимать каждое из них.

Ток можно измерить цифровым мультиметром. Почему бы не попробовать измерить ток на основе информации, представленной на этой странице?

Как использовать

Сопутствующие товары

  • Цифровой мультиметровый DT4282
  • Метр зажима переменного тока CM4141-50
  • Утечка тока CM4001
  • . цифровой мультиметр. Обзор преимуществ и недостатков

  • Как измерить ток Зачем нужно измерять ток? Причины, методы и меры предосторожности

  • Как пользоваться токоизмерительными клещами Готовы учиться? Советы по использованию токоизмерительных клещей, соответствующие меры предосторожности и многое другое

  • Как использовать токовые пробники Узнайте больше о том, как использовать токовые пробники. Обзор основных методов и мер предосторожности

Напряжение: определение, типы и формула

Вы когда-нибудь наблюдали, как птицы счастливо сидят на линии электропередач? Почему же примерно 500 000 вольт электричества ничего с ними не делают? Мы знаем, что 120 вольт в розетках дома для нас смертельно опасны, так может ли быть так, что у птиц высокая изоляция? Я согласен, что птицы не великие дирижеры, я имею в виду, вы когда-нибудь видели, чтобы кто-нибудь руководил оркестром? Шутки в сторону, ответ на эту головоломку заключается в том, что между ногами птиц на кабеле нет разницы в напряжении. Ток будет проходить по проводу, а не по птицам (что потребует дополнительной энергии). Понимание напряжения принципиально важно для полного понимания электричества.

Физическое определение напряжения

Напряжение — это величина, которая всегда измеряется между двумя точками в цепи, и никакой ток не может протекать без присутствия напряжения.

Напряжение (или разность потенциалов ) между двумя точками в цепи — это работа, совершаемая на единицу заряда при перемещении единицы заряда между этими двумя точками.

Единицы напряжения

Из определения мы видим, что единицей измерения напряжения является джоуль на кулон (). Производной единицей напряжения является вольт, обозначаемый как , что соответствует джоулю на кулон. это

,

где мы видим, что заряд связывает напряжение с энергией. Напряжение измеряется вольтметром , но современной альтернативой является цифровой мультиметр, который можно использовать для измерения напряжения, силы тока и других электрических величин. На рисунке ниже показан типичный аналоговый вольтметр.

Типичный аналоговый вольтметр используется для измерения напряжения между двумя точками в электрической цепи, Pxздесь.

Формула для напряжения

Определение напряжения – это работа, совершаемая на единицу заряда, и, следовательно, мы можем использовать это, чтобы написать базовую формулу для напряжения, как показано ниже:

,

или

,

где напряжение () измеряется в вольтах (), выполненная работа () измеряется в джоулях () и заряд () измеряется в кулонах (). Глядя на приведенную выше формулу, мы вспоминаем, что выполненная работа и переданная энергия — это одно и то же. Количество энергии, переданной компоненту схемы на единицу протекающего через него заряда, дает нам напряжение, измеренное на этом компоненте схемы. Посмотрите на следующий пример.

Лампа имеет номинальное напряжение. Какое количество энергии передается лампе при прохождении через нее заряда?

Чтобы решить эту задачу, мы можем использовать уравнение

,

где напряжение лампы и заряд, проходящий через лампу. Затем мы можем изменить уравнение для решения неизвестной энергии следующим образом:

, что означает, что лампа получает энергию за каждый прошедший через нее заряд.

Мы заявили, что напряжение измеряется в двух разных точках электрической цепи. Это связано с тем, что энергия будет передаваться устройствам в этой цепи, поэтому проделанная работа должна измеряться разностью энергий между двумя точками по обе стороны от этих устройств. Это означает, что вольтметр должен быть включен в цепь параллельно. На рисунке ниже показана простая схема с вольтметром (обозначенным буквой V), подключенным параллельно к лампе, для измерения напряжения на лампе. Это напряжение представляет собой просто энергию, передаваемую лампе на единицу протекающего через нее заряда.

Вольтметр подключен параллельно к лампе для измерения напряжения на ней, Wikimedia Commons CC BY-SA 4.0.

Электродвижущая сила (ЭДС)

Закон сохранения энергии гласит, что энергия не может быть ни создана, ни уничтожена, а просто преобразована из одной формы в другую. Если обеспечиваемое напряжение в цепи представляет собой энергию, доступную для передачи на единицу заряда, откуда берется эта энергия? В случае многих электрических цепей ответом на этот вопрос является батарея. Батарея преобразует химическую потенциальную энергию в электрическую энергию, позволяя заряду перемещаться по цепи. Эта энергия на единицу заряда называется электродвижущей силой (ЭДС) цепи. Помните, что энергия на единицу заряда — это просто напряжение, поэтому ЭДС в цепи — это напряжение на батарее, когда ток отсутствует.

Вот почему мы обычно думаем о напряжении бытовых электроприборов как о зависимости от энергопотребления этого электроприбора. В контексте электричества правильнее думать о напряжении как об энергии на единицу заряда устройства.

Типы напряжения

До сих пор мы рассматривали простые цепи, в которых ток всегда течет в одном направлении. Это называется постоянным током (DC). Есть другой тип тока, более распространенный; переменный ток (АС).

Напряжение постоянного тока

Цепь, в которой ток течет в одном направлении, является цепью постоянного тока. Типичная батарея имеет положительную и отрицательную клеммы и может передавать заряд только в одном направлении в цепи. Таким образом, батареи могут обеспечивать электродвижущую силу (ЭДС) для цепей постоянного тока. Если цепь постоянного тока имеет постоянное сопротивление, ток останется постоянным. Следовательно, энергия, передаваемая резистору, останется постоянной, как и работа, совершаемая на единицу заряда. Для цепи с постоянным сопротивлением Напряжение постоянного тока всегда постоянное ; оно не меняется со временем.

Напряжение переменного тока

Электричество, которое подается в дома по всему миру, представляет собой переменный ток (AC). Переменный ток можно передавать на большие расстояния, что делает его идеальным для этой цели. В цепи переменного тока ток течет по проводам в двух направлениях; они колеблются взад и вперед. Электрическая энергия по-прежнему течет только в одном направлении, поэтому электроприборы по-прежнему могут питаться. Поскольку направление тока постоянно меняется, количество энергии, передаваемой каждому компоненту цепи, также должно постоянно изменяться, а это означает, что напряжение между любыми двумя точками цепи постоянно меняется. Напряжение переменного тока изменяется синусоидально во времени . На рисунке ниже показана схема зависимости напряжения переменного и постоянного тока от времени.

Эскиз, показывающий форму графика зависимости напряжения постоянного тока от времени, а также графика зависимости напряжения переменного тока от времени, StudySmarter Originals.

Другие уравнения для напряжения в физике

Мы изучили определение напряжения и увидели его связь с передачей энергии в электрической цепи. Мы также можем связать напряжение с другими электрическими величинами; в нашем случае сопротивление и ток. Закон Ома описывает эту связь следующим образом; напряжение на проводнике () при постоянной температуре прямо пропорционально току () в проводнике. это

где константа пропорциональности в данном случае — сопротивление проводника. Существует множество других выражений для напряжения в электрических цепях, которые зависят от конкретной цепи. Однако основное понимание напряжения и вольта не меняется между сценариями.

Напряжение — основные выводы

  • Напряжение между двумя точками в цепи — это работа, совершаемая на единицу заряда при перемещении единицы заряда между этими двумя точками.
  • Напряжение — это величина, которая всегда измеряется между двумя точками цепи.
  • Производной единицей напряжения является вольт (), который эквивалентен джоулю на кулон.
  • Вольтметр — это прибор для измерения напряжения.
  • Вольтметр должен быть включен в цепь параллельно, так как он измеряет разницу энергии на единицу заряда между двумя разными точками цепи.
  • Батарея преобразует химическую потенциальную энергию в электрическую.
  • Электродвижущая сила (ЭДС) цепи — это напряжение на батарее, когда ток в цепи отсутствует.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *