Виды проводников: Проводники и диэлектрики

Содержание

Проводники и диэлектрики


Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 

Полупроводниками являются кремний и германий.

Статья по теме: Электрический ток и его скорость

Виды проводников — Студопедия

Основные сведения о проводниковых материалах

Проводниковые материалы

К проводниковым материалам относятся вещества, основным свойством которых является электропроводность. Проводниками электрического тока могут служить твердые тела, жидкости, а при соответствующих условиях и газы. Газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ион­ной электропроводностями. Все проводниковые материалы подразделяются на проводники первого и второго рода.

Твердые проводники являются важнейшими проводниковыми материалами, широко применяемыми в радиоэлектронике и электротехнике. К ним относят металлы и их сплавы. По характеру применения в радиоэлектронной технике металлические материалы разделяют на металлы высокой проводимости и сплавы высокого сопротивления.

Особенности поведения электронов в металлах.

В классической электронной теории металлов были введены представления об электронном газе, состоящем из коллективизированных (свободных) электронов, концентрация которых принималась равной числу атомов в единице объема металла. К электронному газу применялись понятия и законы статистики обычных газов. Гипотеза об электронном газе была подтверждена рядом опытов. Однако не все вопросы удалось решить с точки зрения классической электронной теории металлов, так как возникли некоторые противоречия с опытными данными. Они заключались в расхождении кривых зависимости удельного сопротивления от температуры, наблюдаемой на опыте и теоретической, несоответствии теоретически получаемых значений

теплоемкости металлов опытным данным.


Эти противоречия удалось объяснить с помощью квантовой волновой механики. В соответствии с этой теорией электроны в металлах следует рассматривать при обычных температурах как «вырожденный» газ. В этом состоянии энергия газа практически не зависит от изменения температуры. Тепловое движение почти не изменяет энергию электронов, а тепловая энергия расходуется на тепловые колебания узлов кристаллической решетки. Вследствие этого средняя тепловая скорость электронов не изменяется при изменении температуры. Средняя скорость направленного движения электронов под действием электрического поля зависит от вероятности столкновения электронов с узлами кристаллической решетки, что приводит к уменьшению их средней скорости.

В электронном газе, который находится в состоянии вырождения, скорости хаотического движения электронов определяются не температурой тела, а концентрацией свободных электронов. В металлах она достигает около 10

28м3 , что обусловлено особенностью металлической связи, т.е. практически все валентные электроны в металлах свободны. Однако энергии эти электронов различны.


Все уровни с энергией меньше уровня Ферми с вероятностью большей 0,5 заполнены электронами, и наоборот уровни с энергией большей уровня Ферми с вероятностью 0,5 свободны от электронов. Распределение электронов по уровням энергии можно представить рисунком 4.1.

Для того чтобы описывать движение электрона в твердом теле, как свободное перемещение заряженной частицы без учета периодического поля кристаллической решетки вводится понятие об эффективной массе m°, которая может быть и больше и меньше массы свободного электрона и даже иметь положительный или отрицательный знак. Металлы с преобладанием положительных эффективных масс носителей заряда (например, алюминий) называют электронными, противоположные (например, цинк, молибден) – дырочными. Первые характеризуются отрицательными знаками

коэффициента Холла и термо-э.д.с. Однако, для ряда металлов, например меди, серебра, золота, коэффициент Холла имеет отрицательный знак, а термо-э.д.с. положительный, что говорит о большой сложности их электронного строения и неприменимости к ним простейших моделей.

Поведение электронов в металлах описывается статистикой Ферми-Дирака. При температуре 0 К концентрация электронов равняется:


(4.1)

где h — постоянная Планка;

WF — энергия уровня Ферми;

— эффективная масса

Вследствие того, что электронный газ находится в состоянии вырождения, в процессе электропроводности принимают участие не все свободные электроны, а только те, энергия которых больше энергии Ферми. Под влиянием электрического поля проходит рассеивание электронов под большими углами в процессе их упругих столкновений с узлами кристаллической решетки. Вследствие этого возрастает избыток быстрых электронов, которые двигаются против направления поля, и дефицит быстрых электронов с противоположным направлением скорости. Концентрация свободных электронов в чистых металлах отличается незначительно и практически не зависит от температуры, поскольку в вырожденном электронном газе энергия Ферми изменяется незначительно. Согласно квантовой теории электропроводность металлов

s равняется:

σ = e2 n λвол/(m°×VT) = (e2 n2/3 λвол /h )·(8π/3)1/3 ( 4.2)

где VT — тепловая скорость электронов;

е – заряд электрона;

п – количество электронов

λвол — длина свободного пробега электронов, которая зависит от температуры.

То есть, как видно из (4.2) электропроводность металлов не должна зависеть от температуры. Однако такая зависимость существует. Это можно объяснить волновым характером движения электронов.

Из физики известно, что электроны имеют свойство корпускулярно-волнового дуализма. То есть движение электронов можно рассматривать как перемещение плоских волн. В периодическом потенциальном поле, которое имеет идеальная кристаллическая решетка, такая волна должна перемещаться без потерь (без затухания). Это означает, что длина пробега электронов должна быть бесконечной, тогда согласно (4.2) и электропроводность металлов тоже должна быть бесконечной. Но в реальной действительности в кристаллах всегда имеют место дефекты решетки: динамические — тепловые колебания узлов кристаллической решетки, и статические — одномерные, линейные дефекты решетки.

Эти дефекты сыграют роль центров рассеивания, которые ограничивают длину свободного пробега электронов, и вследствие этого металлы имеют конечное удельное сопротивление. Таким образом, удельное сопротивление металлических проводников зависит в первую очередь от средней длины свободного пробега электронов.

Проводники, полупроводники и диэлектрики в электрическом поле

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

G=1/R

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

аналоговая часть схемы должна быть отделена от остальной части, а при ее разводке должны соблюдаться особые методы и правила

Из-за существенных отличий аналоговой схемотехники от цифровой, аналоговая часть схемы должна быть отделена от остальной части, а при ее разводке должны соблюдаться особые методы и правила. Эффекты, возникающие из-за неидеальности характеристик печатных плат, становятся особенно заметными в высокочастотных аналоговых схемах, но погрешности общего вида, описанные в этой статье, могут оказывать воздействие на качественные характеристики устройств, работающих даже в звуковом диапазоне частот.

Намерением этой статьи является обсуждение распространенных ошибок, совершаемых разработчиками печатных плат, описание воздействия этих ошибок на качественные показатели и рекомендации по разрешению возникших проблем.

Лишь в редких случаях печатная плата аналоговой схемы может быть разведена так, чтобы вносимые ею воздействия не оказывали никакого влияния на работу схемы. В то же время, любое такое воздействие может быть минимизировано так, чтобы характеристики аналоговой схемы устройства были такими же, как и характеристики модели и прототипа.

Разработчики цифровых схем могут скорректировать небольшие ошибки на изготовленной плате, дополняя ее перемычками или, наоборот, удаляя лишние проводники, внося изменения в работу программируемых микросхем и т.п., переходя очень скоро к следующей разработке. Для аналоговой схемы дело обстоит не так. Некоторые из распространенных ошибок, обсуждаемых в этой статье, не могут быть исправлены дополнением перемычек или удалением лишних проводников. Они могут и будут приводить в нерабочее состояние печатную плату целиком.

Очень важно для разработчика цифровых схем, использующего такие способы исправления, прочесть и понять материал, изложенный в этой статье, заблаговременно, до передачи проекта в производство. Немного внимания, уделенного при разработке, и обсуждение возможных вариантов помогут не только предотвратить превращение печатной платы в утильсырье, но и уменьшить стоимость из-за грубых ошибок в небольшой аналоговой части схемы. Поиск ошибок и их исправление может привести к потерям сотен часов. Макетирование может сократить это время до одного дня или менее. Макетируйте все свои аналоговые схемы

Шум и помехи являются основными элементами, ограничивающими качественные характеристики схем. Помехи могут как излучаться источниками, так и наводиться на элементы схемы. Аналоговая схема часто располагается на печатной плате вместе с быстродействующими цифровыми компонентами, включая цифровые сигнал-процессоры (DSP).

Высокочастотные логические сигналы создают значительные радиочастотные помехи (RFI). Количество источников излучения шума огромно: ключевые источники питания цифровых систем, мобильные телефоны, радио и телевидение, источники питания ламп дневного света, персональные компьютеры, грозовые разряды и т.д. Даже если аналоговая схема работает в звуковом частотном диапазоне, радиочастотные помехи могут создавать заметный шум в выходном сигнале.

Выбор конструкции печатной платы является важным фактором, определяющим механические характеристики при использовании устройства в целом. Для изготовления печатных плат используются материалы различного уровня качества. Наиболее подходящим и удобным для разработчика будет, если изготовитель печатных плат находится неподалеку. В этом случае легко осуществить контроль удельного сопротивления и диэлектрической постоянной — основных параметров материала печатной платы. К сожалению, этого бывает недостаточно и часто необходимо знание других параметров, таких как воспламеняемость, высокотемпературная стабильность и коэффициент гигроскопичности. Эти параметры может знать только производитель компонентов, используемых при производстве печатных плат.

Слоистые материалы обозначаются индексами FR (flame resistant, сопротивляемость к воспламенению) и G. Материал с индексом FR-1 обладает наибольшей горючестью, а FR-5 — наименьшей. Материалы с индексами G10 и G11 обладают особыми характеристиками. Материалы печатных плат приведены в табл. 1.

Не используйте печатную плату категории FR-1. Есть много примеров использования печатных плат FR-1, на которых имеются повреждения от теплового воздействия мощных компонентов. Печатные платы этой категории более похожи на картон.

FR-4 часто используется при изготовлении промышленного оборудования, в то время, как FR-2 используется в производстве бытовой техники. Эти две категории стандартизованы в промышленности, а печатные платы FR-2 и FR-4 часто подходят для большинства приложений. Но иногда неидеальность характеристик этих категорий заставляет использовать другие материалы. Например, для очень высокочастотных приложений в качестве материала печатных плат используются фторопласт и даже керамика. Однако, чем экзотичнее материал печатной платы, тем выше может быть цена.

При выборе материала печатной платы обращайте особое внимание на его гигроскопичность, поскольку этот параметр може оказать сильный негативный эффект на желаемые характеристики платы — поверхностное сопротивление, утечки, высоковольтные изоляционные свойства (пробои и искрения) и механическая прочность. Также обращайте внимание на рабочую температуру. Участки с высокой температурой могут встречаться в неожиданных местах, например, рядом с большими цифровыми интегральными схемами, переключения которых происходят на высокой частоте. Если такие участки расположены непосредственно под аналоговыми компонентами, повышение температуры может сказаться на изменении характеристик аналоговой схемы.

Категория

Компоненты, комментарии

FR-1

бумага, фенольная композиция: прессование и штамповка при комнатной температуре, высокий коэффициент гигроскопичности

FR-2

бумага, фенольная композиция: применимый для односторонних печатных плат бытовой техники, невысокий коэффициент гигроскопичности

FR-3

бумага, эпоксидная композиция: разработки с хорошими механическими и электрическими характеристиками

FR-4

стеклоткань, эпоксидная композиция: прекрасные механические и электрические свойства

FR-5

стеклоткань, эпоксидная композиция: высокая прочность при повышенных температурах, отсутствие воспламенения

G10

стеклоткань, эпоксидная композиция: высокие изоляционные свойства, наиболее высокая прочность стеклоткани, низкий коэффициент гигроскопичности

G11

стеклоткань, эпоксидная композиция: высокая прочность на изгиб при повышенных температурах, высокая сопротивляемость растворителям

После того, как материал печатной платы выбран, необходимо определить толщину фольги печатной платы. Этот параметр в первую очередь выбирается исходя из максимальной величины протекающего тока. По возможности, старайтесь избегать применения очень тонкой фольги.

Количество слоев печатной платы

В зависимости от общей сложности схемы и качественных требований разработчик должен определить количество слоев печатной платы.

Однослойные печатные платы

Очень простые электронные схемы выполняются на односторонних платах с использованием дешевых фольгированных материалов (FR-1 или FR-2) и часто имеют много перемычек, напоминая двухсторонние платы. Такой способ создания печатных плат рекомендуется только для низкочастотных схем. По причинам, которые будут описаны ниже, односторонние печатные платы в большой степени восприимчивы к наводкам. Хорошую одностороннюю печатную плату достаточно сложно разработать из-за многих причин. Тем не менее хорошие платы такого типа встречаются, но при их разработке требуется очень многое обдумывать заранее.

Двухслойные печатные платы

На следующем уровне стоят двухсторонние печатные платы, которые в большинстве случаев используют в качестве материала подложки FR-4, хотя иногда встречается и FR-2. Применение FR-4 более предпочтительнее, поскольку в печатных платах из этого материала отверстия получаются более лучшего качества. Схемы на двухсторонних печатных платах разводятся гораздо легче, т.к. в двух слоях проще осуществить разводку пересекающихся трасс. Однако для аналоговых схем пересечение трасс выполнять не рекомендуется. Где возможно, нижний слой (bottom) необходимо отводить под полигон земли, а остальные сигналы разводить в верхнем слое (top). Использование полигона в качестве земляной шины дает несколько преимуществ:

  • общий провод является наиболее часто подключаемым в схеме проводом; поэтому резонно иметь «много» общего провода для упрощения разводки
  • увеличивается механическая прочность платы
  • уменьшается сопротивление всех подключений к общему проводу, что, в свою очередь, уменьшает шум и наводки
  • увеличивается распределенная емкость для каждой цепи схемы, помогая подавлять излучаемый шум
  • полигон, являющийся экраном, подавляет наводки, излучаемые источниками, располагающимися со стороны полигона

Двухсторонние печатные платы, несмотря на все свои преимущества, не являются лучшими, особенно для малосигнальных или высокоскоростных схем. В общем случае, толщина печатной платы, т.е. расстояние между слоями металлизации, равняется 1,5 мм, что слишком много для полной реализации некоторых преимуществ двухслойной печатной платы, приведенных выше. Распределенная емкость, например, слишком мала из-за такого большого интервала.

Многослойные печатные платы

Для ответственных схемотехнических разработок требуются многослойные печатные платы (МПП). Некоторые причины их применения очевидны:

  • такая же удобная, как и для шины общего провода, разводка шин питания; если в качестве шин питания используются полигоны на отдельном слое, то довольно просто с помощью переходных отверстий осуществить подводку питания к каждому элементу схемы
  • сигнальные слои освобождаются от шин питания, что облегчает разводку сигнальных проводников
  • между полигонами земли и питания появляется распределенная емкость, которая уменьшает высокочастотный шум

Кроме этих причин применения многослойных печатных плат существуют другие, менее очевидные:

  • лучшее подавление электромагнитных (EMI) и радиочастотных (RFI) помех благодаря эффекту отражения (image plane effect), известному еще во времена Маркони. Когда проводник размещается близко к плоской проводящей поверхности, большая часть возвратных высокочастотных токов будет протекать по плоскости непосредственно под проводником. Направление этих токов будет противоположно направлению токов в проводнике. Таким образом, отражение проводника в плоскости создает линию передачи сигнала. Поскольку токи в проводнике и в плоскости равны по величине и противоположны по направлению, создается некоторое уменьшение излучаемых помех. Эффект отражения эффективно работает только при неразрывных сплошных полигонах (ими могут быть как полигоны земли, так и полигоны питания). Любое нарушение целостности будет приводить к уменьшению подавления помех.
  • снижение общей стоимости при мелкосерийном производстве. Несмотря на то, что изготовление многослойных печатных плат обходится дороже, их возможное излучение меньше, чем у одно- и двухслойных плат. Следовательно, в некоторых случаях применение лишь многослойных плат позволит выполнить требования по излучению, поставленные при разработке, и не проводить дополнительных испытаний и тестирований. Применение МПП может снизить уровень излучаемых помех на 20 дБ по сравнению с двухслойными платами.
Порядок следования слоев

У неопытных разработчиков часто возникает некоторое замешательство по поводу оптимального порядка следования слоев печатной платы. Возьмем для примера 4-слойную плату, содержащую два сигнальных слоя и два полигонных слоя — слой земли и слой питания. Какой порядок следования слоев лучший? Сигнальные слои между полигонами, которые будут служить экранами? Или же сделать полигонные слои внутренними, чтобы уменьшить взаимовлияние сигнальных слоев?

При решении этого вопроса важно помнить, что часто расположение слоев не имеет особого значения, поскольку все равно компоненты располагаются на внешних слоях, а шины, подводящие сигналы к их выводам, порой проходят через все слои. Поэтому любые экранные эффекты представляют собой лишь компромисс. В данном случае лучше позаботиться о создании большой распределенной емкости между полигонами питания и земли, расположив их во внутренних слоях.

Другим преимуществом расположения сигнальных слоев снаружи является доступность сигналов для тестирования, а также возможность модификации связей. Любой, кто хоть раз изменял соединения проводников, располагающихся во внутренних слоях, оценит эту возможность.

Для печатных плат с более, чем четырьмя слоями, существует общее правило располагать высокоскоростные сигнальные проводники между полигонами земли и питания, а низкочастотным отводить внешние слои.

Заземление

Хорошее заземление — общее требование насыщенной, многоуровневой системы. И оно должно планироваться с первого шага дизайнерской разработки.

Основное правило: разделение земли.

Разделение земли на аналоговую и цифровую части — один из простейших и наиболее эффективных методов подавления шума. Один или более слоев многослойной печатной платы обычно отводится под слой земляных полигонов. Если разработчик не очень опытен или невнимателен, то земля аналоговой части будет непосредственно соединена с этими полигонами, т.е. аналоговый возвратный ток будет использовать такую же цепь, что и цифровой возвратный ток. Авторазводчики работают примерно также и объединяют все земли вместе.

Если переработке подвергается ранее разработанная печатная плата с единым земляным полигоном, объединяющим аналоговую и цифровую земли, то необходимо сначала физически разделить земли на плате (после этой операции работа платы становится практически невозможной). После этого производятся все подключения к аналоговому земляному полигону компонентов аналоговой схемы (формируется аналоговая земля) и к цифровому земляному полигону компонентов цифровой схемы (формируется цифровая земля). И лишь после этого в источнике производится объединение цифровой и аналоговой земли.

Другие правила формирования земли:

  • Шины питания и земли должны находится под одним потенциалом по переменному току, что подразумевает использование конденсаторов развязки и распределенной емкости
  • Не допускайте перекрытий аналоговых и цифровых полигонов (рис. 1). Располагайте шины и полигоны аналогового питания над полигоном аналоговой земли (аналогично для шин цифрового питания). Если в каком-либо месте существует перекрытие аналогового и цифрового полигона, распределенная емкость между перекрывающимися участками будет создавать связь по переменному току, и наводки от работы цифровых компонентов попадут в аналоговую схему. Такие перекрытия аннулируют изоляцию полигонов

  • Разделение не означает электрической изоляции аналоговой от цифровой земли (рис. 2). Они должны соединяться вместе в каком-то, желательно одном, низкоимпедансном узле. Правильная, с точки зрения земли, система имеет только одну землю, которая является выводом заземления для систем с питанием от сетевого переменного напряжения или общим выводом для систем с питанием от постоянного напряжения (например, аккумулятора). Все сигнальные токи и токи питания в этой схеме должны возвращаться к этой земле в одну точку, которая будет служить системной землей. Такой точкой может быть вывод корпуса устройства. Важно понимать, что при подсоединении общего вывода схемы к нескольким точкам корпуса могут образовываться земляные контуры. Создание единственной общей точки объединения земель является одним из наиболее трудных аспектов системного дизайна

  • По возможности разделяйте выводы разъемов, предназначенные для передачи возвратных токов — возвратные токи должны объединяться только в точке системной земли. Старение контактов разъемов, а также частая расстыковка их ответных частей приводит к увеличению сопротивления контактов, следовательно, для более надежной работы необходимо использование разъемов с некоторым количеством дополнительных выводов. Сложные цифровые печатные платы имеют много слоев и содержат сотни или тысячи проводников. Добавление еще одного проводника редко создает проблему в отличие от добавляемых дополнительных выводов разъемов. Если это не удается сделать, то необходимо создавать два проводника возвратного тока для каждой силовой цепи на плате, соблюдая особые меры предосторожности.
  • Важно отделять шины цифровых сигналов от мест на печатной плате, где расположены аналоговые компоненты схемы. Это предполагает изоляцию (экранирование) полигонами, создание коротких трасс аналоговых сигналов и внимательное размещение пассивных компонентов при наличии рядом расположенных шин высокоскоростных цифровых и ответственных аналоговых сигналов. Шины цифровых сигналов должны разводиться вокруг участков с аналоговыми компонентами и не перекрываться с шинами и полигонами аналоговой земли и аналогового питания. Если этого не делать, то разработка будет содержать новый непредусмотренный элемент — антенну, излучение которой будет воздействовать на высокоимпедансные аналоговые компоненты и проводники (рис. 3)

Почти все сигналы тактовых частот являются достаточно высокочастотными сигналами, поэтому даже небольшие емкости между трассами и полигонами могут создавать значительные связи. Необходимо помнить, что не только основная тактовая частота может вызывать проблему, но и ее высшие гармоники.

  • Хорошей концепцией является размещение аналоговой части схемы вблизи к входным/выходным соединениям платы. Разработчики цифровых печатных плат, использующие мощные интегральные схемы, часто склонны разводить шины шириной 1 мм и длиной несколько сантиметров для соединения аналогововых компонентов, полагая, что малое сопротивление трассы поможет избавиться от наводок. То, что при этом получается, представляет собой протяженный пленочный конденсатор, на который будут наводиться паразитные сигналы от цифровых компонентов, цифровой земли и цифрового питания, усугубляя проблему
Пример хорошего размещения компонентов

На рисунке 4 показан возможный вариант размещения всех компонентов на плате, включая источник питания. Здесь используются три отделенных друг от друга и изолированных полигона земли/питания: один для источника, один для цифровой схемы и один для аналоговой. Цепи земли и питания аналоговой и цифровой частей объединяются только в источнике питания. Высокочастоный шум отфильтровывается в цепях питания дросселями. В этом примере высокочастотные сигналы аналоговой и цифровой частей отнесены друг от друга. Такой дизайн имеет очень высокую вероятность на благоприятный исход, поскольку обеспечено хорошее размещение компонентов и следование правилам разделения цепей.

Имеется лишь один случай, когда необходимо объединение аналоговых и цифровых сигналов над областью полигона аналоговой земли. Аналого-цифровые и цифро-аналоговые преобразователи размещаются в корпусах с выводами аналоговой и цифровой земли. Принимая во внимание предыдущие рассуждения, можно предположить, что вывод цифровой земли и вывод аналоговой земли должны быть подключены к шинам цифровой и аналоговой земли соответственно. Однако в данном случае это не верно.

Названия выводов (аналоговый или цифровой) относятся лишь к внутренней структуре преобразователя, к его внутренним соединениям. В схеме эти выводы должны быть подключены к шине аналоговой земли. Соединение может быть выполнено и внутри интегральной схемы, однако получить низкое сопротивление такого соединения довольно сложно из-за топологических ограничений. Поэтому при использовании преобразователей предполагается внешнее соединение выводов аналоговой и цифровой земли. Если этого не сделать, то параметры микросхемы будут значительно хуже приведенных в спецификации.

Необходимо учитывать то, что цифровая элементы преобразователя могут ухудшать качественные характеристики схемы, привнося цифровые помехи в цепи аналоговой земли и аналогового питания. При разработке преобразователей учитывается это негативное воздействие так, чтобы цифровая часть потребляла как можно меньше мощности. При этом помехи от переключений логических элементов уменьшаются. Если цифровые выводы преобразователя не сильно нагружены, то внутренние переключения обычно не вызывают особых проблем. При разработке печатной платы, содержащей АЦП или ЦАП, необходимо должным образом отнестись к развязке цифрового питания преобразователя на аналоговую землю.

Частотные характеристики пассивных компонентов

Для правильной работы аналоговых схем весьма важен правильный выбор пассивных компонентов. Начинайте дизайнерскую разработку с внимательного рассмотрения высокочастотных характеристик пассивных компонентов и предварительного размещения и компоновки их на эскизе платы.

Большое число разработчиков совершенно игнорируют частотные ограничения пассивных компонентов при использовании в аналоговой схемотехнике. Эти компоненты имеют ограниченные частотные диапазоны и их работа вне специфицированной частотной области может привести к непредсказуемым результатам. Кто-то может подумать, что это обсуждение касается только высокоскоростных аналоговых схем. Однако, это далеко не так — высокочастотные сигналы достаточно сильно воздействуют на пассивные компоненты низкочастотных схем посредством излучения или прямой связи по проводникам. Например, простой низкочастотный фильтр на операционном усилителе может легко превращаться в высокочастотный фильтр при воздействии на его вход высокой частоты.

Резисторы

Высокочастотные характеристики резисторов могут быть представлены эквивалентной схемой, приведенной на рисунке 5.

Обычно применяются резисторы трех типов:

  1. Проволочные
  2. Углеродные композитные
  3. Пленочные

Не надо иметь много воображения, чтобы понять, как проволочный резистор может превращаться в индуктивность, поскольку он представляет собой катушку с проводом из высокоомного металла. Большинство разработчиков электронных устройств не имеют понятия о внутренней структуре пленочных резисторов, которые также представляют собой катушку, правда, из металлической пленки. Поэтому пленочные резисторы также обладают индуктивностью, которая меньше, чем у проволочных резисторов. Пленочные резисторы с сопротивлением не более 2 кОм можно свободно использовать в высокочастотных схемах. Выводы резисторов параллельны друг другу, поэтому между ними существует заметная емкостная связь. Для резисторов с большим сопротивлением межвыводная емкость будет уменьшать полный импеданс на высоких частотах.

Конденсаторы

Высокочастотные характеристики конденсаторов могут быть представлены эквивалентной схемой, приведенной на рисунке 6.

Конденсаторы в аналоговых схемах используются в качестве элементов развязки и фильтрующих компонентов. Для идеального конденсатора реактивное сопротивление определяется по следующей формуле:

Следовательно, электролитический конденсатор емкостью 10 мкФ будет обладать сопротивлением 1,6 Ом на частоте 10 кГц и 160 мкОм на частоте 100 МГц. Так ли это?

В действительности, никто никогда не видел электролитического конденсатора с реактивным сопротивлением 160 мкОм. Обкладки пленочных и электролитических конденсаторов представляют собой свитые слои фольги, которые создают паразитную индуктивность. Эффект собственной индуктивности у керамических конденсаторов значительно меньше, что позволяет использовать их при работе на высоких частотах. Кроме этого, конденсаторы обладают током утечки между обкладками, который эквивалентен включенному параллельно их выводам резистору, добавляющему свое паразитное воздействие к воздействию последовательно включенного сопротивления выводов и обкладок. К тому же, электролит не является идеальным проводником. Все эти сопротивления складываясь создают эквивалентное последовательное сопротивление (ESR). Конденсаторы, используемые в качестве развязок должны обладать малым ESR, поскольку последовательное сопротивление ограничивает эффективность подавления пульсаций и помех. Повышение рабочей температуры довольно значительно увеличивает эквивалентное последовательное сопротивление и может привести к ухудшению характеристик конденсатора. Поэтому, если предполагается использование алюминиевого электролитического конденсатора при повышенной рабочей температуре, то необходимо использовать конденсаторы соответствующего типа (105°С).

Выводы конденсатора также вносят свой вклад в увеличение паразитной индуктивности. Для малых значений емкости важно оставлять длину выводов короткой. Сочетание паразитных индуктивности и емкости может создать резонансный контур. Полагая, что выводы имеют индуктивность порядка 8 нГн на один сантиметр длины, конденсатор емкостью 0,01 мкФ с выводами длиной по одному сантиметру будет иметь резонансную частоту около 12,5 МГц. Этот эффект известен инженерам, которые десятилетия назад разрабатывали электронные вакуумные приборы. Тот, кто восстанавливает антикварные радиоприемники и не знает об этом эффекте, сталкивается с множеством проблем.

При использовании электролитических конденсаторов необходимо следить за правильным подключением. Положительный вывод должен быть подключен к более положительному постоянному потенциалу. Неправильное подключение приводит к протеканию через электролитический конденсатор постоянного тока, что может вывести из строя не только сам конденсатор, но и часть схемы.

В редких случаях разность потенциалов по постоянному току между двумя точками в схеме может менять свой знак. Это требует применения неполярных электролитических конденсаторов, внутренняя структура которых эквивалентна двум полярным конденсаторам, соединенным последовательно.

Индуктивности

Высокочастотные характеристики индуктивностей могут быть представлены эквивалентной схемой, приведенной на рисунке 7.

Реактивное сопротивление индуктивности описывается следующей формулой:

Следовательно, индуктивность 10 мГн будет обладать реактивным сопротивлением 628 Ом на частоте 10 кГц, а на частоте 100 МГц — сопротивлением 6,28 МОм. Верно?

В действительности, не существует индуктивности с реактивным сопротивлением 6,28 МОм. Природу возникновения паразитного сопротивления легко понять — витки катушки выполнены из провода, обладающего некоторым сопротивлением на единицу длины. Паразитная емкость воспринимается труднее до тех пор, пока не принять во внимание то, что следующий виток катушки расположен вплотную к предыдущему, и между близко расположенными проводниками возникает емкостная связь. Паразитная емкость ограничивает верхнюю рабочую частоту. Небольшие проволочные индуктивности начинают становиться неэффективными в диапазоне 10…100 МГц.

Печатная плата

Сама печатная плата обладает характеристиками рассмотренных выше пассивных компонентов, правда, не столь очевидными.

Рисунок проводников на печатной плате может быть как источником, так и приемником помех. Хорошая разводка проводников уменьшает чувствительность аналоговой схемы к излучению источников.

Печатная плата восприимчива к излучению, поскольку проводники и выводы компонентов образовывают своеобразные антенны. Теория антенн представляет собой достаточно сложный предмет для изучения и не рассматривается в этой статье. Тем не менее, некоторые основы здесь приводятся.

Немного из теории антенн

Одним из основных типов антенн является штырь или прямой проводник. Такая антенна работает, потому что прямой проводник обладает паразитной индуктивностью и поэтому может концентрировать и улавливать излучение от внешних источников. Полный импеданс прямого проводника имеет резистивную (активную) и индуктивную (реактивную) составляющие.

На постоянном токе или низких частотах преобладает активная составляющая. При повышении частоты реактивная составляющая становится все более и более значимой. В диапазоне от 1 кГц до 10 кГц индуктивная составляющая начинает оказывать влияние, и проводник более не является низкоомным соединителем, а скорее выступает как катушка индуктивности.

Формула для расчета индуктивности проводника печатной платы выглядит следующим образом:

Обычно, трассы на печатной плате обладают значениями от 6 нГн до 12 нГн на сантиметр длины. Например, 10-сантиметровый проводник обладает сопротивлением 57 мОм и индуктивностью 8 нГн на см. На частоте 100 кГц реактивное сопротивление становится равным 50 мОм, а на более высоких частотах проводник будет представлять собой скорее индуктивность, чем активное сопротивление.

Правило штыревой антенны гласит, что она начинает ощутимо взаимодействовать с полем при своей длине около 1/20 от длины волны, а максимальное взаимодействие происходит при длине штыря, равной 1/4 от длины волны. Поэтому 10-сантиметровый проводник из примера в предыдущем параграфе начнет становиться довольно хорошей антенной на частотах выше 150 МГц. Необходимо помнить, что несмотря на то, что генератор тактовой частоты цифровой схемы может и не работать на частоте выше 150 МГц, в его сигнале всегда присутствуют высшие гармоники. Если на печатной плате присутствуют компоненты со штыревыми выводами значительной длины, то такие выводы также могут служить антеннами.

Другой основной тип антенн — петлевые антенны. Индуктивность прямого проводника сильно увеличивается, когда он изгибается и становится частью дуги. Увеличивающаяся индуктивность понижает частоту, на которой начинает происходить взаимодействие антенны с линиями поля.

Опытные дизайнеры печатных плат, достаточно хорошо разбирающиеся в теории петлевых антенн, знают, что нельзя создавать петли для критичных сигналов. Некоторые разработчики, однако, не задумываются об этом, и проводники возвратного и сигнального тока в их схемах представляют собой петли. Создание петлевых антенн легко показать на примере (рис. 8). Кроме того, здесь показано и создание щелевой антенны.

Рассмотрим три случая:

Вариант A — пример скверного дизайна. В нем вовсе не используется полигон аналоговой земли. Петлевой контур формируется земляным и сигнальным проводником. При прохождении тока возникают электрическое и перпендикулярное ему магнитное поля. Эти поля образовывают основу петлевой антенны. Правило петлевой антенны гласит, что для наибольшей эффективности длина каждого проводника должна быть равно половине длины волны принимаемого излучения. Однако, следует не забывать, что даже при 1/20 от длины волны петлевая антенна все еще остается достаточно эффективной.

Вариант Б лучше варианта A, но здесь присутствует разрыв в полигоне, вероятно, для создания определенного места для разводки сигнальных проводников. Пути сигнального и возвратного токов образуют щелевую антенну. Другие петли образуются в вырезах вокруг микросхем.

Вариант В — пример лучшего дизайна. Пути сигнального и возвратного тока совпадают, сводя на нет эффективность петлевой антенны. Заметьте, что в этом варианте также присутствуют вырезы вокруг микросхем, но они отделены от пути возвратного тока.

Теория отражения и согласования сигналов находится близко к теории антенн.

Когда проводник печатной платы поворачивает на угол 90° может возникнуть отражение сигнала. Это происходит, главным образом, из-за изменения ширины пути прохождения тока. В вершине угла ширина трассы увеличивается в 1.414 раза, что приводит к рассогласованию характеристик линии передачи, особенно распределенной емкости и собственной индуктивности трассы. Довольно часто необходимо повернуть на печатной плате трассу на 90°. Многие современные CAD-пакеты позволяют сглаживать углы проведенных трасс или проводить трассы в виде дуги. На рисунке 9 показаны два шага улучшения формы угла. Только последний пример поддерживает постоянной ширину трассы и минимизирует отражения.

Совет для опытных разводчиков печатных плат: оставляйте процедуру сглаживания на последний этап работ перед созданием каплеобразных выводов и заливкой полигонов. Иначе, CAD-пакет будет производить сглаживание дольше из-за более сложных вычислений.

Паразитные эффекты печатной платы

Между проводниками печатной платы, находящимися на разных слоях, возникает емкостная связь, когда они пересекаются. Иногда это может создать проблему. Проводники, находящиеся друг над другом на смежных слоях, создают длинный пленочный конденсатор. Емкость такого конденсатора рассчитывается по формуле, приведенной на рисунке 10.

Например, печатная плата может обладать следующими параметрами:

  • 4 слоя; сигнальный и слой полигона земли — смежные
  • межслойный интервал — 0,2 мм
  • ширина проводника — 0,75 мм
  • длина проводника — 7,5 мм

Типовое значение диэлектрической постоянной ER для FR-4 равняется 4.5.

Видно, что происходит удвоение амплитуды выходного сигнала на частотах, близких к верхнему пределу частотного диапазона ОУ. Это, в свою очередь, может привести к генерации, особенно на рабочих частотах антенны (выше 180 МГц).

Этот эффект порождает многочисленные проблемы, для решения которых, тем не менее, существует много способов. Самый очевидный из них — уменьшение длины проводников. Другой способ — уменьшение их ширины. Нет причины применения проводника такой ширины для подводки сигнала к инвертирующему входу, т.к. по этому проводнику протекает очень небольшой ток. Уменьшение длины трассы до 2,5 мм, а ширины до 0,2 мм приведет к уменьшению емкости до 0,1 пФ, а такая емкость уже не приведет к столь значительному подъему частотной характеристики. Еще один способ решения — удаление части полигона под инвертирующим входом и проводником, подходящим к нему.

Инвертирующий вход операционного усилителя, особенно, высокоскоростного, в большой степени склонен к генерации в схемах с высоким коэффициентом усиления. Это происходит из-за нежелательной емкости входного каскада ОУ. Поэтому, крайне важно уменьшить паразитную емкость и располагать компоненты обратной связи настолько близко к инвертирующему входу насколько это возможно. Если, несмотря на принятые меры, происходит возбуждение усилителя, то необходимо пропорционально уменьшить сопротивления резисторов обратной связи для изменения резонансной частоты цепи. Также может помочь и увеличение резисторов, правда, значительно реже, т.к. эффект возбуждения зависит и от импеданса схемы. При изменении резисторов обратной связи нельзя забывать и об изменении емкости корректирующего конденсатора. Также нельзя забывать и о том, что при уменьшении сопротивлении резисторов увеличивается потребляемая мощность схемы.

Ширину проводников печатной платы невозможно бесконечно уменьшить. Предельная ширина определяется как технологическим процессом, так и толщиной фольги. Если два проводника проходят близко друг к другу, то между ними образуется емкостная и индуктивная связь (рис. 12).

Зависимости, описывающие эти паразитные эффекты, достаточно сложны, чтобы их приводить в этой статье, но их можно найти в литературе, посвященной линиям передачи и полосковым линиям.

Сигнальные проводники не должны разводиться параллельно друг другу, исключая случаи разводки дифференциальных или микрополосковых линий. Зазор между проводниками должен быть минимум в три раза больше ширины проводников.

Емкость между трассами в аналоговых схемах может создать затруднения при больших сопротивлениях резисторов (несколько МОм). Относительно большая емкостная связь между инвертирующим и неинвертирующим входами операционного усилителя легко может привести к самовозбуждению схемы.

Всякий раз, когда при разводке печатной платы появляется необходимость в создании переходного отверстия, т.е. межслойного соединения (рис. 13), необходимо помнить, что при этом возникает также паразитная индуктивность. При диаметре отверстия после металлизации d и длине канала h индуктивность можно вычислить по следующей приближенной формуле:

Например, при d=0,4 мм и h=1,5 мм (достаточно распространенные величины) индуктивность отверстия равна 1,1 нГн.

Имейте в виду, что индуктивность отверстия вместе с такой же паразитной емкостью формируют резонансный контур, что может сказаться при работе на высоких частотах. Собственная индуктивность отверстия достаточно мала, и резонансная частота находится где-то в гигагерцовом диапазоне, но если сигнал в течение своего пути вынужден проходить через несколько переходных отверстий, то их индуктивности складываются (последовательное соединение), а резонансная частота понижается. Вывод: старайтесь избегать большого числа переходных отверстий при разводке ответственных высокочастотных проводников аналоговых схем. Другое негативное явление: при большом количестве переходных отверстий в полигоне земли могут создаваться петлевые участки. Наилучшая аналоговая разводка — все сигнальные проводники располагаются на одном слое печатной платы.

Кроме рассмотренных выше паразитных эффектов существуют еще такие, которые связаны с недостаточно чистой поверхностью платы.

Помните, что, если в схеме присутствуют большие сопротивления, то особое внимание следует уделить очистке платы. На заключительных операциях изготовления печатной платы должны удаляться остатки флюса и загрязнений. В последнее время при монтаже печатных плат достаточно часто применяются водорастворимые флюсы. Являясь менее вредными, они легко удаляются водой. Но при этом отмывка платы недостаточно чистой водой может привести к дополнительным загрязнениям, которые ухудшают диэлектрические характеристики. Следовательно, очень важно производить отмывку печатной платы с высокоимпедансной схемой свежей дистиллированной водой.

Развязка сигналов

Как уже отмечалось, помехи могут проникать в аналоговую часть схемы через цепи питания. Для уменьшения таких помех применяются развязывающие (блокировочные) конденсаторы, уменьшающие локальный импеданс шин питания.

Если необходимо развести печатную плату, на которой имеются и аналоговая, и цифровая части, то необходимо иметь хотя бы небольшое представление об электрических характеристиках логических элементов.

Типовой выходной каскад логического элемента содержит два транзистора, последовательно соединенные между собой, а также между цепями питания и земли (рис. 14).

Эти транзисторы в идеальном случае работают строго в противофазе, т.е. когда один из них открыт, то в этот же момент времени второй закрыт, формируя на выходе либо сигнал логической единицы, либо логического нуля. В установившемся логическом состоянии потребляемая мощность логического элемента невелика.

Ситуация кардинально меняется, когда выходной каскад переключается из одного логического состояния в другое. В этом случае в течение короткого промежутка времени оба транзистора могут быть открыты одновременно, а ток питания выходного каскада сильно увеличивается, поскольку уменьшается сопротивление участка пути тока от шина питания до шины земли через два последовательно соединенных транзистора. Потребляемая мощность скачкообразно возрастает, а затем также убывает, что приводит к локальному изменению напряжения питания и возникновению резкого, кратковременного изменения тока. Такие изменения тока приводят к излучению радиочастотной энергии. Даже на сравнительно простой печатной плате может быть десятки или сотни рассмотренных выходных каскадов логических элементов, поэтому суммарный эффект от их одновременной работы может быть очень большим.

Невозможно точно предсказать диапазон частот, в котором будут находиться эти выбросы тока, поскольку частота их возникновения зависит от множества причин, в том числе и от задержки распространения переключений транзисторов логического элемента. Задержка, в свою очередь, также зависит от множества случайных причин, возникающих в процессе производства. Шум от переключений имеет широкополосное распределение гармонических составляющих во всем диапазоне. Для подавления цифрового шума существует несколько способов, применение которых зависит от спектрального распределения шума.

В таблице 2 представлены максимальные рабочие частоты для распространенных типов конденсаторов.

Таблица 2
ТипМаксимальная частота
алюминиевый электролитический100 кГц
танталовый электролитический1 МГц
слюдяной500 МГц
керамический1 ГГц

Из таблицы очевидно, что танталовые электролитические конденсаторы применяются для частот ниже 1 МГц, на более высоких частотах должны применяться керамические конденсаторы. Необходимо не забывать, что конденсаторы имеют собственный резонанс и их неправильный выбор может не только не помочь, но и усугубить проблему. На рисунке 15 показаны типовые собственные резонансы двух конденсаторов общего применения — 10 мкФ танталового электролитического и 0,01 мкФ керамического.

Реальные характеристики могут отличаться у различных производителей и даже от партии к партии у одного производителя. Важно понимать, что для эффективной работы конденсатора подавляемые им частоты должны находиться в более низком диапазоне, чем частота собственного резонанса. В противном случае характер реактивного сопротивления будет индуктивным, а конденсатор перестанет эффективно работать.

Не стоит заблуждаться относительно того, что один 0,1 мкФ конденсатор будет подавлять все частоты. Небольшие конденсаторы (10 нФ и менее) могут работать более эффективно на более высоких частотах.

Развязка питания ИС

Развязка питания интегральных схем с целью подавления высокочастотного шума состоит в применении одного или нескольких конденсаторов, подключенных между выводами питания и земли. Важно, чтобы проводники, соединяющие выводы с конденсаторами, были короткими. Если это не так, то собственная индуктивность проводников будет играть заметную роль и сводить на нет выгоды от применения развязывающих конденсаторов.

Развязывающий конденсатор должен быть подключен к каждому корпусу микросхемы, независимо от того, сколько операционных усилителей находится внутри корпуса — 1, 2 или 4. Если ОУ питается двухполярным питанием, то, само собой разумеется, что развязывающие конденсаторы должны располагаться у каждого вывода питания. Значение емкости должно быть тщательно выбрано в зависимости от типа шума и помех, присутствующих в схеме.

В особо сложных случаях может появиться необходимость добавления индуктивности, включенной последовательно с выводом питания. Индуктивность должна располагаться до, а не после конденсаторов.

Другим, более дешевым способом является замена индуктивности резистором с малым сопротивлением (10…100 Ом). При этом вместе с развязывающим конденсатором резистор образует низкочастотный фильтр. Этот способ уменьшает диапазон питания операционного усилителя, который к тому же становится более зависимым от потребляемой мощности.

Обычно для подавления низкочастотных помех в цепях питания бывает достаточно применить один или несколько алюминиевых или танталовых электролитических конденсаторов у входного разъема питания. Дополнительный керамический конденсатор будет подавлять высокочастотные помехи от других плат.

Развязка входных и выходных сигналов

Множество шумовых проблем является результатом непосредственного соединения входных и выходных выводов. В результате высокочастотных ограничений пассивных компонентов реакция схемы на воздействие высокочастотного шума может быть достаточно непредсказуемой.

В ситуации, когда частотный диапазон наведенного шума в значительной степени отличается от частотного диапазона работы схемы, решение просто и очевидно — размещение пассивного RC-фильтра для подавления высокочастотных помех. Однако, при применении пассивного фильтра надо быть осторожным: его характеристики (из-за неидеальности частотных характеристик пассивных компонентов) утрачивают свои свойства на частотах, в 100…1000 раз превышающих частоту среза (f3db). При использовании последовательно соединенных фильтров, настроенных на разные частотные диапазоны, более высокочастотный фильтр должен быть ближайшим к источнику помех. Индуктивности на ферритовых кольцах также могут применяться для подавления шума; они сохраняют индуктивный характер сопротивления до некоторой определенной частоты, а выше их сопротивление становится активным.

Наводки на аналоговую схему могут быть настолько большими, что избавиться (или, по крайней мере, уменьшить) от них возможно только с помощью применения экранов. Для эффективной работы они должны быть тщательно спроектированы так, чтобы частоты, создающие наибольшие проблемы, не смогли попасть в схему. Это означает, что экран не должен иметь отверстия или вырезы с размерами, большими, чем 1/20 длины волны экранируемого излучения. Хорошая идея отводить достаточное место под предполагаемый экран с самого начала проектирования печатной платы. При использовании экрана можно дополнительно использовать ферритовые кольца (или бусинки) для всех подключений к схеме.

Корпуса операционных усилителей

В одном корпусе обычно размещаются один, два или четыре операционных усилителя (рис. 16).

Одиночный ОУ часто также имеет дополнительные входы, например,  для регулировки напряжения смещения. Сдвоенные и счетверенные ОУ имеют лишь инвертирующий и неинвертирующий входы и выход. Поэтому при необходимости иметь дополнительные регулировки надо применять одиночные операционные усилители. При использовании дополнительных выводов необходимо помнить, что по своей структуре они являются вспомогательными входами, поэтому управление ими должно осуществляться аккуратно и в соответствии с рекомендациями производителя.

В одиночном ОУ выход располагается на противоположной стороне от входов. Это может создать затруднение при работе усилителя на высоких частотах из-за протяженных проводников обратной связи. Один из путей преодоления этого состоит в размещении усилителя и компонентов обратной связи на разных сторонах печатной платы. Это, однако, приводит к как минимум двум дополнительным отверстиям и вырезам в полигоне земли. Иногда стоит использовать сдвоенный ОУ для разрешения данной проблемы, даже если второй усилитель не используется (при этом его выводы должны быть подключены должным образом). Рисунок 17 иллюстрирует уменьшение длины проводников цепи обратной связи для инвертирующего включения.

Сдвоенные ОУ особенно часто используются в стереофонических усилителях, а счетверенные — в схемах многокаскадных фильтров. Однако, в этом есть довольно значительный минус. Несмотря на то, что современная технология обеспечивает приличную изоляцию между сигналами усилителей, расположенных на одном кремниевом кристалле, между ними все же существуют некоторые перекрестные помехи. Если необходимо иметь очень малую величину таких помех, то необходимо использовать одиночные операционные усилители. Перекрестные помехи возникают не только при использовании сдвоенных или счетверенных усилителей. Их источником может служить очень близкое расположение пассивных компонентов разных каналов.

Сдвоенные и счетверенные ОУ, кроме вышесказанного, позволяют осуществить более плотный монтаж. Отдельные усилители как бы зеркально расположены друг относительно друга (рис. 18).

На рисунках 17 и 18 показаны не все подключения, требуемые для нормальной работы, например, формирователь среднего уровня при однополярном питании. На рисунке 19 приведена схема такого формирователя при использовании счетверенного усилителя.

На схеме показаны все необходимые подключения для реализации трех независимых инвертирующих каскадов. Необходимо обратить внимание на то, что проводники формирователя половины напряжения питания располагаются непосредственно под корпусом интегральной схемы, что позволяет уменьшить их длину. Этот пример иллюстрирует не то, как должно быть, а то, что должно быть сделано. Напряжение среднего уровня, например, могло бы быть единым для всех четырех усилителей. Пассивные компоненты могут быть соответствующего размера. Например, планарные компоненты типоразмера 0402 соответствуют расстоянию между выводами стандартного корпуса SO. Это позволяет сделать длину проводников очень короткой для высокочастотных приложений.

Типы корпусов операционных усилителей включают в себя, в основном, DIP (dual-in-line) и SO (small-outline). Вместе с уменьшением размера корпуса уменьшается и шаг выводов, что позволяет применять меньшие по размеру пассивные компоненты. Уменьшение размеров схемы в целом уменьшает паразитные индуктивности и позволяет работать на более высоких частотах. Однако это приводит также к возникновению более сильных перекрестных помех из-за увеличения емкостной связи между компонентами и проводниками.

Объемный и поверхностный монтаж

При размещении операционных усилителей в корпусах типа DIP и пассивных компонентов с проволочными выводами требуется наличие на печатной плате переходных отверстий для их монтажа. Такие компоненты в настоящее время используются, когда нет особых требований к размерам печатной платы; обычно они стоят дешевле, но стоимость печатной платы в процессе изготовления возрастает из-за сверловки дополнительных отверстий под выводы компонентов.

Кроме того, при использовании навесных компонентов увеличиваются размеры платы и длины проводников, что не позволяет работать схеме на высоких частотах. Переходные отверстия обладают собственной индуктивностью, что также накладывает ограничения на динамические характеристики схемы. Поэтому навесные компоненты не рекомендуется применять для реализации высокочастотных схем или для аналоговых схем, размещенных поблизости с высокоскоростными логическими схемами.

Некоторые разработчики, пытаясь уменьшить длину проводников, размещают резисторы вертикально. С первого взгляда может показаться что, это сокращает длину трассы. Однако при этом увеличивается путь прохождения тока по резистору, а сам резистор представляет собой петлю (виток индуктивности). Излучающая и принимающая способность возрастает многократно.

При поверхностном монтаже не требуется размещения отверстия под каждый вывод компонента. Однако возникают проблемы при тестирования схемы, и приходится использовать переходные отверстия в качестве контрольных точек, особенно при применении компонентов малого типоразмера.

Неиспользуемые секции оу

При использовании сдвоенных и счетверенных операционных усилителей в схеме некоторые их секции могут остаться незадействованными и должны быть в этом случае корректно подключены. Ошибочное подключение может привести к увеличению потребляемой мощности, большему нагреву и большему шуму используемых в этом же корпусе ОУ. Выводы неиспользуемых операционных усилителей могут быть подключены так, как изображено на рис. 20а. Подключение выводов с дополнительными компонентами (рис. 20б) позволит легко использовать этот ОУ при наладке.

Заключение

Помните следующие основные моменты и постоянно соблюдайте их при проектировании и разводке аналоговых схем.

Общие:

  • думайте о печатной плате как о компоненте электрической схемы
  • имейте представление и понимание об источниках шума и помех
  • моделируйте и макетируйте схемы

Печатная плата:

  • используйте печатные платы только из качественного материала (например, FR-4)
  • схемы, выполненные на многослойных печатных платах, на 20 дБ менее восприимчивее к внешним помехам, чем схемы, выполненные на двухслойных платах
  • используйте разделенные, неперекрывающиеся полигоны для различных земель и питаний
  • располагайте полигоны земли и питания на внутренних слоях печатной платы.

Компоненты:

  • осознавайте частотные ограничения, вносимые пассивными компонентами и проводниками платы
  • старайтесь избегать вертикального размещения пассивных компонентов в высокоскоростных схемах
  • для высокочастотных схем используйте компоненты, предназначенные для поверхностного монтажа
  • проводники должны быть чем короче, тем лучше
  • если требуется большая длина проводника, то уменьшайте его ширину
  • неиспользуемые выводы активных компонентов должны быть правильно подключены

Разводка:

  • размещайте аналоговую схему вблизи разъема питания
  • никогда не разводите проводники, передающие логические сигналы, через аналоговую область платы, и наоборот
  • проводники, подходящие к инвертирующему входу ОУ, делайте короткими
  • удостоверьтесь, что проводники инвертирующего и неинвертирующего входов ОУ не располагаются параллельно друг другу на большом протяжении
  • старайтесь избегать применения лишних переходных отверстий, т.к. их собственная индуктивность может привести к возникновению дополнительных проблем
  • не разводите проводники под прямыми углами и сглаживайте вершины углов, если это возможно

Развязка:

  • используйте правильные типы конденсаторов для подавления помех в цепях питания
  • для подавления низкочастотных помех и шумов используйте танталовые конденсаторы у входного разъема питания
  • для подавления высокочастотных помех и шумов используйте керамические конденсаторы у входного разъема питания
  • используйте керамические конденсаторы у каждого вывода питания микросхемы; если необходимо, используйте несколько конденсаторов для разных частотных диапазонов
  • если в схеме происходит возбуждение, то необходимо использовать конденсаторы с меньшим значением емкости, а не большим
  • в трудных случаях в цепях питания используйте последовательно включенные резисторы малого сопротивления или индуктивности
  • развязывающие конденсаторы аналогового питания должны подключаться только к аналоговой земле, а не к цифровой

Автор статьи: Bruce Carter. Перевод статьи Op Amps For Everyone, chapter 17. Circuit Board Layout Techniques. Design Reference, Texas Instruments

Мы всегда рады сотрудничеству с новыми авторами. Если у вас есть уникальная экспертиза или просто качественный материал, полезный инженерам-разработчикам электроники, мы с удовольствием поделимся им на страницах раздела Авторские статьи. Присылайте свои статьи на почту [email protected]

Клеммы Wago: виды, характеристики, как выбрать и как правильно пользоваться. Статьи

Электромонтажные клеммы и соединители WAGO предлагают оптимальные решения для монтажа любого продукта — как в распределительных коробках, так и блоках. Вставное соединение однопроволочных проводников, например, в наших соединителях для распределительных коробок, экономит время и деньги.


В соответствии с типом проводов, для которых предназначены клеммные колодки WAGO, размером сечения проводов, предназначением и способом применения клеммы разделены на разные серии. По цифровому обозначению серии в каталогах продукции WAGO подбирается модель зажима с требуемыми характеристиками.1) Клеммы для осветительного оборудования серия 224

Клеммы WAGO для осветительного оборудования обеспечивают идеальное соединение между одножильными и тонкими многожильными проводниками. Благодаря сертификации в качестве независимого оборудования согласно EN 60998 соединители WAGO для осветительного оборудования могут использоваться практически во всех электрических соединениях между одножильными и тонкими многожильными проводниками дома и в инженерных системах зданий.
  • Идеальное соединение одножильных проводников с тонкими многожильными проводниками.
  • Простой монтаж проводки без инструментов особенно удобен при проведении работ на высоте.
  • Подходят для решения самых разных задач, включая подключение устройств с гибкими проводниками к стационарным установкам (например, к приводам для штор).

2) Универсальные соединительные клеммы для всех типов медных проводников серия 221

От проводки системы внутренней связи до электрических печей: различные типы проводников можно быстро и легко подключить с помощью компактных соединительных клемм WAGO серии 221.
  • Подключайте проводники любого типа без предварительной подготовки
  • Комбинируйте проводники любых типов и размеров
  • Простой в использовании рабочий рычаг для бесконтактного подключения
  • Способность проводить большие токи до 32 А
  • Благодаря фиксирующему держателю идеально подходит для применения в распределительных устройствах
  • Для соединения однопроволочных, многопроволочных и тонких многопроволочных проводников
  • Экономия времени для монтажников и производителей оборудования
  • Более быстрое подключение приборов с высоким уровнем энергопотребления
  • Клеммы на 4 мм² (до 32, А) используются для соединения тонких многопроволочных проводников сечением от 0,14 до 4 мм², а также однопроволочных и многопроволочных проводников сечением от 0,2 до 4 мм².

3) Универсальные соединительные клеммы для всех типов медных проводников серия 222

Клемма Wago данной серии применяется для подключения проводников в распределительной коробке, подключения светильников, индивидуального подключения низковольтных осветительных систем, соединения предустановленных элементов, например, в мобильных домиках, для подключения жалюзи, ставней, дверных приводов, переговорных устройств, насосов, громкоговорителей и многого другого. Каждый проводник имеет одно клеммное место и не повреждается в результате монтажа. Корпуса клемм имеют тестовые гнезда для всех стандартов измерительных щупов. Монтаж клемм не требует использования инструментов. Надежность контактов клеммы исключает короткое замыкание и разогрев в точке соединения. Клеммы на 2.5 мм² (до 32, А) используются для соединения однопроволочных и многопроволочных проводников сечением от 0,08 до 2.5 мм².

4) Соединители для распределительных коробок серий 2273 и 773

Cерия 2273 — предназначена для соединения алюминиевых и медных проводов. Клеммы позволяют осуществлять подключение одножильных и многожильных медных проводов до 3 класса гибкости, алюминиевых проводников, а также смешанный монтаж. Продукты серии 2273 можно использовать для подключения одножильных проводников до 2,5 мм²; серия 773 — быстросъемные самозажимные клеммы WAGO 773 — это специальная серия изделий для распределительных коробок. Они рассчитаны на подключение 2–6 проводов. Допустим для работы с одножильными проводами. Возможен также монтаж клемм данной серии на DIN-рейку с помощью специальных адаптеров. Контактные клеммы серии 773 используются для присоединения одножильных медных и алюминиевых проводов, а также многожильных медных с наконечником. Их применяют в распределительных коробках/ящиках с электрическими цепями переменного тока, которые работают с сетью на 50 Гц, продукты серии 773 подключают соединители до 6 мм².
  • Компактные размеры
  • Быстрый монтаж проводки за счет простой вставки одножильных проводников
  • Подключение проводников без инструментов
  • Благодаря фиксирующему держателю идеально подходит для применения в распределительных устройствах
  • Многоразовое применение
  • Прозрачный корпус позволяет убедиться, что проводник вставлен правильно

Как правильно пользоваться:
Пользоваться неразъемными клеммами WAGO серий 773, 2273 очень легко — вам нужно лишь зачистить конец провода и вставить его в рабочее отверстие клеммы. При этом входящая в состав устройства пружина срабатывает и намертво зажимает провод.
К недостаткам неразъемных моделей можно отнести менее широкие возможности — таким способом можно соединять лишь монолитные (одножильные) провода. Если уж возникла необходимость соединения многожильных проводников, то их концы сначала нужно подвергнуть опрессовке.
Многоразовые клеммники WAGO серий 221, 222, 224 подходят для соединения любых проводов, причем оба провода могут различаться по техническим характеристикам — разное количество жил, разный диаметр и даже количество проводников.
При использовании многоразовых клемм каждый проводник вставляется в отдельное отверстие. Сначала зачищается старая изоляция на 1–1,5 см. Затем нужно приподнять оранжевый зажимы в серии 221 и 222, вставить провод в разъем и отпустить зажим. Все очень просто, больше вам ничего делать не придется. При соединении многожильных проводников нет необходимости в опрессовке. Кстати, с помощью оранжевого зажима можно быстро разъединить контакт для проведения диагностики цепи.

Способы соединения проводников (проводов и кабелей)

При планировании замены электропроводки квартиры один из наиболее важных вопросов – это выбор способа соединения проводников. От качества выполненного контактного соединения проводников зависит срок службы монтированной электропроводки. В данной статье рассмотрим наиболее распространенные способы соединения проводников, а также их основные преимущества и недостатки. Рассмотрим скрутку, как наиболее распространенный и доступный способ соединения проводников. Простота и доступность данного способа заключается в том, что для соединения проводников не нужно дополнительных элементов. Бытует ошибочное мнение о том, что скрутка может обеспечить надежный контакт. Это мнение основано преимущественно на опыте электриков, монтирующих проводку в советское время. Скрутка проводов В те времена, то есть 20-30 лет назад, нагрузка бытовых электроприборов была сравнительно невелика. Поэтому соединение проводников, выполненное скруткой, служило достаточно продолжительное время. С каждым годом количество и мощность бытовых электроприборов, используемых в быту, увеличивается. Это приводит к тому, что монтируемая 20-30 лет назад проводка выходит из строя. При этом наиболее «слабыми местами» являются контактные соединения, выполненные скрутками. Повреждение скруток обусловлено окислением проводников и ослаблению их сжатия между собой, что в конечном итоге приводит к значительному увеличению переходного сопротивления. В данном случае при протекании тока нагрузки через скрутку происходит ее нагрев, что в конечном итоге приводит к оплавлению изоляции и повреждению электропроводки. Можно сделать вывод, что скрутка не обеспечивает достаточной надежности контактного соединения проводников. Поэтому согласно современным требованиям к монтажу электропроводки не рекомендуется соединять проводники скруткой. Скрутку можно рассматривать, как начальный этап при соединении проводников методом пайки, опрессовки или сварки. Пайка – это один из наиболее надежных способов соединения проводников. Данный способ актуален при необходимости соединения медных жил проводов и кабелей. Недостаток данного способа соединения проводников – относительная трудоемкость процесса. Данный недостаток несущественный, так как компенсируется надежным контактным соединением проводников, не ухудшающимся со временем. Пайка проводов Следующий способ соединения проводников – сварка. Суть данного способа заключается в сварке предварительно скрученных проводников. Сварка производится угольным электродом при помощи сварочного аппарата небольшой мощности. Сварка проводов Данный способ соединения можно назвать наиболее надежным, так как при сварке соединяемые проводники превращаются в монолитное соединение. Сопротивление в месте соединения проводников равно нулю. Обычная скрутка является слабым местом электропроводки и при протекания тока нагрузки она нагревается в первую очередь. В то время как сваренная скрутка будет нагреваться в последнюю очередь, так как ее диаметр больше сечения соединяемых проводников. Единственный недостаток данного способа соединения – это необходимость наличия сварочного аппарата и практических навыков сварки проводов. Следующий способ – соединение проводов опрессовкой. Для соединения опрессовкой зачищенные проводники предварительно скручивают и одевают на полученную скрутку гильзу соответствующего диаметра. Затем гильза обжимается в нескольких местах (в зависимости от типа гильзы) специальным инструментом. Опресовка проводов Данный способ соединения проводников достаточно прост в исполнении и не требует наличия у человека, выполняющего электромонтажные работы, особых навыков. Контактное соединение проводников, выполненное опрессовкой, не уступает по качеству вышеприведенным способам соединения – сварке и пайке, а благодаря простоте и сравнительно невысокой трудоемкости работ, пользуется большей популярностью. Проблему ослабевания контакта при соединении проводников скруткой можно решить при помощи соединительных самоизолирующих зажимов (СИЗ). Зажимы данного типа представляют собой пластиковый корпус, в который помещена пружина конической формы. Колпачок СИЗ накручивается на скрутку проводников, прижимая скрученные проводники. Колпачек для скрутки проводов СИЗ Он препятствует ослаблению зажима скрученных проводников. Кроме того, самоизолирующий зажим выступает в роли изоляции полученного контактного соединения, а также осуществляет его защиту от негативного воздействия пыли и влаги. Для соединения проводников также можно использовать клеммники. Современный ассортимент предлагает большое количество клеммников разного типа. Клеммник (под винт) для соединения проводов Одни из наиболее популярных – клеммники Wago. Основное преимущество данных соединительных устройств – безвинтовой способ соединения проводников. Если в случае использования винтовых клеммников есть вероятность недостаточного или чрезмерного зажатия проводников, то в случае использования клемм Wago данная проблема отсутствует. Конструктивно данные клеммы выполнены таким образом, что контактируемая поверхность клемм прижимается к подключаемым проводникам с оптимальным усилием. То есть с таким усилием, при котором обеспечивается хороший контакт и не пережимаются проводники. Соединение проводов с помощью клемм Wago Проведение электромонтажных работ с использованием клемм Wago в качестве соединительных устройств значительно снижает их трудоемкость. Процесс подключения происходит достаточно быстро, без необходимости использования дополнительного инструмента. Еще одно преимущество клеммников Wago заключается в их компактности. То есть их можно использовать практически повсеместно, в частности в местах, где ограничено свободное место. В заключении следует отметить, что отсутствие возможности соединения проводников вышеприведенными способами – это не проблема. При необходимости соединение проводников можно выполнить обычным винтовым соединением. Для соединения проводников данным способом необходимо найти винт, гайку, несколько шайб и гровер. Впоследствии соединение проводников изолируются несколькими слоями изоляционной ленты или термоусадочной трубкой.

По министерствам и ведомствам — Правительство России

Распоряжение от 14 декабря 2019 года №3047-р. Предлагается установить основные критерии аттестации экскурсоводов (гидов), гидов-переводчиков и инструкторов-проводников и требования к их образованию, стажу работы, а также к наличию профессиональных знаний и навыков. Предлагаемые законопроектом изменения направлены на повышение защиты интересов потребителей туристских услуг, упорядочение деятельности экскурсоводов (гидов), гидов-переводчиков, инструкторов-проводников, обеспечение безопасности туристов при прохождении туристских маршрутов повышенной опасности, создание прозрачного и контролируемого рынка экскурсионных услуг.

Документ

  • Распоряжение от 14 декабря 2019 года №3047-р

Проект федерального закона «О внесении изменений в отдельные законодательные акты Российской Федерации в целях совершенствования правового регулирования деятельности экскурсоводов (гидов), гидов-переводчиков и инструкторов-проводников» (далее – законопроект) внесён Минэкономразвития России в соответствии с поручением Президента России по итогам заседания президиума Государственного совета (№Пр-1893ГС от 17 августа 2015 года, первый абзац подпункта «в» пункта 1).

Согласно законопроекту услуги экскурсовода (гида) и гида-переводчика на туристских маршрутах будут оказываться гражданами России, прошедшими аттестацию. Предлагается установить основные критерии аттестации экскурсоводов (гидов), гидов-переводчиков и инструкторов-проводников и требования к их образованию, стажу работы, а также к наличию профессиональных знаний и навыков.

Аттестация будет проводиться органом государственной власти субъекта Федерации в сфере туризма, на территории которого экскурсоводы (гиды) и гиды-переводчики предполагают оказывать такие услуги.

Для проведения аттестации экскурсоводов (гидов) или гидов-переводчиков, оказывающих услуги на национальных туристских маршрутах, на межрегиональном уровне будут образованы межрегиональные аттестационные комиссии, деятельность которых будет осуществляться на основании соглашений между органами государственной власти субъектов Федерации в сфере туризма, на территории которых проходят такие маршруты, по согласованию с уполномоченным федеральным органом исполнительной власти. Аттестация экскурсоводов (гидов), гидов-переводчиков в целях подтверждения соответствия уровня их квалификации будет проводиться один раз в пять лет. Определяются также условия оказания услуг инструктором-проводником при прохождении туристских маршрутов, требующих сопровождения.

Законопроектом предусмотрено, что Правительством России будут установлены:

— порядок и критерии аттестации экскурсоводов (гидов) и гидов-переводчиков, оказывающих услуги на туристских маршрутах, инструкторов-проводников;

— правила оказания услуг экскурсовода (гида) и гида-переводчика на туристских маршрутах, услуг инструктора-проводника;

— виды туристских маршрутов, требующих сопровождения инструкторов-проводников, и категории их сложности, а также критерии отнесения туристского маршрута с учётом обеспечения безопасности туристов к соответствующей категории сложности;

— порядок определения национальных туристских маршрутов, на которых экскурсоводы (гиды), гиды-переводчики не могут оказывать услуги без прохождения аттестации;

— положение о федеральном государственном контроле за деятельностью юридических лиц, включённых в реестр организаций, уполномоченных на проведение аттестации инструкторов-проводников.

Предлагаемые законопроектом изменения направлены на повышение защиты интересов потребителей туристских услуг, упорядочение деятельности экскурсоводов (гидов), гидов-переводчиков, инструкторов-проводников, обеспечение безопасности туристов при прохождении туристских маршрутов повышенной опасности, создание прозрачного и контролируемого рынка экскурсионных услуг.

Законопроект рассмотрен и одобрен на заседании Комиссии Правительства Российской Федерации по законопроектной деятельности 9 декабря 2019 года.

Законопроект рассмотрен и одобрен на заседании Правительства Российской Федерации 12 декабря 2019 года.

Что такое электрический проводник? Определение и типы электрических проводников

Определение: Проводник — это металл, который позволяет электрическому току проходить через него. Электрический проводник обычно состоит из металлов, таких как медь, алюминий и их сплавы. В электрическом проводнике электрические заряды перемещаются от атома к атому, когда к ним прикладывается разность потенциалов. Электрические проводники используются в виде проволоки.Выбор проводника можно принять во внимание, учитывая различные факторы, такие как предел прочности на разрыв, усталостная прочность, потери на коронный разряд, местные условия и стоимость.

Электрический провод, который используется для передачи энергии, обычно многожильный. Многожильные проводники обладают большой гибкостью и механической прочностью по сравнению с одиночным проводом того же сечения. В многожильном проводе обычно центральный провод окружен последовательными слоями проводов, содержащих 6, 12, 18, 24,… проводов.

Размер проводника определяется эквивалентной площадью поперечного сечения меди и количеством жил с диаметром каждой жилы. Эквивалентное поперечное сечение многожильного проводника — это площадь поперечного сечения одножильного проводника из того же материала и той же длины, что и многопроволочный проводник. А также провод, имеющий такое же сопротивление при той же температуре.

Типы электропроводников

Жестко вытянутые медные, твердотянутые алюминиевые проводники и алюминиевые проводники с сердечником из стали чаще всего используются в энергетике.Некоторые из важных типов проводников подробно описаны ниже.

Жестко вытянутый медный проводник

Такой тип проводов обеспечивает высокую прочность на разрыв. Он обладает высокой электропроводностью, долгим сроком службы и высокой стоимостью лома. Он наиболее подходит для распределительных работ, когда пролеты и отводы больше.

Кадмий медный проводник

Предел прочности на разрыв меди увеличивается примерно на 50 процентов за счет добавления к ней от 0,7 до 1,0 процента кадмия, но их проводимость снижается примерно на 15-17 процентов.Свойство более высокой прочности на разрыв позволяет возводить проводник на более длинные пролеты с таким же прогибом. Этот проводник обладает такими преимуществами, как простота соединения, большая устойчивость к атмосферным условиям, лучшая износостойкость, легкость обработки и т. Д.

Температура, при которой медь отжигается и размягчается, также повышается, а влияние температуры на напряжения меньше. Отклонение прогиба из-за изменений нагрузки и температуры сведено к минимуму.

Медный проводник со стальным сердечником (SCC)

В медном проводнике со стальным сердечником один или два слоя медных жил окружают медные проводники со стальным сердечником.Стальной сердечник добавляет проводнику прочность на разрыв.

Медный сварной провод

В проводниках такого типа однородные слои меди привариваются к стальной проволоке. Электропроводность медного сварного проводника варьируется от 30 до 60 процентов по сравнению со сплошным медным проводником того же диаметра. Такие типы проводов можно использовать на более длительных участках, например, при переходе через реку.

Жестко вытянутый алюминиевый проводник или полностью алюминиевый проводник

Стоимость медного проводника очень высока, поэтому его заменяют алюминиевым проводом.Обработка, транспортировка и монтаж алюминиевых проводов становятся очень экономичными. Он используется в распределительных линиях в городской местности и коротких линиях электропередачи с более низким напряжением.

Алюминиевый проводник, армированный сталью

Все алюминиевые жилы не обладают достаточной механической прочностью для строительства длиннопролетных линий. Этот недостаток прочности можно компенсировать, добавив к проводнику стальной сердечник. Такой проводник называется алюминиевым проводником со стальным сердечником (SCA) или алюминиевым проводником, армированным сталью (ACSR).

Провод ACSR имеет семь стальных жил, образующих центральную жилу, вокруг которой расположены два слоя из 30 алюминиевых жил. Скрутка проводов определяется как 30 Al / 7 St. Проводники ACSR обладают высокой прочностью на разрыв и малым весом, поэтому они используются для небольшого прогиба.

Гладкий провод ACSR

Такой тип жилы еще называют уплотненным ACSR. Обычный провод ACSR продавливают через матрицы, чтобы сплющить алюминиевые жилы в сегментную форму.Межпрядное пространство заполняется, а диаметр проводника уменьшается, не влияя на его электрические и механические свойства. Этот проводник может быть изготовлен с различным соотношением алюминия к стали. На рисунке ниже показан проводник с соотношением 6 Al / 1 St.

.

Расширенный проводник ACSR

Для уменьшения потерь на коронный разряд и радиопомех при высоком напряжении между жилами залиты волокнистый или пластмассовый материал. Диаметр проводника увеличивается из-за наполнителя, поэтому его называют расширенным проводником.Эти проводники состоят из бумажного материала, который отделяет внутренние алюминиевые жилы от внешних стальных.

Проводник из алюминиевого сплава

Проводники такого типа чаще всего используются в городских условиях. Этот проводник имеет хорошее сочетание проводимости и прочности на разрыв. Одним из сплавов, которые используются для изготовления такого проводника, является Silmalec. Этот сплав содержит 0,5% кремния, 0,5% магния и остальное количество алюминия. Эти сплавы очень дороги, так как подвергаются термообработке.

Проводник ACAR

Армированный алюминиевый проводник

имеет центральную сердцевину из алюминиевого сплава, окруженную слоями проводящего алюминия. Такой проводник дает лучшую проводимость при удельном весе, равном конструкции ACSR того же диаметра.

Проводник из алюмосварки

Алюминиевый порошок приваривается к высокопрочной стальной проволоке. Около 75% площади проводника покрыто алюминием. Это дороже, чем кремниевый провод с сердечником.Для изготовления жил проводов SCA использовался заземляющий провод.

Проводник из фосфористой бронзы

Фосфорная бронза используется в качестве проводящего материала на очень длинных участках, например, при переправе через реки. Он прочнее медного проводника, но имеет низкую проводимость. Этот проводник превосходит проводник из алюминиевой бронзы для сред, содержащих вредные газы, такие как аммиак.

Проводник из оцинкованной стали

Трос из оцинкованной стали имеет высокую прочность на разрыв.Они используются в очень длинных пролетах и ​​в сельской местности, где нагрузка невелика. В таких случаях стальные проводники могут быть заменены проводником со стальным сердечником, чтобы справиться с дополнительной нагрузкой в ​​будущем. Этот проводник имеет большое сопротивление, индуктивность и падение напряжения. Но у него небольшой срок службы по сравнению с другими проводниками.

Проводники и изоляторы

Электроны атомов разных типов имеют разные степени свободы передвижения. В некоторых типах материалов, таких как металлы, внешние электроны в атомах настолько слабо связаны, что они хаотично перемещаются в пространстве между атомами этого материала не более чем под влиянием тепловой энергии комнатной температуры.Поскольку эти практически несвязанные электроны могут свободно покидать свои соответствующие атомы и плавать в пространстве между соседними атомами, их часто называют свободными электронами .

В других типах материалов, таких как стекло, электроны атомов имеют очень мало свободы передвижения. Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои соответствующие атомы и перейти к атомам другого материала, они не очень легко перемещаются между атомами внутри этого материала.

Эта относительная подвижность электронов в материале известна как электрическая проводимость . Электропроводность определяется типами атомов в материале (количество протонов в ядре каждого атома, определяющее его химическую идентичность) и тем, как атомы связаны друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками , а материалы с низкой подвижностью электронов (небольшое количество свободных электронов или их отсутствие) называются изоляторами .

Вот несколько распространенных примеров проводников и изоляторов:

Проводников:

  • серебро
  • медь
  • золото
  • алюминий
  • утюг
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон

Изоляторы:

  • стекло
  • каучук
  • масло
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухое) хлопок
  • (сухая) бумага
  • (сухое) дерево
  • пластик
  • воздух
  • алмаз
  • чистая вода

Следует понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все изоляторы одинаково устойчивы к движению электронов.Электропроводность аналогична прозрачности некоторых материалов для света: материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, — «непрозрачными». Однако не все прозрачные материалы одинаково светопроводят. Оконное стекло лучше, чем большинство пластиков, и, конечно, лучше, чем «прозрачное» стекловолокно. Так и с электрическими проводниками, одни лучше других.

Например, серебро — лучший проводник в списке «проводников», предлагая более легкий проход для электронов, чем любой другой упомянутый материал.Грязная вода и бетон также считаются проводниками, но эти материалы обладают значительно меньшей проводимостью, чем любой металл.

Физические размеры также влияют на проводимость. Например, если мы возьмем две полосы из одного и того же проводящего материала — одну тонкую, а другую толстую, — толстая полоса окажется лучшим проводником, чем тонкая при той же длине. Если мы возьмем другую пару полосок — на этот раз одинаковой толщины, но одна короче другой — более короткая будет обеспечивать более легкий проход электронам, чем длинная.Это аналогично потоку воды в трубе: толстая труба предлагает более легкий проход, чем тонкая труба, а короткая труба легче проходит воде, чем длинная, при прочих равных размерах.

Также следует понимать, что некоторые материалы изменяют свои электрические свойства в различных условиях. Например, стекло является очень хорошим изолятором при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур.Большинство металлов при нагревании становятся хуже проводниками, а при охлаждении — лучше. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью ) при чрезвычайно низких температурах.

В то время как нормальное движение «свободных» электронов в проводнике является случайным, без определенного направления или скорости, электроны могут скоординированно перемещаться через проводящий материал. Это равномерное движение электронов мы называем электричеством или электрическим током .Чтобы быть более точным, его можно было бы назвать динамическим электричеством в отличие от статического электричества , которое представляет собой неподвижное накопление электрического заряда. Так же, как вода, текущая через пустоту трубы, электроны могут перемещаться в пустом пространстве внутри и между атомами проводника. На наш взгляд проводник может показаться твердым, но любой материал, состоящий из атомов, по большей части представляет собой пустое пространство! Аналогия с потоком жидкости настолько уместна, что движение электронов через проводник часто называют «потоком».»

Здесь можно сделать примечательное наблюдение. Поскольку каждый электрон равномерно движется по проводнику, он толкает проводник впереди, так что все электроны движутся вместе как группа. Начало и остановка потока электронов по длине проводящего пути происходит практически мгновенно от одного конца проводника к другому, даже если движение каждого электрона может быть очень медленным. Примерная аналогия — трубка, заполненная встык мрамором:

Трубка полна шариков, так же как проводник полон свободных электронов, готовых к перемещению под внешним воздействием.Если один шарик внезапно вставляется в эту полную трубку с левой стороны, другой шарик немедленно попытается выйти из трубки справа. Несмотря на то, что каждый шарик прошел лишь небольшое расстояние, передача движения через трубку происходит практически мгновенно от левого конца к правому, независимо от длины трубки. С электричеством общий эффект от одного конца проводника до другого происходит со скоростью света: быстрые 186 000 миль в секунду !!! Однако каждый отдельный электрон проходит через проводник на , намного медленнее.

Если мы хотим, чтобы электроны текли в определенном направлении в определенное место, мы должны обеспечить им правильный путь, так же как водопроводчик должен установить трубопровод, чтобы вода текла туда, где он или она хочет, чтобы она текла. Чтобы облегчить это, провода изготовлены из металлов с высокой проводимостью, таких как медь или алюминий, самых разных размеров.

Помните, что электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала.Это означает, что электрический ток может присутствовать только там, где существует непрерывный путь из проводящего материала, обеспечивающий проход для электронов. В аналогии с мрамором шарики могут течь в левую сторону трубки (и, следовательно, через трубку) тогда и только тогда, когда трубка открыта с правой стороны, чтобы шарики могли вытекать. Если трубка заблокирована с правой стороны, шарики будут просто «скапливаться» внутри трубки, и мраморный «поток» не произойдет.То же самое верно и для электрического тока: непрерывный поток электронов требует наличия непрерывного пути, позволяющего этот поток. Давайте посмотрим на диаграмму, чтобы проиллюстрировать, как это работает:

Тонкая сплошная линия (как показано выше) является условным обозначением непрерывного отрезка проволоки. Поскольку проволока сделана из проводящего материала, такого как медь, составляющие ее атомы имеют много свободных электронов, которые могут легко перемещаться по проволоке. Однако в этом проводе никогда не будет непрерывного или равномерного потока электронов, если им не будет откуда взяться и куда пойти.Добавим гипотетические «Источник» и «Назначение» электрона:

Теперь, когда Источник электронов проталкивает новые электроны в провод с левой стороны, поток электронов через провод может происходить (на что указывают стрелки, указывающие слева направо). Однако поток будет прерван, если токопроводящий путь, образованный проволокой, будет нарушен:

Поскольку воздух — изолирующий материал, а два куска провода разделяет воздушный зазор, некогда непрерывный путь прерван, и электроны не могут течь от источника к месту назначения.Это похоже на разрезание водопроводной трубы на две части и закрытие ее сломанных концов: вода не может течь, если нет выхода из трубы. С точки зрения электричества, у нас было состояние электрической непрерывности , когда провод был цельным, а теперь эта непрерывность прервана из-за того, что провод был разрезан и разделен.

Если бы мы возьмем другой кусок провода, ведущего к Пункту назначения, и просто вступим в физический контакт с проводом, ведущим к Источнику, у нас снова будет непрерывный путь для движения электронов.Две точки на схеме обозначают физический контакт (металл-металл) между кусочками провода:

Теперь у нас есть непрерывность от Источника до вновь созданного соединения, вниз, вправо и вверх до Назначения. Это аналогично установке тройника в одну из закрытых труб и направлению воды через новый сегмент трубы к месту назначения. Обратите внимание, что через сломанный сегмент провода с правой стороны не проходят электроны, потому что он больше не является частью полного пути от Источника к Пункту назначения.

Интересно отметить, что из-за этого электрического тока внутри проводов не происходит «износа», в отличие от водопроводных труб, которые в конечном итоге подвергаются коррозии и изнашиваются из-за продолжительных течений. Однако при движении электроны сталкиваются с некоторым трением, и это трение может генерировать тепло в проводнике. Это тема, которую мы рассмотрим более подробно позже.

ОБЗОР:

  • В проводящих материалах внешние электроны в каждом атоме могут легко приходить или уходить, и их называют свободными электронами .
  • В изоляционных материалах серии внешние электроны не так свободно перемещаются.
  • Все металлы электропроводны.
  • Динамическое электричество , или электрический ток , представляет собой равномерное движение электронов по проводнику. Статическое электричество — это неподвижный накопленный заряд, образованный избытком или недостатком электронов в объекте.
  • Для того, чтобы электроны могли непрерывно (бесконечно) течь через проводник, должен существовать полный, непрерывный путь, по которому они могут двигаться как внутрь, так и из этого проводника.

Уроки в электрических цепях , авторское право (C) 2000-2002 Тони Р. Купхальдт, в соответствии с условиями лицензии на научный дизайн.

Различные типы проводников — Новости о хранении энергии, батареях, изменении климата и окружающей среде

Электрический проводник — это материал, через который проходит электрический ток. Электропроводность будет зависеть от фактического материала проводника.Если материал допускает высокую подвижность свободных электронов, это сделает их отличными проводниками электричества.

Металлы являются одними из лучших проводников, потому что между их атомами есть промежутки, которые позволяют электронам двигаться. Из всех материалов тройку лидеров составляют серебро, медь и алюминий.

Изображение любезно предоставлено SDSU-Physics.org

Серебро, как известно, является лучшим проводником электричества, но широко не используется по экономическим причинам. Он используется только для специального оборудования, такого как спутники.

Медь, хотя и не такая высокая, как серебро, но также обладает высокой проводимостью. Фактически, официальной точкой отсчета для проводников является Международный стандарт на отожженную медь (IACS). Самая распространенная марка меди — это медь ЭТП (электролитическая смола). Этот металл используется в проводах, кабелях, шинах и обмотках двигателей. Электропроводность этой меди составляет 101% IACS.

Алюминий имеет только 61% проводимости меди, но он является предпочтительным материалом для изготовления проводов из-за низкой стоимости.Алюминий имеет более высокую проводимость по сравнению с медью по весу, но для него требуется совместимый соединитель, чтобы избежать образования резистивного оксида внутри соединений. При использовании в строительной проводке он медленно деформируется под нагрузкой, что приводит к ослаблению соединений устройства. Когда он имеет правильный разъем и правильно установлен, он хорошо работает для распределения низкого напряжения (например, сервисные падения, подземные кабели).

Есть некоторые неметаллы, которые также могут быть проводниками энергии, такие как вода, графит, бетон или стекло.Они менее электропроводны по сравнению с металлами, но при определенных обстоятельствах могут стать эффективными проводниками.

Чистая вода (h3O) не является проводником, но когда она становится грязной (или смешивается с другими элементами, такими как соль), через нее может протекать электричество. Большая часть воды на Земле на самом деле является «грязной водой», потому что в чистую воду добавлены другие соединения. Другие жидкости, масла или органические соединения не могут проводить энергию из-за своего состава.

Стекло обычно является изолятором, но при нагревании может стать проводником.Это контрастирует с металлами, которые становятся лучшими проводниками при охлаждении, но хуже при нагревании.

Статьи по теме:

Что такое электрический проводник

Что такое сверхпроводник?

Что такое электрический ток

Типы проводов, используемых в воздушных линиях электропередачи

Проводник — один из важнейших компонентов воздушных линий. Выбор подходящего типа проводника для воздушных линий так же важен, как и выбор экономичного размера проводника и экономичного напряжения передачи.Хороший проводник должен обладать следующими свойствами:
  • высокая электропроводность
  • высокая прочность на разрыв, чтобы выдерживать механические нагрузки
  • относительно более низкая стоимость без ущерба для многих других свойств
  • меньший вес на единицу объема

Проводящие материалы

Раньше медь была предпочтительным материалом для воздушных проводов, но алюминий заменил медь из-за гораздо более низкой стоимости и меньшего веса алюминиевого проводника по сравнению с медным проводником того же сопротивления.Ниже приведены материалов, которые считаются хорошими проводниками .
  • Медь: Медь обладает высокой проводимостью и большей прочностью на разрыв. Итак, медь в жестко вытянутом многопроволочном виде — отличный вариант для ВЛ. Медь имеет высокую плотность тока, что означает большую пропускную способность по току на единицу площади поперечного сечения. Поэтому медные проводники имеют относительно меньшую площадь поперечного сечения. Кроме того, медь долговечна и имеет высокую стоимость лома. Однако из-за более высокой стоимости и недоступности медь редко используется для воздушных линий электропередачи.
  • Алюминий: Алюминий имеет около 60% проводимости меди; это означает, что при одинаковом сопротивлении диаметр алюминиевого проводника примерно в 1,26 раза больше, чем у медного проводника. Однако вес алюминиевого проводника составляет почти половину веса эквивалентного медного проводника. Кроме того, прочность алюминия на разрыв меньше, чем у меди. Учитывая совокупные факторы стоимости, проводимости, прочности на разрыв, веса и т. Д., Алюминий имеет преимущество перед медью. Поэтому алюминий широко используется для изготовления воздушных проводов.
  • Кадмий-медь: Сплавы кадмий-медь содержат приблизительно от 98 до 99% меди и до 1,5% кадмия. Добавление примерно 1% кадмия к меди увеличивает предел прочности на разрыв до 50%, а проводимость снижается только примерно на 15%. Следовательно, кадмиево-медные проводники могут быть полезны для исключительно длинных пролетов. Однако из-за высокой стоимости кадмия такие проводники во многих случаях могут быть неэкономичными.
  • Другие материалы: Есть много других металлов и сплавов, которые проводят электричество.Серебро более проводимо, чем медь, но из-за его высокой стоимости в большинстве случаев оно непрактично. В качестве проводника также может использоваться оцинкованная сталь. Хотя сталь имеет очень высокий предел прочности на разрыв, стальные проводники не подходят для эффективной передачи энергии из-за плохой проводимости и высокого сопротивления стали. Высокопрочные сплавы, такие как фосфористая бронза, также могут иногда использоваться в экстремальных условиях.

Типы проводников

Как уже упоминалось выше, алюминиевые проводники имеют преимущество перед медными проводниками с учетом совокупных факторов стоимости, проводимости, прочности на разрыв, веса и т. Д.Алюминиевые проводники полностью заменили медные проводники в воздушных линиях электропередачи из-за их более низкой стоимости и меньшего веса. Хотя алюминиевый проводник имеет больший диаметр, чем медный проводник с таким же сопротивлением, это на самом деле является преимуществом, если принять во внимание «коронный разряд». Корона значительно уменьшается с увеличением диаметра проводника. Ниже приведены четыре общих типа воздушных проводов, используемых для воздушной передачи и распределения для передачи выработанной энергии от генерирующих станций конечным пользователям.
Как правило, все типы проводников имеют многопроволочную форму для увеличения гибкости. Сплошные проволоки, за исключением очень малой площади поперечного сечения, очень трудны в обращении, а также они имеют тенденцию кристаллизоваться в точке опоры из-за раскачивания на ветру.
  1. AAC: полностью алюминиевый провод
  2. AAAC: провод из алюминиевого сплава
  3. ACSR: алюминиевый проводник, армированный сталью
  4. ACAR: алюминиевый проводник, усиленный сплавом

AAC: полностью алюминиевый проводник

Этот тип иногда также называют ASC (алюминиевый многожильный провод) .Он состоит из жил из алюминия класса ЕС или для электропроводников. Проводник AAC имеет проводимость около 61% IACS (Международный стандарт отожженной меди). Несмотря на хорошую проводимость, из-за своей относительно низкой прочности, AAC имеет ограниченное использование в линиях электропередачи и сельских распределительных линиях. Тем не менее, AAC можно увидеть в городских районах для распространения, где пролеты обычно короткие, но требуется более высокая проводимость.

AAAC: провод из алюминиевого сплава

Эти проводники изготовлены из алюминиевого сплава 6201, который представляет собой высокопрочный сплав алюминия-магния-кремния.Этот проводник из сплава обеспечивает хорошую электропроводность (около 52,5% IACS) с лучшей механической прочностью. Из-за более легкого веса AAAC по сравнению с ACSR равной силы и тока, AAAC может использоваться для целей распределения. Однако обычно он не является предпочтительным для передачи. Кроме того, проводники типа AAAC могут использоваться в прибрежных районах из-за их превосходной коррозионной стойкости.

ACSR: алюминиевый проводник, армированный сталью

ACSR состоит из сплошного или многожильного стального сердечника с одним или несколькими слоями алюминиевых проволок высокой чистоты (алюминий 1350), намотанных по спирали.Сердечник может быть из оцинкованной (гальванизированной) стали или из стали с алюминиевым (алюминированным) покрытием. Покрытия цинкования или алюминирования тонкие и применяются для защиты стали от коррозии. Центральный стальной сердечник обеспечивает дополнительную механическую прочность и, следовательно, прогиб значительно меньше, чем у всех других алюминиевых проводников. Проводники ACSR доступны в широком диапазоне содержания стали — от 6% до 40%. ACSR с более высоким содержанием стали выбирается там, где требуется более высокая механическая прочность, например, при переходе через реки.Проводники ASCR очень широко используются для всех целей передачи и распределения.

Алюминиевый проводник, армированный сплавом

Провод ACAR формируется путем наматывания жил из высокочистого алюминия (алюминий 1350) на сердечник из высокопрочного алюминиево-магниево-кремниевого сплава (алюминиевый сплав 6201). ACAR имеет лучшие электрические, а также механические свойства, чем аналогичные проводники ACSR. Проводники ACAR могут использоваться как в воздушных линиях передачи, так и в распределительных линиях.

Связанные проводники

Передача при сверхвысоких напряжениях (скажем, выше 220 кВ) создает некоторые проблемы, такие как значительные потери от коронного разряда и чрезмерные помехи для близлежащих линий связи, когда используется только один проводник на фазу.Это связано с тем, что на уровне сверхвысокого напряжения градиент электрического поля на поверхности одиночного проводника достаточно высок, чтобы ионизировать окружающий воздух, что вызывает потери короны и проблемы с помехами. Градиент электрического поля можно значительно уменьшить, используя два или более проводников на фазу в непосредственной близости. Два или более проводов на фазу соединяются через промежутки с помощью прокладок и называются связанными проводниками. На изображении справа показаны два жгута проводника на каждую фазу. Количество проводников в связанном проводе больше для более высоких напряжений.

Что такое проводники? — Определение, типы и примеры

Каждый материал имеет разный состав. В этом нет никаких сомнений. Но, тем не менее, все они должны подпадать под две категории. Другими словами, материал может быть либо проводником, либо изолятором. В этой эксклюзивной статье я собираюсь объяснить только определение проводников.

Тем не менее, я все же проясню основную разницу между проводниками и изоляторами. Видите ли, материалы, проводящие электричество, являются проводниками.С другой стороны, материалы, не проводящие электричество, являются изоляторами.

Что такое проводники?

Согласно определению проводников, материалы, которые позволяют электрическому заряду или электричеству легко проходить через них, называются проводниками. Другими словами, электрический проводник позволяет электронам переходить от одного атома к другому.

Не говоря уже о том, что они также пропускают тепло и свет через себя. Кроме того, материалы, которые в основном сделаны из металлов, являются лучшими проводниками электричества.

Изображение предоставлено: Electrical4U

Двигаясь вперед, в типичном проводнике свободные электроны могут свободно перемещаться в любом месте внутри проводящего материала. ПОЧЕМУ? Потому что существует перекрытие между валентной зоной и зоной проводимости материала.

В результате такого перекрытия отсутствует запрещенный зазор между слоями атомной структуры проводников. Следовательно, когда мы прикладываем разность потенциалов к проводнику из-за высокой проводимости и, конечно же, низкого сопротивления, электроны могут свободно перемещаться внутри проводников.

Связано: Что такое изоляторы? — Определение, типы и примеры

Факты о проводниках

Знаете ли вы, что серебро на сегодняшний день является самым проводящим материалом, доступным на Земле? Тем не менее, он не используется широко как медь или алюминий? ПОЧЕМУ??

Потому что серебро намного дороже меди или алюминия. Поэтому из-за его высокой стоимости в нашей бытовой технике нет применений серебра.

Однако только потому, что серебро на 6% более проводящее, чем медь, ученые используют его для создания высокотехнологичного оборудования, такого как спутники.

Свойства проводников

У проводников очень много свойств. Однако в состоянии равновесия электрический проводник проявляет следующие свойства.

  • Обладают низким сопротивлением и высокой проводимостью.
  • Электрическое поле внутри проводников и изоляторов равно нулю.
  • Ковалентные связи слабые, поэтому легко разрушаются.
  • Удельное сопротивление проводников может варьироваться от низкого до высокого.
  • Температурный коэффициент сопротивления проводника всегда положительный.
  • Наконец, плотность заряда внутри проводника всегда равна нулю и т. Д.

Настоятельно рекомендуется: Что такое лазерный диод? Конструкция, типы, работа и применение

Типы проводов

Существует множество различных способов определения различных типов проводов. Некоторые из них описаны ниже. Давайте нырнем!

На основе омического отклика материала

Основываясь на том факте, что независимо от того, подчиняется ли проводник закону Ома или нет, проводники можно разделить на два типа: —

Омические проводники

В соответствии с определением проводников , проводники, которые подчиняются закону Ома, являются омическими проводниками.Примеры омических проводников: медь, алюминий и т.д. Безомические проводники. Примерами неомических проводников являются стабилитрон, нить накала лампы и т. Д.

В зависимости от удельного сопротивления материала

Удельное сопротивление проводника может варьироваться от низкого до высокого. Следовательно, исходя из определения проводников из-за их удельного сопротивления, их можно разделить на две категории.

  • Материалы с низким удельным сопротивлением / высокой проводимостью
  • Материалы с высоким сопротивлением / низкой проводимостью

В зависимости от природы материала

В соответствии с определением проводников, независимо от того, является ли материал проводника твердым или жидким, проводники можно разделить на две категории.

  • Твердые проводники — Примеры: золото, алюминий, графит и т. Д.
  • Жидкие проводники — Примеры: соленая вода, ртуть и т. Д.

Факты о проводниках

Знаете ли вы, что графит — единственный неметалл, который может проводить электричество? Вы когда-нибудь задумывались, почему?

Потому что в атомной структуре графита из четырех атомов углерода всегда есть один свободный электрон, способный проводить электричество.

Следовательно, он может легко проводить электричество, а другие неметаллы — нет.

В зависимости от состава материала

Перед окончательным составом проводников необходимо строго учитывать различные важные факторы, такие как гибкость, прочность на разрыв, механическая прочность, стоимость производства и т. Д.

Таким образом, в зависимости от требований окружающей среды, состав электрических проводников выбирается соответствующим образом.

  • Проводники из фосфорной бронзы
  • Кадмий-медные проводники и т. Д.

Примеры проводов

Если вы думаете, что не можете относиться к образцам реальных электрических проводников, что ж, вот вам шанс подумать еще раз!

  • Алюминий
  • Сталь
  • Ртуть
  • Латунь
  • Графит
  • Золото
  • Медь
  • Бронза
  • Железо
  • Платина и т. Д.

Отъезд: Стабилитрон Введение — краткий обзор

Применение проводов

Проводники весьма полезны в нашей повседневной жизни. Другими словами, вы можете видеть вокруг себя так много реальных применений проводников. Вот список наиболее часто используемых проводников.

  • Медь обычно используется для изготовления электрических приборов, таких как обмотка двигателя, кабели и т. Д.
  • Ртуть используется в качестве проводящего материала в термометре.
  • Алюминиевые провода для передачи и распределения энергии.
  • Серебро используется для изготовления сателлитов.
  • Алюминиевая фольга для хранения продуктов питания и т. Д.

Факты о проводниках

Знаете ли вы, что согласно определению проводников, когда мы применяем достаточно большую разность потенциалов к изолятору, изолятор может фактически вести себя как проводник. электрический проводник? ПОЧЕМУ??

Потому что, когда мы прикладываем достаточно большое напряжение, приложенное электрическое поле может оторвать электроны от атомов изолятора.

Следовательно, изолятор становится проводником. Это свойство изолятора широко известно как напряжение пробоя изолятора.

Вот и все. Если вам нравится эта статья, поделитесь ею, если хотите, понравится, если вы поделитесь ею. Вы также можете найти нас в Mix, Twitter, Pinterest и Facebook.


10 примеров электрических проводников и изоляторов

Что делает материал проводником или изолятором? Проще говоря, электрические проводники — это материалы, которые проводят электричество, а изоляторы — это материалы, которые этого не делают.Проводит ли вещество электричество, зависит от того, насколько легко в нем движутся электроны.

Электропроводность зависит от движения электронов, потому что протоны и нейтроны не движутся — они связаны с другими протонами и нейтронами в атомных ядрах.

Conductors Vs. Изоляторы

Валентные электроны подобны внешним планетам, вращающимся вокруг звезды. Они достаточно притягиваются к своим атомам, чтобы оставаться на месте, но не всегда требуется много энергии, чтобы сбить их с места — эти электроны легко переносят электрические токи.Неорганические вещества, такие как металлы и плазма, которые легко теряют и приобретают электроны, возглавляют список проводников.

Органические молекулы в основном изоляторы, потому что они удерживаются вместе ковалентными (общими электронными) связями, а также потому, что водородные связи помогают стабилизировать многие молекулы. Большинство материалов не являются ни хорошими проводниками, ни хорошими изоляторами, а находятся где-то посередине. Они с трудом проводят проводку, но если подано достаточно энергии, электроны будут двигаться.

Некоторые материалы в чистом виде являются изоляторами, но будут проводить, если они легированы небольшим количеством другого элемента или если они содержат примеси.Например, большая часть керамики — отличные изоляторы, но если вы легируете их, вы можете создать сверхпроводник. Чистая вода является изолятором, грязная вода имеет слабую проводимость, а соленая вода с ее свободно плавающими ионами — хорошо.

10 Электропроводников

Лучшим проводником в условиях обычной температуры и давления является металлический элемент серебра. Однако серебро не всегда является идеальным выбором в качестве материала, поскольку оно дорого и подвержено потускнению, а оксидный слой, известный как потускнение, не является проводящим.

Точно так же ржавчина, зелень и другие оксидные слои снижают проводимость даже в самых прочных проводниках. Наиболее эффективными электрическими проводниками являются:

  1. Серебро
  2. Золото
  3. Медь
  4. Алюминий
  5. Ртуть
  6. Сталь
  7. Железо
  8. Морская вода
  9. Бетон
  10. Ртуть

К другим прочным проводникам относятся:

  • Платина
  • Латунь
  • Бронза
  • Графит
  • Грязная вода
  • Лимонный сок

10 Изоляторы электрические

Электрические заряды не проходят свободно через изоляторы.Во многих случаях это идеальное качество — для покрытия или создания барьера между проводниками часто используются прочные изоляторы, чтобы держать электрические токи под контролем. Это можно увидеть на проводах и кабелях с резиновым покрытием. Самые эффективные электроизоляторы:

  1. Резина
  2. Стекло
  3. Чистая вода
  4. Масло
  5. Воздух
  6. Алмаз
  7. Сухая древесина
  8. Сухая вата
  9. Пластик
  10. Асфальт

К другим прочным изоляторам относятся:

  • Стекловолокно
  • Сухая бумага
  • Фарфор
  • Керамика
  • Кварц

Другие факторы, влияющие на проводимость

Форма и размер материала влияют на его проводимость.Например, толстый кусок материала будет проводить лучше, чем тонкий кусок того же размера и длины. Если у вас есть два куска материала одинаковой толщины, но один короче другого, более короткий будет проводить лучше, потому что более короткий кусок имеет меньшее сопротивление, примерно так же, как легче протолкнуть воду через короткую трубу, чем длинный.

Температура также влияет на проводимость. С повышением температуры атомы и их электроны получают энергию. Некоторые изоляторы, такие как стекло, являются плохими проводниками в холодном состоянии, но хорошими проводниками в горячем состоянии; большинство металлов являются лучшими проводниками в холодном состоянии и менее эффективными проводниками в горячем состоянии.Некоторые хорошие проводники становятся сверхпроводниками при чрезвычайно низких температурах.

Иногда сама проводимость изменяет температуру материала. Электроны проходят через проводники, не повреждая атомы и не вызывая износа. Однако движущиеся электроны испытывают сопротивление. Из-за этого протекание электрических токов может нагревать проводящие материалы.

5 типов проводов, используемых в линиях электропередачи

Проводники линии электропередачи несут ответственность за передачу энергии от генерирующей станции к принимающей.Сегодня вы узнаете про 5 типов проводников ЛЭП :

AAC — полностью алюминиевый провод

AAC содержит одну или несколько жил из алюминиевого сплава. AAC предпочтительнее для коротких пролетов (обычно в городских районах). В прибрежных районах проводники AAC также эффективны в борьбе с проблемами коррозии в прибрежных районах. AAC имеет самую высокую удельную проводимость к массе, но имеет плохое соотношение прочности к массе.

Технические характеристики: Алюминий марки 1350, твердотянутый сплав h29

Практическое использование: Уровни местного распределения

Также узнайте:

AAAC — Проводники из алюминиевого сплава

AAAC — это проводник из сплава, который изготовлен из алюминия, кремния и магния.Его допустимая нагрузка эквивалентна AAC и обладает отличными характеристиками натяжения. AAAC обеспечивает отличную устойчивость к коррозии и используется в прибрежных районах. За последние два десятилетия AAAC становятся более популярными, чем ACSR. Они более прочные, легкие и более проводящие, чем ACSR. Однако они дороже, чем ACSR.

Технические характеристики: 6201-Т81 сплав

Практическое использование: Передача 36 кВ и выше

AACSR — Все проводники из алюминиевого сплава, армированные сталью

Они менее распространены, чем AAAC.

Добавить комментарий

Ваш адрес email не будет опубликован.