Как сделать из постоянного тока переменный схема: Страница не найдена — Электрика для людей

Содержание

Простой преобразователь постоянного напряжения 12В в переменное 220В

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть.

Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (или по западной терминологии DC-AC преобразователь). На рис.1 и 2 показаны две основные схемы таких преобразователей.

Принципиальная схема

В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4.

Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4.

Рис. 1. Принципиальная схема преобразователя постоянного напряжения 12В в переменное 220В.

Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2.

В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе.

На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8.

От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку.

Рис. 2. Схема выходной части импульсного преобразователя напряжения на двух мощных транзисторах.

Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Рис. 3. Схема сигнализатора разряда аккумуляторной батареи.

Детали и налаживание

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P

где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.

Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее.

Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора.

При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках.

Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит.

Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром).

Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ.

При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U.

Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3.

Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает.

Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В.

Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев, Украина.

Преобразовать постоянный ток в переменный схема. Как из постоянного тока сделать переменный?

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.


Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.


Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.


Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.


Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.


Вторая схема преобразователя переменного тока — это на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее — постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.


В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.


Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.


Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.

Постоянный ток и его источники

У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:

Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.

Переменный ток и его параметры

У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T) , а обратная ему величина – частотой (f) . Буквенное обозначение переменного тока – АС , сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:

̴

После этого знака указывается напряжение, иногда – частота и количество фаз.

Переменный ток характеризуется параметрами:

Характеристика Обозначение Единица измерения Описание
Число фаз Однофазный
Трехфазный
Напряжение U вольт Мгновенное значение
Амплитудное значение
Действующее значение
Фазное
Линейное
Период Т секунда Время одного полного колебания
Частота f герц Число колебаний за 1 секунду

Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.

Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3) .

Напряжение между фазами называется линейным , а между фазой и нулем – фазным , оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.

Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения . Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.


Достоинства и недостатки переменного напряжения

Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?

При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:


Мощность, которую передается по линии, равна:


Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.

Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.

Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.

Преобразование переменного тока в постоянный и наоборот

Процесс получения из переменного тока постоянного называется выпрямлением , а устройства – выпрямителями . Основная деталь выпрямителя – полупроводниковый диод , проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.

Затем пульсации устраняют при помощи фильтров , простейшим из них является конденсатор . Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.


Для преобразования в переменный ток используются инверторы . Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.

Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть. Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).

На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4. Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8. От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P, где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.




Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее. Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора. При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках. Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит. Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ. При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В. Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев

Cтраница 1

Преобразование постоянного тока в переменный в динамическом конденсаторе осуществляется за счет периодически изменяющейся емкости конденсатора при колебании одной из пластин.  

Преобразование постоянного тока в переменный называется инвертированием, а устройство, выполняющее такую функцию, — инвертором.  

Преобразование постоянного тока в переменный и модуляция сигналов переменного тока. Для усиления постоянного напряжения обычно используются усилители с непосредственной гальванической связью между каскадами. Существенным недостатком всех усилителей постоянного тока является дрейф нуля. Наличие дрейфа нуля и трудности непосредственного усиления малых постоянных напряжений явились причиной возникновения ряда схем усилителей с преобразованием постоянного напряжения в переменное и усилением последнего с помощью усилителя переменного тока. В качестве преобразователей применяются механические, микрофонные, электронные и другие устройства.  

Преобразование постоянного тока в переменный ток осуществляется путем периодического прерывания цепи питания нагрузки. Если уровень выходного напряжения преобразователя отличается от уровня входного напряжения постоянного тока, нагрузка включается через трансформатор.  

Преобразование постоянного тока в переменный и обратное преобразование.  

Преобразование постоянного тока в переменный (инвертирование) может осуществляться при помощи электрических вентилей, проводимостью которых можно управлять. Для этой цели используются тиристоры. Как было показано, выпрямитель е фазовым управлением и ведомый сетью инвертор (инвертор, частота тока в котором соответствует частоте сети и Р0 Рин) работают одинаково и любой из этих режимов может быть осуществлен в одной и той же схеме. При работе как выпрямитель устройство передает энергию в нагрузку постоянного тока. Когда оно работает как инвертор, источник постоянного напряжения нужен, чтобы создать ток в устройстве и передать мощность на сторону переменного тока, инверторный режим наступает при а 90 ч — 180 эл. Ведомый сетью (неавтономный) инвертор используется при реостатных испытаниях тепловозов с рекуперацией энергии. Подобные установки о каждым годом находят все большее распространение.  

Преобразование постоянного тока в переменный производится конденсатором, емкость к-рого периодически изменяется (напр.  

1.3. Преобразование переменного тока

в постоянный и постоянного в переменный

Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно.

Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким

Рис. 1.12. Двухтактный однофазный выпрямитель

эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель. Таким образом, появились новые классы машин — трансформаторов и синхронных,- постоянно работающих с выпрямителями. Однако работа электрической машины на выпрямитель имеет особенности, которые надо учитывать при проектировании этих машин и анализе процессов, происходящих в них.

Преобразование переменного тока в постоянный производится с помощью полупроводниковых вентилей, имеющих одностороннюю проводимость.-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1.12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики — менее 6% от постоянной составляющей (рис. 1.13, б).

Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое — для постоянной.

Если считать ток в нагрузке /в), содержащий высшие гармоники, повышающие нагрев обмоток. Кроме того, при использовании схем выпрямления с нулевой точкой имеется постоянная составляющая тока в обмотках (рис. 1.12,6). Из-за этого резко возрастает действующее значение тока и нужно принимать меры против создания постоянного подмагничивания стержня. Для предотвращения этого явления, например, в однофазных трансформаторах применяют либо броневую конструкцию (рис. 1.14), либо на каждом стержне располагают все обмотки трансформатора, деля их пополам.

Большое влияние на работу выпрямителя (рис. 1.15, о) оказывает коммутация тока — процесс перехода с одного вентиля на другой.

Из-за наличия индуктивностей в токопроводящей цепи и индуктивности, обусловленной потоками рассеяния трансформатора, ток с одного вентиля переходит на другой не мгновенно, а за период коммутации Г к, которому соответствует угол коммутации у (рис. 1.15, б).

Для простоты предположим, что ток в нагрузке Id идеально сглажен. Тогда сумма токов через первый и второй вентили i a \ и iai в процессе коммутации неизменна:

Рис. 1.14. Схематический чертеж броневого трансформатора

В момент начала коммутации, когда значение ЭДС проходит через нуль и меняет знак, обмотка трансформатора становится замкнутой накоротко и для ее контура можно написать уравнение

Во время коммутации напряжение на нагрузке СЛг=0,5(е 2а + +е 2 ь) и в однофазном выпрямителе равно нулю (рис. 1.15, б). Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки I d и индуктивное сопротивление х а, для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе х а равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе

где Ха» и x q » — сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке.

Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку.

Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель,

Рис. 1.16. Схема однофазного инвертора

где v«0,9 — коэффициент искажения; >ф«0,5у- угол сдвига тока относительно первой гармоники напряжения.

Преобразование постоянного тока в переменный производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др.

Схема однофазного инвертора представлена на рис. 1.16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока.

Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями.

Кроме того, в инверторе возможно появление режима сквозного горения, когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50… 100 раз.

Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами — преобразователями частоты препятствует их широкому применению.

В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д.

Рис. 1.17. Устройство машины постоянного тока

Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании.

В машине постоянного тока имеется своеобразный преобразователь- коллектор, который в генераторном режиме является выпрямителем, а в двигательном — преобразователем частоты.

Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1.17, а.

В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки.

Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью.

Проводники соединяются в витки с шагом ушт, как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка.

В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой — противоположного, как показано на эквивалентной схеме обмотки (рис. 1.17, б). По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит.

Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали.

Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.

В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин

меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков — секция.

Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС.

В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1.18, а).

При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации (рис. 1.18, б)

T K =bJv KOn , (1.66)

где Ь щ — ширина щетки; и К ол — линейная скорость точки, находящейся на поверхности коллектора.

В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1.18,0),

Рис. 1.18. Диаграммы токов при коммутации

где iiRi=AUi и i 2 R2=AU 2 — падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами; R c — активное сопротивление секции; L pe3 — результирующая индуктивность секции; е к — ЭДС от внешнего поля. Пренебрегая iR c ввиду малости R c , получим

Полученное основное уравнение коммутации (1.68) совпадает с уравнением коммутации в выпрямителе (1.рез, откуда

Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации у был неизменен:

y=*T K =2vJ>JD a v Koll =2b»jD a , (1.71)

где D a — диаметр якоря; v a — линейная скорость точки, находящейся на поверхности якоря; Ь»щ=ЬщО а /О КО л — ширина щетки, приведенная к диаметру якоря.

Для выполнения этого условия ЭДС в зоне коммутации ЭДС е к создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной.

Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается .

Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания, как в инверторах.

Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель- преобразователь частоты», ее КПД на 3…5% выше, машина значительно дешевле, имеет меньшие габариты и массу.

Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д.).

Напряжение преобразование постоянного в переменное


    Метод преобразования постоянного напряжения в переменное сравнительно прост и является наиболее современным методом измерения слабых токов. Простейшим преобразователем постоянного напряжения в переменное является ручное переключение. Такой метод применяют в компенсационных баллистических схемах (рис. IX.6). Конденсатор попеременно заряжают от измеряемого источника и разряжают через сеточное сопротивление [c.288]

    Назначением нуль-индикатора сигнализатора является сигнализация момента изменения полярности входного сигнала, т. е. момента, когда величина сигнала проходит через нуль. Таким образом нуль-индикатор является фазочувствительным устройством с высокоомным входом и релейным выходом. Применяют две разновидности схем электронных нуль-индикаторов схемы, построенные по принципу усиления постоянного тока, II схемы с преобразованием постоянного напряжения в переменное и последующим усилением. [c.155]

    Система контроля и зажигания пламени. Состоит из термоэлемента, зажигающего элемента и усилителя. На входе усилителя стоит реле РП-4 для преобразования постоянного напряжения от термопары в переменное. Зажигание пламени водорода производится тумблером включено , а контроль пламени по загоранию сигнальных лампочек да , нет , [c.180]

    Электронные нуль-индикаторы, построенные по принципу преобразования постоянного напряжения в переменное с последующим усилением при помощи обычных усилителей переменного тока, обладают большими преимуществами и получили весьма широкое распространение. Основные их достоинства-отсутствие дрейфа нулевой точки, простота наладки и регулировки, надежность, возможность замены ламп без дополнительной регулировки. [c.155]

    Анализ рассмотренных характеристик позволяет сделать вывод о возможности применения усилителя постоянного тока для изме—рений слабых световых потоков. На практике наибольшее распространение получили электрометрические усилители прямого усиления (в частности, многокаскадные усилители с коррекцией в цепи, отрицательной и положительной обратной связи) и с преобразованием постоянного напряжения в переменное [85]. [c.55]

    Предварительное преобразование постоянного напряжения рассогласования в переменное электромеханическим преобразователем с дальнейшим усилением ламповым усилителем переменного тока применено в регуляторах как периодического действия [27], так и непрерывного действия [28]. Аналогичное преобразование, но с применением транзисторного усилителя переменного тока, использовано при разработке регулятора непрерывного действия [28]. [c.109]

    Усилитель, используемый для усиления термо-э. д. с. дифференциальной термопары, собран по схеме преобразования постоянного напряжения в переменное (рис. 3). Частота преобразования 30 гц. Второй и третий каскады усилителя избирательные. Полоса пропускания усилителя —1 гц, чувствительность —- 1 мкв. В качестве преобразователей постоянного напряжения в переменное и обратно используются поляризованные реле типа РП-5. Благодаря высокой избирательности и частоте преобразования, не кратной 50 гц, усилитель мало чувствителен к наводкам от электрической сети. Реле усилителя приводится в действие переменным напряжением, подаваемым от R генератора, схема которого приведена на рис. 4. [c.23]


    Мощные преобразовательные агрегаты типа двигатель—генератор постоянного и импульсного напряжения вытесняются статическими преобразователями, использующими полупроводниковые вентили — селеновые или кремниевые. Статические преобразователи состоят из силового трансформатора, выпрямительного блока, пускорегулирующей и защитной аппаратуры. С помощью силового трансформатора обеспечиваются необходимое число фаз и заданная величина напряжения. Выпрямительный блок производит преобразование переменного напряжения в постоянное,. Пускорегулирующая и защитная аппаратура позволяет включать и выключать источник, получать необходимые вольт-амперные [c.157]

    Основным элементом потенциостата является усилитель постоянного тока с преобразованием постоянного тока в переменный на входе и обратным преобразованием на выходе усилителя. Преобразование на входе осуществляется генератором (транзистор Ti), колебательный контур которого состоит из катушки индуктивности Li и емкостей стабилитронов (Дг—Дз), работающих как электрически управляемые конденсаторы-вари-конды. Напряжение разбаланса изменяет емкость стабилитронов и амплитуду генерируемого транзистором напряжения. Таким образом, на входе усилителя происходит преобразование сигнала рассогласования в соответствующее значение амплитуды генерируемого напряжения. Входное сопротивление преобразователя не ниже 10 ом. Усиление напряжения генерации про- [c.213]

    Для преобразования постоянного напряжения небаланса измерительной схемы в переменное напряжение частотой 50 гц служит преобразовательный каскад, схематически изображенный на фиг. 44. [c.92]

    Производственные автоматические рН-метры требуют очень большого усиления напряжения небаланса, и в них применяются более совершенные принципы усиления импульсов и преобразования постоянного напряжения в переменное. [c.505]

    Преобразование постоянного напряжения небаланса в переменное производится непрерывным подключением слюдяного конденсатора в цепи стеклянного электрода то к диагонали измерительной мостовой схемы, то к сетке лампы Л. В первом положении конденсатор заряжается напряжением небаланса измерительной схемы, пропорциональным измеряемой величине Е , во втором разряжается на сопротивление утечки сетки При этом на сопротивлении [c.505]

    К электродам электрофильтра должен подаваться ток высокого напряжения и постоянного направления. Для преобразования переменного тока низкого напряжения в постоянный ток высокого напряжения устанавливают специальные повыситель-но-выпрямительные электроагрегаты. Такой электроагрегат представляет собой трансформатор переменного тока, скомплектованный с механическим выпрямителем. [c.227]

    В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в данной схеме вибропреобразователь должен обладать высоким сопротивлением изоляции контактов относительно земли . Измерительным инструментом служит электронный нуль-индикатор с электронно-оптическим индикатором на выходе (рис. IX.23). [c.305]

    Датчик с усилителем. В процессе исследований был проверен вариант измерения падения напряжения на токоподводящем тросе в момент касания анода и катода с преобразованием постоянного сигнала в переменный с последующим усилением (рис. 30). В качестве преобразователя был [c.95]

    Определение электропроводности. Для определения электропроводности растворов применяют схему мостика Уитстона в специальном видоизменении Кольрауша, изображенную на рис. 10. На этом рисунке А — аккумулятор с напряжением в 4 в / — индукционная катушка для преобразования постоянного тока в переменный (постоянный ток неприменим вследствие поляризации электродов, погруженных в раствор электролита) г — сосуд с электродами (платиновыми пластинками) и с раствором, сопротивление которого г надо определить Я — известное сопротивление О — контакт, скользящий по никелиновой струне АВ, [c.68]

    В основу прибора положена обычная компенсационная схема измерения с преобразованием постоянного напряжения разбаланса в переменное с помощью вибропреобразователя. Применяемый в дан- [c.260]

    Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамиче- [c.290]

    Преобразование постоянного напряжения в переменное может быть произведено и с помощью динамического конденсатора. Емкость [c.250]

    Преобразование постоянного тока в переменный (инвертирование) может осуществляться при помощи электрических вентилей, проводимостью которых можно управлять. Для этой цели используются тиристоры. Как было показано, выпрямитель е фазовым управлением и ведомый сетью инвертор (инвертор, частота тока в котором соответствует частоте сети и > Р н) работают одинаково и любой из этих режимов может быть осуществлен в одной и той же схеме. При работе как выпрямитель устройство передает энергию в нагрузку постоянного тока. Когда оно работает как инвертор, источник постоянного напряжения нужен, чтобы создать ток в устройстве и передать мощность на сторону переменного тока, инверторный режим наступает при а = 90 -i- 180° эл. (рис. 124). Ведомый сетью (неавтономный) инвертор используется при реостатных испытаниях тепловозов с рекуперацией энергии. Подобные установки о каждым годом находят все большее распространение. [c.141]


    Важнейшим типом преобразователя энергии является автономный (независимый) инвертор, служащий для преобразования постоянного тока в переменный с заданным числом фаз, с регулируемой частотой и напряжением. Автономный инвертор — основное звено электропривода переменного тока, а следовательно, и тепловозной электрической передачи с машинами переменного тока. [c.141]

    Питание индукционного датчика 6 осуществляется от генератора 8 током определенной частоты. Преобразователь 7 служит для преобразования сигнала переменного тока, получаемого от датчика уровня 6, в сигнал постоянного тока и передачи его к потенциометру 9. Питание генератора 8 и потенциометра 9 стабилизированным напряжением осуществляется от стабилизатора 10. [c.221]

    Трудности, возникающие при создании ламповых электрометров, значительно уменьшаются, если применяется преобразование постоянных сигналов в переменные и используются усилители переменного напряжения или тока с отрицательной связью. Такие электрометры более сложны в изготовлении, но позволяют измерять токи до 10 а. Электрометры ламповые можно использовать для измерения кратковременных токов (до 0,01 сек) 143, 150]. [c.108]

    Долгое время в качестве преобразователя использовали набор калиброванных резисторов, часто называемых токоизмерительными (см. рис. 34, 38,6). Для преобразования постоянного тока выбирают в пределах от десятков Ом до десятка МОм, для преобразования переменного и импульсного тока-не более 10 кОм. В противном случае преобразователь, вносит существенный вклад в поворот суммарной фазы напряжения, и потенциостат теряет устойчивость. Эти резисторы подсоединяют в цепь ячейки подвешен-но относительно земли, тогда ИЭ соединяется с землей (см. рис. 34), либо резисторы соединяют с земляной шиной, а ячейка оказывается подвешенной относительно земли (см. рис. 38,6). Схема с заземленной ячейкой предпочтительнее с точки зрения уменьшения внешних наводок на ячейку. Схема с заземленным таким свойством не обладает. Однако при применении первой схемы усложняется задача считывания падения напряжения с токоизмерительного резистора. [c.53]

    В качестве источника питания применяются сухие элементы с напряжением 4,5у и с силой тока 150—200 тА. Для преобразования постоянного тока в переменный служит вибропреобразователь типа В-5, вторая пара контактов которого работает на выпрямление измеряемого гальванометром тока. Прибор имеет четыре поддиапазона измерений в омах  [c.152]

    Предназначен для преобразования сетевого переменного напряжения 220 В, 50 Гц в постоянное стабилизированное напряжение от 22,5 до 28,5 В с гальванической изоляцией от сети питания. [c.16]

    Для стабилизации работы электронных силоизмерителен применяются различные способы работа усилителей стабилизуется применением обратной связи вследствие нестабильности усиления малых напряжений постоянного тока (медленное изменение постоянной составляющей выходного напряжения усилителя со временем при неизменном входном напряжении, или дрейф нуля ) применяется усиление с преобразованием постоянного напряжения в переменное и усиление с помощью усилителя переменного тока изменение характеристик элемента датчика при изменении температуры помещения исключается термостатированием датчика применением компенсационной измерительной схемы для уменьшения искажающего влияния способа закрепления упругих элементов подбираются специальные конструкции опор и т. д. [c.137]

    Питание дефектоскопа производится от аккумуляторной батареи 6 в. Преобразование постоянного напряжения в переменное происходит в генераторе, собранном на германиевых триодах. [c.109]

    С помощью выпрямителей осуществляется преобразование энергии переменного тока в энергию постоянного тока. В промышленных установках применяют различные схемы выпрямления переменного тока в постоянный, каждая из которых имеет свои достоинства и недостатки. При сравнении различных схем выпрямления учитывают следующие их технические характеристики число полупроводниковых приборов, коэффициент пульсаций выпрямленного напряжения, габаритную мощность трансформатора. [c.145]

    Выпрямленное напряжение (рис. 5.6, в) имеет постоянную составляющую [/преобразовании переменного тока в постоянный переменная составляющая равна нулю. Важным показателем работы выпрямителя служит отношение амплитуды переменной составляющей к выпрямленному напряжению, называемое коэффициентом пульсации выпрямленного напряжения [c.146]

    Рассматривая вопрос об использовании топливных элементов для производства дешевой электроэнергии в больших объемах, необходимо учитывать, что в этих элементах генерируется постоянный ток низкого напряжения, преобразование которого в переменный связано с некоторыми дополнительными потерями энергии. [c.256]

    Чувствительность и стабильность нуля в электрометрических усилителях может быть повышена при использовании схем с преобразованием постоянного напряжения в переменное. С этой целью применяют электромеханические, электрическце и модуляторные преобразователи. Наиболее высокие входные сопротивления имеют -схемы с емкостным вибрационным преобразователем, его полупроводниковым аналогом — варикапом, диэлектрическим преобразователем и преобразователем на полевых транзисторах. Применение других преобразователей ограничено сравнительно невысоким входным сопротивлением и узкой полосой пропускания. [c.56]

    Пряжение. Последовательно в цепь каждой ячейки включен модулятор, преобразующий постоянный ток ячейки в переменное напряжение с частотой в 1 кгц (рис. 5-5). Полученные напряжения суммируются в про-тивофазе, и сигнал разности после соответствующего усиления по переменному току поступает на фазовый детектор. Применение единого генератора подъема напряжения и усиление разности токов ячеек после преобразования в переменное напряжение позволяют уменьшить влияние дрейфа, характерного для методов измерения на постоянном токе. [c.103]

    Разновидностью датчиков этого тина являются электростатические генераторы без подвижных частей [31, 32]. Металлическая измерительная пластинка такого датчика покрыта сегнетоэлектри-ком. Диэлектрическая проницаемость последнего периодически меняется под воздействием специального генератора переменного напряжения, и таким образом осуществляется преобразование постоянного измеряемого поля в переменное, под воздействием которого периодически меняется поляризация металлической измерительной пластины. Амплитуда тока второй гармоники в цепи нагрузки определяется величиной измеряемой напряженности поля. В такой конструкции мощность на выходе электростатического генератора поставляется за счет электрических сил, меняющих поляризацию сегнетоэлектрика [3]. [c.184]

    Генератор имеет силовой трехфазный трансформатор / типа ЗГМ-75/10 с первичным напряжением 220/380 в и вторичным линейным напряжением Уаслин.) = 8000 в. Для преобразования подводимого от трансформатора переменного тока высокого напряжения в постоянный ток высокого напряжения служит высоковольтный газотронный выпрямитель 2, собранный по двухполупериодной трехфазной схеме. В процессе преобразования переменного тока по данной схеме значение выпрямленного напряжения возрастает до 1/г=1,35 У2(лин). В генераторе ГЛ-60 установлены две включенные параллельно лампы типа Г-431. Для предотвращения возможности прохождения высокочастотных колебаний в цепь питания имеется анодный стопорный дроссель 3, емкость 7 и индуктивность И анодного контура. [c.89]

    Схемы высокочастотных установок для индукционного нагрева с электромашинными и ламповыми генераторами приведены на рис. 11.13. Установка с ламповым высокочастотным генератором состоит из блока трехфазного анодного трансформатора 1, ловышающего напряжение 220 и 380 В до 7,5—10 кВ, блока газотронов и тиратронов 2 для преобразования переменного тока в постоянный напряжением до 10—15 кВ, генераторного блока 3 преобразования постоянного тока в высокочастотные колебания с лампой Л, колебательного контура 4, состоящего из конденсаторной батареи С1, воздушного трансформатора к и индуктора И. Перед включением газотронов (тиратронов) на полное напряжение создается выдержка времени при помощи реле времени. [c.56]

    Сигнал от сосуда 3 поступает в электронный регулирующий милливольтметр 4, от которого нужная команда подается на двигатель РД-09 через редуктор, приводящий в движение ползунок ЛАТР а 5. Электрический ток, измененный ЛАТРюм по величине и преобразованный из переменного в постоянный выпрямителем 7, изменяет индуктивное сопротивление дросселя в нужную сторону и выравнивает напряжение первичной сети. [c.97]

    Преобразование постоянного напряжения в переменное может осуществляться с использованием всех типов силовых полупроводниковых ключей. За последние годы в области средних и больших мощностей до 1000 кВт начинают широко применяться инверторы на IGBT. Несмотря на более высокую стоимость по сравнению с традиционными тиристорами, они представляют разработчикам более широкие возможности формирования напряжения и тока. [c.155]


Как из постоянного тока сделать переменный?

Инструкция

Для начала нам нужно разобраться, что такое электрический ток и чем переменный ток отличается от постоянного. Упорядоченное движение заряженных частиц называют электрическим током. В постоянном электрическом токе через сечение проводника за одинаковые интервалы времени проходит одинаковое количество заряженных частиц. А вот в переменном токе количество этих частиц за одинаковые интервалы времени всегда разное.

А вот теперь можно преступать непосредственно к преобразованию переменного тока в постоянный, в этом нам поможет устройство под названием «диодный мост». Диодный мост или мостовая схема — одно из самых распространённых устройств для выпрямления переменного тока .
Изначально она была разработана с применением радиоламп, но считалась сложным и дорогим решением, вместо неё применялась более примитивная схема со сдвоенной вторичной обмоткой в питающем выпрямитель трансформаторе. Сейчас, когда полупроводники очень дёшевы, в большинстве случаев применяется именно мостовая схема. Но использование данной схемы не гарантирует 100% выпрямления тока , поэтому в схему можно дополнить фильтром на конденсаторе, а также, возможно, дросселем и стабилизатором напряжения. Теперь, на выходе нашей схемы, как результат мы получаем постоянный ток

Чтобы получить постоянный ток , достаточно взять обычный элемент питания. Напряжение такого источника ток а, как правило, стандартное – 1,5 Вольта. Соединив последовательно несколько таких элементов, можно получить батарею с напряжением, пропорциональным количеству таких элементов. Для получения постоянного ток а можно также воспользоваться зарядным устройством от мобильного телефона (5 В) или автомобильным аккумулятором (12В). Однако, если необходимо получить нестандартное напряжение, например, 42 В, то придется соорудить самодельный выпрямитель с простейшим фильтром питания.

Вам понадобится

  • Понижающий трансформатор 220 в./42в.
  • Сетевой шнур с вилкой
  • Диодный мост PB-6
  • Электролитический конденсатор 2000 мкФ×60в
  • Паяльник, канифоль, припой, соединительные провода.

Инструкция

Соберите выпрямитель по изображенной на рисунке схеме:

Чтобы правильно собрать и использовать такое устройство, необходимы минимальные знания о происходящих в приборе процессах. Поэтому, внимательно ознакомьтесь со схемой и принципами работы выпрямителя.Схема действия диодного моста, объясняющая принцип его работы: Во время положительного полупериода (мелкий штрих пунктир) ток движется по правому верхнему плечу моста к положительному выводу, через нагрузку поступает на левое нижнее плечо и возвращается в сеть. Во время отрицательного полупериода (крупный штрих пунктир) ток течет по другой паре диодов выпрямительного моста. Здесь Тр. – трансформатор, понижает напряжение с 220 до 42 Вольт, гальванически разделяет высокое и низкое напряжение. Д – диодный мост, выпрямляет переменное напряжение, поступившее с трансформатора. Цифрой 1 обозначена первичная (сетевая) обмотка трансформатора, цифрой 2 – вторичная (выходная) обмотка трансформатора.

Подсоедините к первичной обмотке трансформатора сетевой шнур с вилкой. Двумя проводами соедините два вывода вторичной обмотки трансформатора с двумя входными выводами диодного моста. Вывод диодного моста с маркировкой «минус» припаяйте к отрицательному выводу конденсатора.

Отрицательный вывод конденсатора обозначен на его корпусе светлой полосой со знаком «минус». К этому же выводу припаяйте провод синего цвета. Это будет отрицательный выход выпрямителя. Вывод диодного моста со знаком «плюс» припаяйте ко второму выводу конденсатора вместе с проводом красного цвета. Это будет положительный вывод выпрямителя. Перед включением тщательно проверьте правильность монтажа – ошибки здесь не допустимы.

Видео по теме

Полезный совет

Конденсатор играет роль фильтра питания, сглаживая пульсации, оставшиеся после выпрямления диодным мостом переменного тока.

Для зарядки аккумулятора накала применяется зарядное устройство, которое можно приобрести в торговой сети или же сделать своими руками, потратив при этом минимум средств, да и времени.

Вам понадобится

  • Полулитровая стеклянная банка, алюминиевая и свинцовая пластина, резиновая трубка, крышка с отверстием посередине.

Инструкция

Возьмите стакан или полулитровую стеклянную банку , алюминиевую и свинцовую пластины размером 40х100 мм и резиновую трубку диаметром 2 см. Отрежьте от резиновой трубки кольцо длиной 2 см, натяните его на алюминиевую пластину, на уровень электролита . Это необходимо, так как при работе выпрямителя электролит сильно разъедает алюминий у самой поверхности раствора. Резина предохраняет его от коррозии и тем самым дает возможность выпрямителю работать значительно дольше.

Используйте в качестве электролита раствор двууглекислого натра (питьевая сода). Возьмите соду из расчета 5-7 гр. на 100 мл воды. В данном выпрямителе положительным полюсом будет алюминий, отрицательным — свинец . При включении прибора в обычную городскую сеть переменного тока свинцовой пластиной, через выпрямитель пойдет ток. Но пойдет он только в одном направлении. На алюминиевой пластине в это время постоянно будет положительный полюс напряжения .Если в сеть включить алюминиевую пластину, то на свинцовой пластине постоянно будет отрицательный полюс напряжения. Получится однополупериодный выпрямитель , потому что через него проходит электрический ток только одного полупериода. В первом случае, например, через прибор будет проходить ток только положительного направления.

Для полного использования напряжения применяют двухполупериодные выпрямители. Их нужно составить из двух или четырех элементов, в зависимости от требуемой для зарядки силы тока. А подключаются они в обе фазы электросети.При включении прибора в сеть переменного тока примените предохранители . Регулировку напряжения, которое подается на зарядку , можно произвести при помощи реостата, который позволит «гасить» лишнее напряжение в цепи и соответственно создаст нормальные условия для зарядки аккумулятора .

Видео по теме

Обратите внимание

Для зарядки аккумуляторов накала целесообразно использовать выпрямитель из 4 элементов, так как для снятия силы тока в один ампер требуется выпрямитель с площадью алюминиевой пластины в 100 кв. см.

Полезный совет

Сила зарядного тока аккумуляторов должна составлять 0,1% от его емкости.

Источники:

  • Выпрямитель для зарядки аккумулятора

Если вы решили самостоятельно изготовить трансформатор, то вам необходимо знать некоторые вещи об этом устройстве, в том числе и как рассчитать ток в трансформаторе , о чем и пойдет речь ниже.

Инструкция

Узнайте, если вам до этого было неизвестно, максимальный ток нагрузки и напряжение на вторичной обмотке.
Умножьте ток максимальной нагрузки (в амперах) на коэффициент 1,5 – узнаете обмотку второго трансформатора (в амперах).

Рассчитайте мощность , расходуемую выпрямителем от вторичной обмотки трансформатора. Для этого, умножьте напряжение вторичной обмотки на максимальный ток , который проходит через нее.
Подсчитайте мощность трансформатора. Чтобы узнать мощность следует умножить максимальную мощность на вторичной обмотке на 1,25.

Высчитайте величину тона на первичной обмотке . Для этого полученную в прошлом пункте мощность следует разделить на сетевое напряжение на первичной обмотке.
Рассчитайте параметры площади сердечника магнитного

“Белорусский государственный университет информатики и радиоэлектроники”

Кафедра защиты информации

«ЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ »

Инвертор – преобразует постоянный ток в переменный.

Конвертор – преобразователь постоянного напряжения в постоянное, но другого уровня (с промежуточным преобразованием входного напряжения в переменное и трансформацией к нужному уровню).

Центральным звеном является преобразователь постоянного напряжения в переменное.

Применяют различные схемы таких устройств:

Транзисторные и на электронных лампах;

Построенные на транзисторах с насыщающимися сердечниками;

Релаксационные генераторы, триггеры, мультивибраторы;

По однотактной, двухтактной и мостовой схемах;

Тиристорные простые и мостовые схемы (в мощных устройствах).

Простая схема двухтактного тиристорного инвертора

Рисунок 1 — простая схема двухтактного тиристорного инвертора

От Т2 поступают импульсы управления в цепь тиристоров.

От постоянного источника напряжение поступает на вход схемы. Оно проходит через

на аноды VD. заряжается до двойного входного напряжения. Если теперь подать импульсы на VD2, сразу закрывается VD1, перезаряжается, все знаки в Т1 поменяются на противоположные и ток потечет через VD2.

Как видно из работы схемы, на коммутирующей емкости

в момент закрытия тиристора действует напряжение равное удвоенному напряжению питания, что является недостатком для схемы.

Его устраняет мостовая схема тиристорного инвертора.

Мостовая схема тиристорного инвертора

Рисунок 2 — Мостовая схема тиристорного инвертора

Схема управления открывает сначала VD1 и VD4, а потом, когда емкость зарядится до

, в этот момент, если открыть другие тиристоры, VD1 и VD4 мгновенно закроются.

В данной схеме на закрытых тиристорах действует лишь напряжение источника питания.

Тиристорные выпрямители являются эффективными перспективными инверторами. Применяются на значительной мощности и используются в настоящее время для замены электромашинных агрегатов, преобразующих энергию постоянного тока резервных аккумуляторных батарей в переменный ток, в устройствах гарантированного питания (УГП) аппаратуры на предприятиях связи.

Преобразователи постоянного напряжения

Часто при питании электронных устройств ИП являются низковольтными, а для питания цепей потребления требуются значительные напряжения. При этом прибегают к преобразованию напряжения. Для этого используют инверторы и конверторы. Используются электромагнитные преобразователи, вибропреобразователи и статические преобразователи на п/п приборах.

Электромагнитные преобразователи вырабатывают напряжение синусоидальной формы, в то время как полупроводниковые и вибропреобразователи – напряжение прямоугольной формы. В настоящее время имеются статические преобразователи с выходным напряжением по форме близким к синусоидальному. Недостаток электромагнитного преобразователя: большие габариты и масса. Вибропреобразователи – маломощные и малонадежные. Поэтому наибольшее применение находят полупроводниковые преобразователи с малыми габаритами и массой, высоким КПД и эксплуатационной надежностью.

Построение преобразователей на тиристорах и транзисторах следует связывать с величиной питающих напряжений, требуемой мощности, характером изменения нагрузки.

Транзисторные преобразователи напряжения

Они подразделяются по способу возбуждения на 2 типа: с самовозбуждением и преобразователи с усилением мощности.

Транзисторы могут включаться по схеме с ОЭ, ОК, ОБ, но наиболее широко используются включение с ОЭ, так как в этом случае реализуется максимальное усиление транзисторов по мощности и тем более просто достигаются условия самовозбуждения.

Преобразователи с самовозбуждением выполняются на мощных, до нескольких десятков ватт, по однотактным и двухтактным схемам. Простейшая схема однотактного преобразователя представляет собой релаксационный генератор с обратной связью.

С обратным включ. диода.С прямым включ. диода.

При подключении напряжения питания через резистор на базу транзистора подается опирающий потенциал. Транзистор открывается и через первичную обмотку Wк трансформатора протекает ток, который вызывает магнитный поток в магнитопроводах транзистора. Появляющееся при этом напряжение на обмотке Wк трансформируется в обмотке обратной связи Wб, полярность подключения которой такова, что она способствует отпиранию транзистора. Когда ток коллектора достигает своего максимального значения: Iк=Iб*h31э, нарастание магнитного потока прекратится, полярность напряжений на обмотках трансформатора изменяется на противоположное и происходит лавинообразный процесс запирания транзистора.2*tu. Конденсатор сглаживающего фильтра Cф при этом заряжается выпрямленным напряжением до Uп.

В течении паузы tп, когда транзистор закрыт, цепь тока Iн замыкается через дроссель Lф и блокирующий диод VD2, как и в импульсном стабилизаторе с последовательным регулированием.

В однотактных преобразователях трансформатор работает с подмагничиванием, для борьбы с которым можно применять сердечник с зарядом. Однако он не подходит при использовании тор. транзистора. В нашем случае используется блокирующий конденсатор, который в течении паузы tп разряжаетсячерез обмотку W1, перемагничивая сердечник током разряда.

Емкость Cбл. Выбирается из условия, чтобы при максимальном коэффициенте заполнения φmax длительность паузы tп была не менее четверти периода колебательного контура L, Cбл.

Такой преобразователь с обратным включением диода обеспечивает развязку и защиту выходного напряжения от помех по входным шинам питания.

Транзисторные преобразователи определяются по следующим формулам:

Uп=Uп(Iкм/2Iн-W1/W2)

tu = Iкм*L1/Uп

tп = Iкм*L2/Uн*W2

φ = fп*Iкм*L1/Uп = tu/(tu+tп)

Лучшие массогабаритные показатели имеют двухтактные преобразователи с понижающим трансформатором.

Трансформаторы выполняются на магнитопроводе с прямоугольной петлей гистерезиса. Здесь также используется положительная ОС. Генератор работает следующим образом. При включении напряжения питания Uп из-за неидентичности параметров один из транзисторов, например VT1, начинает открываться и его коллекторный ток увеличивается. Обмотки ОС Wб подключены так, что наведенное в них ЭДС полностью открывает транзистор VT1 и закрывает транзистор VT2.

Переключение транзисторов начинается в момент насыщения транзистора. Вследствие этого наведенные во всех обмотках трансф. Напряжения уменьшаются до нуля, а затем изменяют свою полярность.

Теперь на базу ранее открытого транзистора VT1 подается отрицательное напряжение, а на базу ранее закрытого транзистора VT2 поступает положительное напряжение и он начинает открываться. Этот регенеративный процесс формирования фронта выходного напряжения протекает очень быстро. В дальнейшем процессы в схеме повторяются.

Частота переключения зависит от значения напряжения питания, параметров трансформатора и транзисторов и рассчитываются по формуле:fп=((Uп-Uкэ нас)*10000)/4*B*s*Wк*Sc*Kc.

Такой режим более экономичен, чем при переключении за счет предельного тока коллектора и работа преобразователя более устойчива.

Такие преобразователи используются как задающие генераторы для усилителей мощности и как автономные маломощные источники электропитания. Основные достоинства: простота схемы, а также нечувствительность к короткому замыканию в цепи нагрузки.

Недостатком преобразователя с насыщающимся сердечником является наличие выбросов коллекторного тока в момент переключения транзисторов, что увеличивает потери а преобразователе.

Напряжение на закрытом транзисторе может достигать значения:

Uкэm = (2,2: 2,4)Uпmax

два напряжения это сумма Uп+ЭДС на неработающей обмотке, кроме того учитываются выбросы напряжения во время переключения. Для уменьшения последних в схему иногда включают шунтирующие диоды.

При преобразовании больших мощностей наибольшее распространение получили преобразователи с использованием усилителя мощности. В качестве задающего генератора можно использовать преобразователи с самовозбуждением. Применение таких преобразователей целесообразно если необходимо обеспечить постоянство частоты и напряжения на выходе, а также неизменность формы кривой переменного напряжения при изменении нагрузки преобразователя.

В случае высокого входного напряжения применяют мостовые усилители мощности.

Предположим, в первый полупериод одновременно работают транзисторы T1,T2. Во второй T2,T3. Напряжение питания прикладывается к первичной обмотке транзистора, его полярность меняется каждый полупериод. Напряжение на закрытом транзисторе равно напряжению источника питания. Выходной транзистор работает в ненасыщенном режиме, выполняется он из материала с непрямоугольной петли гистерезиса.

Преобразователи на тиристорах

Тиристоры в отличие от транзисторов имеют одностороннее управление. Для запирания тиристоров в схемах преобразователей используются реактивные элементы в основном в виде коммутирующих конденсаторов.

При отпирании первого тиристора емкость заряжается до напряжения 2Uп. При отпирании второго тиристора напряжение конденсатора прикладывается в обратном направлении к первому транзистору, под действием его он запирается. Конденсатор перезаряжается, и напряжение на его обмотках и на первичной обмотке тиристора меняет знак (потенциалы показаны на схеме в скобках). В следующий полупериод вновь отпирается тиристор T1 и процесс повторяется.

Для обеспечения запирания тиристоров необходимо, чтобы энергия коммутирующего конденсатора была достаточной для того, чтобы в процессе перезаряда обратное напряжение на тиристорах падало достаточно медленно и успело бы обеспечить восстановление их запирающих свойств.

Недостатком такого инвертора является сильная зависимость выходного напряжения от тока нагрузки.

Для уменьшения влияния характера и величины нагрузки на форму и величину выходного напряжения применяют схемы с обратными диодами, которые в свою очередь необходимы для возврата реактивной энергии, накопленной в индуктивной нагрузке и реактивных коммутирующих элементах в источнике питания преобразователя.

Источник питания с бестрансформаторным входом

Особенностью таких источников являются использование процесса преобразования входного напряжения с использованием высокой частоты.

Отсутствие силового транзистора на входе и использование транзисторовна повышенной частоте существенно улучшает массогабаритные характеристики.

Функциональная схема ИПБВ на базе регулируемого преобразователя имеет следующий вид:

ВЧФ — препятствует проникновению во входные цепи помех от ИПБВ и наоборот.

ВУ – выпрямительное устройство,

СФ – сглаживающий фильтр;

РП – регулируемый преобразователь;

ЗГ – синхронизирующий задающий генератор;

ГПН – генератор пилообразного напряжения.

Работу ИПБВ со стабилизацией входного напряжения с использованием ШИМ легко представлять, рассмотрев диаграммы напряжений на отдельных участках схемы.

С целью упрощения регулировки преобразователь как правило строится по однотактной схеме с обеспечением рекуперации части энергии, накопленной в реактивных элементах в источник входного напряжения. На выходе преобразователя при напряжениях 5 — 10В ставят выпрямитель со средней точкой. С целью уменьшения времени коммутации силовых транзисторов на их входах применяют цепи обеспечивающие значительное превышение запирающего напряжения по отношению к отрицательному.

ЛИТЕРАТУРА

1. Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. — Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 200

2. Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Подред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.

3. Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. – М.: Три Л, 2000. – 400 с.

4. Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. – М.: Альтекс а, 2002. –191 с.

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть. Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).

На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4. Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8. От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P, где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.




Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее. Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора. При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках. Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит. Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ. При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В. Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев

Cтраница 1

Преобразование постоянного тока в переменный в динамическом конденсаторе осуществляется за счет периодически изменяющейся емкости конденсатора при колебании одной из пластин.  

Преобразование постоянного тока в переменный называется инвертированием, а устройство, выполняющее такую функцию, — инвертором.  

Преобразование постоянного тока в переменный и модуляция сигналов переменного тока. Для усиления постоянного напряжения обычно используются усилители с непосредственной гальванической связью между каскадами. Существенным недостатком всех усилителей постоянного тока является дрейф нуля. Наличие дрейфа нуля и трудности непосредственного усиления малых постоянных напряжений явились причиной возникновения ряда схем усилителей с преобразованием постоянного напряжения в переменное и усилением последнего с помощью усилителя переменного тока. В качестве преобразователей применяются механические, микрофонные, электронные и другие устройства.  

Преобразование постоянного тока в переменный ток осуществляется путем периодического прерывания цепи питания нагрузки. Если уровень выходного напряжения преобразователя отличается от уровня входного напряжения постоянного тока, нагрузка включается через трансформатор.  

Преобразование постоянного тока в переменный и обратное преобразование.  

Преобразование постоянного тока в переменный (инвертирование) может осуществляться при помощи электрических вентилей, проводимостью которых можно управлять. Для этой цели используются тиристоры. Как было показано, выпрямитель е фазовым управлением и ведомый сетью инвертор (инвертор, частота тока в котором соответствует частоте сети и Р0 Рин) работают одинаково и любой из этих режимов может быть осуществлен в одной и той же схеме. При работе как выпрямитель устройство передает энергию в нагрузку постоянного тока. Когда оно работает как инвертор, источник постоянного напряжения нужен, чтобы создать ток в устройстве и передать мощность на сторону переменного тока, инверторный режим наступает при а 90 ч — 180 эл. Ведомый сетью (неавтономный) инвертор используется при реостатных испытаниях тепловозов с рекуперацией энергии. Подобные установки о каждым годом находят все большее распространение.  

Преобразование постоянного тока в переменный производится конденсатором, емкость к-рого периодически изменяется (напр.  

1.3. Преобразование переменного тока

в постоянный и постоянного в переменный

Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно.

Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким

Рис. 1.12. Двухтактный однофазный выпрямитель

эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель.-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1.12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики — менее 6% от постоянной составляющей (рис. 1.13, б).

Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое — для постоянной.

Если считать ток в нагрузке /в), содержащий высшие гармоники, повышающие нагрев обмоток. Кроме того, при использовании схем выпрямления с нулевой точкой имеется постоянная составляющая тока в обмотках (рис. 1.12,6). Из-за этого резко возрастает действующее значение тока и нужно принимать меры против создания постоянного подмагничивания стержня. Для предотвращения этого явления, например, в однофазных трансформаторах применяют либо броневую конструкцию (рис. 1.14), либо на каждом стержне располагают все обмотки трансформатора, деля их пополам.

Большое влияние на работу выпрямителя (рис. 1.15, о) оказывает коммутация тока — процесс перехода с одного вентиля на другой.

Из-за наличия индуктивностей в токопроводящей цепи и индуктивности, обусловленной потоками рассеяния трансформатора, ток с одного вентиля переходит на другой не мгновенно, а за период коммутации Г к, которому соответствует угол коммутации у (рис. 1.15, б).

Для простоты предположим, что ток в нагрузке Id идеально сглажен. Тогда сумма токов через первый и второй вентили i a \ и iai в процессе коммутации неизменна:

Рис. 1.14. Схематический чертеж броневого трансформатора

В момент начала коммутации, когда значение ЭДС проходит через нуль и меняет знак, обмотка трансформатора становится замкнутой накоротко и для ее контура можно написать уравнение

Во время коммутации напряжение на нагрузке СЛг=0,5(е 2а + +е 2 ь) и в однофазном выпрямителе равно нулю (рис. 1.15, б). Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки I d и индуктивное сопротивление х а, для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе х а равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе

где Ха» и x q » — сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке.

Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку.

Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель,

Рис. 1.16. Схема однофазного инвертора

где v«0,9 — коэффициент искажения; >ф«0,5у- угол сдвига тока относительно первой гармоники напряжения.

Преобразование постоянного тока в переменный производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др.

Схема однофазного инвертора представлена на рис. 1.16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока.

Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями.

Кроме того, в инверторе возможно появление режима сквозного горения, когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50… 100 раз.

Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами — преобразователями частоты препятствует их широкому применению.

В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д.

Рис. 1.17. Устройство машины постоянного тока

Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании.

В машине постоянного тока имеется своеобразный преобразователь- коллектор, который в генераторном режиме является выпрямителем, а в двигательном — преобразователем частоты.

Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1.17, а.

В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки.

Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью.

Проводники соединяются в витки с шагом ушт, как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка.

В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой — противоположного, как показано на эквивалентной схеме обмотки (рис. 1.17, б). По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит.

Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали.

Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.

В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин

меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков — секция.

Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС.

В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1.18, а).

При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации (рис. 1.18, б)

T K =bJv KOn , (1.66)

где Ь щ — ширина щетки; и К ол — линейная скорость точки, находящейся на поверхности коллектора.

В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1.18,0),

Рис. 1.18. Диаграммы токов при коммутации

где iiRi=AUi и i 2 R2=AU 2 — падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами; R c — активное сопротивление секции; L pe3 — результирующая индуктивность секции; е к — ЭДС от внешнего поля. Пренебрегая iR c ввиду малости R c , получим

Полученное основное уравнение коммутации (1.68) совпадает с уравнением коммутации в выпрямителе (1.рез, откуда

Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации у был неизменен:

y=*T K =2vJ>JD a v Koll =2b»jD a , (1.71)

где D a — диаметр якоря; v a — линейная скорость точки, находящейся на поверхности якоря; Ь»щ=ЬщО а /О КО л — ширина щетки, приведенная к диаметру якоря.

Для выполнения этого условия ЭДС в зоне коммутации ЭДС е к создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной.

Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается .

Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания, как в инверторах.

Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель- преобразователь частоты», ее КПД на 3…5% выше, машина значительно дешевле, имеет меньшие габариты и массу.

Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д.).

Преобразователь 230 В переменного тока в 5 В постоянного тока, без потерь

В электронике нет такой вещи, как «без потерь», и нет ни одной микросхемы, предназначенной для того, чтобы делать то, что вы хотите. Но вот несколько разных идей поставок. Поскольку вы не указали текущее потребление или эффективность, давайте рассмотрим три различных подхода:

Эффективность 5% или меньше

Встраиваемые таймеры на основе микроконтроллеров обычно используют неизолирующие источники питания, например:

R1 существенно уменьшает разницу между стабилитроном и потенциалом сети переменного тока, поэтому он не будет эффективен ни для чего, кроме легких нагрузок. Кроме того, ваша нагрузка не может резко измениться, так как резистор должен быть рассчитан таким образом, чтобы обеспечить достаточный ток для стабилитрона, чтобы заставить его обратить лавину, не обеспечивая слишком большой ток. Если ваша нагрузка начинает тянуть слишком большой ток, ее напряжение упадет. Если ваша нагрузка не дает достаточного тока, стабилитрон может быть поврежден.

Pros

  • Очень маленький
  • Очень дешевый
  • Отлично подходит для очень легких нагрузок (MCU + коммутационное устройство)

Cons

  • Нет изоляции
  • Ток нагрузки не гибкий; должны быть исправлены в маленьком окне

Эффективность 20-75%

Вы всегда можете использовать трансформатор (60: 1 или около того), мостовой выпрямитель и линейный регулятор, например:

Это вводит громоздкий, дорогостоящий трансформатор в конструкцию, но он более эффективен, чем предыдущий, и ваша нагрузка может сильно варьироваться.

Pros

  • Самый простой в реализации
  • Предназначен для средних токовых нагрузок — например, радиочасов.
  • Полная изоляция
  • Относительно недорогой

Cons

  • объемистый
  • Довольно неэффективно

Эффективность 75-95%

Наиболее эффективным (и наиболее сложным) является коммутатор переменного / постоянного тока. Они работают по принципу: сначала нужно преобразовать переменный ток в постоянный, а затем переключать постоянный ток на очень высоких частотах, чтобы оптимально использовать характеристики трансформатора, а также минимизировать размер (и потери) сети фильтров на вторичной обмотке. Power Integrations создает интегральную микросхему, которая выполняет все функции управления / обратной связи / управления — все, что вам нужно, это добавить трансформатор и оптоизоляторы. Вот пример дизайна:

Как вы можете видеть, напряжение сети переменного тока немедленно выпрямляется и фильтруется для получения постоянного напряжения высокого напряжения. Устройство Power Integrations быстро переключает это напряжение на первичной стороне трансформатора. Высокочастотный переменный ток виден на вторичном, выпрямленном и отфильтрованном. Вы заметите, что значения компонентов довольно малы, даже с учетом текущего использования. Это связано с тем, что высокочастотный переменный ток требует гораздо меньших компонентов для фильтрации, чем переменный ток с линейной частотой. Большинство этих устройств имеют специальные режимы ультранизкого энергопотребления, которые работают довольно хорошо.

Эти преобразователи, как правило, обеспечивают большую эффективность и могут также служить источником мощных нагрузок. Такого рода расходные материалы вы видите во всем, от крошечных зарядных устройств для мобильных телефонов до блоков питания для ноутбуков и настольных компьютеров.

Pros

  • Чрезвычайно Эффективный
  • Полная изоляция
  • Высокий выходной ток: может достаточно легко получить более 50 А постоянного тока низкого напряжения.
  • Маленький размер

Cons

  • Большая спецификация (спецификация)
  • Сложно дизайн
  • Требуется продуманное расположение печатных плат
  • Обычно требуется индивидуальный дизайн трансформатора
  • Дорогие

Как работает преобразователь постоянного тока в переменный? — Наука

Наука 2021

Предположим, что питание отключается, и все, что у вас есть под рукой, — это автомобильный аккумулятор на 12 В. Можете ли вы использовать его для питания вашего холодильника, чтобы еда не испортилась?

Содержание:

Предположим, что питание отключается, и все, что у вас есть под рукой, — это автомобильный аккумулятор на 12 В. Можете ли вы использовать его для питания вашего холодильника, чтобы еда не испортилась? К сожалению, ответ — нет, потому что вы упустили что-то важное, а не просто говорили о розетке для вилки. Вам необходимо устройство, которое преобразует энергию постоянного тока от батареи в энергию переменного тока, которая может работать с компрессором холодильника.

Этот преобразователь постоянного тока в переменный называется инвертор, Преобразование переменного тока в постоянный довольно просто — все, что вам нужно сделать, это подать ток через диод, который пропускает ток только в одном направлении. Преобразование из постоянного тока в переменный более сложное, потому что вам нужен какой-то генератор, который меняет направление тока на нужную частоту. Есть способ сделать это механически, но большинство инверторов полагаются на резисторы, конденсаторы, транзисторы и другие схемные устройства.

Инвертору нужна еще одна вещь: способ изменения напряжения источника тока для использования устройством, которое будет использовать питание. Другими словами, это нужно трансформатор, Например, если вы питаете свой 120-вольтовый холодильник от 12-вольтовой батареи, инвертору необходим повышающий трансформатор, который увеличивает напряжение в 10 раз. Поскольку он работает только с переменным током, трансформатор включается в цепь после компонентов, которые изменяют ток с постоянного тока на переменный.

Что такое переменный и постоянный ток?

Большинство людей узнают о постоянном токе при ознакомлении с электричеством, и лучший способ визуализировать его — подумать о батарее. Если вы соединяете клеммы аккумулятора проводящим проводом, электроны текут от отрицательного контакта к положительному, так же, как муравьи следуют друг за другом, когда они добывают корм.

Если вы поместите нагрузку, такую ​​как свет, в цепь, электроны протекают через нагрузку и работают на пути к положительному полюсу. В случае лампочки работа заключается в нагреве нити накала, чтобы она светилась.

Вместо того, чтобы течь в одном направлении, переменный ток меняет направление много раз в секунду, и это зависит от того, как он генерируется. Используя электромагнитную индукцию, явление, при котором изменяющееся магнитное поле производит электрический ток в проводящем проводе, генератор переменного тока производит электричество с помощью вращающегося ротора и катушки из проводящего провода. В одном варианте ротор является постоянным магнитом, и, вращаясь, он генерирует ток в катушке, который меняет направление с каждой половиной вращения ротора.

Переменный ток не проходит через провод так же, как постоянный ток. Лучший способ думать об этом, как будто электроны в проводе вибрируют на месте. Во время первой половины вращения ротора электроны движутся в одном направлении, а во время второй половины вращения они движутся в другую сторону.

Если вы построите график зависимости движения одного электрона от времени, он сгенерирует форму волны, известную как синусоида. Частота волны определяется скоростью вращения ротора генератора.

Простой механический преобразователь постоянного тока в переменный

Устройство, которое может преобразовывать постоянный ток в переменный ток, должно иметь возможность отключать ток, идущий в одном направлении, а другой — затем, а затем реверсировать процесс через равные промежутки времени. Один из способов сделать это — поместить вращающееся колесо между парой клемм и расположить контакты таким образом, чтобы колесо чередовало соединения батареи с каждым вращением. Ток должен был течь в одном направлении, когда колесо находилось в начальной точке, и в противоположном направлении, когда колесо поворачивалось на 180 градусов.

Такая грубая установка будет генерировать ток «все или ничего» в каждом направлении, и если вы поймете движение электрона в цепи, вы получите то, что известно как прямоугольная волна. Это не будет хорошим инвертором для дома. Ток может быть в состоянии выполнить простые задачи, такие как свечение нагревательного элемента, но он не будет работать для чувствительного электронного оборудования. Кроме того, вам нужен точный способ управления вращением колеса, чтобы сделать полезную мощность переменного тока полезной.

Инверторы используют компоненты схемы для изменения текущего направления

В отличие от вращающихся колес, коммерческие инверторы используют компоненты схемы, такие как конденсаторы, резисторы и транзисторы. Общая схема преобразователя постоянного тока в переменный показывает параллельные цепи с транзисторами, включенными последовательно с резисторами, и перекрестные цепи с конденсаторами и силовыми транзисторами, или МОП-транзисторs (Металлооксидные полупроводниковые полевые транзисторы). Другой тип использует Wien мостовой генератор, который построен с резисторами и конденсаторами.

Оба инвертора, описанные выше, чисто синусоидальный (PSW) инверторs, и сигнал, который они генерируют, может использоваться всеми электронными устройствами. Если вы ищете инвертор для дома, вам нужен инвертор PSW, потому что он будет работать с электронными компонентами в вашей плите, сушилке, стиральной машине и других приборах.

Другой тип преобразователя постоянного тока в переменный модифицированный синусоидальный (MSW) инвертор, В нем используются более дешевые компоненты, такие как диоды и тиристоры, которые похожи на транзисторы. Сигнал от инвертора MSW похож на прямоугольную волну со слегка закругленными углами, и, хотя он может питать большие приборы, он не подходит для электронного оборудования. Это был бы лучший инвертор для автомобиля, обеспечивающий доступ к аккумулятору для электроинструментов и оборудования для ремонта автомобилей.

Еще одна вещь: Трансформер

Даже если вы преобразуете сигнал от источника питания постоянного тока, такого как батарея или солнечная батарея, в переменный ток, напряжение не будет достаточно большим для питания устройства 120 В. К счастью, легко увеличить напряжение переменного тока. Все, что вам нужно, это трансформатор, который также действует по принципу электромагнитной индукции.

Работа с трансформатором проста. Две проводящие катушки размещены рядом — или одна внутри другой — и ток, проходящий через одну катушку, называемую первичной катушкой, индуцирует ток в другой, которая является вторичной катушкой. Соотношение токов в двух катушках и их напряжений определяется разницей в числе витков в катушках.

Если вторичная катушка имеет больше витков, чем первая, трансформатор увеличит напряжение на величину, равную числу витков во вторичной катушке, деленному на число витков в первичной катушке.

Вы можете спроектировать инвертор для подачи любого напряжения, которое вы хотите, но если вам нужен преобразователь постоянного тока в переменный, который превратит автомобильную батарею на 12 В в источник питания на 120 В для вашего дома, вы должны сделать соотношение между первичным и вторичным От 1 до 10. Коммерческие инверторные трансформаторы имеют сотни оборотов, а провода вырабатывают резистивное тепло, поэтому для поддержания температуры в инверторе необходимы ребра и, возможно, вентилятор. Кроме того, катушки иногда наматываются вокруг твердого сердечника, чтобы обеспечить более эффективную индукцию, и это может сделать инвертор очень тяжелым.

Схема преобразования постоянного тока в переменный. Преобразователь постоянного тока в переменный.

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

1.Инвертирующие.
2.Повышающие.
3.Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

1.Ключевой коммутирующий элемент.
2.Источник питания.
3.Индуктивный накопитель энергии (дроссель, катушка индуктивности).
4.Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
5.Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение иного значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике. Устройство трансформатора включает следующие элементы:

1.Магнитопровод.
2.Первичная и вторичная обмотка.
3.Каркас для обмоток.
4.Изоляция.
5.Система охлаждения.
6.Иные элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и иные виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.

1.Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
2.Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
3.В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
4.Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
5.Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
6.В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока;

1) регуляторы напряжения;
2) преобразователи уровня напряжения;
3) линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный;

1) импульсные стабилизаторы напряжения;
2) блоки питания;
3) выпрямители.

Преобразователи постоянного тока в переменный: инверторы.

Преобразователи переменного напряжения;

1) трансформаторы переменной частоты;
2) преобразователи частоты и формы напряжения;
3) регуляторы напряжения;
4) преобразователи напряжения;
5) трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

1.На пьезоэлектрических трансформаторах.
2.Автогенераторные.
3.Трансформаторные с импульсным возбуждением.
4.Импульсные источники питания.
5.Импульсные преобразователи.
6.Мультиплексорные.
7.С коммутируемыми конденсаторами.
8.Бестрансформаторные конденсаторные.

Особенности

1.При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
2.Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
3.По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

1.Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6-24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
2.Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
3.Для питания различных цепей;

1) автоматики в телемеханике, устройств связи, электробытовых приборов;
2) радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

4.Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
5.Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

Достоинства и недостатки

К достоинствам преобразователей напряжения можно отнести:

1.Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
2.Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
3.Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
4.Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
5.Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
6.Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
7.Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

1.Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
2.Занимают некоторое место.
3.Сравнительно высокая цена.

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть. Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).

На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4. Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8. От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

Т(ч) = (0,7WU)/P, где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.




Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее. Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора. При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках. Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит. Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ. При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В. Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев

Остановимся сначала на выпрямительных измерительных преобразователях. Они предназначаются для выпрямления (детектирования) переменного тока, превращая его в пульсирующий ток, среднее значение которого представляет собой выходную величину и может быть пропорционально пиковому (амплитудному), среднеквадратическому или средневыпрямленному значениям входной величины. В соответствии с этим сами преобразователи классифицируются следующим образом: по параметру переменного напряжения U x~ , которому соответствует напряжение выходной цепи детектора: преобразователь пикового значения, преобразователи среднеквадратического и средневыпрямленного значений напряжения; по схеме входа: преобразователи с открытым и закрытым входом по постоянному напряжению; по характеристике преобразования: линейные и квадратичные преобразователи.

Преобразователь пикового значения — это преобразователь, выходное напряжение которого непосредственно соответствует U max или U min (U в или U н). Преобразователь пикового значения относится к линейным, и может иметь открытый (рисунок 2.1, а) или закрытый (рисунок 2.1, б) вход по постоянному напряжению.

Принцип работы преобразователей пикового значения напряжения заключается в заряде конденсатора C через диод V до максимального (пикового) значения U x~ , которое затем запоминается, если постоянная времени разряда конденсатора C (через резистор R) значительно превышает постоянную времени заряда. Полярность включения диода V определяет соответствие выходного напряжения U x= либо U max (U в), либо U min (U н), а возможные пульсации U x= сглаживаются цепочкой R ф, C ф. Если детектор имеет открытый вход, U x= определяется суммой`U и U в (U н), т.е. соответствует U max (U min). При закрытом входе U x= соответствует U в (U н). Если же U x~ не содержит постоянной составляющей, то схемы, изображенные на рис.2.1,а,б, идентичны, а U x= соответствует U m . В некоторых случаях применяют двухполупериодные пиковые детекторы с удвоением напряжения, позволяющие прямо измерять значение размаха напряжения.

Рисунок 2.1 Схемы преобразователя пикового значения напряжения:

а) — с открытым входом; б) — с закрытым входом.

Существенным достоинством преобразователей пикового значения напряжения являются большое входное сопротивление (равное R/2 для схемы на рисунок 2.1, а и R/3 — для схемы на рисунок 2.1, б) и наилучшие по сравнению с другими типами преобразователей частотные свойства.

Преобразователь среднеквадратического значения — это преобразователь переменного напряжения в постоянный ток (напряжение), пропорциональный U 2 ск. Характеристика преобразования в этом случае должна быть квадратичной, а при наличии постоянной составляющей необходим детектор с открытым входом.

Преобразователь среднеквадратического значения позволяет осуществить преобразование в постоянное напряжение среднеквадратического значения переменных напряжений несинусоидальной формы, поскольку

, гдеU 2 — среднеквадратическое значение напряжения несинусоидальной формы, U k — среднеквадратическое значение гармонических составляющих.

В качестве нелинейного элемента преобразователя, имеющего квадратичную вольтамперную характеристику (ВАХ), можно, например, использовать начальный участок ВАХ полупроводникового диода. Однако участок этот имеет очень малую протяженность, а полупроводниковые приборы имеют большой разброс параметров на этом участке характеристики. Поэтому такие преобразователи строятся на основе диодной цепочки. Такая цепочка позволяет получить ВАХ в результате кусочно-линейной аппроксимации параболической кривой. Схема квадратичного преобразователя с диодной цепочкой показана на рисунке 2.2.

Входное напряжение u вх подводится к широкополосному трансформатору Т1. С помощью диодов V1 и V2 во вторичной обмотке осуществляется двухполупериодное выпрямление. Выпрямленное напряжение воздействует на цепь, состоящую из диодной цепочки V1…V8, делителей напряжения R3…R14 и резистора нагрузки R15. Падение напряжения на нагрузке через фильтр нижних ч

астот Z1 подается на выход преобразователя.

Рисунок 2.2 Структурная схема преобразователя

среднеквадратического значения на основе диодной цепочки.

Выходное напряжение пропорционально среднему значению тока диодной цепочки. Диодная цепочка имеет близкую к параболической вольтамперную характеристику. Поэтому среднее значение выходного напряжения оказывается пропорциональным квадрату среднеквадратического значения входного напряжения.

Как получается квадратичная вольтамперная характеристика? Делители напряжения R3 … R14 подключены к общему стабилизированному источнику напряжения Е. Делители подобраны так, что напряжения смещения U i , подаваемые на диоды, удовлетворяют соотношению U 1 U 2 , в цепи преобразователя будет протекать ток i  = i o + i 1 + i 2 . Крутизна ВАХ будет увеличиваться с ростом U. Выбирая соответствующим образом сопротивления делителей, можно получить ВАХ в виде ломанной линии, приближающейся к квадратичной параболе. Таким образом, квадратичная характеристика синтезируется из начальных участков характеристик ряда диодных ячеек.

Коэффициент преобразования такого преобразователя по току К» v = I/U 2 , где I — среднее значение тока на выходе преобразователя, U — среднеквадратическое значение входного напряжения.

В современных приборах применяются в основном квадратичные детекторы с термопреобразователями, аналогичными преобразователям термоэлектрических амперметров. Такой преобразователь представляет собой сочетание одной или нескольких термопар и нагревателя. Основным недостатком их является квадратичный характер функции преобразования. Этот недостаток устраняется применением дифференциальной схемы включения двух (или более) термопреобразователей, как показано на рис унке 2.3.

При подаче на термопреобразователь ТП 1 измеряемого напряжения U x~ выходное напряжение ТП 1 U 1 = k T U 2 ск.

Кроме термопреобразователя ТП 1 , в схеме имеется второй термопреобразователь ТП 2 , включенный встречно с ТП 1 . На ТП 2 подается напряжение обратной связи, поэтому его выходное напряжение U 2 = k T U 2 3 .

Таким образом на входе УПТ имеет место результирующее напряжение

U 1 — U 2 = k T (U 2 ск — U 2 3), (2.1)

чему соответствует

U 3 = k УПТ k T (U 2 ск — U 2 3). (2.2)

Если параметры схемы выбрать так, чтобы

k УПТ k T U 2 3 >>U 3 , (2.3)

т

о тогда окончательно U 3  U ск, т.е. функция преобразования будет равномерной.

Рисунок 2.3 Структурная схема преобразователя

среднеквадратического значения напряжения

Преобразователь средневыпрямленного значения — это преобразователь переменного напряжения в постоянный ток, пропорциональный U св. Вольтамперная характеристка такого преобразователя должна иметь линейный участок в пределах диапазона входных напряжений. Примером подобного преобразователя может служить двухполупериодный полупроводниковый выпрямитель с фильтром нижних частот. Наиболее распространенными являются мостовые схемы (рис. 2.4). В схеме рис. 2.4,а ток через диагональ моста протекает в одном и том же направлении в течение обоих полупериодов переменного напряжения. В положительный полупериод ток протекает по цепи: верхний входной зажим — диод V1 — диагональ моста — диод V4 — нижний входной зажим; в отрицательный: нижний зажим — диод V3 — диагональ моста — диод V2 — верхний входной зажим.

Направление тока соответствует проводящему направлению указанных диодов. Характеристики реальных диодов не имеют строго линейного участка, как это требуется условиями преобразования. Ток, протекающий через диод при положительном значении входного напряжения


, (2.5)

где R v (U) — сопротивление открытого диода, зависящее от приложенного напряжения, R — сопротивление нагрузки.

Начальный участок характеристики близок к квадратичному. Поэтому будет иметь место погрешность, которая будет тем меньше, чем ближе к линейной будет характеристика диода.


Рисунок 2.4 Структурная схема преобразователя

средневыпрямленного значения напряжения.

Для улучшения линейности вольт-амперной характеристики в диагональ моста последовательно с резистором R включают резистор R доб, сопротивление которого намного больше сопротивления открытого диода R v (U).

В этом случае


. (2.6)

Зависимость прямого тока от напряжения будет близка к линейной. Уменьшение чувствительности, обусловленное включением R доб, можно компенсировать введением дополнительного усиления.

Схема, представленная на рисунке 2.4,б, отличается от предыдущей тем, что вместо диодов V3 и V4 включены резисторы R1 и R2. В положительный полупериод напряжения ток протекает через диод V1 и резистор R1. Через резистор R2 в этот полупериод ток не протекает, на его зажимах напряжение равно нулю. В отрицательный полупериод напряжения ток протекает через диод V2 и резистор R2.

Уравнение преобразования для рассмотренных схем можно выразить следующим образом:

Для схемы (рисунок 2.4,а)

U o = К v св U св =

, при R v1 = R v2 = R v3 = R v4 = R v (2.7)

Если R >> R v , то U = U св;

Для схемы (рисунок 2.4,б)

U o = К v св U св =

, при R v1 = R v2 = R v ; R1 = R2 = R, (2.8)

Если R >> R v , то U = U св.

Погрешность преобразования обусловлена, главным образом, нелинейностью вольтамперной характеристики диода и влиянием прямого сопротивления диода на ток, протекающий через выпрямительный мост.

Необходимо, однако, добавить, что линейность характеристики таких детекторов будет тем лучше, чем больше U x~ (при малых U x~ детектор становится квадратичным). Поэтому детекторы средневыпрямленного значения, как правило, применяют в вольтметрах второй модификации .

Преобразователь переменного тока в постоянный может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог. Предложенный преобразователь содержит трехфазный трансформатор (1) с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую — по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей (2…13). Числа витков фазных обмоток, составляющих обратные звезды (или звезды), и числа витков фазных обмоток, составляющих звезды (или обратные звезды), находятся в соотношении. Каждый из шести вентилей (3, 5, 7, 9, 11, 13) соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей (3, 7, 11, 9, 13, 5) подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей (2, 6, 10) и (8, 12, 4) образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды, соответственно, с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно (14) и (15), к которым присоединена нагрузка (16). Предложенный преобразователь переменного тока в постоянный обеспечивает технический результат — более высокое качество преобразования. 4 ил.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог.

Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий 12 вентилей, образующих две мостовые схемы и трансформатор, вторичная обмотка которого, поделенная в каждой фазе на три секции, соединена в двухсторонний встречно-встречный неравносторонний зигзаг — трехлучевую звезду (А.с. SU №1282291, МПК Н02М 7/162. Мостовой преобразователь электроэнергии / A.M.Репин. Бюл. №1, 1987).

Данный преобразователь имеет невысокие энергетические показатели, что обусловлено параметрической несимметрией цепей протекания тока нагрузки при формировании смежных пульсаций. Наличие частей обмоток с тремя численными значениями витков этих частей усложняет технологию равномерного размещения частей на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии результирующих напряжений вторичных обмоток, что снижает качество преобразования электроэнергии.

Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий трехфазный трансформатор с вторичной обмоткой, части которой образуют правильный замкнутый шестиугольник, к трем, чередующимся через одну, вершинам которого подключены дополнительные обмотки встречно с соответствующей им парой смежных по фазе основных частей и шестиячейковый вентильный мост (А.с. SU №1347133, МПК Н02М 7/08. Мостовой источник постоянного напряжения (его варианты) / A.M.Репин. Бюл. №39, 1987).

Данный преобразователь также подвержен снижению энергетических показателей, обусловленному параметрической несимметрией цепей тока при формирования смежных пульсаций. Кроме того, большое различие количества витков частей обмоток усложняет технологию равномерного размещения их на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии напряжений обмоток, снижающей качество преобразования параметров электроэнергии.

Наиболее близким к изобретению, принятым за прототип, является преобразователь переменного тока в постоянный (Репин A.M. Новые базовые технические решения и классификация вентильных преобразователей энергии // Вопросы радиоэлектроники. Серия ОВР, 1985. — Вып.6. — С.71, рис.10, з), обеспечивающий двенадцатипульсное выпрямление и содержащий двенадцать вентилей, соединенных в два трехфазных вентильных моста, образующих шестифазный вентильный мост из шести вентильных ячеек с двумя последовательно согласно соединенными вентилями в каждой, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, с отношением чисел витков фазных обмоток обратных друг другу звезд, равным , входы переменного тока шестифазного вентильного моста, образованные точками соединения вентилей в ячейках, соединены с фазными выводами шестифазной звезды, а выводы постоянного тока шестифазного моста, каждый из которых образован общими точками соединения одноименных электродов двух вентильных звезд (анодных звезд для одного вывода и катодных — для другого) образуют выходные выводы устройства.

Недостатком данного преобразователя является относительно невысокое качество преобразования, снижение которого обусловлено параметрической несимметрией цепей протекания тока нагрузки в смежных циклах образования пульсаций выпрямленного напряжения, приводящей к появлению неканонических гармоник в спектре выпрямленного напряжения.

Задача изобретения — создание преобразователя переменного тока в постоянный, имеющего более высокое качество преобразования.

Указанная задача достигается тем, что в преобразователе переменного тока в постоянный, содержащем двенадцать вентилей, образующих две вентильные группы, каждая из которых содержит по три вентильных ячейки из двух последовательно согласно соединенных вентилей, а одноименные свободные электроды половины вентилей первой вентильной группы и свободные электроды другого наименования, принадлежащие половине вентилей второй группы, соединены, образуя при этом анодную и катодную вентильные звезды, общие точки соединения электродов вентилей в которых образуют выходные выводы устройства, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, а отношение чисел витков фазных обмоток обратных друг другу звезд равно , причем каждый вывод фазной обмотки звезды (обратной звезды), имеющей большее число витков, присоединен к незадействованной точке соединения вентилей ячейки, принадлежащей первой вентильной группе, трансформатор преобразователя снабжен дополнительной аналогичной вторичной обмоткой, каждый вывод фазной обмотки звезды (обратной звезды) которой, имеющей большее число витков, соединен с незадействованной точкой соединения вентилей ячейки, принадлежащей второй вентильной группе, причем каждый свободный вывод фазной обмотки, принадлежащей одной шестифазной звезде, соединен со свободным электродом одного из вентилей вентильных групп, второй электрод которого соединен с противофазным данному выводу выводом фазной обмотки, принадлежащей другой шестифазной звезде.

На Фиг.1 приведена принципиальная электрическая схема предлагаемого преобразователя; на фиг.2 — векторные диаграммы напряжений, представленные в виде амплитудно-фазовых портретов напряжений фазных обмоток, и развернутые векторные диаграммы, поясняющие принцип формирования векторов результирующих напряжений; на фиг.3 — схема работы вторичных обмоток и вентилей преобразователя; на фиг.4 — временные диаграммы выпрямленного напряжения, обратных напряжений и токов вентилей.

Преобразователь (фиг.1) содержит трехфазный трансформатор 1 с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую — по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей 2…13. Числа витков фазных обмоток, составляющих обратные звезды, и числа витков фазных обмоток, составляющих звезды, находятся в соотношении . Каждый из шести вентилей 3, 5, 7, 9, 11, 13 соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей 3, 7, 11, 9, 13, 5 подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей 2, 6, 10 и 8, 12, 4 образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды соответственно с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно 14 и 15, к которым присоединена нагрузка 16.

Принцип работы преобразователя (фиг.1) иллюстрируется векторными диаграммами напряжений, представленными в виде амплитудно-фазовых портретов напряжений фазных обмоток (фиг.2, а)), составляющих две несимметричные (по амплитудам фазных напряжений) шестифазные системы напряжений вторичных обмоток, и развернутой на фазовой плоскости совмещенной векторной диаграммой, показывающей принцип формирования результирующих напряжений, представленных векторами S1…S12 (фиг.2, б)). В каждой вторичной обмотке, состоящей из гальванически связанных между собой нулевыми точками прямой и обратной звезд, отношение чисел витков фазных обмоток, составляющих (в данном случае) обратные звезды, к числам витков фазных обмоток, составляющих звезды, равно . При таком соотношении чисел витков обеспечивается равенство результирующих напряжений по амплитуде и фазовых сдвигов между ними в 30 эл. градусов.

Формирование двенадцатипульсного выпрямленного напряжения на нагрузке поясняется векторными диаграммами, которые на фиг.2 совмещены с текущими композициями соединения фазовых портретов напряжений вторичных обмоток. Так, первый вектор результирующего напряжения S1 является суммой коллинеарных векторов фазных напряжений вторичных обмоток фаз х, а, х′ и отстающего на 60 эл. град. вектора фазного напряжения фазы z′ трансформатора. В формировании вектора S12 вместо вектора напряжения фазы z′ участвует опережающий вектор напряжения фазы у′. Таким образом, можно убедиться, что данная и каждая последующая пара векторов результирующих напряжений формируется равными по модулю векторами фазных напряжений. За период формируется двенадцать одинаковых результирующих напряжений, образующих двенадцатифазную систему результирующих выпрямляемых напряжений. Обе шестифазные системы напряжений при этом синфазны друг относительно друга. Как пример, на фиг.2, в) приведен другой, из множества возможных, вариант исполнения вентильных обмоток, основу которого составляет правильный шестигранник.

Схема работы обмоток и вентилей (фиг.3), полученная из анализа диаграмм на фиг.2, б), позволяет определить, что все фазные обмотки, образующие обратные звезды, проводят ток 180 эл. град. за период сетевого напряжения, а обмотки, образующие прямые звезды — 60 эл. град. (без учета коммутации). Вентили анодной и катодной вентильных звезд имеют угол проводимости 120 эл. град. Остальные вентили имеют угол проводимости 60 эл. град. Ток нагрузки в интервале пульсации обтекает три вентиля. Порядок вступления вентилей 2…13 в работу отражен в их нумерации на схеме фиг.1.

Исходя из геометрического построения диаграмм векторов результирующих напряжений (фиг.2) определено максимальное значение выпрямленного напряжения при идеальной коммутации и соответственно его среднее значение. Приняв за относительную единицу (о.е.) амплитуду напряжения на вторичной фазной обмотке, имеющей наибольшее число витков, в соответствии с векторными диаграммами на фиг.2 получено среднее значение выпрямленного напряжения U do =3,308 о.е.

По результатам анализа работы вторичных обмоток (фиг.3) определена мощность вторичных обмоток трансформатора преобразователя, составившая 1,29 P d (P d — мощность нагрузки). Расчетная типовая мощность трансформатора предлагаемого преобразователя равна 1,15 P d , но этот показатель при исполнении обмоток по схеме шестифазной звезды возрастает на 5-6% из-за необходимости компенсации переменного потока намагничивания. Однако при выполнении обмоток по схемам замкнутого типа данный показатель улучшается. Например, при выполнении обмоток по варианту, приведенному на диаграммах Фиг.2,в), типовая мощность трансформатора равна 1,083 Р d , но технология его изготовления усложняется

На Фиг.4, а) показана временная диаграмма выпрямленного напряжения, полученная при схемотехническом моделировании и подтверждающая двенадцатипульсный режим работы преобразователя. Моделирование показало, что при нарушении принятого соотношения между числами витков разновеликих вентильных обмоток более чем на 15%, например, при соотношении

значительного искажения кривой выпрямленного напряжения от канонической формы не происходит. Отсутствие амплитудной несимметрии в пульсациях выпрямленного напряжения в этом случае обусловлено принятой для преобразователя топологией цепей формирования результирующих напряжений (фиг.2). Наблюдается лишь незначительное рассогласование фазовых сдвигов между результирующими напряжениями (максимумами пульсаций). На фиг.4, б) приведены диаграммы кривых тока и обратного напряжения для одного из вентилей катодной группы (вентиль 8), а на фиг.4, в) — аналогичные диаграммы для вентиля группы, соединяющей шестифазные звезды (вентиль 5). При сравнении последних временных диаграмм (или из анализа векторных диаграмм) видно, что максимальные обратные напряжения вентилей анодной и катодной групп составляют 0,524 от среднего значения выпрямленного напряжения, а к остальным вентилям приложено напряжение в 1,0472 раза превышающее среднее значение выпрямленного напряжения.

Весьма существенен тот факт, что, даже с учетом применения разных по площади сечения проводов при выполнении фазных обмоток звезд и обратных звезд, активные сопротивления цепей тока при формировании всех результирующих напряжений равны, а реактивные сопротивления при однотипности размещения обмоток по стержням трансформатора также будут равны (без учета поправки, связанной с применением плоского стержневого магнитопровода). Технологичности выполнения обмоток, лучшему потокосцеплению и минимизации индуктивности рассеяния способствует относительно небольшая разность чисел витков фазных обмоток, принадлежащих звездам и обратным звездам. Все это позволяет уменьшить параметрическую несимметрию и, кроме того, в ряде случаев (при различных мощностях преобразователя и (или) разных уровнях выпрямленного напряжения) появляется возможность более точного выполнения принятого расчетного соотношения между числами витков обмоток при их целочисленном исполнении. Таким образом, качество преобразования улучшается.

Данный преобразователь можно строить на основе двух однотипных трансформаторов, а дополнив его аналогичным преобразователем с первичной обмоткой в трансформаторе, осуществляющей сдвиг линейных напряжений вторичных обмоток в 30 эл. град. относительно линейных напряжений вторичных обмоток исходного трансформатора, можно удвоить кратность частоты пульсаций выпрямленного напряжения.

Таким образом, предлагаемый преобразователь переменного тока в постоянный имеет более высокое качество преобразования, чем прототип.

Преобразователь переменного тока в постоянный, содержащий двенадцать вентилей, образующих две вентильные группы, каждая из которых содержит по три вентильных ячейки из двух последовательно согласно соединенных вентилей, а одноименные свободные электроды половины вентилей первой вентильной группы и свободные электроды другого наименования, принадлежащие половине вентилей второй группы соединены, образуя при этом анодную и катодную вентильные звезды, общие точки соединения электродов вентилей в которых образуют выходные выводы устройства, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, а отношение чисел витков фазных обмоток обратных друг другу звезд равно , причем каждый фазный вывод обмотки звезды (обратной звезды), имеющей большее число витков, присоединен к незадействованной точке соединения вентилей ячейки, принадлежащей первой вентильной группе, отличающийся тем, что трансформатор преобразователя снабжен дополнительной аналогичной вторичной обмоткой, каждый вывод фазной обмотки звезды (обратной звезды) которой, имеющей большее число витков, соединен с незадействованной точкой соединения вентилей ячейки, принадлежащей второй вентильной группе, причем каждый свободный вывод фазной обмотки, принадлежащей одной шестифазной звезде, соединен со свободным электродом одного из вентилей вентильных групп, второй электрод которого соединен с противофазным данному выводу выводом фазной обмотки, принадлежащей другой шестифазной звезде.

Изобретение относится к устройству для выработки постоянного напряжения из переменного напряжения с параллельно включенными диодными мостами, преимущественно, для энергопитания железных дорог

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока для станков для повышения их быстродействия, а также на преобразовательных подстанциях для питания электрифицированных железных дорог в электрометаллургической и химической отраслях промышленности для уменьшения величины пульсаций выпрямленного напряжения и уменьшения содержания высших гармонических составляющих в кривой переменного тока

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока, не предъявляющих повышенных требований к быстродействию, а также для питания различных электротехнических установок, не предъявляющих повышенных требований к пульсации выпрямленного напряжения

Преобразователь – это электротехническое устройство, преобразующее электроэнергию одних параметров или в электроэнергию с другими значениями параметров или показателей качества. Параметрами электрической энергии могут являться род тока и напряжения, их частота, число фаз, фаза напряжения.

По степени управляемости преобразователи электрической энергии подразделяются на неуправляемые и управляемые . В управляемых преобразователях выходные переменные: напряжение, ток, частота — могут регулироваться.

По элементной базе преобразователи электроэнергии подразделяются на электромашинные (вращающиеся) и полупроводниковые (статические) . Электромашинные преобразователи реализуются на основе применения электрических машин и в настоящее время находят относительно редкое применение в электроприводах. Полупроводниковые преобразователи могут быть диодными, тиристорными и транзисторными.

По характеру преобразования электроэнергии силовые преобразователи подразделяются на выпрямители, инверторы, преобразователи частоты, регуляторы напряжения переменного и постоянного тока, преобразователи числа фаз напряжения переменного тока.

В современных автоматизированных электроприводах применяются главным образом полупроводниковые тиристорные и транзисторные преобразователи постоянного и переменного тока.

Достоинствами полупроводниковых преобразователей являются широкие функциональные возможности управления процессом преобразования электроэнергии, высокие быстродействие и КПД, большие сроки службы, удобство и простота обслуживания при эксплуатации, широкие возможности по реализации защит, сигнализации, диагностирования и тестирования как самого электрического привода, так и технологического оборудования.

Вместе с тем, для полупроводниковых преобразователей характерны и определенные недостатки. К ним относятся: высокая чувствительность полупроводниковых приборов к перегрузкам по току, напряжению и скорости их изменения, низкая помехозащищенность, искажение синусоидальной формы тока и напряжения сети.

Выпрямителем называется преобразователь напряжения переменного тока в напряжение постоянного (выпрямленного) тока.

Неуправляемые выпрямители не обеспечивают регулирование напряжения на нагрузке и выполняются на полупроводниковых неуправляемых приборах односторонней проводимости — .

Управляемые выпрямители выполняются на управляемых диодах — тиристорах и позволяют регулировать свое выходное напряжение за счет соответствующего управления .

Управляемый выпрямитель

Выпрямители могут быть нереверсивными и реверсивными. Реверсивные выпрямители позволяют изменять полярность выпрямленного напряжения на своей нагрузке, а нереверсивные — нет. По числу фаз питающего входного напряжения переменного тока выпрямители подразделяются на однофазные и трехфазные, а по схеме силовой части — на мостовые и с нулевым выводом.

Называется преобразователь напряжения постоянного тока в напряжение переменного тока. Эти преобразователи используются в составе преобразователей частоты в случае питания электропривода от сети переменного тока или в виде самостоятельного преобразователя при питании электропривода от источника постоянного напряжения.

В схемах электроприводов наибольшее применение нашли автономные инверторы напряжения и тока, реализуемые на тиристорах или транзисторах.

Автономные инверторы напряжения (АИН) имеют жесткую внешнюю характеристику, представляющую собой зависимость выходного напряжения от тока нагрузки, вследствие чего при изменении тока нагрузки их выходное напряжение практически не изменяется. Тем самым инвертор напряжения по отношению к нагрузке ведет себя как .

Автономные инверторы тока (АИТ) имеют «мягкую» внешнюю характеристику и обладают свойствами источника тока. Тем самым инвертор тока по отношению к нагрузке ведет себя как источник тока.

Преобразователем частоты (ПЧ) называется преобразователь напряжения переменного тока стандартных частоты и напряжения в напряжение переменного тока регулируемой частоты. Полупроводниковые преобразователи частоты подразделяются на две группы: преобразователи частоты с непосредственной связью и преобразователи частоты с промежуточным звеном постоянного тока.

Преобразователи частоты с непосредственной связью позволяют изменять частоту напряжения на нагрузке только в сторону ее уменьшения по сравнению с частотой напряжения источника питания. Преобразователи частоты с промежуточным звеном постоянного тока не имеют подобного ограничения и находят более широкое применение в электроприводе.

Промышленный преобразователь частоты для управления электроприводом

Регулятором напряжения переменного тока называется преобразователь напряжения переменного тока стандартных частоты и напряжения в регулируемое напряжение переменного тока той же частоты. Они могут быть одно- и трехфазными и используют в своей силовой части, как правило, однооперационные тиристоры.

Регулятором напряжения постоянного тока называется преобразователь нерегулируемого напряжения источника постоянною тока в регулируемое напряжение на нагрузке. В таких преобразователях используются силовые полупроводниковые управляемые ключи, работающие в импульсном режиме, а регулирование напряжения в них происходит за счет модуляции напряжения источника питания.

Наибольшее распространение получил , при котором изменяется длительность импульсов напряжения при неизменной частоте их следования.

Как инверторы преобразуют электричество постоянного тока в переменный?

Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.

В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943).Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни. Несмотря на это, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.

Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Что означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют.Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!

На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами. Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).

В чем разница между электричеством постоянного и переменного тока?

Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток).Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.

В более крупных бытовых приборах электричество работает иначе.Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?

Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда Вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».

Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!

Что такое инвертор?

Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большинство бытовой техники, которая есть в наших домах, специально спроектированы работать от сети переменного тока. Устройства, которым нужен постоянный ток, но которые должны потреблять электроэнергию от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.

Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрическая ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, преобразующий постоянный ток батареи в переменный ток с частотой 50–60 герц.

Фото: Типичный электрический инвертор. Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).

Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление.Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:

Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования. При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:

Электронные инверторы могут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока.В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.

Инверторы

также могут использоваться с трансформаторами для изменения определенного Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (выше или ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла по мере того, как течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено впустую!

Как работает инвертор?

Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.

Представьте, что вы — аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, а как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Чтобы обеспечить надлежащий AC, вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!

По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает немного так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.

Анимация: Базовая концепция электромеханического инвертора. Постоянный ток подается на первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает переменный ток на входе вместо постоянного тока.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.

Типы инверторов

Если вы просто включаете и выключаете постоянный ток или перевертываете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую электроэнергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.

Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.

Это объясняет, почему инверторы бывают двух разных видов: Инверторы истинной / чистой синусоидальной волны (часто сокращается до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW).В качестве их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома. Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы.

Модифицированные синусоидальные инверторы, с другой стороны, используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и действительно вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), так что, как правило, это означает, что они не подходят для таких вещей, как ноутбуки, медицинское оборудование, цифровые часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.

Изображение: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синюю), чем на прямоугольную волну (оранжевая), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.

Хотя многие инверторы работают как автономные устройства с аккумулятором, которые полностью Независимо от сети, другие (известные как инверторы , связанные с энергосистемой, или инверторы , привязанные к сети, ) специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электричества, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные инверторы или двунаправленные преобразователи , которые могут работать либо в автономном, либо в привязанном к сети режиме (но не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорогие.

Что такое инверторы?

Инверторы

могут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они тоже выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы.Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.

Фото: Микроинверторы — это небольшие компактные инверторы, обычно используемые для преобразования постоянного тока на выходе одной фотоэлектрической солнечной панели в переменный ток, который можно подавать прямо в электросеть.Другими словами, каждая панель имеет свой микроинвертор. На этой фотографии показаны шесть микроинверторов Enphase IQ 6, которые проходят испытания в Национальной лаборатории возобновляемых источников энергии (NREL). Они подключены к Интернету, а это значит, что вы можете отслеживать их работу через свой веб-браузер. и отслеживать, как он меняется с течением времени. Фото Денниса Шредера любезно предоставлено NREL.

Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Обычно на всякий случай вы нужен инвертор примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять.Это учитывает тот факт, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют пиковую мощность при первом включении. В то время как инверторы могут обеспечивать пиковую мощность в течение коротких периодов времени, это важно отметить, что они не предназначены для работы на пике мощность на длительные периоды.

Как инверторы преобразуют электричество постоянного тока в переменный?

Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.

В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943). Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни.Несмотря на это, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.

Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Что означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют. Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!

На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами.Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).

В чем разница между электричеством постоянного и переменного тока?

Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток). Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.

В более крупных бытовых приборах электричество работает иначе. Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?

Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда Вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».

Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!

Что такое инвертор?

Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большинство бытовой техники, которая есть в наших домах, специально спроектированы работать от сети переменного тока. Устройства, которым нужен постоянный ток, но которые должны потреблять электроэнергию от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.

Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрическая ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, преобразующий постоянный ток батареи в переменный ток с частотой 50–60 герц.

Фото: Типичный электрический инвертор. Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).

Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление.Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:

Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования. При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:

Электронные инверторы могут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока.В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.

Инверторы

также могут использоваться с трансформаторами для изменения определенного Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (выше или ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла по мере того, как течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено впустую!

Как работает инвертор?

Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.

Представьте, что вы — аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, а как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Чтобы обеспечить надлежащий AC, вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!

По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает немного так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.

Анимация: Базовая концепция электромеханического инвертора. Постоянный ток подается на первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает переменный ток на входе вместо постоянного тока.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.

Типы инверторов

Если вы просто включаете и выключаете постоянный ток или перевертываете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую электроэнергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.

Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.

Это объясняет, почему инверторы бывают двух разных видов: Инверторы истинной / чистой синусоидальной волны (часто сокращается до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW).В качестве их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома. Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы.

Модифицированные синусоидальные инверторы, с другой стороны, используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и действительно вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), так что, как правило, это означает, что они не подходят для таких вещей, как ноутбуки, медицинское оборудование, цифровые часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.

Изображение: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синюю), чем на прямоугольную волну (оранжевая), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.

Хотя многие инверторы работают как автономные устройства с аккумулятором, которые полностью Независимо от сети, другие (известные как инверторы , связанные с энергосистемой, или инверторы , привязанные к сети, ) специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электричества, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные инверторы или двунаправленные преобразователи , которые могут работать либо в автономном, либо в привязанном к сети режиме (но не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорогие.

Что такое инверторы?

Инверторы

могут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они тоже выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы.Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.

Фото: Микроинверторы — это небольшие компактные инверторы, обычно используемые для преобразования постоянного тока на выходе одной фотоэлектрической солнечной панели в переменный ток, который можно подавать прямо в электросеть.Другими словами, каждая панель имеет свой микроинвертор. На этой фотографии показаны шесть микроинверторов Enphase IQ 6, которые проходят испытания в Национальной лаборатории возобновляемых источников энергии (NREL). Они подключены к Интернету, а это значит, что вы можете отслеживать их работу через свой веб-браузер. и отслеживать, как он меняется с течением времени. Фото Денниса Шредера любезно предоставлено NREL.

Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Обычно на всякий случай вы нужен инвертор примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять.Это учитывает тот факт, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют пиковую мощность при первом включении. В то время как инверторы могут обеспечивать пиковую мощность в течение коротких периодов времени, это важно отметить, что они не предназначены для работы на пике мощность на длительные периоды.

Как инверторы преобразуют электричество постоянного тока в переменный?

Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.

В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943). Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни.Несмотря на это, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.

Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Что означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют. Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!

На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами.Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).

В чем разница между электричеством постоянного и переменного тока?

Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток). Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.

В более крупных бытовых приборах электричество работает иначе. Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?

Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда Вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».

Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!

Что такое инвертор?

Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большинство бытовой техники, которая есть в наших домах, специально спроектированы работать от сети переменного тока. Устройства, которым нужен постоянный ток, но которые должны потреблять электроэнергию от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.

Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрическая ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, преобразующий постоянный ток батареи в переменный ток с частотой 50–60 герц.

Фото: Типичный электрический инвертор. Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).

Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление.Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:

Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования. При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:

Электронные инверторы могут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока.В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.

Инверторы

также могут использоваться с трансформаторами для изменения определенного Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (выше или ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла по мере того, как течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено впустую!

Как работает инвертор?

Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.

Представьте, что вы — аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, а как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Чтобы обеспечить надлежащий AC, вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!

По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает немного так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.

Анимация: Базовая концепция электромеханического инвертора. Постоянный ток подается на первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает переменный ток на входе вместо постоянного тока.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.

Типы инверторов

Если вы просто включаете и выключаете постоянный ток или перевертываете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую электроэнергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.

Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.

Это объясняет, почему инверторы бывают двух разных видов: Инверторы истинной / чистой синусоидальной волны (часто сокращается до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW).В качестве их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома. Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы.

Модифицированные синусоидальные инверторы, с другой стороны, используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и действительно вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), так что, как правило, это означает, что они не подходят для таких вещей, как ноутбуки, медицинское оборудование, цифровые часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.

Изображение: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синюю), чем на прямоугольную волну (оранжевая), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.

Хотя многие инверторы работают как автономные устройства с аккумулятором, которые полностью Независимо от сети, другие (известные как инверторы , связанные с энергосистемой, или инверторы , привязанные к сети, ) специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электричества, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные инверторы или двунаправленные преобразователи , которые могут работать либо в автономном, либо в привязанном к сети режиме (но не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорогие.

Что такое инверторы?

Инверторы

могут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они тоже выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы.Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.

Фото: Микроинверторы — это небольшие компактные инверторы, обычно используемые для преобразования постоянного тока на выходе одной фотоэлектрической солнечной панели в переменный ток, который можно подавать прямо в электросеть.Другими словами, каждая панель имеет свой микроинвертор. На этой фотографии показаны шесть микроинверторов Enphase IQ 6, которые проходят испытания в Национальной лаборатории возобновляемых источников энергии (NREL). Они подключены к Интернету, а это значит, что вы можете отслеживать их работу через свой веб-браузер. и отслеживать, как он меняется с течением времени. Фото Денниса Шредера любезно предоставлено NREL.

Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Обычно на всякий случай вы нужен инвертор примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять.Это учитывает тот факт, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют пиковую мощность при первом включении. В то время как инверторы могут обеспечивать пиковую мощность в течение коротких периодов времени, это важно отметить, что они не предназначены для работы на пике мощность на длительные периоды.

Как инверторы преобразуют электричество постоянного тока в переменный?

Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.

В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943). Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни.Несмотря на это, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.

Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Что означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют. Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!

На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами.Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).

В чем разница между электричеством постоянного и переменного тока?

Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток). Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.

В более крупных бытовых приборах электричество работает иначе. Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?

Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда Вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».

Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!

Что такое инвертор?

Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большинство бытовой техники, которая есть в наших домах, специально спроектированы работать от сети переменного тока. Устройства, которым нужен постоянный ток, но которые должны потреблять электроэнергию от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.

Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрическая ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, преобразующий постоянный ток батареи в переменный ток с частотой 50–60 герц.

Фото: Типичный электрический инвертор. Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).

Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление.Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:

Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования. При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:

Электронные инверторы могут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока.В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.

Инверторы

также могут использоваться с трансформаторами для изменения определенного Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (выше или ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла по мере того, как течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено впустую!

Как работает инвертор?

Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.

Представьте, что вы — аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, а как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Чтобы обеспечить надлежащий AC, вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!

По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает немного так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.

Анимация: Базовая концепция электромеханического инвертора. Постоянный ток подается на первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает переменный ток на входе вместо постоянного тока.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.

Типы инверторов

Если вы просто включаете и выключаете постоянный ток или перевертываете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую электроэнергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.

Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.

Это объясняет, почему инверторы бывают двух разных видов: Инверторы истинной / чистой синусоидальной волны (часто сокращается до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW).В качестве их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома. Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы.

Модифицированные синусоидальные инверторы, с другой стороны, используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и действительно вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), так что, как правило, это означает, что они не подходят для таких вещей, как ноутбуки, медицинское оборудование, цифровые часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.

Изображение: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синюю), чем на прямоугольную волну (оранжевая), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.

Хотя многие инверторы работают как автономные устройства с аккумулятором, которые полностью Независимо от сети, другие (известные как инверторы , связанные с энергосистемой, или инверторы , привязанные к сети, ) специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электричества, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные инверторы или двунаправленные преобразователи , которые могут работать либо в автономном, либо в привязанном к сети режиме (но не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорогие.

Что такое инверторы?

Инверторы

могут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они тоже выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы.Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.

Фото: Микроинверторы — это небольшие компактные инверторы, обычно используемые для преобразования постоянного тока на выходе одной фотоэлектрической солнечной панели в переменный ток, который можно подавать прямо в электросеть.Другими словами, каждая панель имеет свой микроинвертор. На этой фотографии показаны шесть микроинверторов Enphase IQ 6, которые проходят испытания в Национальной лаборатории возобновляемых источников энергии (NREL). Они подключены к Интернету, а это значит, что вы можете отслеживать их работу через свой веб-браузер. и отслеживать, как он меняется с течением времени. Фото Денниса Шредера любезно предоставлено NREL.

Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Обычно на всякий случай вы нужен инвертор примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять.Это учитывает тот факт, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют пиковую мощность при первом включении. В то время как инверторы могут обеспечивать пиковую мощность в течение коротких периодов времени, это важно отметить, что они не предназначены для работы на пике мощность на длительные периоды.

20,5: Переменный ток в сравнении с постоянным

Переменный ток

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей. На рисунке \ (\ PageIndex {1} \) показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рисунок \ (\ PageIndex {1} \): (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (b) График зависимости напряжения и тока от времени для сети переменного тока частотой 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

На рисунке \ (\ PageIndex {2} \) показана схема простой схемы с источником переменного напряжения. Напряжение между выводами колеблется, как показано на рисунке: напряжение переменного тока определяется как \ [V = V_ {0} sin 2 \ pi ft, \ label {20.6.1} \], где \ (V \) — напряжение на время \ (t \), \ (V_ {0} \), \ (V_ {0} \) — пиковое напряжение, а \ (f \) — частота в герцах. Для этой простой цепи сопротивления \ (I = V / R \), поэтому переменный ток равен

\ [I = I_ {0} sin 2 \ pi ft, \ label {20.6.2} \]

, где \ (I \) — ток в момент времени \ (t \), а \ (I_ {0} = V_ {0} / R \) — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на рисунке \ (\ PageIndex {1b} \).

Рисунок \ (\ PageIndex {2} \): разность потенциалов \ (V \) между выводами источника переменного напряжения колеблется, как показано. Математическое выражение для \ (V \) дается \ (V = V_ {0} sin 2 \ pi ft \).

Ток в резисторе меняется взад и вперед, как напряжение возбуждения, поскольку \ (I = V / R \).Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помахаете рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. {2} 2 \ pi ft \), как показано на рисунке \ (\ PageIndex {3} \).

Рисунок \ (\ PageIndex {3} \): мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до \ (I_ {0} V_ {0} \). Средняя мощность равна \ (\ left (1/2 \ right) I_ {0} V_ {0} \).

Установление соединений: домашний эксперимент — светильники переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет.

Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, у лампочки мощностью 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на Рисунке 3, средняя мощность \ (P_ {ave} \) равна \ [P_ {ave} = \ frac {1} {2} I_ {0} V_ {0}. \ label {20.6.3} \] Это видно из графика, поскольку области выше и ниже линии \ (\ left (1/2 \ right) I_ {0} V_ {0} \) равны, но также можно доказать с помощью тригонометрических тождеств. Точно так же мы определяем средний или действующий ток \ (I_ {rms} \) и среднее значение или действующее напряжение \ (V_ {rms} \), соответственно, равное

\ [I_ {rms} = \ frac {I_ {0}} {\ sqrt {2}} \ label {20.6.4} \]

и

\ [V_ {rms} = \ frac {V_ {0}} {\ sqrt {2}}. \ Label {20.6.5} \]

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее (или среднее) значение и извлекается квадратный корень. Это полезно для переменного тока, так как среднее значение равно нулю. Теперь \ [P_ {ave} = I_ {rms} V_ {rms}, \ label {20.6.6} \], что дает

\ [P_ {ave} = \ frac {I_ {0}} {\ sqrt {2}} \ cdot \ frac {V_ {0}} {\ sqrt {2}} = \ frac {1} {2} I_ {0} V_ {0}, \ label {20.6.7} \]

, как указано выше. Стандартная практика — указывать \ (I_ {rms} \), \ (V_ {rms} \) и \ (P_ {ave} \), а не пиковые значения. Например, большая часть бытовой электроэнергии составляет 120 В переменного тока, что означает, что \ (V_ {среднеквадратичное значение} \) равно 120 В. Обычный автоматический выключатель на 10 А прерывает постоянный \ (I_ {среднеквадратичное значение} \) более 10 А. Ваша микроволновая печь мощностью 1,0 кВт потребляет \ (P_ {ave} = 1,0 кВт \) и так далее. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи.

Подводя итог, при работе с переменным током закон Ома и уравнения мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} _ {rms} R. \ label {20.6.11} \]

Пример \ (\ PageIndex {1} \): пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока?

Стратегия

Нам говорят, что \ (V_ {rms} \) составляет 120 В, а \ (P_ {ave} \) — 60,0 Вт. Мы можем использовать \ (V_ {rms} = \ frac {V_ {0}} {\ sqrt { 2}} \), чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение
Решая уравнение \ (V_ {rms} = \ frac {V_ {0}} {\ sqrt {2}} \) для пикового напряжения \ (V_ {0} \) и подставляя известное значение для \ (V_ {rms} \) дает \ [V_ {0} = \ sqrt {2} V_ {rms} = 1.414 \ влево (120 В \ вправо) = 170 В. \]

Обсуждение

Это означает, что напряжение переменного тока меняется от 170 В до \ (- 170 В \) и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.

(b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Решение

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом, \ [P_ {0} = I_ {0} V_ {0} = 2 \ left (\ frac {1} {2} I_ {0} V_ {0} \ right) = 2P_ {ave}. \] Мы знаю, что средняя мощность 60.0 Вт, и поэтому \ [P_ {0} = 2 \ left (60,0 Вт \ справа) = 120 Вт. \]

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Зачем использовать переменный ток для распределения электроэнергии?

Большинство крупных систем распределения электроэнергии — это переменный ток. Кроме того, мощность передается при гораздо более высоком напряжении, чем 120 В переменного тока (240 В в большинстве частей мира), которые мы используем дома и на работе. Благодаря эффекту масштаба строительство нескольких очень крупных электростанций обходится дешевле, чем строительство множества небольших.Это требует передачи энергии на большие расстояния, и, очевидно, важно минимизировать потери энергии в пути. Как мы увидим, высокие напряжения могут передаваться с гораздо меньшими потерями мощности, чем низкие напряжения. (См. Рис. 4.) В целях безопасности напряжение у пользователя снижено до знакомых значений. Решающим фактором является то, что намного легче увеличивать и уменьшать напряжение переменного тока, чем постоянного, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Рисунок \ (\ PageIndex {4} \): Мощность распределяется на большие расстояния при высоком напряжении, чтобы уменьшить потери мощности в линиях передачи.Напряжение, генерируемое на электростанции, повышается пассивными устройствами, называемыми трансформаторами (см. Трансформаторы), до 330 000 вольт (или более в некоторых местах по всему миру). В момент использования трансформаторы снижают напряжение

Пример \ (\ PageIndex {2} \): потери мощности меньше для высоковольтной передачи

(a) Какой ток необходим для передачи мощности 100 МВт при 200 кВ?

Стратегия

Нам дано \ (P_ {ave} = 100 MW \), \ (V_ {rms} = 200 kV \), а сопротивление линий равно \ (R = 1.{2} \ left (1.00 \ Omega \ right) = 250 кВт. \]

(c) Какой процент мощности теряется в линиях электропередачи?

Решение

Процент потерь — это отношение этой потерянной мощности к общей или входной мощности, умноженное на 100: \ [% loss = \ frac {250 кВт} {100 МВт} \ times 100 = 0,250%. \]

Обсуждение

Четверть процента — приемлемая потеря. Обратите внимание, что если бы мощность 100 МВт была передана при 25 кВ, то потребовался бы ток 4000 А.Это приведет к потере мощности в линиях на 16,0 МВт, или 16,0%, а не 0,250%. Чем ниже напряжение, тем больше требуется тока и тем больше потери мощности в линиях передачи с фиксированным сопротивлением. Конечно, можно построить линии с меньшим сопротивлением, но для этого потребуются более крупные и дорогие провода. Если бы сверхпроводящие линии можно было бы экономично производить, в линиях передачи вообще не было бы потерь. Но, как мы увидим в следующей главе, в сверхпроводниках тоже есть предел.Короче говоря, высокое напряжение более экономично для передачи энергии, а напряжение переменного тока намного легче повышать и понижать, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.

Широко признано, что высокое напряжение представляет большую опасность, чем низкое. Но на самом деле некоторые высокие напряжения, например, связанные с обычным статическим электричеством, могут быть безвредными. Таким образом, опасность определяется не только напряжением. Не так широко признано, что разряды переменного тока часто более вредны, чем аналогичные разряды постоянного тока.Томас Эдисон считал, что электрические разряды более опасны, и в конце 1800-х годов создал в Нью-Йорке систему распределения электроэнергии постоянного тока. Были ожесточенные бои, в частности, между Эдисоном и Джорджем Вестингаузом и Николой Тесла, которые выступали за использование переменного тока в ранних системах распределения энергии. Преобладал переменный ток в значительной степени благодаря трансформаторам и более низким потерям мощности при передаче высокого напряжения.

ФЕТ ИССЛЕДОВАНИЯ: ГЕНЕРАТОР

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику, лежащую в основе этого явления, исследуя магниты и узнайте, как их можно использовать, чтобы зажечь лампочку.

Рисунок \ (\ PageIndex {5} \): Генератор

Переменный ток и постоянный ток и его применение

Как «переменный ток», так и «постоянный ток» описывает два типа протекания тока в цепи. В постоянном токе электрический заряд или ток течет в одном направлении. В переменном токе электрический заряд периодически меняет направление. Напряжение в цепях переменного тока также иногда меняется на противоположное, потому что ток меняет направление.Большая часть цифровой электроники, которую вы создаете, используя постоянный ток. Тем не менее, некоторые концепции переменного тока легко понять. Большинство домов подключены к сети переменного тока, поэтому, если у вас есть идея подключить свой проект мелодии Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. У переменного тока также есть некоторые полезные свойства, такие как возможность преобразовывать уровни напряжения с помощью одного компонента, например, трансформатора, поэтому изначально мы должны выбрать средства переменного тока для передачи электроэнергии на большие расстояния.


Что такое переменный ток (AC)

Переменный ток означает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для электроснабжения домов, зданий, офисов и т. Д.

Генерация переменного тока

переменного тока может быть произведен с помощью устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Генерация переменного тока

Проволочная петля вращается внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода происходит от различных ресурсов, таких как паровая турбина, ветряная турбина, проточная вода и так далее.Поскольку провод периодически поворачивается и меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот небольшая анимация, демонстрирующая этот принцип:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы подключаем механические характеристики поршня, который перемещает воду в трубах вперед и назад (наш «переменный» ток).

Осциллограммы

AC может иметь несколько форм сигналов, если ток и напряжение чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения, в течение длительного времени мы можем увидеть несколько различных форм сигналов.Синусоидальная волна — наиболее распространенный тип переменного тока. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Синусоидальная волна

Другие формы переменного тока включают прямоугольную волну и треугольную волну. Прямоугольные волны часто используются в цифровой и переключающей электронике, а также используются для тестирования их работы.

Прямоугольная волна

Треугольник волны полезны для тестирования линейной электроники, такой как усилители.

Треугольная волна
, описывающая синусоидальную волну

Нам часто нужно описать форму волны переменного тока в математических терминах.В этом примере мы будем использовать обычную синусоидальную волну. Синусоидальная волна состоит из трех частей: частоты, амплитуды и фазы.

Рассматривая только напряжение, мы можем описать математическое уравнение синусоиды:

V (t) = Vp sin (2πft + Ø)

В (t) — это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.

ВП — амплитуда. Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, означает, что наше напряжение может быть + VP вольт, -VP вольт.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

2π — это константа, которая преобразует частоту из циклов или в герцах в угловую частоту (радиан в секунду).

f указывает частоту синусоидальной волны. Это указывается в герцах или единицах в секунду.

t — наша зависимая переменная: время (измеряется в секундах). По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны.Фаза — это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота).Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение

В (t) = 170 sin (2π60t)

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos.

Приложения

Розетки для дома и офиса почти всегда используются в сети переменного тока. Это связано с тем, что создание и транспортировка переменного тока на большие расстояния относительно просты. При высоком напряжении, например, более 110 кВ, при передаче электроэнергии теряется меньше энергии.Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовать из высокого напряжения с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую. Это полезно для многих крупных бытовых приборов, таких как холодильники, посудомоечные машины и т. Д., Которые работают от сети переменного тока.

Что такое постоянный ток?

Постоянный ток означает однонаправленный поток электрического заряда.Он производится из таких источников, как батареи, источники питания, солнечные элементы, термопары или динамо-машины. Постоянный ток может течь в проводнике, таком как провод, но также может течь через изоляторы, полупроводники или вакуум, как в электронных или ионных пучках.

Генерация постоянного тока

DC можно создать несколькими способами

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток
  • Преобразование переменного тока в постоянный с помощью устройства, называемого «выпрямителем»
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой еще раз, DC подобен резервуару с водой со шлангом на конце.

Генерация DC

. Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; и ток течет только в одном направлении. Напряжение и ток могут изменяться в течение длительного времени, поэтому направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, батарея обеспечивает 1.5 В, которое можно описать математическим уравнением как:

В (t) = 1,5 В

Если мы построим график с течением времени, мы увидим постоянное напряжение

График DC

Приведенный выше график означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. На самом деле батарея будет медленно разряжаться, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Все проекты электроники и запчасти для продажи на SparkFun работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • Фонари \
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который преобразуется в постоянный ток)
  • Гибридные и электромобили

Таким образом, это все о том, что такое переменный ток, постоянный ток и их применения.Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, любые сомнения относительно этой концепции или любых электрических и электронных проектов, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, в чем разница между переменным током и постоянным током ?

Фото:

Базовая электроника: переменный ток (AC) против постоянного (DC)

Ток, поток носителей электрического заряда, является одной из основных базовых концепций, лежащих в основе электроники.В повседневной жизни мы замечаем, что существует два способа протекания тока: переменный ток (AC) и постоянный ток (DC). Вы когда-нибудь задумывались, в чем разница между переменным током (AC) и постоянным током (DC)? Вы думаете, что это очень просто, не так ли? DC — прямая линия, а AC — периодическая линия? Конечно нет! Посмотрим, что такое переменный и постоянный ток.

В этом блоге я рассмотрю следующие темы:

  • Основные концепции переменного и постоянного тока
  • Генерация переменного и постоянного тока
  • Инструменты для создания и анализа переменного и постоянного тока
  • Различия между переменным и постоянным током
  • Закон Ома для переменного и постоянного тока
  • Примеры применения переменного и постоянного тока

Что такое переменный ток (AC) против постоянного (DC)

Переменный ток (AC) :
Определение

Переменный ток означает, что поток электрического заряда периодически меняет направление.

Генерация переменного тока

переменного тока может генерироваться генератором, состоящим из магнитов и проволочной петли. Проволока вращается внутри магнитного поля и индуцирует ток вдоль провода. Затем, когда петля поворачивается на 180 градусов, сила меняется на противоположную, давая электрический ток в противоположном направлении вдоль провода.

Источники энергии: генераторы на электростанциях, ветряных турбинах и т. Д.

Формы сигналов переменного тока

AC может быть разных форм, если напряжение и ток чередуются.Существует три распространенных формы переменного тока, включая синусоидальную волну, прямоугольную волну и треугольную волну. Синусоидальный сигнал переменного тока является наиболее часто используемым.


Измерения переменного тока
  • Пиковое значение
  • Пиковое значение
  • Среднее значение
  • Среднеквадратичное значение (RMS)

В общем, мы говорим, что американские стандартные домашние цепи имеют эффективное напряжение около 120 вольт, однако пиковое значение к пиковому напряжению от -170В до +170В.Как это произошло? Поскольку напряжение переменного тока постоянно меняется, мы используем более простой метод, называемый среднеквадратичным (RMS), для его подсчета. Среднеквадратичное значение может значительно упростить расчет электрической мощности для сигнала переменного тока. Это квадратный корень из среднего по времени квадрата напряжения. Значение Vrms синусоидального сигнала равно V0 / √2, что эквивалентно 0,707 * V0. В этом примере V0 составляет 170 В, поэтому среднеквадратичное значение составляет 120 В.

Примеры применения AC
  • Сигналы переменного тока обычно используются для передачи на большие расстояния для подачи питания в дома и офисы.
  • Меньше потерь энергии при передаче электроэнергии для высоких напряжений (> 110 кВ).
  • Также используются силовые электродвигатели и генераторы.
  • Он обеспечивает источник питания для больших приборов, таких как холодильник, посудомоечная машина и т. Д.
  • Переменный ток можно легко преобразовать с высокого напряжения в низкое и наоборот с помощью трансформаторов.

Постоянный ток (DC):
Определение

В отличие от течения в реке, течение может течь непрерывно без каких-либо изменений, это называется постоянным или постоянным током.Постоянный ток — это однонаправленный поток электрического заряда.

Генерация постоянного тока

постоянного тока можно получить разными способами:

  • Использование коммутатора с электрическим генератором может производить сигнал постоянного тока.
  • Выпрямитель — это преобразователь переменного тока в постоянный, в котором он преобразует входной переменный ток в выходной постоянный ток путем изменения направленного потока тока.
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи.
Форма сигнала постоянного тока

В отличие от сигнала переменного тока, постоянный ток представляет собой однонаправленный поток электрического заряда, что означает, что ток течет только в одном направлении. Для сигнала постоянного тока, пока направление потока остается неизменным, значения напряжения и тока могут изменяться. Чтобы упростить задачу, мы предполагаем, что уровень напряжения фиксированный. Следовательно, напряжение постоянного тока может быть указано как:

В (t) = x Вольт

где,

х — амплитуда напряжения, эл.грамм. 9


Примечание , на самом деле, если мы используем батареи в качестве источника постоянного тока, уровень напряжения будет уменьшаться по мере использования.

Примеры применения DC

Большинство электронных датчиков, исполнительных механизмов и вычислительных устройств, которые мы находим на веб-сайте Seeed, используют постоянный ток в качестве источника питания. Например, Seeeduino Xiao и его аксессуары. Чтобы было понятнее, все устройства, работающие от батарей или USB-кабелей, используют постоянный ток, в том числе:

Сравнение переменного тока (AC) и постоянного тока (DC)

908 Вращение магнита по направлению

22 потоков электронов провод

Переменный ток (AC) Постоянный ток (DC)
Направление Двунаправленное Однонаправленное
Причина устойчивый магнетизм вдоль провода
Ток Зависит от времени постоянный
Передача энергии на большие расстояния Да, потери при передаче небольшие Нет, потери при передаче велики сложно создать сигнал высокого напряжения
Пассивные параметры Импеданс Только сопротивление
Частота изменяется 0
908 Элемент или батарея, переменный ток -Преобразователь постоянного тока
Типы Разные
e.грамм. Синусоидальная, прямоугольная и треугольная волна
Чистая и пульсирующая
Простота Легче усилить Легче измерить

Закон Ома

Закон Ома — важнейший закон электричества. Он устанавливает взаимосвязь между тремя фундаментальными электронными величинами: током, напряжением и сопротивлением.

Закон Ома определяется как:

I = V / R

где:
I = электрический ток (амперы, A)
V = напряжение (вольт, В)
R = сопротивление (Ом)

Как определено в Законе Ома, электрический ток (I) пропорционален напряжению (V) и обратно пропорционально сопротивлению (R) .Следовательно, если напряжение увеличивается, ток будет увеличиваться при неизменном сопротивлении цепи.

Закон Ома действителен как для цепей постоянного, так и для переменного тока, но обычно применяется в цепях постоянного тока. Обратите внимание, что в цепи переменного тока, состоящей исключительно из резистивных элементов, ток и напряжение всегда совпадают по фазе друг с другом.

Инструменты для генерации и анализа переменного и постоянного тока

Осциллограф

Осциллограф — один из самых важных инструментов, которые вы будете использовать в электронных лабораториях.Осциллографы позволяют вам проверять напряжения в цепях, поскольку они меняются с течением времени, и измерять все, что вы хотите знать о них, включая частоту, пиковое напряжение, среднее напряжение, форму сигнала и т. Д. DSO Nano v3 — это карманный совместимый 32-битный цифровой запоминающий осциллограф. со встроенным генератором сигналов. Другой вариант — MiniDSO DS213 Nano 4 Channel 100MSa / s, 5-канальный 4-проводной универсальный цифровой запоминающий осциллограф для электронных инженерных задач, основанный на ядре ARM Cortex M3.

Блок питания

Источник питания предназначен для подачи электроэнергии на нагрузку.Otii Standard Power Supply and Measure — это небольшой портативный блок питания, блок измерения тока и напряжения и модуль сбора данных. Созданный специально для разработчиков, Otii решает главную проблему оптимизации для снижения энергопотребления в дизайне устройств и приложений.

Сводка

Это руководство знакомит с одной из основных концепций электроники — переменным и постоянным током. У каждого из этих двух токов есть свои преимущества. Чтобы добиться лучших результатов, вы должны учитывать цель и требования вашего проекта при выборе между использованием постоянного или переменного тока.

У вас есть какие-либо другие базовые знания в области электроники, которые вас интересуют, пожалуйста, дайте нам знать в разделе комментариев ниже!

Рекомендуемая литература

Продолжить чтение

.

Добавить комментарий

Ваш адрес email не будет опубликован.