Виды припоев для пайки: Виды припоя и флюса

Содержание

Виды припоя и флюса

В процессе радиоконструирования и ремонта электроники очень важен элемент аккуратной и качественной пайки изделий и радиодеталей. От этого фактора сильно зависит долговечность изделия и его время наработки на отказ. Решающим моментом качественной пайки является выбор подходящего припоя и флюса, способных оптимальным способом произвести соединение металлических и металлизированных частей с тем условием, чтобы на место пайки внешние факторы оказывали наименьшее влияние, как например: деформация, большие токи, токи высокой частоты, внешние окислители, температура и т.д. В то же время пайка элементов не должна быть излишне перегружена припоем, так как в данном случае могут быть образованы кольцевые трещины, элементы «холодной пайки» (когда визуально припой на месте, но контактирующая область металлов отсутствует), а так же замыкания соседних дорожек или контактов. Чрезмерное применение припоя может не только вывести аппаратуру из строя, но и усугубить процесс настройки и наладки изделия. В этой связи особое внимание необходимо уделить довольно важному аспекту в радиоэлектронике как выбор припоя и флюса, о чем пойдет ниже речь в этой статье.

Из определения известно, что процесс пайки представляет собой соединение двух металлизированных или металлических твердых поверхностей с помощью припоя, температура плавления которого значительно ниже величины разрушения (плавления) соединяемых изделий. Основной функцией припоя является хорошая диффузия с контактируемой металлической поверхностью или, выражаясь простым языком, расплавление припоя на металле (лужение). Кроме того, припой должен иметь оптимальную температурную вязкость, позволяющую ровным слоем распределиться ему по поверхности металлов. Данный фактор качественного лужения возможен только при отсутствии жировых отложений и окислов на спаиваемых поверхностях, удалением которых занимаются флюсы. Флюсы также могут служить катализаторами диффузии припоя для возможности его проникновения в верхний микронный слой металлов в предполагаемом месте пайки. За счет низкой вязкости и ее уменьшения в зависимости от повышения температуры плавление флюсов происходит при гораздо меньших температурных показателях, чем припой.

Припои и их разновидности

Припой состоит большей частью из олова с добавлением различных материалов. В структуру припоя могут входить следующие компоненты:

Олово (Sn) – представляет собой мягкий металл с температурой плавления + 231,9 С градусов. Олово растворяется в соляной и серной кислоте. Большая часть органических кислот на него не действуют. При воздействии комнатных температур олово не подвергается окислению, однако при ее снижении ниже +18 С и особенно ниже -50 С происходит разрушение кристаллической решетки металла, в результате чего олово приобретает серый оттенок.

Свинец (Pb) – очень популярный металл в изготовлении припоя за счет легкоплавкости. В чистом виде металл очень мягкий, легко обрабатываемый. У свинца окисляется только верхняя часть, контактируемая с воздухом. Металл легко растворяется в щелочи и кислотах, содержащих азот и органику.

Кадмий (Cd) – применяется для изготовления легкоплавких припоев в малых дозах совместно с оловом, висмутом или свинцом. В чистом виде – токсичен, температура его плавления + 321 С. Зачастую кадмий применяется в антикоррозийных целях.

Висмут (Bi) – один из самых легкоплавких металлов при использовании его в составе припоя с температурой плавления + 271 С. Висмут хорошо растворим в азотной кислоте, а так же в подогретом растворе серной кислоты.

Сурьма (Sb) – тугоплавкий металл с температурой плавления + 630,5 С. Не подвержен воздействию воздуха. Не окисляется. В припое дает эффект глянца. Металл токсичен.

Цинк (Zn) – хрупкий металл синевато-серого цвета с температурой плавления + 419 С. Быстро окисляется на воздухе. Используется в припоях аппаратуры, работающей во влажных условиях, за счет того, что покрывает под воздействием влаги пленкой окиси, защищающей места пайки. Цинк легко растворим в кислотах. Цинк вместе с медью применяется для твердых припоев, а так же кислотных флюсов.

Медь (Cu) – металл с самой высокой температурой плавления в изготовлении припоя + 1083 С. Не поддается воздействию воздуха, однако верхним слоем окисляется при попадании влаги. Медь применяется в тугоплавких припоях.

Припои разделяют на легкоплавкие и тугоплавкие.

Легкоплавкие припои нашли широкое применение при конструировании радиоаппаратуры и пайке радиоэлектронных компонентов, а так же при лужении дорожек радиомонтажных плат. Температура плавления легкоплавких припоев не выше + 450 С. В основу таких припоев обычно входит олово, свинец, кадмий, висмут или цинк. В радиоэлектронике большое применение получили припои с температурой плавления до + 145 С градусов. В процессе лужения обезжиренных и очищенных плат применяется сплав Розе или сплав Вуда. Температура плавления этих сплавов 70 – 95 градусов, поэтому они равномерно залуживают плату, опущенную в кипящую воду. В отечественной промышленности список легкоплавких материалов большей частью составляют припои оловянно-свинцовые или ПОС. В случае добавления в припой кадмия или висмута к окончанию добавляются буквы К или В. Цифра в окончании маркировки соответствует процентному содержанию олова в припое по отношению к свинцу (большей частью) и сурьме (в мелких количествах). Чем меньше цифра, тем припой более тугоплавкий но и более прочный. Буква Ф означает, что в состав припоя включен флюс. В последнее время из-за европейских экологических стандартов в фирменной аппаратуре применяется в основном бессвинцовый припой с относительно высокой для радиокомпонентов температурой плавления + 220 градусов. Ниже приведен список распространенных отечественных припоев:

ПОС-18 – состоит из олова (17 – 18%), сурьмы (2 – 2,5%) и свинца (79 – 81%). Применяется при низких требованиях прочности пайки, в основном для лужения металлов. Температура плавления +183 +270 градусов (начало плавления / растекаемость).

ПОС-30 – состоит из олова (29 – 30 %), сурьмы (1,5 – 2%), свинца (68 – 70%). Лужения и пайка меди, стали и их сплавов. Температура плавления +183 +250 градусов.

ПОС-50 – олово 49 – 50%, сурьма 0,8%, свинец 49 – 50%. Применяется для качественного спаивания различных металлов, в том числе и в радиоэлектронике. Плавление +183 +230 градуса.

ПОС-90 – олово 89 – 90%, сурьма 0,15%, свинец 10 – 11%. Высокопрочный припой с температурой плавки +18 + 222 градуса, применяемый в лужении деталей с последующим золочением и серебрением. Не применяется в установках с повышенной рабочей температурой.

Припои ПОС-40 и ПОС-60 в радиоэлектронике наиболее популярны. Для спаивания латуни или пластин для экранирования стоит применять ПОС-30. При поверхностном лужении дорожек на платах лучше всего использовать припои с содержанием кадмия или висмута ПОСК-50 или ПОСВ-33. Припои с флюсами и без их содержания для монтажа радиодеталей выпускаются в виде проволоки с толщиной 1 мм для пайки SMD элементов до 3 мм. для радиокомпонентов в обыкновенном корпусе. Для пайки металлов из стали или пайки крупных площадей, припои идут без флюса в трубках диаметром 5 мм. В импортной промышленности так же выпускают свинцово-оловянные шарики диаметром от 0,2 до 0,8 мм., предназначенные для пайки BGA чипов.

Тугоплавкие припои большей частью используются в промышленной пайке твердых металлов. Их температура плавления от + 450 до + 800 С. В состав таких припоев входят медь, серебро, никель или магний. Отличительной особенностью этих припоев является их прочность. Из-за высокой температуры плавления тугоплавкие припои в бытовых условиях для радиомонтажных работ не используются. Большей частью они используются для спаивания латуни, стали, меди, бронзы, чугуна и других металлов с высокой температурой плавления. Припои марки ПМЦ (припой медно-цинковый) применяется для спаивания латуни с содержанием меди (ПМЦ-42), бронзы и меди (ПМЦ-52). Данный припой выпускается в виде слитков определенных форм.

ПМЦ-42 – состоит из меди (40 – 45%), цинка (52 – 57%). Также в его состав входят сурьма, свинец, олово и железо. Его температура плавления + 830 градусов.

ПМЦ-53 – медь 49 – 53%, цинк 44 – 49%. Температура плавления +870 градусов.

В производстве припоев особое место занимают, пожалуй, самые дорогие тугоплавкие припои, основу которых составляет медь с добавлением серебра. Маркируются они как ПСР. Припои с серебром обладают высокой прочностью. Место пайки гибко и легко обрабатываемо. Температура таких припоев от +720 до +830 градусов. Высокотемпературные припои ПСР-10 и 12 используют для спаивания сплавов латуни и меди, ПСР-25 и 45 необходимы для работы с медью, бронзой и латунью. ПСР-70 – припой с максимальным содержанием серебра применяют в пайке высокочастотных элементов: волноводов, защитных контуров и т.д.

Существуют припои, применяемые для пайки алюминия на основе олова, цинка и кадмия. Главная проблема пайки алюминия заключается в его быстром окислении на воздухе, поэтому алюминий паяют в масле с использованием ультразвуковых паяльников.

Флюсы

От правильно выбранного флюса довольно сильно зависит качество пайки, ровность шва и его аккуратность. Флюс при нагреве должен образовывать тонкую растекающуюся пленку на поверхности припоя, которая усиливает сцепление припоя с металлом. Чем меньше температура плавления флюса, тем качество пайки лучше. Так же температура его плавления должна быть ниже температурных режимов плавки припоя. Промышленность сегодня изготовляет флюсы двух типов.

— Химически активные флюсы, в состав которых входит, как правило, кислотосодержащие реагенты (ортофосфорная и соляная кислоты, хлористый цинк, хлористый аммоний). Данные флюсы прекрасно справляются с жирными налетами и окислами, однако, недостаточная промывка места пайки со временем приводит к «выеданию» металла и его коррозии, где остался кислотосодержащий флюс. На практике кислотосодержащие флюсы стараются в быту использовать как можно реже, особенно в радиоэлектронике, поскольку они ведут к разрушению текстолита, к тому же, при попадании на кожу человека такие флюсы вызывают ожоги, а их пары при вдыхании человеком особо токсичны. К наиболее популярным активным флюсам относится паяльная кислота, ортофосфорная кислота, хлористый цинк, бура, нашатырь, представляющий собой хлористый аммоний.

— Химически пассивные флюсы помогают удалить жировые отложения, а так же в меньшей степени удаляют окислы. Примером может быть канифоль, стеарин, воск. Сами по себе это органические вещества, не вызывающие коррозии, которые служат не только важной сост авляющей при пайке радиокомпонентов, но и выполняют защитную функцию от окисления. Новомодной тенденцией стало использование флюсов ЛТИ, для пайки легкоплавкими припоями. С их помощью можно осуществлять пайку оцинкованных контактов, свинец, очищенное железо, нержавеющую сталь и т.д. В их состав входит спирт, канифоль, малая доза кислоты, триэтаноламин. Для подобной пайки применяют ЛТИ флюс совместно с паяльной пастой. Единственный их минус заключается том, что под действием температуры в месте спайки остаются темные пятна. Пары флюса вредны для человека. Исключение только составляет флюс ЛТИ-120, который не содержит нежелательных компонентов: солянокислотного анилина и метафенилениамина.

Наименования флюсов и их применение

Канифоль сосновая – самый простой, дешевый и доступный вид флюса с низким током утечки. Относится к классу химически пассивных флюсов. На рынке она доступна в свободной продаже из-за популярности. Применяется практически широком спектре радиомотажных работ. Умеренно растворяется в спирте с добавлением глицерина, благодаря чему стали популярны среди радиолюбителей спирто-канифольные флюсы.

Ортофосфорная и паяльная кислота – опасные химически активные флюсы. Применяется при паке сильно окисленных металлов, низколегированных сталей, никеля, а так же их сплавов. После пайки обязательным условием является очистка места спаивания 5% раствором соды, чтобы погасить кислотную активность и выедание металла. Паяльная кислота особо эффективна при температуре 270 – 330 градусов.

Паяльная кислота ПЭТ – оптимальная температура процесса пайки с ее применением 150 – 320 градусов. Применяется при спаивании углеродистых сталей, латуни, меди, никеля.

Паяльный жир – существует в двух видах: активный и нейтральный. Применяется для окисленных деталей, состоящих из черного или цветного металла. Активный паяльный жир в радиоконструировании не применяется. Нейтральный паяльный жир не содержит активных компонентов, поэтомуможет использоваться для пайки радиодеталей.

БУРА – необходима при высокотемпературной пайке высокоулеродитсых металлов: чугуна, меди, стали и т.д.

ТАГС – флюс на глицериновой основе для радиомонтажа. Из-за остаточного сопротивления нуждается в отмывке спиртом.

Флюсы ЗИЛ – хорошо подходят спаивания стали, латуни, меди легкоплавкими припоями на основе висмута.

Ф-38Н ПЭТ – сильно химически активный флюс. Применяется для пайки быстро окисляемых на воздухе металлов при температуре выше 300 градусов. Им паяют нихром, манганин, бронзу. Обязательное применение при его использовании средств индивидуальной защиты. Промывка щелочью так же обязательна

Активные флюсы ФИМ — пайка окисленного серебра, платины. Требует отмывки водном раствором с содержанием соды. В составе флюса фосфорная кислота.

ФКДТ и ФКТ ПЭТ – популярный неактивный флюс широкого применения для лужения проводов и медных контактов в РЭА.

ФТС – бесканифольный пассивный флюс без дыма. Предназначен для пайки радиодеталей.

Паяльная паста «Тиноль» — специальный химический флюс для пайки SMD радиодеталей термофеном паяльной станции.

Флюс-гель ТТ – флюс с индикатором химической активности красноватого оттенка для широкого спектра пайки. При воздействии температурой обесцвечивается, указывая на отсутствие активных компонентов. Не требует отмывки.

СТ-61 – паяльная паста пассивная. А – температура плавления +200 градусов, В – для компьютерных и мобильных радио запчастей, С – канифоль.

Импортные флюсы

IF 8001 Interflux – один из лучших флюсов для бессвинцовой пайки SMD компонентов, в том числе и работы с BGA чипами. Довольно дорогой. Не требует смывания.

IF 8300 BGA Interflux (30cc) – для пайки корпусов BGA. Представляет собой гель. Без вредного галогена.

IF 9007 Interflux BGA – паяльная безотмывочная паста для пайки свинцовым припоем. После работы оставляет едва заметный слой флюса с высоким удельным сопротивлением.

FMKANC32-005 – крем слабоактивированный безотмывочный. Показывает хорошие результаты при пайке BGA чипов и работе с инфракрасными паяльными станциями.

Классификация импортных флюсов

Нередко в маркировке импортных флюсов можно встретить маркировочные символы. Рассмотрим ниже их обозначение.

«R» — канифоль, которая идет либо в чистом виде, либо в виде раствора (спирто-канифоль). Химически пассивный флюс, поэтому перед применением требует ручной зачистки поверхности спаиваемых компонентов от окислов. После окончания работ требует отмывки спиртом или ацетоном.

«RMA» — флюс на основе канифоли с небольшим добавлением активаторов (органических кислот и их соединениями). При термической обработке кислотосодержащие активаторы испаряются. Для их применения необходима вытяжка. Оптимальная пайка достигается с использованием горячего воздуха.

«RA» — активированная канифоль. По заверению производителей из-за низкой активности кислот не оказывает коррозийных процессов на место пайки, поэтому не требует отмывки. Мы бы все таки рекомендовали после работы с ним использовать слабый раствор щелочи или спирт для отмывки, если речь не идет о BGA пайке!

«SRA» — кислотные флюсы активного действия для пайки нержавеющей стали, никеля. В электронике практически не используются из-за разрушающего действия кислот. После пайки таким флюсом изделие нуждается в тщательной отмывке спиртом или ацетоном.

Так же нередко к импортным флюсам к названию добавляют надпись «no clean», которая означает, что данный флюс не требует смывки. Такие флюсы нередко применяют при пайке радиокомпонентов, где очистка после пайки деталей затруднена физически. Например, при пайке BGA микросхем.

Типы припоев — Пайка


Типы припоев

Категория:

Пайка



Типы припоев

Оловянносвинцовые припои

Припои системы олово — свинец составляют наибольшую часть из всех применяемых мягких припоев. Они применяются для соединения большинства металлов.

При пайке этими припоями оптимальная величина зазора составляет от 0,08 до 0,13 мм, в отдельных случаях возможны отклонения. При зазорах более 0,25 мм капиллярные силы как фактор, обеспечивающий заполнение зазоров припоем, не проявляются. При применении оловянносвинцовых припоев можно использовать все способы очистки поверхности деталей и все методы пайки, а также флюсы всех типов. Выбор флюса определяется свойствами паяемых металлов. Оловянносвинцовые припои обладают хорошей коррозионной стойкостью в большинстве сред.

Припой 5А имеет относительно высокую температуру плавления и малый интервал кристаллизации. Но его характеристики смачиваемости и растекаемости хуже, чем у припоев с более высоким содержанием олова, что требует весьма тщательной подготовки поверхности деталей под пайку. Этот припой с высоким содержанием свинца обладает лучшими прочностными свойствами при 150 °С по сравнению с высокооловянистыми припоями. Однако относительно высокая температура пайки ограничивает возможность применения флюсов на органической основе, таких как канифоль, или флюсов промежуточного типа. Припой 5А может успешно применяться при пайке газовой горелкой, погружением, индукционным нагревом и в печах. Он применяется для запаивания предварительно облуженных контейнеров, для облужи-вания и для пайки деталей, работающих при умеренно высоких температурах.

Припои 10А, 15А, 20А имеют более низкие температуры ликвидуса и солидуса, но более широкий интервал кристаллизации по сравнению с припоем 5А. Характеристики смачиваемости и расте-каемости этих припоев также лучше, чем у припоя 5А. Во время затвердевания этих припоев недопустимо относительное смещение паяемых деталей во избежание появления горячих трещин. При пайке можно применять флюсы всех типов и все способы нагрева. Эти припои используются при пайке автомобильных радиаторов, для заполнения зазоров и вмятин в автомобильных кузовах, а также для покрытия и соединения металлов в случаях достаточно низкой рабочей температуры узлов.

Припои 25А и ЗОА имеют еще более низкую температуру лик видуса, чем все припои, упомянутые выше, но ту же температуру солидуса, что и припой 20А. Поэтому интервал кристаллизации у этих припоев уже. При использовании этих припоев можно применять любые обычные способы подготовки поверхности деталей, флюсы и способы их нанесения и все методы пайки. Они широко применяются при пайке газовыми горелками и механизированными способами. К этому типу припоев относятся многие припои, применяемые при пайке автомобильных кузовов.

Припои 35А, 40А, 45А и 50А имеют довольно низкую темпера-гуру плавления и поэтому с ними легко работать. Их температура солидуса такая же, как у припоев 20А—ЗОА, и они имеют сравнительно узкий интервал кристаллизации. Припои этой группы обладают наилучшим сочетанием смачиваемости, прочности, недороги и поэтому широко применяются. Эти припои универсальны п используются также для пайки натиранием и для пайки заливкой. В частности, эти припои широко применяются для пайки автомобильных радиаторов, электрических контактов, стыков кровельных листов, отопительных батарей. Сплав, содержащий 40% олова и 60% свинца, стал самым распространенным припоем общего назначения и особенно широко применяется при пайке листовых металлов. В радио- и телевизионной промышленности он применяется в виде трубчатого припоя, заполненного канифолью.

Припой 60А обычно применяют в тех случаях, где следует соблюдать жесткие температурные режимы, как, например, при пайке точных и чувствительных приборов. По химическому составу этот припой очень близок к эвтектическому и поэтому имеет очень узкий интервал кристаллизации. При применении этого припоя можно пользоваться всеми флюсами и всеми способами подготовки поверхности, нанесения флюсов и нагрева.

Припой 70А имеет специальное назначение и применяется там, где необходимо высокое содержание олова. Он предназначен для пайки цинка, а также для облуживания металлов. При использовании этого припоя применимы все технологические приемы пайки.

Влияние примесей на свойства оловянносвинцовых припоев

Загрязнения примесями оловянно-свинцовых припоев могут быть не только результатом неправильных рафинирования и выплавки, но и результатом ошибок при нормальном ведении пайки. Рафинирование металлов требует специального оборудования и тщательного металлургического контроля, и поэтому очистка припоев от вредных примесей самим заводом-потребителем обычно не рекомендуется.

Цинк и алюминий. Эти два металла даже в очень незначительных количествах сильно ухудшают свойства припоев. Уже 0,005% любого из них могут ухудшить взаимодействие припоя с основным металлом, снизить растекаемость и вызвать склонность к образованию трещин при затвердевании. Поэтому стандарт ASTM и государственные стандарты США допускают содержание алюминия или цинка в припое не выше 0,005%.

Железо. Стандарт ASTM и государственные стандарты США ограничивают содержание железа в припое до 0,02%. Наличие соединений железа с оловом делает оловянносвинцовые припои твердыми, а при расплавлении — зернистыми, хотя при содержании железа до 0,1% отрицательное влияние обычно не проявляется.

Медь. В английских и американских стандартах имеется существенное расхождение относительно содержания меди в оловянносвинцовых припоях. Английский стандарт допускает максимальное содержание меди в припое не более 0,5%, в то время как по обоим американским стандартам содержание меди не должно превышать 0,08%. При содержании меди свыше 1,0% припой при расплавлении становится зернистым.

Сурьма. Присутствие сурьмы в оловянносвинцовых припоях может играть двоякую роль. В зависимости от назначения припоя сурьма может рассматриваться либо как вредная примесь, либо как заменитель некоторого количества олова. Если количество сурьмы не превышает 6% содержания олова в припое, то все количество сурьмы находится в состоянии твердого раствора сурьма—олово.

Если количество сурьмы в припое превышает указанное, то соединения олова с сурьмой, имеющие высокую температуру плавления, выкристаллизовываются, делая припой зернистым, хрупким и густотекучим. Стандарт США QQ-S-571c допускает максимальное содержание сурьмы до 0,5% в припоях Sn70, Sn60, Sn50, Sn40 и Sn5 и 0,25% для Sn63. Однако в припоях Sn35, Sn30 и Sn20 максимально допустимое количество сурьмы составляет приблизительно 6% от содержания олова. Стандарт В32—58 класс А определяет максимальное содержание сурьмы в 0,12% для припоев, содержащих более 35% олова, а класс В допускает содержание сурьмы 0,5%. Класс С, охватывающий припои с содержанием олова от 20 до 40%, определяет, что содержание сурьмы не должно превышать 6% от количества олова.

Допустимые пределы загрязнения ванны при пайке погружением. При пайке погружением ванна с течением времени загрязняется, и поэтому приходится значительно повышать ее температуру для сохранения жидкотекучести припоя. Чрезмерная загрязненность проявляется в том, что паяные соединения получаются грубыми и шероховатыми. Увеличение температуры ванны действует лишь временно, так как одновременно ускоряется загрязнение ванны.

Стандарты ASTM и государственные стандарты США, устанавливающие допустимое содержание загрязнений для различных марок припоев, предназначаются только как руководящие материалы при покупке припоев. Использование этих стандартов для определения предельной степени загрязненности может привести к ошибочной выбраковке припоя, который в действительности еще вполне пригоден для пайки. Так, например, по стандарту США содержание железа в припоях допускается не более 0,02%, однако шероховатость паяного соединения обычно не наблюдается при содержании железа до 0,1%.

Железо и медь можно частично удалить из загрязненного припоя, используя низкую растворимость сплавов медь—олово и желез о—олово при температурах ликвидуса припоя. Для этой цели температуру ванны снижают почти до температуры ликвидуса незагрязненного припоя. Выделившиеся при этой температуре кристаллы соединений медь—олово и железо—олово можно удалить, пользуясь ковшом с отверстиями, который удерживает имеющиеся загрязнения (шлак), но пропускает расплавленный припой.

Оловянносвинцовосурьмяные припои

Сурьма может присутствовать в припое как примесь или как специальная добавка. Сплавы, содержащие до 0,5% сурьмы в виде примеси, обычно обозначаются как припои класса В, например, 20В, ЗОВ, 40В и так далее. Эти припои применимы за исключением особых случаев для тех же целей, что и соответствующие припои класса А. Сурьма может также добавляться в припой специально, как заменитель некоторого количества олова. Добавки сурьмы до 6% от содержания олова улучшают механические свойства припоев, но при этом несколько ухудшают их технологические характеристики.

Зазоры в соединениях при пайке оловянносвинцовосурьмяными припоями должны быть порядка 0,07—0,12 мм, хотя явление капиллярности практически имеет место при зазорах до 0,25 мм. При пайке этими припоями можно применять все стандартные способы подготовки поверхностей, любые стандартные флюсы и способы нагрева. Но эти припои не рекомендуется применять для пайки алюминия, цинка и металлов, покрытых цинком, например оцинкованного железа, так как сурьма дает с цинком интерметал-лидные соединения, вызывающие хрупкость припоя.

Припои класса С (от 20С до 40С) имеют примерно такие же температуры плавления, как и аналогичные припои класса А, содержащие олова на 5% больше. Пределы прочности и ползучести и твердость соединений, паянных этими припоями, выше, чем при использовании припоев, не содержащих сурьмы, но при этом расте.каемость и капиллярность припоя становятся хуже. Область применения этих припоев ограничивается пайкой металлов и покрытий, не содержащих цинка.

Оловянносурьмяный припой

Оловянносвинцовые припои непригодны для использования в соединениях длительно работающих под действием нагрузок при температурах свыше 150°. Для указанных соединений следует применять оловянносурьмяный припой, обладающий высокими технологическими и прочностными характеристиками. Он имеет более высокую электропроводность по сравнению с оло-вянносвинцовыми припоями и также рекомендуется в случаях, когда недопустимо в соединении присутствие свинца, например для пайки пищевого оборудования.

Оловянносеребряные припои

Оловянносеребряные припои применяются главным образом при изготовлении точных приборов, так как высокая стоимость не позволяет использовать эти припои для обычных целей. Этими припоями легко паять, пользуясь канифолью.

Оловянноцинковые припои

Электрохимическая коррозия паяных алюминиевых соединений снижается, если металлы, входящие в соединение, будут близки друг к другу по электрохимическому потенциалу. Поэтому для пайки алюминия рекомендуется применять оловянноцинковые припои с содержанием олова 70—80%- Эти припои имеют температуру ликвидуса между 260—310° С. В последние годы принято добавлять в припой 1—2% алюминия или же увеличивать содержание цинка до 40%. Эти припои имеют лучшую коррозионную стойкость, но их более высокая температура ликвидуса несколько затрудняет пайку.

Свинцовосеребряные припои

Однако растекаемость этих сплавов очень низкая. При хранении свинцовосеребряных припоев во влажной атмосфере они корродируют и становятся непригодными. Добавка 1% олова в эти припои улучшает их свойства смачиваемости и растекаемости, а также понижает их склонность к коррозии во влажной атмосфере. При добавлении олова в свинцовосеребряные припои, содержащие более 1,75% серебра, выделяются кристаллы интерметаллидных соединений олова с серебром. Поэтому олово добавляется в припои, содержащие не более 1,5% серебра.

При температурах до 175° С эти припои обладают хорошими механическими свойствами при испытании на разрыв, на срез и ползучесть. Их усталостные характеристики значительно выше, чем у припоев, не содержащих серебра. Свинцовосеребряные припои требуют более высоких температур пайки и специальных методов введения флюсов. Для получения хороших результатов при пайке непокрытых металлов рекомендуется применять флюсы па основе хлористого цинка. Канифольные флюсы при повышенной температуре пайки разлагаются и могут применяться лишь при очень коротком времени пайки.

Кадмиевосеребряный припой

Характеристики плавления припоя, содержащего 95% кадмия и 5% серебра. Этот припой применяется тогда, когда высокая рабочая температура соединений не допускает использования других припоев.

При пайке этим припоем стыковых соединений из меди можно получить предел прочности при комнатной температуре, равный 17,0 кГ/мм2. При 218° С можно получить предел прочности, равный 1,8 кГ/мм2.

Кадмиевосеребряный припой можно применять при пайке алюминия с алюминием или с другими металлами. Однако, как известно, при пайке алюминия с другими металлами необходимо учитывать возможность электрохимической коррозии. При неправильном обращении кадмиевосеребряный припой может быть опасен для здоровья.

Кадмиевоцинковые припои

Эти припои при применении соответствующего флюса дают соединения со средней прочностью и коррозионной стойкостью. Припой, содержащий 40% кадмия и 60% цинка, нашел широкое применение при пайке алюминиевых цоколей электроламп. При неправильном обращении эти припои также могут быть вредными для здоровья.

Цинковоалюминиевый припой

Высокая температура солидуса этого припоя ограничивает его применение работами, при которых допустима температура пайки выше 370 °С. По этой же причине с этим припоем применяется только реакционный флюс.

Легкоплавкие припои

Припои, содержащие висмут (так называемые легкоплавкие сплавы), применяются там, где требуется, чтобы температура пайки была меньше 183 °С, т. е. там, где оловянносвинцовые припои неприменимы.

Припои с низкой температурой плавления применяются в следующих случаях:
1) при пайке термообработанных поверхностей, если повышения температура может вызвать разупрочнение детали;
2) при пайке соединений с близко расположенными деталями из материалов, чувствительных к температуре;
3) при последовательной (ступенчатой) пайке, чтобы не рас-! плавить выполненное ранее соединение;
4) при пайке ограничительных устройств, в которых требуется разрушение паяного соединения при сравнительно низкой температуре.

Многие из этих припоев, особенно с большим содержанием висмута, непригодны для быстрой пайки. Для того чтобы получить удовлетворительные соединения при пайке непокрытых металлов, например меди или стали, нужно обращать особое внимание на чистоту поверхности металла и применять активные флюсы. При применении некоррозионных флюсов для пайки непокрытых деталей получение хорошего соединения маловероятно. Некоррозионные флюсы можно применять для пайки поверхностей, предварительно покрытых оловом, серебром или кадмием. Соединения, полученные с помощью этих припоев, очень чувствительны к длительным нагружениям, особенно при температурах выше комнатной (см. гл. 4 «Конструирование паяных соединений»).

Припои, содержащие индий

Свойства припоев, содержащих индий, делают их ценными для некоторых специальных работ. Возможность применения этих припоев для конкретных соединений должна определяться с изготовителем припоя. Стандартный припой, содержащий 97,5% свинца и 2,5% серебра, не смачивает удовлетворительно большинство металлов. Добавление к этому припою 1н-2% индия улучшает его свойства смачиваемости. В результате получается припой с высокой температурой плавления, пригодный для пайки деталей без предварительного покрытия. Свинцовосеребряноиндиевые припои рекомендуются для соединений, подверженных действию щелочей.

Оловянносвинцовые припои с содержанием индия свыше 25% также обладают хорошей коррозионной стойкостью в щелочных растворах. Однако их температура солидуса ниже, а интервал кристаллизации шире, чем у свинцовосеребряноиндиевого сплава. Сплав с содержанием 50% индия и 50% олова хорошо сцепляется со стеклом и может применяться для пайки стекла с металлом и стекла со стеклом. Низкое давление паров этого сплава позволяет применять его для герметизации вакуумных систем.

Индиевые припои обычно не требуют особых технологических приемов. Индиевые припои с низкой температурой плавления, содержащие висмут, требуют применения кислотных флюсов или предварительного покрытия деталей. Для индиевых припоев пригодны все способы нагрева, флюсы и технологические процессы, которые применяются при пайке обычными оловянносвинцовыми припоями.


Реклама:

Читать далее:
Cортамент припоев, выпускаемых промышленностью

Статьи по теме:

Виды припоя для пайки

При выполнении пайки металла неизменно возникает необходимость использования специальных припоев, которые позволяют надежно и качественно соединять металлические элементы. Следует сказать, что выбор тех или иных видов припоя зависит от технологии пайки и разновидности соединяемых металлов. Расскажем поподробнее о видах таких припоев и дадим рекомендации по их выбору.

Припой принято классифицировать в зависимости от вида материала, для работы с которым они предназначаются. В зависимости от рабочего металла различается температура пайки, а, следственно, и эксплуатационные характеристики такого вида припоя. При условии правильного выбора можно будет гарантировать качественное и долговечное соединение металлических элементов, а также отсутствие коррозии на месте соединения. Разнообразные виды припоев могут применяться для заделки имеющихся трещин в трубах, соединения проводов, сварки металла и так далее. Требования к таким соединительным элементам устанавливает ГОСТ, что и позволяет с легкостью выбирать те или иные припои для пайки.

Существующая классификация

На сегодняшний день имеется несколько основных характеристик, по которым принято различать припой. Их разделяют на твердые разновидности и мягкие. Так, например мягкий припой может применяться для соединения металлических элементов, температура пайки которых не превышает 300 градусов. Показатели предела прочности в данном случае составляют порядка 100 МПа. К такому мягкому припою относятся сплавы из сурьмы, цинка, олова, других легкосплавных металлов.

Твердая разновидность выполняется из металлических сплавов, с температурой плавления более 300 градусов. В данном случае обеспечивается максимально возможное значение предела прочности.

Имеется также классификация такого присадочного материала, который содержится в металле. Принято различать в соответствии с данной классификации следующий припой:

  • Алюминиевый.
  • Медные сплавы.
  • Оловянный.
  • Серебряный.

Отметим, что принято выделять отдельный класс плюсовых припоев, которым не требуется присадочный материал.

В зависимости от варианта поставки принято классифицировать на:

  • Листы, которые выполнены в виде тонких листов сплава. Такие присадки подходят для спаивания тонких плоских поверхностей.
  • Трубчатые обычно изготавливаются из флюса, имеют вид трубки с расположенным внутри основным материалом.
  • Проволочные отлично подходят для паяльника или газовой пайки.
  • Стержни представляют собой небольшие плотные элементы, которые в процессе работы расплавляются паяльником.

Существуют также катаные, аморфные, штампованные, прессованные и измельченные марки, однако они не получили должного распространения, что объясняется сложностью работы с ними и их узкой специализацией.

Припой для спаивания медных труб

Для соединения элементов из меди можно использовать следующий припой:

  • Марка 1S. Мягкий сплав, содержащий небольшое количество серебра. Возможно использование такой марки с медными трубами, бронзовыми изделиями и другими высокотемпературными сплавами. Из отличительных особенностей таких припоев можем отметить их великолепную коррозийную стойкость и способность выдерживать высокую температуру. Для повышения показателей прочности соединения можно использовать дополнительно порошковый или обыкновенный флюс.
  • Rosol 3. Это мягкая марка, которая подразумевает обязательное дополнительное использование флюса. Применяется такой припой для меди. Отлично взаимодействует с тонкими металлическими сплавами и обеспечивает прочное соединение.
  • Rolot 94. Твердый сплав, применяемый для капиллярной пайки. Повышенная прочность таких сплавов позволяет использовать их для соединения труб без применения фитингов. Rolot 94 может использоваться для работы с медью,  сплавами латуни и бронзы. Максимальный показатель температуры плавления равняется 730 градусам. Отметим также большой интервал у Rolot 94 между плавлением припоя и кипением. Подобное необходимо учитывать при выполнении пайки.
  • Rolot 2. Твердая разновидность припоя относится к узкоспециализированному типу. В качестве дополнительного элемента используется серебро, что позволяет обеспечить максимальную прочность и качество соединения.

Разновидности для алюминия

  • Castolin 190. Качественный флюсованный сплав, с  температурой плавления в 580 градусов. Этот припой применяется с алюминиевыми сплавами или же чистым алюминием. Castolin 190 обладает отличной адгезией и текучестью. Этот припой применяется в ремонте техники. Изготавливается он в прутках с длиной в 50 сантиметров.
  • Авиа 1. Это универсальный тип припоя для алюминия, поэтому он получил наиболее широкое распространение. Показатели температуры плавления у этого мягкого сплава не превышают двухсот градусов. Этот сплав содержит25% цинка, 55% олова, 20% кадмия.

Припой для работы с нержавейкой

  1. HTS528. Универсальный тип присадочного материала, который используется для работы с многочисленными сортами стали. Относятся к категории твердых марок, и имеет показатель температуры плавления в 760 градусов. Отметим наличие флюсового покрытия, придающего припою красный цвет.
  2. П-81. Твердый сплав с температурой плавления около 650 градусов. Данная разновидность присадочного материала применяется профессионалами при выполнении ремонтных работ. В составе этого сплава можно найти дополнительные включения из никеля, чугуна и нержавеющей стали. Показатель предела прочности наплавляемого материала — 170 Мпа.

Как правильно выбрать припой

При выборе такого присадочного материала необходимо в первую очередь обратить внимание на показатели температуры плавления металла. У припоя этот показатель должен быть ниже, нежели чем у соединяемых элементов. Также вам следует учитывать особенности металлических сплавов и требования к выполненному соединению. Так, например если требуется обеспечить в последующем максимально возможную прочность шва, следует применять твердые марки.

Отметим, что при использовании припоя не всегда выдерживается соответствие основного материала в присадке и соединяемых металлических элементах. Так, например, для сварки меди используется припой, в основе которого содержится медь. А вот для соединения алюминия применяют легкие марки, в составе которых отсутствует алюминий.

Также при выборе припоя необходимо учитывать особенности сварки. Если необходимо соединить металлические элементы длинным швом, то лучше всего использовать припой с максимально возможной длиной. Тем самым вы избегайте прерывания температурной обработки, что в свою очередь повышает качество соединения. Если же вы выбираете припой для использования в домашних условиях, то отлично подойдет аморфная проволока, которая продается в небольших количествах.

Припои для пайки. | МеханикИнфо

 

Припои — это сплавы способные соединять две разные металлические детали с помощью пайки. Это происходит в расплавленном состоянии, когда сплав припоя заполняет все зазоры между деталями и при остывании образуется твердое, прочное соединение.

Возможно вам будет интересная другая моя статья припой ПОС 40 Технические характеристики.

Таблица 1.

Основные применения припоев.

Марка припоя Область применения
ПОС 90 Пайка и лужение приборов и аппаратов в медицинской промышленности, а также в пищевом хозяйстве.
ПОС 61М Пайка и лужение радиоэлектронной техники, тонкой медной проволоки, фольги (толщина менее 0.2 мм).
ПОС 61 Пайка и лужение радиоаппаратуры, схем, где недопустим перегрев.
ПОС 40 Пайка и лужение электроаппаратуры и деталей из латуни, железа и оцинкованного железа с герметичными швами.
ПОС 30 Пайка и лужение деталей машиностроения
ПОС 10 Пайка и лужение электрических аппаратов, реле и контактных поверхностей.
Сурьмянистые
ПОССу 95-5 Пайка трубопроводов в электропромышленности, работающих при повышенных температурах.
ПОССу 40-2 Пайка и лужение тонколистовых упаковок, холодильников. Припой широкого применения.
ПОССу 30-2 Пайка и лужение в холодильном аппаратостроении, электроламповом производстве, автомобилестроении, для абразивной пайки.
ПОССу 8-3 Пайка и лужение в электроламповом производстве.
ПОССу 5-1 Пайка и лужение деталей, работающих при высоких температурах (трубчатые радиаторы).
ПОССу 4-6 Пайка и лужение деталей с клепанными и закатанными швами из меди и латуни. Пайка белой жести, шпатлевка кузовов автомобилей.
ПОССу 4-4
ПОССу 10-2
ПОССу 15-2
ПОССу 18-2
ПОССу 25-2
Пайка и лужение деталей в машиностроении
Малосурьмянистые
ПОССу 61-0,5 Пайка и лужение электроаппаратуры, пайки элементов печатных плат, обмоток электрических машин, оцинкованных радиодеталей при жестких требованиях к температуре.
ПОССу 50-0,5 Пайка и лужение авиационных радиаторов, для пайки пищевой посуды.
ПОССу 40-0,5 Пайка и лужение жести, обмоток электрических машин, для пайки монтажных элементов, моточных и кабельных изделий, радиаторных трубок, оцинкованных деталей холодильных агрегатов.
ПОССу 35-0,5 Пайка и лужение свинцовых кабельных оболочек электротехнических изделий неответственного назначения, тонколистовой упаковки.
ПОССу 30-0,5 Пайка и лужение радиаторов и оцинкованного листа.
ПОССу 25-0,5 Пайка и лужение радиаторов.
ПОССу 18-0,5 Пайка и лужение электроламп и трубок теплообменников.

Обозначение припоев.

 

ПОС-40 – припой оловянно-свинцовый с содержанием Олова (Sn) 39-41 %, Свинца (Pb) 59-61 %.

ПОССу 40-2 – припой оловянно-свинцовый с добавлением в сплав сурьмы (Sb) 1.5-2.0 %. Такие сплавы называют «сурьмянистые».

ПОССу 40-0,5 – припой оловянно-свинцовый с добавлением в сплав сурьмы (Sb) 0.05-0.5 %. Такие сплавы называют «малосурьмянистые».

 

С добавлением в сплав олово-свинец присадки сурьмы (Sb), увеличивается прочность припоя. Висмут (Bi) понижает температуру плавления припоя.

Ниже Вы можете ознакомиться с таблицей массовой долей примесей, содержащихся в разных припоях.

 

Таблица 2.

Таблица примесей в оловянно-свинцовых припоях по ГОСТ 21931-76.

Марка припоя Не более %
Сурьма (Sb) Медь (Cu) Висмут (Bi) Мышьяк (As) Железо (Fe) Никель (Ni) Сера (S) Цинк (Zn) Алюминий (Al) Свинец (Pb)
Бессурьмянистые
ПОС 90 0,10 0,05 0,1 0,01 0,02 0,02 0,02 0,002 0,002
ПОС 63 0,05 0,05 0,02
ПОС 61 0,10 0,05 0,20 0,02
ПОС 40 0,10 0,05 0,02
ПОС 30 0,10 0,05 0,02
ПОС 10 0,10 0,05 0,02
ПОС 61М 0,20 0,01
ПОСК 50-18 0,20 0,08 0,03
ПОСК 2-18 0,05 0,05 0,01
Сурьмянистые
ПОСу 95-5 0,05 0,1 0,04 0,02 0,02 0,02 0,002 0,002 0,07
ПОССу 40-2 0,08 0,2 0,02 0,08
ПОССу 35-2 0,08 0,02
ПОССу 30-2 0,08 0,02
ПОССу 25-2 0,08 0,02
ПОССу 18-2 0,08 0,02
ПОССу 15-2 0,08 0,02
ПОССу 10-2 0,08 0,02
ПОССу 8-3 0,1 0,05
ПОССу 5-1 0,08 0,02
ПОССу 4-6 0,1 0,05
ПОССу 4-4 0,1 0,05
Малосурьмянистые
ПОССу 61-0,5 0,05 0,20 0,02 0,02 0,02 0,02 0,02 0,02
ПОССу 50-0,5 0,05 0,10 0,02
ПОССу 40-0,5 0,05 0,20 0,02
ПОССу 35-0,5 0,05 0,02
ПОССу 30-0,5 0,05 0,02
ПОССу 25-0,5 0,05 0,02
ПОССу 18-0,5 0,05 0,02

 

Припои для пайки. Твердые и мягкие припои.

 

Припои бывают двух видов: твердый и мягкий. У мягкого припоя температура плавления до 400 ºС, а у твердого температура плавления выше 400 ºС.

Какие же отличаются у этих припоев кроме температурных режимов?

По физическому характеру твердые припои ничем не отличаются от мягких. Различия есть по химическому составу, прочности соединения и термоустойчивости.

По прочности соединения мягкие припои уступают твердым. Твердые припои выдерживают более высокие нагрузки чем мягкие. Прочность при растяжении твердых припоев составляет 100-500 МПа, а у мягких – 16-100 МПа. В свою очередь мягкие припои отличаются простотой процесса пайки. Для их разогрева подойдут обычные, удобные паяльники, с температурой плавления от 183 °C, чем не могут похвастаться твердые припои. Из-за своих высоких температур плавления приходится использовать более дорогие и неудобные паяльники. Чем больше содержание олова в мягкой смеси, тем меньше температура плавления припоя.

ПОС 90 — от 183°C до 220°C

ПОС 61 — от 183°C до 190°C

ПОС 40 — от 183°C до 238°C

ПОС 10 — от 268°C до 299°C

К мягким припоям относят:

Сурьмянистые припои (ПОССу) – используют для пайки оцинкованных изделий;

Оловянно-свинцово-кадмиевые (ПОСК) – используют для пайки чувствительных к перегреву деталей;

Оловянно-цинковые (ОЦ) – используют для пайки алюминия:

Бессвинцовые – обладает высокой электропроводностью и используют для пайки радиоэлектронной аппаратуры.

 

Твердые припои используют для пайки металлорежущих инструментов, систем трубопроводов, работающих под высоким давлением, в автомобилестроении, судостроении, тонкостенных деталей и т.д. Твердые припои играют огромную роль в промышленности. Без них был бы невозможен мелкий ремонт или изготовление различных металлических деталей.

Твердые припои подойдут для пайки медных, латунных, нержавеющих сплавов.

К твердым припоям относят:

Медно-цинковые (ПМЦ) – используются для пайки деталей с высокими внутренними давлениями. Ими паяют медь, латунь, бронзу.

Серебряные (ПСр) – данные припои подойдут для пайки черных и цветных металлов.

Медно-фосфорные (ПМФ) – используют для пайки деталей из меди и ее сплавов. Пайка такими припоями возможна без использования флюсов.

Таблица 3.

Физико-механические свойства припоев.

Маркаприпоя t, оС P, г/см3 ρ, Ом мм2 λ, ккал/см с град σ, кгс/мм2 Относительное удлинение, % КС, кгс/см2 Твердость по Бриннелю
Солидус Ликвидус
ПОС 90 183 220 7,6 0,120 0,130 4,9 40 4,2 15,4
ПОС 61 183 190 8,5 0,139 0,120 4,3 46 3,9 14,0
ПОС 40 183 238 9,3 0,159 0,100 3,9 52 4,0 12,5
ПОС 10 268 299 10,8 0,200 0,084 3,2 44 3,2 12,5
ПОС 61М 183 192 8,5 0,143 0,117 4,5 40 1,1 14,9
ПОСК 50-18 142 145 8,8 0,133 0,130 4,0 40 4,9 14,0
ПОССу 61-0,5 183 189 8,5 0,140 0,120 4,5 35 3,7 13,5
ПОССу 50-0,5 183 216 8,9 0,149 0,112 3,8 62 4,4 13,2
ПОССу 40-0,5 183 235 9,3 0,169 0,100 4,0 50 4,0 13,0
ПОССу 35-0,5 183 245 9,5 0,172 0,100 3,8 47 3,9 13,3
ПОССу 30-0,5 183 255 8,7 0,179 0,090 3,6 45 3,9 13,2
ПОССу 25-0,5 183 266 10,0 0,182 0,090 3,6 45 3,9 13,6
ПОССу 18-0,5 183 277 10,2 0,198 0,084 3,6 50 3,6
ПОСу 95-5 234 240 7,3 0,145 0,110 4,0 46 5,5 18,0
ПОССу 40-2 185 229 9,2 0,172 0,100 4,3 48 2,8 14,2
ПОССу 35-2 185 243 9,4 0,179 0,090 4,0 40 2,6
ПОССу 30-2 185 250 9,6 0,182 0,090 4,0 40 2,5
ПОССу 25-2 185 260 9,8 0,185 0,090 3,8 35 2,4
ПОССу 18-2 186 270 10,1 0,206 0,081 3,6 35 1,9 11,7
ПОССу 15-2 184 275 10,3 0,208 0,080 3,6 35 1,9 12,0
ПОССу 10-2 268 285 10,7 0,208 0,080 3,5 30 1,9 10,8
ПОССу 8-3 240 290 10,5 0,207 0,081 4,0 43 1.7 12,8
ПОССу 5-1 275 308 11,2 0,200 0,084 3,3 40 2,8 10,7
ПОССу 4-6 244 270 10,7 0,208 0,080 6,5 15 0,8 17,3

t – Температура плавления, оС;

P — Плотность, г/см3;

ρ — Удельное электросопротивление Ом мм2;

λ — Теплопроводность, ккал/см с град;

σ — Временное сопротивление разрыву, кгс/мм2;

КС — Ударная вязкость, кгс/см2.

 

Легкоплавкие, мягкие припои. Виды. Состав.

 

Мягкие припои нужны для пайки деталей под низкими температурами. С помощью данных припоев возможно соединение твердых металлов с более высокими температурами плавления. Соединение деталей происходит благодаря диффузии (от латинского diffusio – растекание, распространение, рассеивание, взаимодействие. Процесс, с помощью которого молекулы одного вещества проникают в молекулы другого вещества, в итоге происходит выравнивание их концентрации по занимаемому объему). Т.е. молекулы припоя проникают в молекулы спаиваемых деталей, благодаря взаимному растворению и образуется прочное соединение с хорошей электропроводностью. Предел прочности у таких припоев составляет 5 – 7 кг·с/мм2.

Максимальные температуры плавления достигают 400 ºС, а иногда и 450 ºС. Также мягкими припоями возможна пайка таких легкоплавких металлов и сплавов как свинец, цинк и даже олово.  Чем больше процент содержания олова в смеси, тем меньше температура плавления припоя. В мягкие сплавы припоев входят не только олово и свинец, также там идет добавление висмута, кадмия, таллия, индия, цинка, калия, галлия и других химических веществ. Эти химические вещества служат заменителями олова в смеси припоя, из-за его дефицитности. В таких смесях процент содержания олова маленький, а в некоторых его и вовсе может и не быть.

 

Виды припоев.

 

Индиевые припои служат для пайки деталей, которые чувствительны к повышениям температуры. Обладают высокими антикоррозийными свойствами в щелочных растворах. Отдельные припои с индием используют для пайки стекла, а именно ПОИн 52 (52 % In и 48 % Sn) с температурой плавления — 117 ºС. Способом натирания их наносят на поверхность стекла. Индий имеет хорошую смачиваемость поверхностей металлических и неметаллических деталей. Нашел свое применение в пайке полупроводников (пластмассы, стекла).

 

Мягкие припои состав.

 

Таблица 1. Химический состав индиевых припоев.

Содержание элементов, % Температураполногорасплавления, °С
In Cd Pb Sn Ag Zn Ti Bi
25 75 231
80 15 5 156
97,2 2,8 143
42,8 7,8 46,8 2,6 121
50 50 120
44,2 46,8 9,0 117
74 24,25 1,75 116
48,2 4 46 1,8 108
44 14 42 93
44,2 13,6 41,4 0,8 90
66 34 72
74 26 123
97 141

.

Припои с висмутом относятся к легкоплавким сплавам. Имеют характерные отличия в увеличении объема при переходе из жидкого состояния в твердое, а также при охлаждении. Сам по себе висмут металл малопластичный и его очень редко применяю для пайки. Температурные интервалы припоев с висмутом лежат в пределах от 47 до 145 ºС. Припои с висмутом обладают высоким электросопротивлением и низкими механическими свойствами. Плохо смачивают отдельные металлы как железо. В висмутовые припои входят сплав Вуда и сплав Розе.

 

Читайте также:

Припои для пайки. Твердые и мягкие припои.;

Свинец, свойство металла. Пункт приема свинца.;

Припой ПОС-40 Технические характеристики.

 

Сплав Вуда. Температура плавления — 68.5 ºС. Состав такого сплава составляет 50% Bi (висмут), 25% Pb (свинец) 12,5% Sn (олово), 12.5% Cd (кадмий). Сплавы из Вуда используют в операциях изгиба тонкостенных труб, в изготовлении с помощью гальванопластики полых тел, заливают шлифы металлографические, в датчиках пожарных сигнализаций, химических лабораториях в качестве низкотемпературной бани.

Сплав Розе. Эти сплавы отличаются своей низкой токсичностью по сравнению с другими сплавами. Температура плавления данного сплава — 94 ºС. В его состав входит 50% Bi (висмут), 25% Pb (свинец) 25% Sn (олово). Используют в качестве полупроводниковой техники в лабораториях и электрических предохранителей.

 

Таблица 2. Химический состав припоев с висмутом.

Марка припоя Содержание компонентов, % Температура начала плавления, °C Температура полного расплавления, °С Предел прочности при растяжении, МПа
Sn Pb Sb Cd Ag Zn Bi In Ga
32,4-34,4 32,3-34,3  — 33,3–33,4 120 130 60
Сплав Вуда 12-13 24-25 12-13 49 -51 66 70 61
Сплав Розе 24,5-25,5 24,5-25,5 49-51 90 92 70

.

Галлиевые припои имеют хорошую смачиваемость поверхности и низкую температуру плавления. Поэтому галлий используют в смеси припоев. Обладает хорошей диффузией с взаимодействием с легкоплавкими металлами как кадмий, олово, свинец, цинк. Галлий при нагреве на воздухе, при температуре выше 400 ºС превращается в темную порошковую массу, это означает, что галлий интенсивно окисляется. Двойные сплавы галлия с золотом, серебром, медью, никелем, титаном, кобальтом, магнием годятся для диффузионной пайки титана, меди, а также и других металлов. В последнее время припои с галлием используют для диффузионной пайки меди. Галлий крайне редко применяется в качестве основы в расплавляемых припоях.

 

Таблица 3. Химический состав галлиевых припоев.

Марка припоя Содержание компонентов, %
Ga In Sn Cu Ag
1 65-70 35-30
2 37-32 63-68
3 60 10 30
4 60 10 26 4
Г7 36,2 16,6 7,2 22 3
Г17 30,2 13,8 6,0 50
5 39,6 4,4 56

.

Изготавливают мягкие припои в виде проволоки, прутков и болванок, обычно небольших диаметров от 3 мм.

Легкоплавкие припои должны соответствовать нескольким требованиям:

— хорошая пластичность;

— коррозийной устойчивостью;

— высокой электропроводностью;

— низкой токсичностью;

— высокой текучестью (лужение).

 

Применение мягких припоев.

 

Наиболее часто используют мягкие припои для сборки или ремонта радиотехники, из-за малой механической прочности, невысоких
температур плавления и хорошей электропроводности.

Возможно вам будут интересны другие мои статьи:

 

 

 

Как использовать припой для пайки?

Лучший припой для пайки металлов – это чистое олово. Но на практике применяется сплав, в котором основой выступает олово и добавляется свинец. Подобные припои можно встретить в продаже, причем марок у них немало. При желании его можно изготовить самостоятельно, если имеются в наличии все нужные ингредиенты. Припой из олова и свинца обозначается тремя буквами – ПОС, после которых идет число. Наиболее популярные марки – ПОС-60 и ПОС-40. Цифры – это процентное содержание свинца в смеси. Такими припоями проводится пайка как латуни, так и радиоэлементов и медных проводов.

Схема пайки твердым припоем.

Как выбрать припой и его разновидности?

Перед началом работ обратите внимание на следующие нюансы:

  1. Какие металлы требуется паять?
  2. Какой способ пайки вы намерены использовать?
  3. Размер соединяемых элементов и их механическая прочность.
  4. Ограничения по температуре.
  5. Устойчивость соединяемых элементов к коррозии.

Обратите внимание на то, что температура плавления припоя, используемого при пайке, должна выбираться, исходя из диаметра проводов. Чем толще провод, тем выше температура плавления. Для тонких допускается применять припои с наименьшей температурой.

Вернуться к оглавлению

Типы припоев для проведения пайки

Марки и свойства припоев.

Все виды можно разделить на три огромные подгруппы:

  1. Сверхлегкоплавкие.
  2. Легкоплавкие.
  3. Тугоплавкие.

Последние не используются радиолюбителями, электрики их тоже нечасто применяют. Причина – температура плавления таких припоев 500 градусов и выше, не каждый специалист обладает оборудованием, которое способно обеспечить такой нагрев. Но преимущество сразу заметно: прочность у пайки очень высокая, соединяемые детали могут выдержать большие механические нагрузки. Для пайки полупроводниковых элементов такие припои не подходят. Проводить работы с серебряным припоем тоже необходимо при высокой температуре. С его помощью проводится пайка не только меди, но и стали, чугуна, никеля и его сплавов.

А вот радиолюбители используют легкоплавкие припои. У них температура плавления редко достигает 400 градусов. Вот только прочность у них не очень высокая. Но для пайки проводов и радиоэлементов ее достаточно. Одним из популярных припоев является марка ПОС-61, в котором олова около 38%, свинца 61%, а остальное – это присадки, улучшающие свойства смеси. Сверхлегкоплавкие тоже применяются радиолюбителями. Кадмий и висмут в них встречаются нередко, за счет чего температура плавления едва доходит до ста градусов. Идеально подходит такой припой только для пайки мелких радиоэлементов и кристаллов, так как выдерживает очень маленькие нагрузки.

Вернуться к оглавлению

Изготовление припоя своими руками

Чтобы сделать припой для пайки в домашних условиях, вам потребуется наличие следующих ингредиентов:

  1. Свинца.
  2. Олова.

Еще нужны такие инструменты:

Материалы и инструменты для пайки латуни.

  1. Керамические формы (можно из гипса или жести).
  2. Стальная ложка.
  3. Стальная палочка.
  4. Емкость (желательно сталь).

Не забывайте о том, что работаете со свинцом – одним из опасных металлов. Надевайте очки и респиратор, помещение проветривайте. Для удобства наденьте перчатки, чтобы не получить ожог. Над газовой горелкой в емкости расплавьте свинец и олово, заранее взвесив их на весах и добившись нужной пропорции. При помощи ложки из стали снимите «навар» – шлак на поверхности. И, размешав стальной палочкой, чтобы металлы соединились равномерно, вылейте расплав в формы. Все, припой для пайки медных проводов и радиоэлементов готов, можно приступать к проведению монтажных работ. Не забудьте проветрить помещение.

Вернуться к оглавлению

Как правильно паять латунь?

С радиолюбительскими припоями все предельно понятно, но ведь иногда требуется и более массивные детали паять. Особенно сложно работать с латунными элементами, так как при пайке образуется на металле оксидная пленка. А еще испаряется цинк во время прогрева, так как латунь содержит большое количество этого металла. Выход один – нужно проводить пайку при низкой температуре, используя припой из олова и свинца. Но необходимо применять флюс, наиболее распространенным является из канифоли и спирта.

Чтобы спаять латунь марки Л-63, вам необходимо применить флюс, в состав которого входит потная кислота и хлористый цинк. Механической прочности очень высокой не добиться. Если сравнивать с пайкой меди, то прочность у латуни окажется вдвое меньшей. Во многом это связано с тем, что швы имеют пористую структуру. Причем поры образуются при любом способе пайки, как под высокой температурой, так и под низкой. Нередко применяется пайка латуни в газовой среде (при условии, что перед началом работ было проведено флюсование). Допускается не использовать флюс, если на поверхности латуни имеется слой никеля или меди.

В соляной ванне при температуре 850 градусов можно проводить пайку латунных элементов. Главное – в соляной раствор добавить немного флюса, в составе которого присутствует фторобат калия. Флюса должно быть примерно 4-5% от общей массы соляного раствора. Необходим флюс для того, чтобы припой как можно лучше проникал в зазор между соединяемыми деталями.

Латунь, богатая медью, спаивается следующими припоями:

  1. ПСр-72.
  2. ПСр-40.
  3. ПСр-45.
  4. ПСр-25.
  5. ПСр-12.

Латунь, у которой низкая температура плавления, нуждается в использовании следующих припоев для пайки:

  1. ПМЦ-36.
  2. ПМЦ-48.
  3. ПМЦ-54.
  4. Припой медно фосфорный.

Для пайки латуни, в которой большое процентное содержание цинка, применяют марку припоя ПСр-40.

Использовать медно фосфорный припой нельзя, так как соединение оказывается малопластичным из-за образования при пайке фосфидов цинка на поверхности шва.

Если при эксплуатации элементов, которые подвергаются спайке, не возникает динамических и вибрационных нагрузок, то допускается применять припой ПМЦ-48 и ПМЦ-36.

Виды пайки металлов согласно классификации ГОСТ, в том числе, методы без флюса, в печах и вакууме

Пайка металлов появилась задолго до изобретения электрической сварки. Ее использовали в Древнем Риме и Вавилоне, о чем говорят археологические раскопки.

За это время технологии усовершенствовались, и появились новые виды пайки, в которых для нагрева металла используется электрический ток, пламя газовой горелки, энергия лазера или иные источники тепловой энергии.

Капиллярный

Капиллярный вид пайки – самый распространенный. Многие, применяя его, даже не подозревают о таком названии. Суть технологии заключается в следующем.

Припой расплавляют, он нагревается и заполняет собой пространство между двумя подготовленными деталями. Смачивание поверхности деталей и удержание припоя происходит во многом благодаря эффекту капиллярности.

Капиллярный вид пайки распространен в быту и на различных производствах. Для его проведения потребуется паяльник или горелка. По сути, любой вид пайки можно считать в определенной мере капиллярным, поскольку в каждом присутствует капиллярное смачивание поверхностей заготовок жидким припоем.

Диффузионный

Этот вид паяния отличается от остальных длительностью процесса, поскольку на диффузию требуется время.

Припой внутри зоны шва выдерживается при определенной температуре дольше, чем, скажем, при обычном капиллярном виде пайке. Соединение двух заготовок происходит за счет диффузии припоя и спаиваемых металлов.

Сам процесс диффузии заключается в проникновении молекул одного вещества в структуру другого вещества. Спайка происходит на молекулярном уровне и дает возможность получить более прочный шов.

Диффузионный вид требует строго соблюдения температурного и временного режима. Температура нагрева в зоне пайки всегда выше, чем температура плавления припоя.

Контактно-реакционный

Вид пайки под названием «контактно-реакционный» или «реактивный» означает процесс сплавления при контакте двух деталей из разных металлов.

Происходит фазовый переход металла из твердого в жидкое состояние с последующим отвердением и сплавлением. Часто такое соединение осуществляют через тонкую прослойку, которая нанесена на одну из заготовок гальваническим или иным способом.

Используются легкоплавкие материалы – эвтектики. Так можно соединить серебро и медь, где между деталями будет образован медно-серебрянный сплав. Проводят пайку олова и висмута, серебра и бериллия, графита и стали.

Можно спаивать алюминий с другими материалами через прослойку меди или кремния. Соединение получается прочным, время пайки занимает доли секунд.

Реакционно-флюсовой

В основе реактивно-флюсового вида пайки лежит химическая реакция, при которой из флюса при соединении с металлом образуется припой. Это хорошо видно, когда между собой соединяются алюминиевые детали.

Для их стыковки применяется флюс на основе хлористого цинка. При нагреве цинк начинает взаимодействовать с алюминием, превращаясь в металлический припой.

Он заполняет собой все пространство зазора, делая место зоны пайки прочным соединением. При этом очень важно точно соблюсти пропорции наносимого флюса. Его должно быть много, чтобы чистый цинк в необходимом количестве мог выделиться из флюсового порошка.

Иногда при этом виде пайки приходится добавлять цинковый припой в небольших количествах, как дополнение к основному процессу. Обычно это делают, если две заготовки соединяются внахлест.

Пайка-сварка

Такое название технология получила потому, что сам процесс очень сильно напоминает сварку металла с присадочным материалом (проволокой или порошком).

Но в данном случае вместо присадки используется припой. Этот вид чаще всего используют для того, чтобы заделать дефекты и изъяны на поверхностях металлических деталей (литых).

Сам процесс можно проводить разными способами:

  • пайка в печах;
  • окунанием в ванну с жидким припоем;
  • сопротивлением с помощью электрического тока;
  • индукционным способом;
  • радиационным;
  • с помощью паяльников и газовых горелок.

Некоторые виды появились сравнительно недавно, еще исследуются и дорабатываются.

В печах

Первый вариант обеспечивает равномерное распределение припоя по дефектным участкам детали и равномерное прогревание, что особенно важно, когда приходится паять крупногабаритные заготовки со сложной конфигурацией.

При этом разогрев в печи может проходить одним из многих существующих способов, начиная от нагрева пламенем, и до сложно технологических процессов, таких как индукция, электросопротивление.

Конструкция самих печей отличается друг от друга лишь подами, на которые укладывают паяемые заготовки. Для крупных деталей используются печи, в которых под не движется, а для маленьких – подвижные в виде конвейеров на роликах.

Главная задача этого вида пайки – создать внутри печи специальную газообразную субстанцию. Пайка в печах может быть полностью механизирована, что ведет к повышению производительности труда. А для производств с массовым выходом готовой продукции это идеальный вариант.

Применение индукции и сопротивления

Что касается индукционного вида, то для него используют токи высокой частоты. Электричество пропускается через спаиваемые детали, отчего они и нагреваются.

Здесь реализуются два способа пайки: стационарная и с перемещением детали или индуктора. В случае соединения крупногабаритных заготовок используется вторая технология.

Способ пайки сопротивлением чем-то схож с индукционным видом. Просто в этой технологии ток пропускается и через заготовки, и через паяльный элемент. То есть, соединяемые детали становятся частью электрической цепи.

Проводят такой процесс в электролитах или в специальных контактных машинах, действие которых очень похоже на стандартную электросварку. Контактные машины обычно используются в производствах, где необходимо паять между собой изделия из тонкого листового металла.

Пайка же в электролитах используется сегодня не часто за счет сложности настройки параметров технологического процесса. Ведь процесс проходит по принципу теплового эффекта, возникающего между катодом (спаиваемые детали) и анодом.

Вокруг заготовок образуется водородная оболочка, у которой очень высокое электрическое сопротивление. Отсюда и выделение большой тепловой энергии.

Погружение в ванну

Пайка с погружением проводится или в среде расплавленного припоя или в массе специальных солей. Последний вид пайки – это быстро проводимая операция за счет непосредственного нагрева заготовок от солей, которые выполняют функции и нагревательного элемента, и флюса. Что касается погружения в припой, то необходимо отметить возможность полного или частичного погружения.

Радиационный метод

Радиационный вид пайки производится за счет мощного светового потока, который формируется кварцевой лампой, лазером или катодным расфокусированным лучом.

Технология появилась относительно недавно, но показала, что таким способом можно достигать высокого качества пайки двух металлических заготовок. К тому же появилась реальная возможность контролировать процесс и по степени нагрева, и по временным срокам. При этом лазер удаляет оксидную пленку с припоя и с металла, что гарантирует высокое качество паяного шва.

Газовая оболочка в зоне соединения, образорванная за счет нагрева металлов, дает возможность при соединении не использовать флюсы. Поэтому, когда сегодня говорят о пайке без флюса, подразумевают лазерную технологию.

Горелка и паяльник

Что касается пайки горелками, то чаще всего применяются две технологии, которые, по сути, ничем не отличаются одна от другой. Происходит просто нагрев двух деталей и припоя, уложенного между ними в зазор.

В первом способе – за счет сгорания газа, во втором – за счет образования плазмы (это сгораемый газ, который движется тонкой струей с большой скоростью). Необходимо отметить, что способ с газовыми горелками считается универсальным.

Горелки, испускающие поток плазмы, работают при высоком температурном режиме. А это позволяет паять между собой детали из титана, молибдена, вольфрама и прочие тугоплавкие материалы.

Сложность этой технологии заключается в том, что настроить электрическую дугу под определенную температуру нагрева (до определенной точности) практически невозможно.

Пайка паяльником используется давно. Если еще 5-10 лет назад можно было говорить только об электрических приборах или нагреваемых от огня, то сегодня предложений куда больше.

Хотелось бы отметить паяльники, работающие от ультразвука. То есть, сам ультразвук имеет отношение к процессу пайки лишь с позиции разрушения оксидной пленки.

Поэтому и появилась возможность паять различные металлы в воздушном окружении без флюсовых материалов. Непосредственно пайка происходит от нагрева припоя.

Вакуумный

Пайка в вакууме и сегодня еще используется не всегда и не везде. Сложность данного вида заключается в том, что необходимо в зоне паяния создать разряженную атмосферу без воздуха.

Как известно, присутствующий в воздухе кислород является причиной образования оксидной пленки, которая покрывает собою металлические заготовки и припой.

Пленка очень тугоплавка, при пайке теряются температурные градусы для нагрева соединяемых деталей. Поэтому все ученые до сих пор и ищут способы, как удалить оксидное покрытие или провести процесс без него. Пайка в вакууме – один из таких вариантов.

Препятствуют внедрению вакуумного вида в производство такие факторы:

  • низкая производительность процесса, потому что приходится нагревать каждую отдельную деталь;
  • таким способом можно паять лишь заготовки небольших размеров;
  • сложность создания станков и дополнительного оборудования;
  • сложность проведения процесса пайки.

Однако если говорить о космосе, где отсутствует атмосфера, то вакуумный вид считается весьма перспективным.

Селективный

Нельзя сказать, что селективный вид пайки принципиально отличается от капиллярного. Точно также в нем применяют припой и нагрев. Но расплавляют припой только в выборочных местах (локальных точках), на которые планируется прикрепить элементы.

Селективную пайку применяют в основном для изготовления плат и выводов штыревых компонентов. Она схожа с волновым методом, применяемым для пайки smd-чипов.

Установка селективной пайки – оборудование, относящееся к категории полуавтоматов. Оно не дешевое, но экономит расходные материалы почти в десять раз, по сравнению с волной, поэтому распространяется все шире и шире.

Температурный режим и материалы

Классификация процессов пайки основывается на методах проведения операций, условиях, при которых получают соединения, и на видах расходных материалов. Понятия и виды пайки подробно описывает ГОСТ 17325.

Пайку называют высокотемпературной или твердой, если припой разогревается до температуры 450 ℃ и выше. В противном случае приходится иметь дело с низкотемпературным видом (мягким).

Для низкотемпературного вида применяют легкоплавкие припои. К ним относятся сплавы олова и свинца, висмута, галлия, индия. К тугоплавким принадлежат медно-серебряные, медно-цинковые припои.

В связи с повелением новых материалов и требований экологической безопасности, технологии пайки постоянно меняются. Свинцовые припои применяют все меньше, устанавливают дымоуловители, разрабатывают лазерное и ультразвуковое оборудование.

Немалую роль в развитии пайки играет внедрение роботизированных систем, позволяющих значительно ускорить работу.

Как выбрать тип припоя для электронных схем?

Поскольку существует так много типов припоев, выбор припоя может вызвать затруднения.

Когда я начинал заниматься электроникой, я понятия не имел, поэтому просто использовал любой припой, который мог найти. Но знаете ли вы, что припой используется не только для пайки электроники?

Вообще-то припой применяют и для сантехники.

А припой, используемый для сантехники, ни в коем случае нельзя использовать для электроники, так как он содержит кислоту!



Автор Ilja at de.википедия [GFDL или CC-BY-SA-3.0], из Wikimedia Commons

Основные виды припоя

Есть всего несколько основных моментов, которые вам нужно знать, чтобы понять, какой припой выбрать, а от чего лучше держаться подальше.

Прежде всего, припой бывает разных форм: гранулы, стержни, паста и проволока. Как любитель, вам нужно будет только познакомиться с проволокой для припоя. И, возможно, паяльная паста, если вы хотите сделать пайку SMD.

Есть два основных типа припоя:

  • Припой на основе свинца
  • Припой бессвинцовый

Основное практическое различие между ними — температура плавления.По сути, вы можете выбрать то, что вам нравится. Подробнее о паяльных инструментах читайте здесь.

Припой на основе свинца

Раньше припой на основе свинца применялся повсеместно. Он был сделан из смеси олова и свинца. Обычно смесь 60/40 (олово / свинец), которая плавится при температуре около 180-190 ° C.

Поскольку свинец оказывает вредное воздействие на наше здоровье, промышленность переходит от свинца к припоям, не содержащим свинца.

Бессвинцовый припой

Бессвинцовый припой — это припой без свинца.ЕС требует, чтобы в коммерчески доступной электронике использовался бессвинцовый припой (RHoS) из-за опасности свинца для здоровья.

У него более высокая температура плавления, поэтому с ним немного сложнее работать, но обычно это не проблема.

Флюсовый сердечник припоя


Кевин Хэдли (собственная работа) [CC-BY-SA-3.0], через Wikimedia Commons

Паяльная проволока обычно имеет сердцевину внутри проволоки, содержащую флюс. Флюс разработан для улучшения электрического контакта и механической прочности паяных соединений.

В основном флюсовые сердечники бывают двух типов. Кислотное ядро ​​и канифольное ядро. Кислотный сердечник используется в сантехнике, а канифольный сердечник — в электронике. Так что используйте канифольную сердцевину.

(Примечание: новый водорастворимый сердечник из флюса начинает набирать обороты в качестве альтернативы канифольному сердечнику, поскольку он более безопасен для окружающей среды.)

Сводка

Основные типы припоев — свинец и бессвинцовый. Вы можете использовать и то, и другое для электроники, но может быть проще работать с припоем на основе свинца.

Убедитесь, что припой находится подальше от припоя с кислотным сердечником , поскольку он предназначен для водопровода, а НЕ для электроники.

Припой можно купить на Amazon. Вот пара альтернатив, которые, как я нашел, должны очень хорошо подойти для базовой пайки:

Вернуться от типов припоя к способам пайки

Типы припоя

— Руководство по покупке Thomas

Припой — это материал, который используется для соединения или плавления предметов, таких как труба с фитингом или электрический провод с клеммой или разъемом.В концепции пайки используется металлический сплав, температура плавления которого ниже, чем у соединяемых объектов. Для пайки тепло подается с помощью горелки или других средств, например, к стыку между медной трубой и коленом трубы, и после достаточного нагрева припой может быть помещен в стык, и он расплавится и потечет, чтобы герметизировать стык и обеспечить прочная связь между медной трубой и коленом трубы.

Пайка отличается от других подходов к соединению металлов, таких как пайка или сварка, как по температуре, используемой для создания соединения, так и по конечной прочности соединения.Общепринятое определение пайки, данное Американским сварочным обществом, заключается в том, что пайка происходит при температурах ниже 840 o F (450 o C). Процессы склеивания при более высоких температурах создают более прочные связи, которые не подвержены ползучести, вызванной напряжением.

Основные области применения припоя — в сантехнической промышленности, где припой для сантехников используется для обеспечения герметичных соединений в трубах, и в электронной промышленности, где электрический припой используется для соединения компонентов схем с печатными платами (PCB), проводки жгуты и соединители, например.

Часто используются три основных типа припоя, а именно:

  • Кислотный припой сердечника
  • Припой для стержней из канифоли
  • Припой со сплошным сердечником

Припои также доступны в различных форм-факторах, и припои существуют для конкретных приложений или отраслей. В этом руководстве приводится краткое описание различных типов припоя с учетом типа сердечника, сплава или материала, форм-фактора и области применения.

Типы припоя по стилю сердечника

Припой с кислотным сердечником состоит из припоя, который изготавливается в виде проволоки, но с полым сердечником, заполненным флюсом на кислотной основе, который является более сильной и агрессивной формой очищающего флюса.Использование флюса для припоя помогает удалить и предотвратить образование оксидов металлов, которые могут препятствовать образованию прочного паяного соединения. Эти припои предназначены для обработки стали или других металлов, но требуют, чтобы остатки флюса были очищены после завершения операции пайки, чтобы избежать коррозии. Припои с кислотным сердечником чаще всего используются в сантехнике для соединения металлических труб или листового металла.

Канифольный припой с сердечником также изготавливается с полым сердечником внутри припоя, но используемый флюс представляет собой более мягкую разновидность канифоли, которая представляет собой твердую форму смолы, полученной из хвойных пород, таких как сосна.Остатки флюса, связанные с канифольным припоем сердечника, не вызывают коррозии и поэтому используются для создания паяных соединений в электрических устройствах, где может быть трудно удалить остатки флюса после завершения операции пайки.

Припои с кислотным сердечником и канифольным сердечником характеризуются как припой с флюсовым наполнением или самофлюсующийся припой.

Припои с твердым сердечником, в отличие от разновидностей кислотного сердечника или канифольного сердечника, не имеют полого сердечника, заполненного флюсовым материалом.Вместо этого эти припои состоят из сплошной проволоки, состоящей из припоя или материала. Флюс необходимо наносить отдельно в случае использования припоя с твердым сердечником.

Типы припоя по сплаву или материалу

Существует множество сплавов или материалов, используемых для производства припоев для различных целей. Как правило, пропорция элементов, используемых в припоях, будет определять температуру плавления припоя, которая затем согласуется с возможными применениями этого припоя.

Одно из основных различий заключается в том, содержит ли припой в качестве элемента свинец. Свинец, который ценится при пайке из-за его низкой температуры плавления, представляет опасность для здоровья людей, особенно детей младшего возраста. По этой причине использование бессвинцового припоя в приложениях, где существует потенциальный риск воздействия или выщелачивания в источники воды (например, при использовании для соединения медных труб в линиях подачи питьевой воды), в основном было принято.

Примеры бессвинцового припоя:

Большинство припоев представляют собой сплавы одного или нескольких элементов.Например, бессвинцовый сплав, такой как серебряный припой, может иметь состав 94% олова и 6% серебра. Другие примеры припоев из сплавов без свинца:

  • олово-сурьма (95/5)
  • олово-медь (97/3)
  • олово-серебро (95/4)

Припои на основе свинца используют систему нумерации, которая определяет процентное содержание свинца, а также смешанный металл в сплаве, называемую соотношением свинцового сплава (где первое число — это% олова, второе -% свинца). Распространенные сплавы, которые представляют собой оловянные припои, включают:

  • 63/37
  • 60/40
  • 50/50
  • 30/70
  • 10/90

Типы припоев по форм-фактору

Хотя наиболее распространенным форм-фактором для припоя является паяльная проволока, поставляемая на катушках, припой также можно приобрести в виде стержней припоя, таблеток припоя, колец припоя, ленточного припоя, стержней припоя, слитков припоя, фольги припоя и полос припоя, в зависимости от в приложении.Существуют также шайбы для пайки с предварительно нанесенным покрытием, которые используются для автоматизации операций пайки сквозных компонентов в электронике. Сферы припоя, продаваемые на держателях лент и катушек, также могут использоваться в автоматизированных паяльных операциях.

Типы припоев по применению

Хотя область применения припоя наиболее широко используется в сантехнике и электронике, существуют и другие области применения этого материала. Припой для самолетов должен соответствовать требованиям условий окружающей среды, которые включают вибрацию и термоциклирование.При ремонте радиаторов автомобильный припой используется для устранения утечек, которые возникают в теплообменниках охлаждающей жидкости автомобилей и других транспортных средств. Также припой используют для домашнего ремонта и в таких хобби, как создание витражей.

Существуют специальные составы припоев для соединения металлов, которые труднее паять. Примеры таких припоев включают алюминиевый припой и припой для чугуна.

Сводка

В этой статье представлен краткий обзор распространенных типов используемых припоев с разбивкой по типу сердечника, сплаву / материалу, форм-фактору и применению.Для получения информации по дополнительным темам обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://www.hunker.com/13417672/what-is-acid-core-solder-used-for
  2. https://www.harrisproductsgroup.com/en/Expert-Advice/tech-tips/rosin-and-acid-core-solders.aspx
  3. https://www.machinedesign.com/fasteners/whats-difference-between-soldering-brazing-and-welding
  4. https: // www.hooverandstrong.com/platinum-solder
  5. https://chestofbooks.com/home-improvement/workshop/Handy-Man/Gold-Solders.html
  6. https://app.aws.org/
  7. https://superiorflux.com/techniques-for-soldering-aluminium/
  8. https://www.indium.com/solders/wire/indium-wire/
  9. http://armyordnance.tpub.com/OD0017/Fluxes-141.htm

Прочие «виды» изделий

Больше от Machinery, Tools & Supplies

Оловянный припой

, свинцовый припой, припой с флюсовым сердечником и канифольный припой — различия и применение

Когда дело доходит до сборки промышленных электронных схем, припой припой и припой провод являются основными факторами, определяющими общее качество и долговечность печатной платы.Но в большинстве случаев пайка считается само собой разумеющимся, и часто мы легко забываем о выборе припоя, но правильный выбор и использование могут иметь большое значение для качества и надежности паяных соединений. Вот почему в этой статье мы расскажем вам все, что вам нужно знать о различных типах припоев, их использовании и реализации. Итак, без лишних слов, приступим.

Виды припоев и их состав

Припой — это легкоплавкий сплав с низкой температурой плавления, который используется для склеивания металла на любой печатной плате.Техника использования сплава с низкой температурой плавления для сплавления двух материалов существует уже много лет, но в случае припоя это, как правило, олово, свинец и флюс. В зависимости от состава припой можно классифицировать как:

.

Бессвинцовый припой

Как следует из названия, он не содержит свинца. Вместо этого припой в основном состоит из олова, легированного другими металлами, такими как серебро и медь. Бессвинцовые припои соответствуют стандарту RoHS (Снижение содержания вредных веществ) и лучше подходят для окружающей среды, при этом вредное воздействие свинца на окружающую среду хорошо известно.

Самый распространенный сплав с бессвинцовым припоем , который вы можете найти, — это SAC305. Он состоит из олова с 3% меди и 0,5% серебра, используемого при сборке поверхностного монтажа. Далее в списке идет SAC387: олово с 3,8%, медь 0,7% и серебро. Это самые дорогие. Затем у нас есть SAC405, в котором есть олово с 4%, медь 0,5% и серебро.

Из перечисленных выше сплавов SAC387 и SAC405 являются эвтектическими, что означает, что они имеют одинаковую температуру плавления и затвердевания, в данном случае 217 ° C.Между тем, SAC305 имеет температуру плавления 217–219 ° C.

Припой на свинцовой основе:

Припой с выводами — самый распространенный тип припоя. Он содержит металлический свинец. В целом, этилированный припой считается лучшим из-за его хороших смачиваемых и механических свойств. Список наиболее распространенных типов припоев на основе свинца приведен ниже.

60 / 40– Это, пожалуй, самый известный и распространенный тип свинцового припоя, он состоит на 60% из олова и на 40% из свинца.Он плавится при температуре около 190 ° C и образует мягкие стыки, в результате чего стыки не растрескиваются. Но если соединение перемещается до того, как припой успевает полностью расплавиться, полученное соединение называется «холодным соединением» и имеет плохие электрические и механические свойства. Он имеет тенденцию очень легко распадаться.

63/37 — это эвтектический аналог припоя 60/40, плавящийся точно при 183 ° C. Это свойство исключает образование холодных швов.

50/50 — Эта смесь в основном используется для водопровода с высокими температурами плавления и низкой пластичностью.

Сравнение свойств аналогичных свинцовых и бессвинцовых припоев:

Недвижимость

Припой с выводами

Бессвинцовый припой

Состав

37% Sn, 64% Pb

95,5% Sn, 5% Ag, 0,5% Cu

Температура плавления

183 ° С

217 ° С

Соответствие RoHS

Есть

Плотность

8.5 г / м 2

3,7 г / м 2

Удельное сопротивление

15 МОм-см

11 МОм-см

Sn — олово, Pb — свинец, Cu — медь, Ag — серебро

Важные параметры, которые следует учитывать при выборе свинцового и бессвинцового припоя:

  • В целом бессвинцовый припой гораздо труднее, чем свинцовый припой.Более высокая температура плавления усугубляет проблему.

  • Флюсы, используемые с бессвинцовым припоем, обычно более агрессивны и вызывают большее раздражение, чем флюсы, используемые для свинцового припоя, и с ними следует обращаться более осторожно. Они могут разъедать жало паяльника намного быстрее, чем обычный флюс.

  • Повышенные температуры, необходимые для работы с бессвинцовым припоем, увеличивают количество флюса (и, в меньшей степени, количество выделяемых паров металла), что может быть опасно для здоровья.

  • Припой, содержащий в основном олово, со временем может образовывать усы в паяном соединении. Это может привести к короткому замыканию с близлежащими суставами.

  • Бессвинцовый припой гораздо менее сыпучий (смачиваемый) по сравнению с припоем со свинцом, что может значительно затруднить пайку.

Тип припоя на основе другого сердечника

Паяльная проволока, которую вы обычно видите, имеет внутри полый сердечник, вы можете сказать, что припой представляет собой трубчатую структуру, внутри этой трубки могут быть разные материалы, и в зависимости от материала он подразделяется на четыре категории: из них приводится ниже.

Припой без сердечника:

Обычный припой без сердцевины из флюса или канифоли. Обычно работать с ним сложно или утомительно, так как перед нанесением стыки необходимо хорошо обработать флюсом.

с канифолью:

Канифоль — это смола, полученная из хвойных растений, которую кипятят для удаления летучих соединений. Обычно он используется в качестве флюса для припоя и находится внутри припоя в качестве сердечника. Также доступны несколько сердечников на провод.Канифоль обычно оставляет после себя остатки, которые необходимо очистить.

Порошковый:

Припой с флюсовой сердцевиной содержит одну или несколько сердечников из флюса. Флюс несколько более кислый, чем канифоль, поэтому остатки необходимо смыть, чтобы предотвратить дальнейшее повреждение суставов и окружающих компонентов.

Кислотный припой сердечника:

Припой с кислотным сердечником состоит из флюса на кислотной основе, который представляет собой прочную и более агрессивную форму припоя.Этот тип припоя помогает предотвратить образование оксидного слоя, вредного для поверхности. Припой с кислотным сердечником чаще всего используется в сантехнике.

Заключение

Для любителей свинцовый припой намного удобнее, так как с ним легче всего работать. Опыт работы с бессвинцовым припоем зависит от качества продукта. Также важно иметь припой с флюсовой сердцевиной, это значительно упростит пайку.Флюсовый наполнитель предпочтительнее канифольного, поскольку его легче очистить.

Краткое руководство по выбору припоя

Проволочный припой — одна из самых популярных форм припоя, которая продается. Он используется во многих отраслях промышленности, в которых используется припой. Не все припоя одинаковые — разные провода подходят для разных применений и температур. Проволока припоя также может сильно отличаться от в зависимости от типа припоя, который вы хотите приобрести.Паяльные провода — это провода с низкой температурой плавления, которые могут плавиться вместе с паяльником. В зависимости от области применения и температуры пайки доступно множество различных типов паяльной проволоки.

Проволока припоя обычно бывает двух разных типов — припой из свинцового сплава и бессвинцовый припой. Есть также проволока для припоя с канифольным сердечником, в центре которой находится трубка, содержащая флюс. Свинцовый припой обычно изготавливается из сплава свинца и олова. Олово обычно используется со свинцом, поскольку оно имеет более низкую температуру плавления.Он имеет соотношение сплава 63/37 или 60/40. При работе с электрическими компонентами лучше всего подходит 63/37. Это означает, что этот припой имеет резкий переход между твердым и жидким состояниями при изменении температуры. Это свойство очень полезно для уменьшения холодных стыков, которые обычно возникают, когда компоненты движутся во время охлаждения.

В прошлом припой на основе свинца был отраслевым стандартом, хотя проблемы со здоровьем, связанные со свинцом, сделали его менее популярным выбором.В результате цена свинцового припоя и свинцового припоя за последние несколько лет снизилась.

Бессвинцовый припой в проволоке обычно содержит олово, серебро и медь. Бессвинцовые проволоки дороже припоев из свинцовых сплавов, а также их температура плавления выше. Это означает, что они требуют более высокого температурного потока. Проблема бессвинцового припоя в том, что он может быть очень хрупким. Бессвинцовые припои сыграли очень важную роль в уменьшении размеров портативных устройств. Когда малые форм-факторы с полупроводниками высокой плотности представляют собой корпуса с помощью бессвинцового припоя, они вызывают меньше проблем по сравнению с припоем на основе свинца.

При выборе паяльной проволоки важно понимать свои требования к пайке, чтобы убедиться, что покупка эффективно подходит для вашего применения. В сантехнике используется припой 95Sn / 5Sb и 97Sn / 3Cu. Некоторые примеры материалов, используемых в этой отрасли, включают 15Sn / 85Pb, 20Sn / 80Pb, 30Sn / 70Pb, 25Sn / 65Pb и 40Sn / 60Pb, а также алюминий и медь. В производстве витражей рекомендуется использовать 60Sn / 40Pb, но вы также можете использовать 50Sn / 50Pb и 63Sn / 37Pb, в зависимости от того, над чем вы работаете.Канифоль и кислотный припой сердечника также обычно используются в электрических цепях или электрических соединениях.

Майер Сплавы

Mayer Alloys — это дистрибьютор припоя, который имеет запасы и поставляет полную линейку припоев. Поскольку мы являемся главным дистрибьютором AIM Solder, все материалы, которые мы храним и поставляем, гарантированы и сертифицированы в соответствии со стандартами ISO 9001. Mayer Alloys предлагает полный ассортимент цветных металлов высочайшего качества, специализирующийся на сплавах на основе олова и свинца, а также сплавах без свинца для производства и / или изготовления.В большинстве случаев мы отправим ваши товары в тот же день, когда они были заказаны. Служба поддержки клиентов и техническая поддержка всегда доступны, чтобы гарантировать, что вы получите нужные материалы. Для получения технической поддержки свяжитесь с нами по телефону 888-513-7971 или напишите нам по адресу [email protected]

Выбор припоя — навигация по различным сплавам, типам флюсов и т. Д. — Neurochrome

Как вы, наверное, заметили, статьи моей базы знаний не содержат рекламы. Вместо того, чтобы отвлекать вас надоедливой рекламой, прошу вас сделать пожертвование.Если вы найдете содержимое этой страницы полезным, рассмотрите возможность внесения пожертвования, нажав кнопку «Пожертвовать» ниже.

Выбор припоя

Выбор подходящего припоя для вашего электронного проекта может быть немного сложным для многих новичков и довольно запутанным даже для опытных ветеранов. Моя цель на этой странице — внести некоторую ясность для вас, любителя, чтобы вы могли сделать осознанный выбор.

Для начала: вы хотите использовать припой, предназначенный для использования в электронике, а не водопроводный припой.В сантехнике вы наносите флюс кистью, а сам припой не содержит флюса. Это бесполезно для электроники. Водопроводный флюс слишком кислый для использования в электронике, а также очень грязный.

Поток

Назначение флюса — очистить паяное соединение при нанесении припоя, тем самым позволяя припою течь, в результате чего получается хорошее паяное соединение без пустот. Флюс также изменяет поверхностное натяжение, что увеличивает адгезию припоя к металлу в паяном соединении.Припой, используемый для электроники, имеет встроенный флюс, а струйка дыма, которая выделяется во время процесса пайки, вызвана выкипанием флюса. Продолжительное воздействие паров флюса опасно для здоровья. Риск для здоровья, вероятно, меньше для любителя, иногда выполняющего пайку. Тем не менее, рекомендуется установить небольшой вентилятор, чтобы отводить пары флюса от рабочей зоны во время пайки.

Существует три различных флюса для пайки электроники.Основное отличие — сложность удаления флюса.

  1. Водорастворимый . Основное преимущество водорастворимого флюса в том, что его относительно легко удалить. Промойте контур теплой проточной водой и при необходимости встряхните щеткой с мягкой щетиной. Также можно использовать ультразвуковой очиститель. Затем промойте деионизированной (DI) или паровой дистиллированной водой. Основным недостатком этого типа флюса является то, что он имеет , которые необходимо удалить.
  2. На основе канифоли .Традиционно флюс, используемый в припое для электроники, был основан на сосновой канифоли. Он доступен в трех «вкусах»: неактивированный (R), умеренно активированный (RMA) и активированный (RA), причем последний является наиболее кислым из трех. Остатки флюса на канифольной основе имеют умеренную коррозию и должны быть удалены после пайки. Обратите внимание, что состав припоя RMA разработан таким образом, что очистку, хотя и рекомендуется, можно не проводить. RMA также является наиболее распространенным типом припоя на канифольной основе. Флюс на основе канифоли можно удалить изопропиловым или изопропаноловым спиртом с последующей промывкой деионизированной водой.Обычно необходимо немного взболтать щеткой с мягкой щетиной.
  3. Без очистки . Как видно из названия, флюс, не требующий очистки, разработан таким образом, что в очистке нет необходимости. Некоторые утверждают, что, хотя флюс без очистки не требует очистки, флюс в любом случае следует удалять. К сожалению, флюс, не требующий очистки, очень трудно удалить, что требует использования очистителей флюса, содержащих ацетон, гексан и другие агрессивные растворители.
  4. Не подлежит очистке, смывается водой . Этот тип флюса является уникальным для ChipQuik и сочетает в себе преимущества водорастворимого флюса и флюса, не требующего очистки.Флюс, не требующий очистки, смываемый водой, представляет собой флюс, не требующий очистки. Остатки, оставленные этим флюсом, не вызывают коррозии и не проводят ток, и должны оставаться на печатной плате после пайки. Однако, в отличие от обычного флюса, не подлежащего очистке, флюс ChipQuik, не требующий очистки и смываемый водой, можно удалить, промыв печатную плату горячей (60 ºC) водой. Обратите внимание, что остатки флюса не затвердевают. Скорее, он имеет свойство размазываться, и его можно стереть с доски. Хотя это флюс, не требующий очистки, кажется, что его нужно очистить с платы.

Если вы хотите минимизировать количество припоя в вашем ящике для инструментов, я предлагаю приобрести припой с флюсом RMA. В качестве альтернативы я предлагаю использовать водорастворимый флюс для контуров, которые можно легко очистить, и флюс, не требующий очистки, в ситуациях, когда очистка затруднена или невозможна.

Обратите внимание, что многие материалы для восстановления печатных плат, такие как распаянная оплетка (например, Solder-Wick), содержат флюс. Убедитесь, что ваши различные источники флюса совместимы, т.е. если вы выполняете пайку с флюсом RMA, обязательно используйте Solder-Wick с флюсом RMA для удаления припоя.

Очистители флюса

Проблема с остатками флюса в том, что они гидрофильны, т. Е. Притягивают воду. Это означает, что любой остаток флюса на печатной плате вызовет значительные токи утечки в дождливый день. У вас может быть трасса, которая хорошо работает в засушливом климате, но не работает в прибрежном климате. Сочетание воды и остатков флюса также вызывает коррозию и может со временем привести к отказу ваших цепей. Как отмечалось выше, исключениями являются остатки флюса без очистки, которые не вызывают коррозии, и остатки от флюса RMA, которые являются только очень умеренно коррозионными, что позволяет не проводить этап очистки.

Удалители флюса бывают различной степени агрессивности, от легких до тяжелых. Легкие удалители флюса, как правило, в основном на основе изопропила или изопропанола, тогда как мощные флюсы включают ацетон, гексан и другие довольно неприятные растворители. Эти чистящие средства легко воспламеняются, и их следует использовать только в хорошо вентилируемых помещениях. Я настоятельно рекомендую вам прочитать паспорт безопасности материала (MSDS) перед использованием любого из этих средств для удаления флюса. Помимо личной безопасности, обратите внимание, что некоторые средства для удаления флюса растворяют пластик, поэтому будьте осторожны.

Лично мне нравится Chemtronics Flux-Off No Clean Plus, который вы можете приобрести у Mouser в США. Он не доставляется авиапочтой из-за горючести. Это относительно агрессивное средство для удаления флюса, которое, как правило, оставляет тусклый осадок на печатной плате. Этот остаток можно удалить с помощью полоскания водой. MG Chemicals (и многие другие) также производят средства для удаления флюса.

На любой собранной плате, которую я отправляю покупателю, будет удален флюс.

Припой

Есть две общие группы припоев, используемых в электронике: свинцовые и бессвинцовые, причем последние сегодня преобладают в производстве электроники из-за экологических проблем, связанных с утилизацией электронных продуктов.

Бессвинцовый припой не имеет лучшей репутации, отчасти из-за технических проблем с процессом пайки. Большинство бессвинцовых припоев плавятся при более высокой температуре (около 220-250 ºC), чем припой на основе олова / свинца (около 180-190 ºC). Таким образом, переход от свинцового припоя к бессвинцовому потребует изменения температуры жала паяльника. Типичная температура наконечника для этилированной пайки составляет 320–370 ºC (600–700 ºF). Для использования без свинца температуру необходимо увеличить до 370–425 ºC (700–800 ºF).В дополнение к более высокой температуре наконечника необходимо увеличить время выдержки. Паяное соединение может быть выполнено припоем на основе свинца менее чем за секунду. При использовании бессвинцового припоя это время необходимо увеличить, чтобы избежать холодных паяных соединений.

Припой с выводами

Опасно для здоровья: Припой с выводами содержит свинец (DUH!). При попадании внутрь свинец накапливается в жировых тканях организма, включая миелиновую оболочку, окружающую нервные волокна в головном мозге. Это может привести к повреждению головного мозга, особенно у младенцев и маленьких детей.В основном это проблема свинцового литья, когда свинец нагревается до температуры, близкой к температуре кипения. Температура, используемая при пайке, намного ниже. Основной риск воздействия свинца — это его контакт, который соскальзывает с припоя на пальцы. Пожалуйста, убедитесь, что вы не едите и не пьете во время пайки. После пайки тщательно вымойте руки.

Существует три обычно используемых сплава на основе свинца для электронной пайки:

  1. 60/40 (Sn / Pb) . Основное преимущество припоя 60/40 — это стоимость, поэтому большая часть старого оборудования собиралась с использованием этого типа припоя.Основным недостатком этого сплава является то, что он имеет пластичную область 5 ºC. Припой 60/40 становится пластичным (пластичным, но не полностью расплавляется) при 183 ºC и плавится при 188 ºC. При охлаждении припой проходит через ту же пластиковую область, и если соединение нарушается или перемещается, когда припой проходит через пластиковую область, образуется холодное паяное соединение. Это может сделать ручную пайку неприятным занятием, особенно для новичка. Пока паяное соединение остается неподвижным до полного затвердевания припоя, пластиковая область не имеет практического значения для паяных соединений.
  2. 63/37 (Sn / Pb) . Припой 63/37 — это эвтектический сплав, что означает, что он переходит из твердого состояния непосредственно в жидкость без пластичности. Припой 63/37 плавится при 183 ºC. Этот тип припоя немного дороже, чем 60/40, но отсутствие пластикового участка делает работу с ним приятнее и удобнее для новичков. Соединения, выполненные с использованием этого припоя, будут выглядеть более блестящими, чем соединения, выполненные с использованием припоя 60/40. Это чисто косметический эффект.
  3. 62/36/2 (Sn / Pb / Ag) .«Серебряный» припой 62/36/2 набирает популярность в аудио-кругах — вероятно, потому, что он дороже и содержит серебро. Для пайки медных проводов и печатных плат нет никаких доказательств того, что «серебряный» припой должен превосходить обычный припой 60/40 или 63/37. Однако, если вы припаиваете к серебряной проволоке, в том числе к некоторым слюдяным колпачкам и радиочастотным кабелям «серебро на стали», вы можете использовать «серебряный» припой. Это связано с тем, что обычный припой Sn / Pb со временем растворяет серебро. Серебро в 62/36/2 предотвращает это.

С точки зрения проводимости, три типа находятся в пределах нескольких процентов друг от друга. Предел прочности на разрыв у припоя 62/36/2 примерно вдвое выше, чем у 60/40, но действительно ли это приводит к механически более прочным паяным соединениям, зависит от геометрии соединения.

Бессвинцовый припой

Разработка хорошего бессвинцового припоя была сложной задачей, и некоторые из лучших сплавов доступны только в форме паяльной пасты. Первым представленным бессвинцовым сплавом стал SAC305 (96.5/3 / 0,5 — Sn / Ag / Cu). Соединения, выполненные из этого сплава, имеют тусклый и зернистый вид, поэтому их невозможно отличить от холодных (вышедших из строя) паяных соединений, выполненных припоем 60/40. Предлагаю сторониться этого сплава.

Некоторые из наиболее удобных в использовании сплавов бессвинцового припоя:

  1. AIM Sn100C® . Этот сплав почти на 100% состоит из олова. Он содержит 0,7% меди, 0,05% никеля, ≤0,01% германия. Остальные ок. 99,25% олово. Никель и германий работают в тандеме, увеличивая поверхностное натяжение расплавленного припоя, тем самым сводя к минимуму образование перемычек припоя и улучшая заполнение отверстий.AIM Sn100C® — это эвтектический сплав с температурой плавления 227 ºC. Поскольку этот сплав является единственной игрой в городе для бессвинцового припоя для проволоки, он довольно дорогой — более чем в два раза дороже свинцового припоя 63/37.
  2. Легированный германием 99,3 / 0,7 (Sn / Cu). Похоже, это общая версия AIM Sn100C®. Одним из примеров является сплав CQ100Ge ™ компании ChipQuik.
  3. Кестер K100LD. Как и перечисленные выше сплавы, K100LD содержит 99,3% олова и 0,7% меди с небольшими количествами никеля и — в отличие от других сплавов — висмута.Это эвтектический сплав с температурой плавления 227 ºC.
  4. 99,3 / 0,7 (Sn / Cu) . Аналогичен AIM Sn100C® и CQ100Ge ™, но без легирования никелем / германием. Отказ от легирования Ge / Ni снижает затраты примерно на 5%. Этот сплав является эвтектическим и плавится при 227 ºC.
  5. 95/5 (Sn / Ag). По своим характеристикам припой 95/5 очень похож на припой с выводами 60/40, что очень привлекательно. Этот сплав имеет довольно большую пластиковую область, поэтому он не очень полезен для любителя.Он переходит в пластичность при 221 ºC и плавится при 254 ºC. Из-за высокого содержания серебра этот тип припоя невероятно дорогой.

Не рекомендуется смешивать свинцовый и бессвинцовый припои. Поэтому следите за тем, чтобы жала паяльника использовались только для свинцового или бессвинцового припоя. Жало, покрытое свинцовым припоем, можно использовать для бессвинцовой пайки после 4-5 циклов тщательной очистки / повторного олова, однако настоятельно рекомендуется выбрать один тип припоя для жала и придерживаться его. В некоторых научно-исследовательских лабораториях есть отдельный паяльный стол для бессвинцового припоя, чтобы избежать перекрестного загрязнения.

В общем, припои нельзя смешивать. Сохранение химического состава припоя в чистоте гарантирует, что только сплавы, которые производитель припоя намеревался формировать, действительно образуются при его остывании.

Диаметр

Выбор диаметра припоя, подходящего для конкретной задачи, может оказаться значительным подспорьем в паяльных работах. Припой малого диаметра значительно упрощает нанесение небольшого количества припоя. Это очень удобно для пайки компонентов поверхностного монтажа.Для более крупных компонентов, таких как компоненты с выводами или разъемы, использование припоя малого диаметра требует подачи припоя значительной длины к стыку, что увеличивает время пайки и риск перегрева компонентов.

Для работ, связанных с устройствами поверхностного монтажа, я предпочитаю припой диаметром 0,5 мм. Для выводов и разъемов я использую припой диаметром 0,7 мм. Для большинства работ с электроникой хорошо подойдет припой диаметром от 0,4 до 1,0 мм. Если вы много работаете с устройствами для поверхностного монтажа, стремитесь к нижнему пределу этого диапазона.

Срок годности

Да. Действительно! У припоя есть срок годности. Для упомянутых выше сплавов рекомендуется использовать припой в течение трех лет с момента изготовления. Тем не менее, я только сейчас заканчиваю рулон 0,7 мм припоя с флюсовым сердечником 60/40 RMA, который я начал в конце 1980-х годов, и паяные соединения, которые я делаю сегодня, работают так же хорошо, как и когда-либо.

Тем не менее, соблюдайте срок хранения паяльной пасты. Паяльная паста состоит из небольших шариков припоя, взвешенных во флюсе.Со временем флюс окисляется, что делает его неэффективным. В результате припой не течет правильно, и становится очень трудно получить хорошее паяное соединение. Срок годности паяльной пасты около полугода. При охлаждении паяльной пасты срок хранения может быть увеличен примерно до года. Само собой разумеется, но, пожалуйста, не храните припой в холодильнике, который вы используете для еды!

Пожалуйста, пожертвуйте!

Вы нашли этот материал полезным? В таком случае рассмотрите возможность внесения пожертвования, нажав кнопку «Пожертвовать» ниже.

типов пайки, о которых вы должны знать

По определению, припой — это плавкий металлический сплав (то есть с низкой температурой плавления), используемый для создания прочной связи между металлическими деталями и любым электрическим компонентом, например печатными платами, для создания соединения, которое может пропускать электрический ток.

Это широко используется для создания очень хорошего электрического или механического соединения между двумя определенно определенными материалами путем плавления припоя на основе свинца, такого как латунь, медь и олово.

Во всех смыслах пайка очень важна для создания по существу эффективного электрического соединения.

Если вы пытались соединить все кабели вместе и разочаровались из-за того, что это не сработало, то это из-за того, что при пайке требуется полное и стабильное соединение с учетом различных факторов.

Если вы не знаете, что делать, в этой статье мы узнаем больше деталей и всего, что вам действительно нужно знать о пайке, так что продолжайте читать.

Тип припоя по температуре

В этом разделе мы рассмотрим три типа припоя, в которых используются все более высокие температуры. Доказано, что это способствует прогрессивному укреплению суставов.

Мягкая пайка (90 ° C — 450 ° C)

Этот тип пайки обычно используется в электронике и сантехнике, поскольку он создает электрическое соединение между компонентами и печатными платами за счет использования самой низкой температуры плавления присадочного металла.

Эти присадочные металлы обычно представляют собой сплавы с температурой около 400 ° C.Часто эти сплавы содержат свинец с температурой ликвидуса ниже 350 ° C.

Этот процесс может минимизировать термическую нагрузку на компоненты из-за низких температур, используемых при пайке мягким припоем. Однако при этом не образуются прочные соединения, что делает его непригодным для механических нагрузок.

Этот тип припоя также теряет свою прочность и плавится при воздействии сильного нагрева, что делает его непригодным для использования при высоких температурах.

Твердая (серебряная) пайка (> 450 ° C)

Пайка твердым припоем создает более прочное соединение по сравнению с пайкой мягким припоем.

В этом типе припоя в качестве связующего металла используется латунь или серебро. Серебро придает большую механическую прочность. Несмотря на то, что он обладает меньшей пластичностью, чем такие металлы, как свинец, он может повысить сопротивление усталости от этих термических циклов любого бессвинцового припоя.

При использовании паяльной лампы для усиления соединения должна быть достигнута высокая температура, которая должна составлять 450 ° C или более, что требуется для этих конкретных припоев.

Пайка (> 450 ° C)

Пайка — это популярный процесс соединения металлов, при котором основной металл не плавится, а плавится путем нагрева прутков или присадок.

В отличие от пайки твердым и мягким припоем, в этом процессе используется металл с гораздо более высокой температурой плавления. Однако склеиваемый металл нагревается напротив плавления, что в этом случае очень похоже на твердую пайку.

Паяльный металл, который вы поместите между достаточно нагретыми основными металлами, расплавится и будет действовать как связующий агент, тем самым обеспечив вам более прочное соединение.

Всегда помните, что для достижения наилучшего результата материал должен быть достаточно нагрет.

Тип припоя по сердечнику

Следующие типы припоев подразделяются на три различных типа в зависимости от типа сердечника.

Припой с кислотным сердечником

В этом типе припоя полый сердечник, состоящий из флюса на кислотной основе, известного своей агрессивностью и прочностью, наматывается припоем в виде проволоки. Проволока используется на объекте как восстановитель.

Этот кислотно-щелочной флюс полностью устраняет слой оксида металла, образующийся на поверхности материала. Кроме того, он также препятствует дальнейшему окислению металла. При этом вы можете быть уверены, что суставы достаточно прочные и крепкие, чтобы не сломаться.

Припои с кислотным сердечником в основном используются для плавления медных труб и листового металла в сантехнике, а также стали и других металлов. Но после пайки необходимо очистить остатки флюса, чтобы предотвратить коррозию металлов.

Припой для канифольных стержней

То же, что и припой с кислотным сердечником, этот тип припоя также имеет полый сердечник внутри припоя, но они отличаются типом используемого флюса, который представляет собой гораздо более мягкий флюс, сделанный из канифоли.

Канифольный припой сердечника выгоден с точки зрения экологичности, поскольку этот более мягкий флюс не вызывает коррозии. Вот почему этот тип припоя используется в электроприборах, потому что трудно удалить остатки в электрических соединениях.

Иногда на месте стыка присутствуют загрязнения, такие как масло, грязь или окислы. Флюс помогает предотвратить процесс окисления на поверхности металла и иногда может химически очистить сам металл. Когда используется канифольный флюс, он действует как агент, повышающий механическую прочность и электрический контакт электрических соединений. Также бывают случаи, когда можно также нанести «смачивающий агент» для уменьшения поверхностного натяжения.

Припой с твердым сердечником

Этот тип припоя сильно отличается от двух других припоев для сердечников.Вместо полого сердечника, который присутствует в двух предыдущих припоях с сердечником, в припое с твердым сердечником используется сплошная проволока, содержащая припой или материал.

Не содержит флюса, поэтому вам потребуется наносить флюс отдельно, если вы решите использовать этот припой.

Тип припоя сплавом

Следующие типы припоев подразделяются на четыре различных типа в зависимости от типа сплава, а именно:

Припои из свинцового сплава

В этом типе припоя другие сплавы, также известные как мягкие припои, смешиваются со свинцом для получения необходимой температуры плавления и прочности на разрыв.

Олово является наиболее часто используемым сплавом вместе со свинцом в этой смеси. Они смешиваются в соотношении 60% олова и 40% свинца. Эта смесь плавится, когда достигает температуры плавления от 180 до 1900 ° C.

В свете того факта, что оно имеет низкую температуру плавления, среди прочих предпочтительнее олово. Наряду с этим, олово улучшает прочность свинца на разрыв и сдвиг.

Свинец, напротив, в основном сдерживает рост оловянной щетины.В припоях на основе свинца используется система нумерации, называемая соотношением свинцового сплава, которая определяет процентное содержание свинца, а также смешанный металл в сплаве.

Распространенные сплавы, являющиеся оловянными припоями, включают:

* процентное содержание олова / процентное содержание свинца

  • 63/37
  • 60/40
  • 50/50
  • 30/70
  • 10/90

Бессвинцовые припои

Из названия вы наверняка узнаете, что эти припои не содержат свинца.Эти бессвинцовые припои имеют более высокую температуру плавления по сравнению с припоями из свинцовых сплавов.

В США вы можете получить налоговые льготы, если используете бессвинцовые припои. Это связано с тем, что он опасен для вашего здоровья и окружающей среды. Вот почему федеральное правительство Америки предоставляет стимулы производителям, которые предпочитают использовать бессвинцовые припои.

Вместо никеля можно использовать такие добавки, как никель и защитные покрытия, чтобы избежать образования усов олова.

Некоторые примеры бессвинцового припоя включают индиевый припой, латунный припой из спелтера, который представляет собой чистый цинк или припой из цинкового сплава, платиновый припой, золотой припой и серебряный припой, которые представляют собой припои с более высокой температурой, используемые в качестве припоя для ювелиров.

Припой с флюсовым сердечником

Припой с флюсовым сердечником представляет собой проволоку, намотанную на цилиндрическое устройство, которое действует как восстановитель, присутствующий в его сердечнике.

В процессе пайки флюс используется для удаления окисленного слоя, образовавшегося на поверхности металла, который может вызвать коррозию, если его не очистить.В результате поверхность металла становится чистой и готовой к пайке.

Помимо того, что он удаляет окисленный слой, он также улучшает смачивающие свойства припоя. Когда вы собираетесь паять электронные компоненты, канифоль используется в качестве флюса. Для соединения металлов, плавления и водопровода в качестве флюса используются кислотные стержни.

Припои из серебряного сплава

Раньше серебро добавлялось только в припои на основе свинца. Это должно препятствовать эффекту, называемому миграцией серебра.Но на данный момент припои из серебряных сплавов могут быть либо бессвинцовыми, либо припоями на основе свинца.

Серебро, присутствующее в серебряном покрытии, попадает в припой. Если этот припой применить на практике в металлах перед пайкой, он сделает соединения слабыми и склонными к разрушению.

Припои из серебряных сплавов имеют различное соотношение серебра, свинца и других сплавов. Цена на эти различные типы припоев зависит от соотношения этих сплавов.

Виды припоя по форм-фактору

Форма припоя должна быть определенно определена в зависимости от типа применения и типа металла, подлежащего пайке.

Существуют различные типы припоев в зависимости от форм-фактора. Вот следующие:

  • Проволочный припой — наиболее распространенная форма припоя, при которой припой наматывается на катушку.
  • Лента припоя — Также известна как лента припоя. Это паяльный материал, имеющий форму ленты.
  • Таблетки припоя — Таблетки припоя, также известные как заготовки, часто используются для соединения металлических частей. Этот рентабельный метод подключения электрических клемм к проводу сокращает необходимость в длительных процессах обжима.
  • Пруток припоя — очень распространенная форма припоя, используемая почти каждым сварщиком в большинстве случаев.
  • Припойные стержни — Припойные стержни, расплавленные в ванны для припоя, могут быть более быстрым и автоматизированным методом пайки, чем ручная пайка припоем. Tri-Bar — это припой, который можно держать в руке, чтобы обеспечить больший объем, чем проволочный припой, при выполнении паяных швов листового металла.
  • Шайбы для пайки — Это шайбы с предварительно нанесенным покрытием, которые могут автоматизировать процесс пайки компонентов со сквозными отверстиями в особых случаях в электронике.

Виды припоя по применению:

Сантехника

Хорошая сантехника может предотвратить перекрестное загрязнение, поэтому вода в вашем доме всегда будет чистой и безопасной для любых целей.

Именно здесь пайка имеет большое значение. Это гарантирует отсутствие утечек или неразрешенных разрывов трубопроводов за счет соединения медных труб. Эти определенные проблемы могут вызвать больший ущерб и риск для здоровья, если оставить их без присмотра.

Электроника

Пайка в основном используется в электронной промышленности. Это могут быть электрические приборы или что-либо, что определенно требует соединения между компонентом и печатной платой, например, соединение меди с печатными платами, что в буквальном смысле довольно важно.

Припой для самолетов

Производство и ремонт самолетов должны отвечать конкретным требованиям условий окружающей среды, которые в значительной степени связаны с вибрацией и термоциклированием.Здесь используется исключительно авиационный припой.

Автомобильный припой

Пайка в автомобильной промышленности используется для устранения утечек, которые в основном возникают в теплообменниках охлаждающей жидкости автомобилей и других транспортных средств, что определенно противоречит тому, насколько хорошими должны быть автомобили и их машины.

Бытовой ремонт

Бытовой ремонт чаще всего требует пайки, по крайней мере, они так думали. Поврежденные электрические провода, сломанные очень металлические предметы или даже утечка на вашей раковине, в основном пайка, безусловно, очень удобна.

Заключение

В конечном итоге существует ряд факторов, которые следует учитывать при выборе правильного типа припоя для достижения удовлетворительного качества результата.

На самом деле, существуют различные виды сплавов или материалов, используемых для производства припоев для различных применений. По сути, пропорция элементов, используемых в припоях, будет определять температуру плавления припоя, которая затем согласуется с возможными применениями и предполагаемым использованием этого припоя.

С учетом вышесказанного, можно с уверенностью сказать, что пайка может быть довольно сложной поначалу, но когда вы хотите изучить и понять процесс и факторы, которые с ним связаны, успех, безусловно, достижим!

Мы стремимся помочь вам начать и улучшить ваш процесс пайки.

Мы очень надеемся, что смогли помочь вам ответить на все ваши вопросы и сомнения относительно пайки.

Ресурсы :

Какой припой (канифольный и др.)без свинца)? Что такое флюс и когда он нужен?

Зачем это нужно: Припой не просто застывает на стыке, он фактически образует металлургическую связь, растворяясь и вступая в химическую реакцию с основным материалом. К сожалению, почти все металлы окисляются на воздухе и образуют окисленный слой, который препятствует смачиванию припоя и его сцеплению с ними. Что такое окисление?

Окисление — это когда атомы кислорода (или других окислителей, таких как сера) соединяются с основными материалами, отделяя слабосвязанные электроны и образуя новые соединения, такие как оксид железа (III).Это то, что происходит, когда дольки яблока становятся коричневыми, железо ржавеет, медь становится черной / зеленой и не поддается пайке. (читайте ссылки для более точного / полного объяснения)

Результаты значительно различаются. Когда железо ржавеет, оксиды отслаиваются до тех пор, пока железа не остается. В качестве альтернативы алюминий окисляется очень быстро, но тогда он защищен от дополнительного окисления оксидным слоем. Этот слой делает невозможным пайку Al без использования специального припоя и чрезвычайно агрессивного флюса или покрытия поверхности припояемым металлом, например никелем.Хром в нержавеющей стали выполняет ту же функцию, окисляясь, образуя защитный барьер, который трудно паять. Золото остается блестящим, потому что не окисляется, к нему легко припаять, но при этом образуются хрупкие соединения. Тепло, влага и соль увеличивают скорость окисления.

Окисление может добавить скрытой стоимости к компонентам и платам, которые могли находиться на полке в течение длительного времени или подвергаться воздействию горячей и влажной окружающей среды. Медные площадки на печатных платах покрыты припоем или покрыты гальваническим покрытием для предотвращения окисления, но по прошествии некоторого времени кислород все еще может проникнуть через эти барьеры.В частности, для излишков деталей может потребоваться немного стальной ваты.

Некоторые интересные ссылки:
химическая реакция коррозии
довольно понятное объяснение окисления
wiki / Corrosion
wiki / Oxidation

Окисление происходит намного быстрее при более высоких температурах, поэтому даже если у вас каким-то образом были чистые металлы, вам все равно понадобится флюс для предотвращения образования новых оксидов при пайке.

При выборе флюса, будь то порошковая проволока, жидкость или паста, главный выбор заключается в том, насколько агрессивным он должен быть.Чем агрессивнее или «активнее» флюс, тем более твердые оксиды он может удалить и тем быстрее удаляет их. От самого слабого к самому сильному, типичные варианты для ручной пайки включают: «без очистки», RMA (умеренно активированная канифоль), RA (активированная канифолью) и водорастворимая. Недавно была принята новая система классификации (J-STD-004), которая классифицирует флюсы не по содержанию канифоли, а по активности, материалу и присутствию галогенидов.

Новая система классифицирует флюс по материалу (RO = канифоль, RE = смола, OR = органический, IN = неорганический), уровню активности (низкий, средний, высокий) и наличию галогенидов (0 или 1).Не требующие очистки флюсы на канифольной основе без очистки могут иметь маркировку ROL0 или ROL1. Хотя прямой трансляции между старой системой и новой нет, большинство потоков R и RMA попадают под низкий уровень активности, RA обычно обозначается как умеренная активность, а водорастворимые — как высокие. (источник IPC-HDBK-001 www.ipc.org)

Обратной стороной выбора более агрессивного флюса является то, что остатки, оставшиеся после пайки, МОГУТ быть коррозионными, проводящими или способствовать образованию папоротниковых наростов, называемых «дендритами». ”Расти между связями.Краткое описание (стр.29) роста дендритов и несколько отличных изображений в конце этой статьи.

Из-за риска коррозии и роста дендритов большинство производителей счищают остатки флюсов RMA и RA, а некоторые даже очищают остатки «без очистки». Вопрос, какой флюс использовать и нужно ли / как его чистить, довольно сложен.

Канифольный флюс — довольно интересное животное. Изготовленный из сока сосны при комнатной температуре, он является отличным изолятором и не вызывает коррозии. Когда он достигает 226 ° F, он начинает становиться кислым и атаковать оксиды, но затем, когда он охлаждается, он предположительно оставляет остатки, которые снова становятся инертными.В листе технических данных Kester для флюса «44» (классифицируемого как RA и ROM1) утверждается, что никакая очистка не требуется. Я не читал ни о каких производителях, которые использовали бы флюс RA (или даже RMA) и не очищали его — военные даже не использовали флюс RA с очисткой из-за риска того, что некоторые из них останутся позади. Автор Chemtronics рекомендует очищать даже флюсы, не требующие очистки. Он также отмечает, что даже если остаток не вызывает коррозии и не проводит ток, он может быть липким и притягивать пыль, вызывающую короткое замыкание.

Чтобы добавить к пазлу еще один кусочек, флюс обычно расходуется в процессе пайки. Вот почему неочищенные флюсы часто неэффективны для бессвинцовой пайки, которая может потребовать немного более высоких температур и более длительного нагрева, поскольку бессвинцовый припой «смачивается» медленнее. Флюс, не требующий очистки, может выгореть до того, как соединение будет завершено. В качестве альтернативы, если вы нанесете жидкий флюс далеко от стыка, он все еще может быть активным (коррозионным), если он никогда не нагревался.

Я не делаю электронику наведения ракет, я делаю робота, который наливает пиво, какой флюс мне использовать и действительно ли нужно чистить? Даже производители электроники, не критичной для жизни, предъявляют гораздо более строгие требования к надежности, чем индивидуальные.Они должны гарантировать, что десятки тысяч продуктов будут работать в течение нескольких лет, а не одного проекта.

Безопасный совет — использовать наименее агрессивный флюс, который позволяет припою быстро намокнуть или прилипнуть к поверхности, а затем счистить остатки спиртом и безворсовой салфеткой (не просто растирайте флюс). Попробуйте начать с умеренно активированного флюса на основе канифоли: RMA. Я склонен доверять спецификации Kester для флюса «44» (RA), в которой говорится, что он на самом деле не требует очистки.Другие производители флюсов могут иметь флюсы уровня RA или RMA, которые действительно необходимо очищать, поэтому, если вы не знаете, что используете, очистка, вероятно, будет разумной. Если вы собираетесь очищать канифольные флюсы, делайте это вскоре после пайки, потому что они быстро затвердевают (см. Рисунки в разделе «Очистка»). И, наконец, я бы лично избегал использования флюсов и припоев без очистки, если только у вас нет критически важных задач и очень чистых деталей.

Для бессвинцового припоя обычно требуется флюс, изготовленный специально для бессвинцового припоя, предназначенный для использования при немного более высоких температурах.

Жидкий флюс может значительно помочь при поверхностной пайке и демонтаже компонентов, но флюса внутри порошкового припоя должно быть достаточно для компонентов со сквозными отверстиями.

Добавить комментарий

Ваш адрес email не будет опубликован.