Виды помп: Как выбрать помпу для воды: виды помп и их особенности использования

Содержание

Помпы разные нужны, помпы разные важны… / Корпуса, БП и охлаждение

Помпа — сердце системы водяного охлаждения (СВО). От нее зависит не все, но многое, ведь она обеспечивает циркуляцию хладагента в системе. Как выбрать подходящую помпу для своего проекта СВО? Сегодня мы попытаемся дать ответ на, казалось бы, такой простой вопрос.

Вопрос выбора помпы для СВО достаточно сложен. Возможно читатели, имеющие у себя СВО, знают ответ на вопрос «какая нужна помпа?». Но реалии рынка как всегда вносят свои коррективы. Не ошибиться можно только с дорогими, проверенными временем и опытом брендами. Предложение помп огромно и достаточно проблематично найти одну и ту же модель в разных городах нашей необъятной Родины. К тому же потребности людей разные и их могут удовлетворять разные помпы.

Сегодня мы поговорим о том, какие бывают помпы, как можно улучшить их характеристики, как бороться с их недостатками, как сделать правильный выбор при выборе помпы. В следующем материале мы проведем небольшой блиц тест помп Heto для наглядности некоторых предлагаемых выводов.


Помпа — внешняя или погружная?

Помпы бывают двух видов, погружные и внешние. Принцип работы у них одинаков, просто погружные помпы работают только «опущенными» в воду. Для некоторых даже требуется минимальная глубина в 10 см от всасывающего штуцера (для целей СВО это не критично). Внешние же могут работать и как погружные, и как наружные. Бесспорных достоинств тех и других нет.

Погружные помпы самые распространенные. Причин этому много. Во-первых, в России не распространены магазины, где бы продавались принадлежности для создания собственной СВО. Обычно в таких магазинах предлагают внешние помпы, так как именно их стараются использовать зарубежные энтузиасты СВО. Во-вторых, помпу можно купить в магазинах торгующих принадлежностями для аквариумов, или похожих местах. А для аквариумов обычно применяются погружные помпы, нередко со специальными фильтрами. В-третьих, цена погружных помп банально ниже, а значит, их охотнее будут приобретать. Такая уж специфика рынка.


Внешние же помпы представляют собой более затратный продукт. Если утрировать, то это погружные помпы, которые очень хорошо герметизированы. Обычно цена внешней помпы в два раза выше, чем у погружного аналога. Их сложнее найти, но с появлением моды на офисные «фонтанчики» и дачные пруды предложение на рынке за последние три года заметно расширилось.

Каковы же достоинства и недостатки помп в различном их исполнении?

Погружные помпы:


Достоинства

Недостатки

 

1.      Стоимость заметно ниже

2.      Большая распространенность

3.      Относительно компактные размеры

4.      Звукоизоляция слоем воды в расширительном бачке

 

1.    Необходимо использовать относительно большой расширительный бачок

2.   Вся потребляемая мощность рассеивается в жидкость

3.   Большие требования к характеристикам расширительного бачка

Внешние помпы в большинстве своем дорогой товар. Это накладывает свой отпечаток, который в данном случае можно считать положительным. Применяются более качественные материалы, а само изделие из этих материалов лучше обработано. Например, во внешних помпах чаще применяют керамическую или стальную ось вместо пластмассовой, что не только благоприятно отражается на сроке службы, но и на шумовых характеристиках продукта. Другим примером может быть лучшая балансировка рабочей крыльчатки, что благоприятствует снижению вибрации во время работы.

Внешние помпы:


Достоинства

Недостатки

1.       Универсальность, возможность работы как погруженными в жидкость, так и во внешнем исполнении

2.      Относительно высокое качество и надежность

3.      Достоверные характеристики, так как по многим из распространенных моделям уже накоплена внушительная статистика, включая лабораторные испытания.

4.      Невысокий уровень шума

5.      Возможность создания более компактной СВО

6.      Не вся потребляемая мощность рассеивается в жидкость

7.      Некоторые модели работают от 12в постоянного тока, специально для подключения к БП компьютера

 

1.      Относительно высокая цена

2.      Меньшая распространенность на рынке

3.      Менее компактные размеры

4.      Обычно помпы с питанием от 12в постоянного тока имеют меньшую производительность, чем 220в аналоги. Дополнительная нагрузка на 12в линию блока питания, что особенно важно для блоков питания не соответствующих стандарту ATX v 2. 0 или выше.

 

Внимательный читатель, наверное, уже заметил, что достоинства и недостатки внешних и погружных помп перетекают друг в друга. Местами даже имеются противоречия, например «размер помпы — компактность системы». Все правильно. Это объясняется тем, что для каждого пользователя, даже для каждого конкретного случая реализации СВО, будут свои определяющие факторы. Каждый пользователь сам расставляет приоритеты СВО и в соответствии с ними делает окончательный выбор.

Но давайте вернемся к «табличному противоречию» и проиллюстрируем его на примере. Погружные помпы компактны, но требуют объемных расширительных бачков, в которых они и размещаются. Внешние помпы крупнее сами по себе, но могут обходиться без расширительного бачка вообще. На практике в последнем случае все же разумно использовать расширительный бачок, хотя бы очень небольшой, для удобства заправки системы и «отлавливания» воздушных пузырьков. В случае с погружной помпой система будет компактней при наличии большого свободного пространства в корпусе, например 2-3 отсека для 5 дюймовых устройств. Но случается так, что бывает легче найти 2 небольших «местечка» для внешней помпы и маленького расширительного бачка, особенно если в системном блоке используется множество устройств или сам он небольших размеров.

Итак, выбор типа помпы не зависит от желаемой производительности СВО и диктуется другими параметрами системы, включая вкусы пользователя.

Характеристики помпы

Существует несколько характеристик помп, которыми необходимо руководствоваться при создании СВО. Надеюсь вам не стоит напоминать, что иногда заявленные характеристики немного «не совпадают» с реальными.

Производительность

Производительность измеряется в литрах в час (л/ч). Она показывает, сколько воды может прокачать через себя помпа за 1 час при отсутствии таких факторов как гидросопротивление контура и перепад высот. В СВО применяются помпы с производительностью от 70 л/ч (например, система 3R Poseidon) до 2000 л/ч, иногда встречаются пользователи СВО с помпами в 4500 л/ч, но их абсолютное меньшинство.

Стоит заметить, что реальная производительность помпы в контуре много меньше заявленных цифр. Это происходит не только благодаря гидросопротивлению элементов контура, но и из-за банального несоответствия реальных и заявленных характеристик. При прочих равных, больший расход всегда ведет к лучшим результатам. Однако, это не всегда справедливо для конкретной реализации проекта СВО. Для каждой системы лучше подбирать производительность помпы индивидуально, так как она напрямую связана с другими характеристиками.


Пример взаимозависимости расхода и высоты подъема воды, такие графики обычно присутствуют на упаковке.

Высота подъема воды

Высота подъема столба воды (Hmax или max head) измеряется в метрах. Встречаются помпы с высотой столба от 30 см. То есть, именно на такую высоту помпа может поднять воду в вертикальном шланге. Это наиболее важный параметр при выборе помпы, так как он говорит о развиваемом ею давлении.

Именно это давление служит средством преодоления гидросопротивления контура. Чем выше параметр столба воды, тем ближе будет реальный расход в системе к заявленному расходу в характеристиках помпы. Повторюсь, что это ведет к лучшим результатам. Здесь следует сделать особое пояснение. Рассмотрим его на примере: У нас имеется 5 помп со следующими характеристиками. Уделите внимание именно высота подъема столба.


Помпа Hydor Seltz L30. Заявлен расход 1000 л/ч, высота подъема воды 2м, сечение штуцера 13мм, 27вт

Atman AT-305 Заявлен расход 1200 л/ч, высота подъема воды 1,3м, сечение штуцера 10мм, 25вт

Hydor PICO 500 II Заявлен расход 500 л/ч, высота подъема воды 1,1м, сечение штуцера 10мм, 7вт

Sicce Nova. Заявлен расход 800 л/ч, высота подъема воды 1,6м, сечение штуцера 10мм, 10вт

Sicce Idra. Заявлен расход 1300 л/ч, высота подъема воды 2,2м, сечение штуцера 20мм, 25вт

Необходимо уделять внимание не только параметру «высота подъема», но и сечению штуцера («калибр»), при котором этот подъем достигается. Давайте приведем упомянутые помпы к «общему знаменателю». Для этого посчитаем реальный объем воды в столбе. Получилось следующее:


Название помпы

Высота подъема, м

Калибр, мм

Объем воды в столбе, мм3

Hydor Seltz L30

2

13

Около 265500

Atman AT-305

1,3

10

Около 102100

Hydor PICO 500 II

1,1

10

Около 86400

Sicce Nova

1,6

10

Около 125700

Sicce Idra

2,2

20

Около 691000

Как видите, хоть цифры характеристик и похожи, но реальное развиваемое помпами давление различается просто колоссально. Тем не менее, это не значит, что нужно бежать и приобретать помпу с сечением штуцера в 1 дюйм. Это совсем не необходимость. Просто если вам известны значения гидросопротивления элементов контура, то можно прикинуть, даст ли вам какую либо пользу использование более мощной помпы с делителями потока или вас устроит последовательное подключение ватерблоков с помпой, чье сечение наиболее близко к сечению ВБ.

При прочих равных характеристиках помп следует отдавать предпочтение той, у которой Hmax выше, нежели той, у которой больше расход. В замкнутой системе перепады высот отсутствуют (если только со временем воздух не скопится в самой верхней точке), вся мощь помпы тратится на преодоление гидросопротивления контура.

Мощность

Мощность измеряется в ваттах. Показатель показывает, сколько электроэнергии потребляет помпа в процессе работы. Значение варьируется от 4вт до 35вт и более. При прочих равных условиях желательно выбирать помпу с меньшей мощностью, так как это свидетельствует о том, что КПД помпы выше. Большее энергопотребление означает большую рассеиваемую мощность, а лишний источник теплового излучения в контуре нам не нужен.

Напряжение

Обычно либо 220 вольт переменного тока, либо 12 вольт постоянного. Рассматриваемые нами аквариумные и фонтанные помпы питаются 220 вольтами. В брендовых СВО чаще используют 12-вольтовые помпы. Хотя они и являются менее производительными, их удобнее подключать непосредственно к БП компьютера. 220-вольтовые помпы подключают либо непосредственно к розетке 220 вольт либо через реле, чтобы обеспечить синхронное с компьютером включение.

Конструктивные особенности: Диаметр, камера, геометрия крыльчатки, вал, вес, размер

Все эти параметры тоже важны. Мы уже затронули важность параметра «калибр», когда говорили о развиваемом помпой давлении. Тут мы позволим себе небольшое, но важное дополнение: Чтобы увеличить расход в системе в 2 раза, необходимо либо в 2 раза увеличить сечение контура, либо в 4 раза давление. В таких случаях резонно использовать помпы большого калибра вместе с делителями потока.

Что касается рабочей камеры, то лучше чтобы она находилась внутри помпы. Бывает так, что камера просто накрывает крыльчатку. Это ведет к некоторым потерям давления и расхода. Подробнее об этом аспекте мы поговорим в следующем материале, посвященному тестированию помп Heto.

Пример помпы со съемной камерой. Не лучший выбор, но зато имеется возможность повернуть штуцер в любую удобную сторону.

С параметром геометрии крыльчатки мало что ясно, но он тоже имеет определенное влияние на параметры помпы. Возможно потребуются дополнительные исследования, но пока мною был замечен следующий факт: помпы с большим диаметром крыльчатки обеспечивали большее давление, чем похожие помпы с меньшим диаметром крыльчатки, но большей площадью лопастей. Затруднение в проведении эксперимента обусловливается тем, что невозможно найти помпы с одинаковыми моторами, но с разными крыльчатками.

Вал — тут все просто, лучше избегать помпы с пластиковым валом, хотя это не определяющий параметр. Размер и вес — про размер можно вспомнить поговорку «на вкус и цвет…», а про вес следует сказать, что чем он больше, тем меньше вибрация помпы. Это очень благоприятно сказывается, когда используется не очень дорогой корпус, где толщина металла небольшая и корпус не способен гасить вибрацию своей массивностью.

Способы доработки помп

Как и многие вещи, используемые «не совсем по назначению», помпу можно доработать под задачи СВО. Эти доработки в основном сводятся к фиксации крыльчатки, замене оси, расширению входного и выходного отверстия, уменьшению объемов рабочей камеры и переделки из погружной во внешнюю.


Фиксация крыльчатки очень полезна, когда помпа издает стрекот при работе. На иллюстрации фиксация была произведена при помощи термопистолета

Иногда помпы имеют зафиксированную крыльчатку изначально. Но чаще крыльчатка свободно закреплена и может сделать почти целый или половину оборота, до того как встретит упор. Это сделано для того, чтобы уменьшить стартовое усилие помпы. Также подвижность крыльчатки спасает при попадании в камеру песка или камешков (что, понятно, в СВО невозможно). Фиксировать крыльчатку можно как клеем, так и уплотнителем. Необходимо использовать не растворимый в воде клей. А то я долго не мог понять, почему со временем приклеенная суперклеем крыльчатка начинает шуметь через пару дней. Ответ нашелся, когда случайно были склеены… пальцы. Автора это заставило заглянуть в инструкцию к клею, где было написано «при попадании клея на кожу, промыть участок водой».


Также фиксацию крыльчатки осуществляют с помощью ленты ФУМ или специально изготовляемых колец. Рассверливают отверстие в крыльчатке, затем вставляют уплотнительное кольцо и крепко одевают на вал. Иногда встречается мнение, что не следует фиксировать крыльчатку, так как в таком случае помпа не сможет стартовать. Что ж, вполне возможно… может не стоит использовать настолько слабые помпы? На этот вопрос читатель должен ответить сам. Все помпы по своему хороши.


Заменой оси можно продлить ресурс помпы. Обычно устанавливают керамическую ось. К сожалению, подобные товары не распространены на российском рынке


Замена оси в помпах Eheim

Расширение входного и выходного отверстия полезно не для всех помп. Эта нехитрая процедура помогает немного снизить гидросопротивление, тем самым увеличить расход. Процедура реализуется напильником или любым другим удобным инструментом. Уменьшение объемов камеры тоже полезно не всегда. Целью такой модификации является уменьшение потерь внутри камеры помпы. Не советую этим заниматься, так как эффект от этого минимален.

Переделка погружной помпы во внешнюю. Очень полезная процедура. Практически любую помпу, где забор воды осуществляется по штуцеру, можно переделать во внешнюю. Нельзя переделать помпы, втягивающие воду через прорези в корпусе. Заветная процедура переделки сводится к герметизации швов и рабочей камеры. Подробное описание процесса будет приведено в материале по тестированию помп Heto.

Способы снижения шума

Шум от помпы может быть трех видов: шум из-за крыльчатки, вибрационный шум и кавитация (холодное кипение). Если с последним эффектом можно легко бороться, снижая обороты крыльчатки, подключив помпу через пониженное напряжение (12в помпы иногда продаются с подобными регуляторами), то с первыми двумя феноменами относительно сложно бороться, если помпа очень мощная.

Шум от крыльчатки резко снижается при ее фиксации. Однако это не спасает при ее плохой балансировке (низком качестве помпы). Решением может быть использование помпы в качестве погружной в просторном бачке. Вода имеет звукопоглощающие свойства. Однако следите, чтобы в бачке не было слишком много воздуха. Иначе шум в закрытом пространстве приведет к эффекту сабвуфера.

С вибрацией же бороться и легко и сложно одновременно. Можно утяжелить помпу, прикрепив ее к тяжелому основанию. Можно поставить ее на губку, поролон или другой материал, который хорошо гасит вибрацию. Также иногда решением может быть подвешивание помпы (как в бачке, так и вне его) за провод, шланги или резинки. В таком случае вибрация будет передаваться по шлангу, но если он достаточно длинный, то вы ее не заметите. При вибрации погружной помпы можно обложить весь бачок изнутри поролоном, так как при подвешивании передаваемая по шлангам вибрация перекинется на бачок, который в свою очередь тоже начнет шуметь.

Однажды на просторах Интернета, очень уважаемым мною человеком был дан такой небольшой совет: «перед тем как установить помпу в систему, можно разобрать и смазать ось крыльчатки, какой-нибудь смазкой (литол 24, вазелин, цеотим и т.д.) Потом поместить в теплую воду 35 градусов и дать поработать 3-4 часа для притирки трущихся поверхностей. Затем добавить несколько капель моющего средства, дать поработать 15 минут (для смывки смазки) и 15 минут дать поработать в проточной воде (для удаления мыла). Больше помпу разбирать не надо. При таком вводе в эксплуатацию, помпа будет работать тише и дольше».

Решением шумовой проблемы со 100% гарантией без приложения усилий может быть только приобретение недешевых помп мировых брендов водяного охлаждения.

Использование нескольких помп в СВО

Использование нескольких помп в общем контуре СВО тоже встречается. При этом увеличивается создаваемое помпами давление, но не расход. Давление просто складывается. Некоторые считают подобный вариант более надежным, но так как помпа по конструкции даже надежнее вентиляторов (меньше механических частей), то городить «зоопарк» из помп ради безопасности не стоит. Гораздо лучше сделать 2 независимых контура, например на процессор и видеочип+чипсет материнской платы.

Насос омывателя стекла, бензонасос, насос от стиральной машины и т.п.

Не стоит применять подобные вещи в СВО. В большинстве своем они имеют небольшой ресурс, так как они не предназначены для непрерывной работы. Шумовые характеристики также оставляют желать лучшего. Обычно идеи применения подобных вещей возникают от желания сэкономить. Не стоит экономить «на спичках».

Применение циркуляционных насосов в СВО

Циркуляционные насосы систем отопления применяются в СВО относительно часто. По конструкции они подобны помпам (что, собственно, в переводе означает «насос»), только могут развивать несравнимо большее давление — именно это и важно для целей СВО. Имеют относительно большие размеры, с литровую банку. Стоимость на младшие модели сравнима с дорогими топовыми помпами от известных брендов, как Eheim например. Циркуляционные насосы выпускают множество компаний. К сожалению, у многих моделей корпус выполнен из чугуна, который ржавеет при использовании воды без ингибиторов коррозии. Редко можно найти исполнение насоса из латуни или бронзы. Работают по заверениям владельцев абсолютно бесшумно. Хотя, повторюсь, обычных аквариумных и фонтанных помп хватает для целей СВО. Итог: если размер и цена не определяющие факторы, то «must have».

На старт, внимание, марш!

Многие пользователи СВО сталкиваются с проблемой необходимости включения помпы одновременно с компьютером. Другие, как автор этих строк, не выключают помпу вообще. Оставшиеся являются пользователями помп с 12в питанием постоянного тока, которые коммутируются к БП компьютера, таким образом, стартуют одновременно с его включением.

Но вернемся к первой группе пользователей. Да, довольно тяжело постоянно помнить о том, что необходимо включать помпу. Можно пойти по простому пути и включать помпу и ПК через выключатель сетевого фильтра, синхронность обеспечена. Дополнительные проблемы никому не нравятся, поэтому применяют также реле на 12в. При включении компьютера срабатывает реле и помпа запускается. Реле впаивается в шнур питания помпы, для этого его нужно разрезать, и подключается к любому источнику 12в, будь то molex коннектор БП или разъем для вентилятора на материнской плате. Такую помпу в аквариумах и фонтанах уже использовать нельзя, так как во всех инструкциях есть предупреждение «с поврежденным проводом эксплуатация изделия запрещена!». Ну, я думаю, читатель сам понимает почему. На просторах сети существует множество схем по воплощению подобного «мода» помпы.

Помпы хотя бы по устройству надежнее вентиляторов, поскольку в них меньше механики. У них невозможны проблемы с высыханием смазки, так как в качестве смазки выступает вода. Практика аквариумистов говорит о том, что помпы как раз рассчитаны на бесперебойную работу в течение многих лет. Разрешите процитировать еще одного многоуважаемого человека — «У меня было две помпы — одна из них уже перешагнула 6-летний рубеж бесперебойной работы. То есть они конечно периодически обесточиваются, но только на время чистки фильтров. Вторая эксплуатируется также, но только три года. Люди пользуют помпы уже лет по 12. Более старых помп я не встречал, но лишь потому, что это первые помпы, появившиеся в России в то время».

Конечно, помпы, как и любая механика, могут сломаться. Но чаще это случается именно в момент старта. Иногда помпа ломается и в процессе работы, у нее может заклинить крыльчатка. Такое происходит при низком качестве помпы. Разбивается отверстие на крыльчатке и помпа начинает тарахтеть как трактор. В этот момент следует принять меры: либо зафиксировать крыльчатку дополнительным кольцом, вставив его в разбитое отверстие, либо сменить помпу. Уж при таком грохоте момент остановки помпы никак пропустить не удастся.

Желание обеспечить помпе синхронный старт с компьютером больше проистекают из области вкуса, чем необходимости. В одном случае можно рекомендовать обеспечить синхронный старт — когда помпа достаточно шумная.

Пара мифов водяного охлаждения

МИФ: Большая скорость жидкости не нужна. Она быстро заберет тепло в ватерблоке, это хорошо. Но она также не успеет толком охлаждаться в радиаторе, так как слишком быстро будет через него проходить.

Реальность: Физический закон обратим. Если вода быстро забирает тепло, то она отдает его с той же скоростью. Притом вода находится одинаковое время в ватерблоках и радиаторе независимо от расхода. Давайте рассмотрим это на примере.

У нас имеется контур, где 5% жидкости находится в ватерблоке, 40% в радиаторе, а остальная жидкость — в шлангах, бачке и т.д. Помпа выключена, расход нулевой. Теперь включаем помпу и пусть она прокачивает через контур 300 л/ч. Все еще 5% воды находится в ватерблоке и 40% в радиаторе, и это соотношение не изменится никогда. Теперь пусть помпа начнет прокачивать через контур 600 л/ч вместо 300л/ч. Скорость жидкости увеличилось в 2 раза, она в 2 раза быстрее проходит через ватерблок и через радиатор, но скорость теплопередачи как физическая величина неизменна. Во втором случае вода хоть и течет в 2 раза быстрее, но и «кругов» по контуру сделает в 2 раза больше. Тем самым достигается равновесие. Расход в контуре на количество переносимого и рассеиваемого тепла не влияет. СВО рассеет столько тепла, сколько ей обеспечат процессор, видеокарта и т.д. Расход (но, не только он один) определит только конечную температуру «точек» охлаждения.

МИФ: Потребляемая мощность помпы очень сильно влияет на температуры элементов в контуре. Это еще один источник нагрева в системе. Лучше поставить помпу в 6 ватт, чем 15 ватт.

Реальность: В действительности сложно с точностью сказать, сколько же тепла помпа передает воде. Но в качестве ориентира можно использовать следующие цифры: внешние помпы отдают воде 70-90% тепла, в то время как погружные все 100%.

Радиатор на два вентилятора по 120мм обычно имеет 0.03 C/W, с установленными вентиляторами. Это значит, что температура воды поднимется на 1 градус при увеличении тепловыделения на 33 ватта. Таким образом, если ваша помпа выделяет 33 ватта, то вода нагреется на 1 градус. Таким образом, разница между помпой в 33 ватта и 16 ватт является 0,5 градуса. Мне не понятны сообщения некоторых пользователей СВО, в которых они говорят, что после замены помпы с 15 вт на 6 вт температура воды снизилась на 2 градуса. Чаще встречаются сообщения типа «использовал помпу на 1500л/ч, поменял на 500л/ч — ничего не изменилось». В последнем случае узким местом в системе являлась не помпа, и с ее заменой на менее производительную пользователь получил более сбалансированную систему.

Следует особенно заметить, что использование мощной помпы всегда окупается повышением давления, что непременно сказывается на производительности ватерблока и радиаторов типа Black Ice или от отопителя салона а/м «Газель». Для подобных радиаторов рекомендуется использовать помпу, которая может обеспечить 300л/ч в контуре. Расход для них играет заметно большую роль, нежели производительность обдувающих вентиляторов. В противовес можно привести пример конструкции радиатора, где обдув важнее, чем расход, который почти не приносит выгоды — это радиаторы типа Acuma CoolRiver, ThermalTake серия Aquarius, BigWater.

Хорошему ватерблоку необходима мощная помпа для раскрытия его потенциала, но для них обоих нужен хороший радиатор. Начните свой выбор с радиатора, тогда станет понятно, имеет ли смысл устанавливать в систему мощную помпу и ватерблок с большим гидросопротивлением.

Вот мы и закончили рассмотрение такой необъятной темы как помпа в СВО. К сожалению, нам не удалось дать ответ на вопрос «какую вам выбрать помпу». Но надеемся, что вам пригодится приведенная информация о том, как нужно выбирать помпу и как бороться с ее недостатками, если она вас чем-то не устраивает. Желаем вам успехов в деле создания собственной СВО.

Типы и конструкция мотопомп и погружных насосов

Конструкция помпы – это, собственно говоря, центробежный насос, состоящий из металлического корпуса, внутри которого вращается колесо с лопастями. Обороты оно набирает при запуске двигателя внутреннего сгорания, который создает вращательный момент. При движении колесо с лопастями захватывает воду, поступающую через всасывающий патрубок. Вращательный момент создает силу давления, и выброс воды производится уже через другой патрубок – нагнетательный.

Виды мотопомп

Параметры мотопомпы и ее работа зависят от вида и мощности двигателя.

Бензиновые мотопомпы. Простые в обслуживании, мобильные, экономичные и производительные. Бензиновые моторы дают возможность создавать небольшого веса компактные конструкции, что делает оборудование удобнее. Мотопомпы имеют прочный корпус из антикоррозионных материалов. Двигатель и насос агрегата дополнительно защищены металлической рамой, увеличивающей надежность работы. Дополнительные фильтры помпы и мотора устанавливают, учитывая особенности агрегата. Запуск устройства производится вручную или электростартером. Также бензиновые мотопомпы издают меньше шума во время работы, чем дизельные.

Такая мотопомпа может быть просто незаменимой при перекачке воды из тех мест, где невозможно использование электричества, а длительность ее работы зависит от вместительности бензобака и мощности насоса. Простота эксплуатации и транспортировки – еще одно достоинство переносной мотопомпы.

Единственный недостаток бензиновой мотопомпы – ограниченность времени беспрерывной работы.

Дизельные мотопомпы. Более долговечные, имеют больший моторесурс и производительность, чем бензиновые. Они экономичнее из-за меньшей цены дизельного топлива и его небольшого расхода.

Недостаток дизельных мотопомп – в массивности, из-за чего приходится использовать технику для перемещения таких агрегатов. При работе сильно шумят. Чаще всего используются для перекачки больших объемов жидкости.

Электрические мотопомпы. Работают на энергии электричества, максимально экологичны. Используются в закрытых помещениях, где затруднен отвод выхлопных газов от двигателей помп других видов.

Пожарная мотопомпа. Отдельный подвид оборудования. В соответствии с названием, она используется для тушения пожаров. Ее мощный напор воды действует быстрее, и поэтому она применяется чаще, чем другие помпы, для тушения огня.

Универсальна, может использоваться в геологии и археологии, в сельском хозяйстве; в строительстве; в коммунальном хозяйстве; в лесном хозяйстве; в МЧС; на морском флоте.

Разделение мотопомп по применению

Все мотопомпы предназначены перекачивать жидкость, но их специализация зависит от типа жидкости и присутствия в ней примесей. По этому признаку они делятся на мотопомпы:

Для чистой (слегка загрязненной) воды. Насос, являющийся основой конструкции, имеет мембрану, которая пропускает частицы, не превышающие диаметром 5 мм. Такое оборудование оснащено двухтактными двигателями, может перекачивать небольшой объем воды – до 6-7 кубометров в час.

Эти помпы — небольшие по габаритам, малого веса; их достаточно легко перемещать. Могут использоваться для полива приусадебных участков. Если переоборудовать помпу, добавив более мощный двигатель или усовершенствовав конструкцию насоса, ее можно использовать для создания большого напора воды, который необходим при пожаре или размыве грунта.

Для очень загрязненной воды. Способны пропускать воду с песком и мелкими камнями. Центробежный насос имеет фильтр, который в состоянии пропускать мелкие предметы диаметром не больше 25 мм. Специальное антикоррозийное внутреннее покрытие корпуса и рабочее колесо, изготовленное из твердых сплавов, – все это дает возможность долгое время использовать данный вид оборудования с достаточной производительностью при работе в полевых условиях. Применимы для перекачивания воды из озер, болот, затопленных участков.

Для агрессивных жидкостей. Насосы таких помп изготовлены из материалов, которые могут противостоять агрессивным жидкостям типа щелочей, морской и соленой воды, а также с повышенной вязкостью.

Для загородных и сельских домов давно уже стала актуальной проблема подачи воды из колодцев и скважин в дома. Эту проблему можно решить с помощью самовсасывающего насоса, который, находясь рядом с водой или в воде, поднимает жидкость до нужной высоты.

Конструкция насосов

Все насосы имеют один общий элемент – это корпус. У центробежного внутри корпуса расположены следующие конструкционные детали: рабочее колесо с лопастями, всасывающая труба; напорная труба и обратный клапан.

Вихревой насос имеет подобную конструкцию, только принцип его действия немного отличается.

Корпус вибрационного насоса оснащен электромагнитом и вибратором. Он является насосом инерционного типа, возбуждая в жидкости колебательные процессы, которые способствуют ее движению.

Шнековый насос содержит в корпусе шнек (винт).

Виды насосов

Центробежные. Массивные, но малошумные; весьма распространены. Принцип действия: при включении двигателя корпус заполняется водой сквозь всасывающий трубопровод, запуская вращение рабочего колеса. Появившаясяя центробежная сила выбрасывает воду из центра, а создавшееся давление вытесняет ее в напорный трубопровод. Давление в центре понижается, заставляя поступать жидкость через всасывающую трубу. Процесс продолжается до выключения двигателя.

Вихревой насос начинает работу иначе: вращение рабочего колеса создает вакуум, который всасывает воздух в корпус. Жидкость, находящаяся в корпусе, и воздух смешиваются, а затем при вращении отделяются из-за разной плотности. Воздух уходит в подающую трубу, а жидкость вращается в рабочей камере. После полного удаления воздуха насос наполняется водой и работает как центробежная установка.

Вибрационный. В основе работы — движение поршня. Создающееся электромагнитное поле притягивает вибратор, запуская механизм движения поршня. Вследствие этого в камерах (наборной и всасывающей) появляется разряженное давление, которое втягивает в них жидкость, заполняющую трубопровод.

Шнековый. Получил свое название от шнека (винта) внутри корпуска. Вращаясь, он прокачивает воду. Именно от него зависит скорость работы насоса.

Разделение насосов по применению

Скважинные (глубинные). Поднимают воду на высоту. Для безопасной работы перекачиваемая жидкость должна быть без примесей в виде мелких инородных тел, способных повредить внутреннюю часть насоса.

Колодезные насосы, с меньшей силой напора и производительностью. Предназначены для перекачивания жидкости, содержащей мелкие частицы, например, песка или ила.

Дренажные. Работают с загрязненной водой, откачивают жидкость из водоемов, подвалов. Способны пропускать частицы диаметром до 70 мм.

Фекальные. Применяются для выкачки отходов из выгребных ям, уличных туалетов и др. Оснащаются специальным измельчителем для переработки нетвердых отходов.

Современные мотопомпы и насосы дают возможность быстро, надежно и с большим успехом сделать работу, которая требуется в каждом конкретном случае, будь то пожар, наводнение или просто подача воды.

Различные типы насосов — Насос HAOSH

Насос представляет собой механическое устройство, используемое для перекачки различных жидкостей из одного положения в другое . Это гидравлическое устройство, которое поднимает жидкость с низкого уровня на высокий и перемещает ее из области низкого давления в область высокого давления. Насосы перекачивают жидкости путем преобразования механической энергии жидкости в энергию давления (гидравлическую энергию).

Классификация насосов

Насосы делятся на две основные категории: динамические и поршневые (также известные как поршневые)

Ниже приведены некоторые из насосов в соответствии с этими двумя категориями:

Классификация насосов

Динамические насосы :

  • Центробежные насосы

    2222

  • Vertical Centrifugal Pucls

    2222

  • . Погружные насосы
  • Система пожарных гидрантов

Объемные насосы :

  • Мембранные насосы
  • Рудовые насосы
  • Перистальтические насосы
  • кулачковые насосы
  • Поршневые насосы

Динамические насосы

, которые будут отличаться от динамических насосов. центробежные насосы, вертикальные центробежные насосы, горизонтальные центробежные насосы, погружные насосы и системы пожарных гидрантов.

Центробежные насосы

Эти типы насосов наиболее широко используются в мире. Работа очень простая, хорошо описана и тщательно протестирована. Эти насосы надежны, эффективны и относительно недороги в производстве. Всякий раз, когда насос работает, давление жидкости будет увеличиваться от входа насоса к его выходу. Изменение давления будет перемещать жидкость по всей системе.

Этот насос создает повышенную силу за счет передачи механической мощности двигателя жидкости через вращающееся рабочее колесо. Поток жидкости будет входить в центр рабочего колеса и вытекать с его лопастей. Таким образом, центробежная сила увеличивает скорость жидкости, и энергия, такая как кинетическая, может быть преобразована в силу.

В зависимости от типа потока воды, который они производят, центробежные насосы можно разделить на три подтипа. Схема потока определяется формой рабочего колеса и конструкцией насоса.

Подтипа Описание Эффективность
Осевой проточный насос, также известный как направление водного насоса водного вала. Высокая производительность
Низкое давление
Радиальный насос Этот тип насоса создает поток в направлении, перпендикулярном валу (угол 90°). Низкий расход
Высокое давление
Насос со смешанным потоком В этом типе насоса сочетаются радиальный и осевой поток, образуя коническую форму потока вокруг вала. Средний расход
Среднее давление

Вертикальные центробежные насосы

Вертикальные центробежные насосы также известны как консольные насосы. В этих насосах используется уникальный вал и конструкция технического обслуживания, которая позволяет объему попадать в приямок, поскольку подшипники находятся снаружи приямка. В этой модели насоса не используется заполненный контейнер для покрытия вала, вместо него используется дроссельная втулка. Мойки деталей — обычное применение для этого типа насосов.

Горизонтальные центробежные насосы

Эти типы насосов включают как минимум два рабочих колеса, в противном случае их больше. Эти насосы используются для насосных услуг. Каждая ступень в основном представляет собой коллекторный насос.

Все фазы находятся в одном бункере и закреплены на одном валу. На отдельные горизонтальные валы можно установить не менее восьми дополнительных фаз. Каждая фаза увеличивает голову примерно на равные суммы. Многоступенчатый насос также может быть одноступенчатым насосом или насосом двойного всасывания на первом рабочем колесе. Для этого типа центробежного насоса были поставлены и отремонтированы различные насосы.

Погружные насосы

Эти насосы также известны как ливневые, канализационные и септические насосы. Области применения этих насосов включают, в первую очередь, строительные работы, бытовые, промышленные, коммерческие, сельские, муниципальные и ливневые стоки.

Эти насосы подходят для перекачивания ливневых, грунтовых, сточных, черных, бытовых и дождевых вод, промышленных отходов, химикатов, скважинной воды и пищевых продуктов. Эти сантехнические применения в основном включают в себя различные рабочие колеса, такие как насосы закрытого типа, конвекционные насосы, вихревые насосы, многоступенчатые насосы, одноканальные насосы, режущие насосы или насосы-измельчители. Для различных применений доступен широкий спектр опций, включая высокий расход, низкий расход, низкий или высокий напор.

Система пожарных гидрантов

Насосные системы пожарных гидрантов также известны как усилитель пожарных гидрантов, пожарный насос и пожарный насос. Это насосы высокого давления, предназначенные для повышения противопожарной способности здания за счет увеличения силы в пределах службы гидранта, так как сети недостаточно. Области применения этой системы в основном включают орошение и водораспределение.

Объемные насосы

Существуют различные типы объемных насосов, некоторые из которых будут рассмотрены ниже, такие как диафрагменные насосы, шестеренные насосы, перистальтические насосы, кулачковые насосы и поршневые насосы.

Мембранные насосы

Мембранные насосы также известны как насосы AOD (пневматические мембранные насосы), пневматические насосы и насосы AODD. Области применения этих насосов включают, в основном, непрерывные применения, такие как общезаводские, промышленные и горнодобывающие предприятия. Насосы AOD особенно подходят там, где нет электропитания, и в других случаях используются в нестабильных и взрывоопасных зонах. Эти насосы также используются для перекачивания химикатов, промышленных сточных вод, пищевой промышленности, подземных угольных шахт и т. д.

Эти насосы представляют собой аварийные насосы с двумя диафрагмами, приводимыми в действие сжатым воздухом. Воздушная часть перепускного клапана поочередно подает воздух на обе диафрагмы; каждая диафрагма содержит набор шаровых клапанов или обратных клапанов.

Принцип работы пневматического диафрагменного насоса
Диафрагма-насос-рабочая-демонстрационная-схема

Более подробный принцип работы пневматического диафрагменного насоса и связанные с ним знания см. в этой статье: Принцип работы насосов AODD.

Шестеренчатые насосы

Эти насосы представляют собой вращающиеся насосы прямого вытеснения, что означает, что они производят постоянное количество жидкости при каждом обороте. Эти насосы перемещают жидкость, входя в механизмы внутри и снаружи сети, не вызывая волнения при перекачивании. Эти насосы способны перекачивать большие силы и могут эффективно перекачивать высококонцентрированные жидкости.

Шестеренчатые насосы не содержат клапанов, которые вызывают потери, такие как трение и высокие скорости вращения рабочего колеса. Поэтому насосы подходят для перекачивания густых жидкостей, таких как топливо и смазка. Эти насосы не подходят для перекачки твердых веществ и агрессивных жидкостей.

Перистальтические насосы

Перистальтические насосы также известны как трубочные насосы и перистальтические дозирующие насосы. Это объемный насос, и применение этих насосов в основном связано с переработкой в ​​химической, пищевой и водоочистной промышленности. Он обеспечивает постоянный поток для измерения и смешивания, а также может перекачивать различные жидкости, такие как зубная паста и различные химикаты.

Кулачковые насосы

Кулачковые насосы также называются роторными насосами, и эти насосы обладают различными характеристиками, такими как превосходный КПД, устойчивость к коррозии, санитарное качество, надежность и т. д. Эти насосы могут работать с высококонцентрированными жидкостями и твердыми веществами, не повреждая их. Эти насосы могут работать с шестеренчатыми насосами, за исключением лопастей, которые не соприкасаются друг с другом. Кроме того, эти насосы имеют улучшенную насосную камеру по сравнению с шестеренчатыми насосами, что позволяет им перемещать шлам. Они сделаны из нержавеющей стали и хорошо отполированы.

Поршневые насосы

Поршневой насос представляет собой объемный насос, также известный как плунжерный насос, в котором уплотнение высокого давления реагирует через поршень. Эти насосы часто используются для орошения водой в сценариях, требующих высокого и надежного давления и систем подачи для транспортировки шоколада, кондитерских изделий, красок и т. д.

Какие существуют типы насосов и их применение механическое устройство, используемое для перемещения жидкостей, твердых веществ или взвесей из одного места в другое с помощью механического воздействия. Разные

Типы насосов доступны на рынке в зависимости от их принципа работы и области применения. В этой статье мы обсудим различные типы насосов и их применение. Мы предлагаем вам также прочитать эту статью о типах приводов, используемых для автоматического управления насосами.

Как выбрать насос?

Различные типы насосов  работают в различных условиях работы и применениях. При выборе насоса рекомендуется подробно обсудить ваши требования с производителем насоса. Они могут направить вас и предоставить вам различные варианты насосов.

При выборе насосов для применения следует учитывать следующие моменты.

  • Тип перекачиваемой жидкости.
  • Количество перекачиваемой жидкости.
  • Расстояние или высота переноса жидкости.
  • Производительность и эффективность насоса и т. д.

Типы насосов

Доступны следующие типы насосов в зависимости от их механической конфигурации и принципа работы.

  • Динамический насос
    • Центробежный насос с горизонтальной осью
      • Центробежный насос с радиальным потоком
      • Осевой центробежный насос
      • Центробежный насос со смешанным потоком
    • Вертикальный турбинный насос
      • Линейный вал
      • Погружной насос
      • Горизонтальный осевой насос
  • Объемный насос прямого вытеснения
    • Поршневой насос
      • Поршневой насос плунжерного типа
      • Мембранный насос
    • Роторный насос
      • Шестеренчатый насос
      • Лопастной насос

Динамический насос

Кинетический насос работает за счет увеличения кинетической энергии жидкости, что увеличивает скорость потока жидкости и давление. В результате жидкость перемещается из одного места в другое.

Вот два типа насосов Dynamic, доступных на рынке:

  1. Horizontal Axis Centrifugal Pumps
  2. Vertical Axis Pumps

1) Horizontal Axis Centrifugal Pump

Horizontal axis centrifugal pump  consists of an electrical motor, an impeller, and pump casting. Когда рабочее колесо вращается, жидкость собирается в отливке. В результате кинетическая энергия жидкости преобразуется в энергию давления. Поэтому давление жидкости увеличивается по мере ее движения от входа к выходу насоса.

Типы центробежных насосов

Центробежные насосы с горизонтальной осью можно разделить на следующие три типа.

1.1) Центробежный насос с радиальным потоком

Типы центробежных насосов с радиальным потоком  , в которых рабочее колесо толкает жидкость в направлении, перпендикулярном оси вала насоса.

Эти насосы предназначены для работы с высокими требованиями к напору и низкому напору. Другими словами, они используются для перекачивания жидкости на высоте.

Центробежный насос Рабочий центробежный насос с горизонтальным радиальным потоком

1.2) Центробежный насос с осевым потоком

Центробежные насосы с осевым потоком — это насосы, в которых рабочее колесо проталкивает жидкость по оси вала насоса. У них есть приложения для среднего напора и высоких требований к разрядке.

Осевой центробежный насос

1.3) Центробежный насос со смешанным потоком

Центробежный насос со смешанным потоком — это насосы, в которых направление потока частично осевое, а частично радиальное. Другими словами, поток диагональный. У них есть приложения для среднего напора и высоких требований к разрядке.

Преимущества центробежного насоса

Центробежный насос имеет следующие преимущества.

  • Простые в дизайне
  • Низкая стоимость
  • Сильные и эффективные
  • Низкое обслуживание
  • Компактный по размеру
  • Низкий потребление энергии

Диспаденческие насосы.

  • Низкая мощность всасывания.
  • Кавитация может вызвать коррозию рабочих колес насоса.
  • Не подходит для вязких жидкостей.

2) Вертикальный турбинный насос

Вертикальные турбинные насосы — это центробежные насосы, работающие по тому же принципу, что и горизонтальные центробежные насосы. У них есть приложения, где уровень жидкости высок.

Работают, когда жидкость поступает в насос снизу через колоколообразный всасывающий патрубок. Из всасывающего клапана жидкость поступает в рабочее колесо первой ступени, где скорость жидкости увеличивается.

Например, вертикальные турбинные насосы применяются для перекачки воды из-под земли или из колодцев. Мы можем классифицировать их по следующим типам:

  1. Линейные насосы вала
  2. Погружаемые насосы
  3. Горизонтальный монтированный осевой поток

Насос с положительным смещением

. Расходы . на входе и сужающаяся полость на выходе из насоса. Подвижный элемент насоса создает сжатие и расширение полости.

Жидкость течет внутри насоса, когда входная полость расширяется, выходная полость схлопывается и т. д.

Таким образом, поток жидкости достигается за счет создания разницы давлений за счет расширения и сжатия полости насоса. Мы можем классифицировать поршневые насосы на следующие типы.

  1. Насос поршневой
  2. Насос поршневой

1. Насос поршневой

Насос Насос поршневой состоит из плунжера или мембраны, которая перемещается вверх и вниз для создания давления и перемещения жидкости. Вот два типа поршневых насосов.

1.1) Плунжерный / поршневой поршневой насос

Поршневой насос поршневого типа

Поршневой насос поршневого типа создает всасывание за счет движения поршня или плунжера внутри цилиндра. Обратные клапаны используются в поршневых насосах для обеспечения потока жидкости только в одном направлении. Насосы поршневого типа доступны в виде одноцилиндровых или многоцилиндровых насосов.

1.2) Мембранный насос

Мембранные насосы — это типы поршневых насосов, в которых для движения жидкости используются две диафрагмы. Возвратно-поступательное действие диафрагмы достигается за счет поочередной подачи сжатого воздуха к диафрагмам.

Мембранные насосы могут перекачивать различные жидкости, такие как химикаты, сухой порошок, сточные воды, пищевые продукты и т. д.

2) Роторный насос

В роторном насосе используется вращающийся элемент для перекачки жидкости и увеличения ее давления от входа к выходу. . Мы можем классифицировать роторные насосы на следующие типы.

2.1) Шестеренчатый насос

Роторный шестеренчатый насос использует две шестерни для перемещения жидкости на каждый оборот шестерни. Шестеренчатый насос не имеет клапана. Они используются для перекачки густых жидкостей, таких как топливо и консистентная смазка. Мы можем классифицировать шестеренчатые насосы на два типа.

  • Шестеренчатый насос с внешним зацеплением
  • Насос с внутренним зацеплением

2.2) Роторный насос

A Кулачковый насос работает аналогично шестеренчатому насосу. Но в лопастных насосах используются роторы, приводимые в движение внутренней коробкой передач и синхронизирующими шестернями, для перекачки жидкости с одной стороны на другую. Их преимуществом является высокая эффективность, устойчивость к ржавчине и надежность.

Преимущества поршневых насосов

Нагнетательные насосы имеют следующие преимущества:

  • Может перекачивать высоковязкие жидкости и твердые вещества.
  • Постоянный расход.
  • Увеличение давления в системе увеличивает давление насоса.
  • Высокая эффективность по сравнению с центробежными насосами.

Недостатки объемного насоса

  • Объемный насос не может работать всухую.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *