Все формулы закона ома: Формула закона Ома в физике

Содержание

Формула закона Ома в физике

Содержание:

Определение и формула закона Ома

Определение

Закон был получен Омом опытным путем. Построив вольт – амперную характеристику для проводника можно увидеть, что сила тока (I), текущего через проводник пропорциональна напряжению (U) на нем $(I \sim U)$.

Закон Ома для участка цепи

Если на рассматриваемом участке цепи, содержащей проводник, источников ЭДС нет $\left(U_{21}=\varphi_{1}-\varphi_{2}\right)$, то формула закона Ома является предельно простой:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}}{R}(1)$$

где R – сопротивление проводника (совокупности проводников, участка цепи).

Если источник тока в участок цепи включен и характеризуется при помощи ЭДС ($\varepsilon$), то формула закона Ома преобразуется к виду:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(2)$$

Закон Ома для замкнутой цепи

В том случае, если цепь является замкнутой, закон Ома принимает вид:

$$I=\frac{\varepsilon}{R}(3)$$

где под R=Rvnesh

+rist понимают полное сопротивление цепи, которое включает так называемое внешнее сопротивление (Rvnesh) и сопротивление источника ЭДС (rist).

Формула закона Ома в дифференциальной форме

Все выше приведенные формулы закона Ома были представлены в интегральной форме. Этот закон можно записать в дифференциальной форме, которая характеризует электрическое состояние в точке.

$$\bar{j}=\sigma \bar{E}(4)$$

где $\sigma=\frac{1}{\rho}$ – удельная проводимость, $\rho$ – удельное сопротивление, $\bar{j}$ – вектор плотности тока, $\bar{E}$ – вектор напряженности электрического поля. Векторы $\bar{j}$ и $\bar{E}$ характеризуют одну точку проводящей среды. В том случае, если среда изотропна, то $\bar{j} \uparrow \uparrow \bar{E}$.

Примеры решения задач

Пример

Задание. Пространство между пластинами плоского конденсатора заполняет неоднородное плохо проводящее вещество, удельная проводимость которого изменяется в соответствии с линейным законом: $\sigma(r)=\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d} r$ в направлении перпендикулярном пластинам. d – расстояние между пластинами, S – площадь пластин конденсатора.

{d} \frac{1}{\left(\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d}\right.} r\right) \frac{d r}{S}=\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)}\left[\ln \left(d \sigma_{2}\right)-\ln \left(d \sigma_{1}\right)\right]= \\ =\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)(1.2) \end{array} $$

Подставим найденное в (1.2) сопротивление в (1.1), получим искомую силу тока:

$I=\frac{U}{\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Ответ. $I=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Слишком сложно?

Формула закона Ома не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какой будет плотность тока в металлическом проводнике (удельное сопротивление считать равным $\rho$) постоянного сечения, имеющем длину l, если напряжение, которое приложено к проводу равно U?

Решение. Плотность тока для проводника, который имеет постоянное сечение S можно найти как:

$$j=\frac{I}{S}(2.1)$$

Силу тока можно вычислить, если использовать формулу Закона Ома для участка цепи не имеющего ЭДС:

$$I=\frac{U}{R}(2.2)$$

Сопротивление провода найдем, применяя формулу:

$$R=\rho \frac{l}{S}(2.3)$$

Подставим, необходимые величины в (2.1), получим:

$$j=\frac{U}{S R}=\frac{U S}{S \rho l}$$

Ответ. $j=\frac{U S}{S \rho l}$

Читать дальше: Формула мощности тока.

Формула закона Ома в физике

Содержание:

Определение и формула закона Ома

Определение

Закон был получен Омом опытным путем. Построив вольт – амперную характеристику для проводника можно увидеть, что сила тока (I), текущего через проводник пропорциональна напряжению (U) на нем $(I \sim U)$.

Закон Ома для участка цепи

Если на рассматриваемом участке цепи, содержащей проводник, источников ЭДС нет $\left(U_{21}=\varphi_{1}-\varphi_{2}\right)$, то формула закона Ома является предельно простой:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}}{R}(1)$$

где R – сопротивление проводника (совокупности проводников, участка цепи).

Если источник тока в участок цепи включен и характеризуется при помощи ЭДС ($\varepsilon$), то формула закона Ома преобразуется к виду:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(2)$$

Закон Ома для замкнутой цепи

В том случае, если цепь является замкнутой, закон Ома принимает вид:

$$I=\frac{\varepsilon}{R}(3)$$

где под R=Rvnesh+rist понимают полное сопротивление цепи, которое включает так называемое внешнее сопротивление (Rvnesh) и сопротивление источника ЭДС (rist).

Формула закона Ома в дифференциальной форме

Все выше приведенные формулы закона Ома были представлены в интегральной форме. Этот закон можно записать в дифференциальной форме, которая характеризует электрическое состояние в точке.

$$\bar{j}=\sigma \bar{E}(4)$$

где $\sigma=\frac{1}{\rho}$ – удельная проводимость, $\rho$ – удельное сопротивление, $\bar{j}$ – вектор плотности тока, $\bar{E}$ – вектор напряженности электрического поля. {d} \frac{1}{\left(\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d}\right.} r\right) \frac{d r}{S}=\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)}\left[\ln \left(d \sigma_{2}\right)-\ln \left(d \sigma_{1}\right)\right]= \\ =\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)(1.2) \end{array} $$

Подставим найденное в (1.2) сопротивление в (1.1), получим искомую силу тока:

$I=\frac{U}{\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Ответ. $I=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Слишком сложно?

Формула закона Ома не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какой будет плотность тока в металлическом проводнике (удельное сопротивление считать равным $\rho$) постоянного сечения, имеющем длину l, если напряжение, которое приложено к проводу равно U?

Решение. Плотность тока для проводника, который имеет постоянное сечение S можно найти как:

$$j=\frac{I}{S}(2.1)$$

Силу тока можно вычислить, если использовать формулу Закона Ома для участка цепи не имеющего ЭДС:

$$I=\frac{U}{R}(2.2)$$

Сопротивление провода найдем, применяя формулу:

$$R=\rho \frac{l}{S}(2.3)$$

Подставим, необходимые величины в (2.1), получим:

$$j=\frac{U}{S R}=\frac{U S}{S \rho l}$$

Ответ. $j=\frac{U S}{S \rho l}$

Читать дальше: Формула мощности тока.

Формула закона Ома в физике

Содержание:

Определение и формула закона Ома

Определение

Закон был получен Омом опытным путем. Построив вольт – амперную характеристику для проводника можно увидеть, что сила тока (I), текущего через проводник пропорциональна напряжению (U) на нем $(I \sim U)$.

Закон Ома для участка цепи

Если на рассматриваемом участке цепи, содержащей проводник, источников ЭДС нет $\left(U_{21}=\varphi_{1}-\varphi_{2}\right)$, то формула закона Ома является предельно простой:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}}{R}(1)$$

где R – сопротивление проводника (совокупности проводников, участка цепи).

Если источник тока в участок цепи включен и характеризуется при помощи ЭДС ($\varepsilon$), то формула закона Ома преобразуется к виду:

$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(2)$$

Закон Ома для замкнутой цепи

В том случае, если цепь является замкнутой, закон Ома принимает вид:

$$I=\frac{\varepsilon}{R}(3)$$

где под R=Rvnesh+rist понимают полное сопротивление цепи, которое включает так называемое внешнее сопротивление (Rvnesh) и сопротивление источника ЭДС (r

ist).

Формула закона Ома в дифференциальной форме

Все выше приведенные формулы закона Ома были представлены в интегральной форме. Этот закон можно записать в дифференциальной форме, которая характеризует электрическое состояние в точке.

$$\bar{j}=\sigma \bar{E}(4)$$

где $\sigma=\frac{1}{\rho}$ – удельная проводимость, $\rho$ – удельное сопротивление, $\bar{j}$ – вектор плотности тока, $\bar{E}$ – вектор напряженности электрического поля. {d} \frac{1}{\left(\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d}\right.} r\right) \frac{d r}{S}=\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)}\left[\ln \left(d \sigma_{2}\right)-\ln \left(d \sigma_{1}\right)\right]= \\ =\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)(1.2) \end{array} $$

Подставим найденное в (1.2) сопротивление в (1.1), получим искомую силу тока:

$I=\frac{U}{\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Ответ. $I=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$

Слишком сложно?

Формула закона Ома не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какой будет плотность тока в металлическом проводнике (удельное сопротивление считать равным $\rho$) постоянного сечения, имеющем длину l, если напряжение, которое приложено к проводу равно U?

Решение. Плотность тока для проводника, который имеет постоянное сечение S можно найти как:

$$j=\frac{I}{S}(2.1)$$

Силу тока можно вычислить, если использовать формулу Закона Ома для участка цепи не имеющего ЭДС:

$$I=\frac{U}{R}(2.2)$$

Сопротивление провода найдем, применяя формулу:

$$R=\rho \frac{l}{S}(2.3)$$

Подставим, необходимые величины в (2.1), получим:

$$j=\frac{U}{S R}=\frac{U S}{S \rho l}$$

Ответ. $j=\frac{U S}{S \rho l}$

Читать дальше: Формула мощности тока.

формулировка простыми словами, формула для первого, второго и третьего

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Источник: rusenergetics.ru

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

Формула закона, известная всем со школьных лет, выглядит так:

\(I=\frac UR\)

Из нее легко выводятся формулы для определения \(U\):

\(U\;=I\times R\)

и для определения \(R\):

\(R=\frac UI\)

Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Источник: dzgo.ru

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

Описание формулы этого закона для полной цепи выглядит так:

\(I=\frac\epsilon{R+r}\)

где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

\(R\) — сопротивление внешней цепи;

\(r\) — внутреннее сопротивление источника.

Источник: multiurok.ru

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

  • Сила тока по формуле: 

\(I=I_1=I_2=I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.

  • Напряжение по формуле:

\(U=U_1+U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.

  •  Сопротивление согласно формуле:

\(R=R_1+R_2+R_3\)

Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

\(I=I_1+I_2+I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.

\(U=U_1=U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.

  • Сопротивление:

\(R=\frac{R_1\times R_2\times R_3}{R_1+R_2+R_3}\)

Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Источник: en.ppt-online.org

При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

\(I=\frac UZ\)

где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих (\(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).

Реактивное сопротивление цепи зависит:

  • от значений реактивных элементов, 
  • от частоты электротока;
  • от формы тока в цепи.  
 

Источник: fizikaotfizika.ru

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

\(I=\frac UR\)

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

\(R=p\times\left(\frac lS\right)\)

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Источник: grabachapter.com

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Следствие закона ома для участка цепи. Все виды законов ома

Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

Сегодня открываю новый раздел на сайте под названием .

В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый .

Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

Кто такой Ом? Немного истории

Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

Скажу только самое главное.

Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

Закон Ома для однородного участка цепи выглядит следующим образом:

I – значение тока, идущего через участок цепи (измеряется в амперах)

U – значение напряжения на участке цепи (измеряется в вольтах)

R – значение сопротивления участка цепи (измеряется в Омах)

Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

Проведем эксперимент

Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

Пример № 1

В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

Напряжение источника постоянного напряжения составляет U = 220 (В) . Сопротивление светодиодной лампочки равно R = 40740 (Ом) .

С помощью формулы найдем ток в цепи:

I = U/R = 220 / 40740 = 0,0054 (А)

Подключаем последовательно светодиодной лампочке , включенный в режиме амперметр, и замеряем ток в цепи.

На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

Пример № 2

Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

I = 0,0054 (А)

R = 40740 (Ом)

С помощью формулы найдем напряжение участка цепи:

U = I*R = 0,0054 *40740 = 219,9 (В) = 220 (В)

А теперь проверим полученный результат практическим путем.

Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

Пример № 3

В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

I = 0,0054 (А)

U = 220 (В)

Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

R = U/ I = 220/0,0054 = 40740,7 (Ом)

А теперь проверим полученный результат практическим путем.

Сопротивление светодиодной лампочки мы измеряем с помощью или мультиметра.

Полученное значение составило R = 40740 (Ом) , что соответствует сопротивлению, найденному по формуле.

Как легко запомнить Закон Ома для участка цепи!!!

Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

Как этим пользоваться?

Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

Выводы

В завершении статьи сделаю вывод.

Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т.е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи.

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Re i δ — комплексное сопротивление (электрический импеданс),
  • R = √ R a 2 + R r 2 — полное сопротивление,
  • R r = ωL − 1/(ωC ) — реактивное сопротивление (разность индуктивного и емкостного),
  • R а — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. {i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

Для участка цепи — самый пожалуй применяемый закон в электронике и электротехнике. За сложностью его формулировки кроется простота и изящество его применения.

Формулируется он так: величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению:

Запомнить эту формулу очень легко, но если все-же не получается — изготовьте на картоне такой вот треугольничек, как на рисунке в начале статьи. Это волшебный треугольник закона Ома — достаточно закрыть ту величину, которую необходимо найти и оставшаяся часть треугольника покажет формулу нахождения.

например, мы знаем напряжение работы лампочки и ее рабочий ток (на лампочках для фонариков они указываются прямо на цоколе). Каково же сопротивление нити накаливания этой лампочки? Все очень просто, закрываем сопротивление в треугольнике и видим, что остается напряжение деленное на ток.

А теперь давайте разберемся, что же это все-таки значат все эти мудреные слова в определении.

Итак два интересных труднопроизносимых слова, точнее словосочетания: прямо пропорциональна и обратно пропорциональна.

Что же значит «величина тока прямо пропорциональна напряжению»? А это значит, что при увеличении напряжения на участке цепи, увеличивается и сила тока в этом участке. То есть, чем больше напряжение, тем больше ток. Это все справедливо для участка цепи с одним и тем же напряжением.

Что касается «обратно пропорциональна его сопротивлению», то здесь все наоборот. Чем больше сопротивление участка цепи, тем меньше будет по нему течь ток. Это справедливо в том случае, если к этому участку приложено одно и то же сопротивление.

Давайте рассмотрим применение этого закона на простом примере. Возьмем обыкновенный фонарик с лампой накаливания, в который вставляются три «круглых» батарейки. Схема такого фонарика будет выглядеть следующим образом.

В этой схеме GB1 — GB3 — это три батарейки, S1 — выключатель, HL1 — лампочка.

Итак, как нам говорит закон Ома: величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению. Берем для рассмотрения участок цепи, состоящий их лампочки.

Теперь простой вопрос: от чего зависит яркость горения лампочки? Правильно — от силы тока, проходящего через нить накаливания этой лампочки. То есть яркость свечения лампочки мы можем использовать как показатель силы тока в цепи фонарика.

И действительно, что будет со свечением лампочки если мы уберем одну батарейку и вместо нее вставим перемычку?

Закон Ома | Справочник радиолюбителя

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

  

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков . 

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока, нагрузки и проводников. Источник тока обеспечивает разность потенциалов, которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока. Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке. Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

.

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.

Следующие изображения покажут какие процессы и изменения происходят в цепи при паралельном подключении сопротивлений (резисторов)

При смешанном, параллельно-последовательном включении сопротивлений происходят следующие процесы.

Рассеивание мощности в резестивной цепи.

(PDF) Закон Ома в первоначальной редакции \\ Ohm’s law in his the initial version

Закон Ома в первоначальной редакции

10

Электростатический электрометр представляет собой воздушный конденсатор (см.

рис. 2), в котором используется феномен притяжения пластин (обкладок) в зависимости от

соотношения количества энергии на них, подробнее, например: [Gibilisco et al., 2016: 59-61].

Если подключить электростатический электрометр параллельно нагрузке, то в этом

случае на одну пластину электрометра поступает поток энергии перед нагрузкой, а на другую

пластину – поток энергии после нагрузки. На пластинах накапливается разное количество

энергии, пропорциональное мощности потоков энергии на входе и выходе из нагрузки, и

пропорционально электроемкости пластин. Таким образом, электростатический электрометр

отражает разность в количестве электроэнергии, входящей в нагрузку и выходящей из нее,

см. рис. 3. Шкалу электрометра можно градуировать так, чтобы он показывал величину

электроэнергии, измеряемую в cal.

Если подключить электростатический электрометр к клеммам источника тока, то он будет

измеряться разность в величине электроэнергии между избыточно заряженной

(«положительной») клеммой источника тока и дефицитно заряженной («отрицательной»)

клеммой источника тока.

7. Электропроводимость и электро-поглощение проводника, элемента цепи

Франц Эпинус (Franz Aepinus, 1759) определял электрическое «сопротивление» как

«непроводимость», свойство определенных веществ (изоляторов, диэлектриков) не

пропускать электрический ток через себя [Эпинус, 1951: 24].

Георг Ом процесс поглощения электроэнергии элементами цепи, называл «потеря

энергии». Это начальное название, как представляется, адекватнее отражает физическую

суть процесса. Ведь проводник не «сопротивляется» прохождению потока электроэнергии, а

«теряет», точнее поглощает и излучает часть ее. При таком понимании логичнее процесс

называть не «электрическим сопротивлением», а эл ектро-поглощением, электро-абсорбцией.

Сам элемент цепи, поглощающий часть электроэнергии, проходящей через него, можно

назвать абсорбером.

Можно говорить, что «сопротивляются» прохождению электрического тока изоляторы

(диэлектрики). Т.е. проводники поглощают электроэнергию, а изоляторы (почти) не

пропускают ток.

Электропроводимость – свойство тела (вещества) пропускать через себя определенную

часть, долю величины потока электроэнергии, проходящего через него. Электропроводимость

зависит от удельной (объемной) электропроводимости среды, т.е. электропроводимости

определенного вещества, определенного объема.

Электропроводимость, как показатель «пропускания» энергии, может измеряться в cal.

Коэффициент электропроводимости (Cconduct) абсорбера, проводника, элемента цепи,

Колесо закона

Ома: понимание колеса электрических формул

Последнее обновление: 20 января 2021 г., 21:03.

Если вам, как электрику, нужно хорошо разбираться в чем-то одном, то это закон Ома. Эта простая формула позволяет исследовать взаимосвязь между тремя электрическими переменными: напряжением, током и сопротивлением.

Хорошо то, что это не ракетостроение. Если вы знаете, как умножать и делить, это будет прогулка в парке.Легкий способ понять закон Ома — использовать колесо закона Ом .

Как использовать колесо формул закона Ома

Я знаю, что вы думаете: « Это треугольник. ”Не беспокойтесь об этом, просто обратите внимание. Итак, вам нужно выяснить, сколько ампер потребляет цепь, а на нее нельзя поставить амперметр. Что вы делаете?

Просто разделите НАПРЯЖЕНИЕ на СОПРОТИВЛЕНИЕ цепи. Откуда ты это знаешь? Из-за формулы закона Ома колесо .

В колесе формул вы увидите три буквы, каждая из которых представляет собой значение.

E или V = НАПРЯЖЕНИЕ (вольт)

I = ТОК (амперы)

R = СОПРОТИВЛЕНИЕ (Ом)

Итак, если вам нужно найти напряжение, ток или сопротивление, просто поместите палец на то, что вы пытаетесь найти, а колесо формул сделает все остальное.

Колесо формулы закона Ома математически представлено тремя простыми уравнениями.

I (ток) x R (сопротивление) = E (напряжение)

E (напряжение) ÷ R (сопротивление) = I (ток)

E ( напряжение) ÷ I (ток) = R (сопротивление)

Закон Ома Пример Проблемы


Найдите сопротивление цепи. Глядя на эту схему, мы знаем значения двух компонентов: напряжения (12 В) и сопротивления (3 Ом). Как мы находим ток?

Мы вставляем наши известные значения в колесо формул и работаем с уравнением.

12 вольт ÷ 3 Ом = 4 ампер

Это действительно так просто. Вот мы попробуем другой. Найдите сопротивление в цепи со следующими значениями:

Напряжение = 120 В

Ток = 17 ампер

Теперь вставьте известные значения в наше колесо формул и работайте по уравнению.

120 вольт ÷ 17 ампер = 7,05 Ом

Я сказал вам, что это было просто. Это проще, чем установить сетевой фильтр на весь дом?

( ладно, может быть, не так просто. Но определенно проще, чем установить сетевой фильтр на холодильник (вы просто подключаете эту чертову штуку)! )

Принцип закона Ома — пропорциональный и обратно пропорциональный

закон, с которым вам необходимо ознакомиться.

, что электрический ток (I ), протекающий в цепи, пропорционален напряжению (V ) и обратно пропорционален сопротивлению (R) .

Это означает, что при увеличении напряжения ток будет увеличиваться на до тех пор, пока сопротивление не изменится на . Если сопротивление увеличивается, а напряжение остается прежним, то ток уменьшается.

Увеличение сопротивления

120 вольт ÷ 5 Ом = 60 ампер

120 вольт ÷ 10 Ом = 12 ампер

120 вольт ÷ 20 Ом = 6 ампер

Следовательно, если напряжение увеличится, ток будет увеличиваться при условии, что сопротивление цепи не изменится.

Повышение напряжения

120 В ÷ 25 Ом = 4,8 А

240 В ÷ 25 Ом = 9,6 А

480 В ÷ 25 Ом = 19,2 А

Как вы можете видеть, когда мы увеличиваем напряжение и оставьте сопротивление прежним, ток увеличился (прямо пропорционален напряжению).

Круговая диаграмма закона Ома

Круговая диаграмма похожа на колесо формул напряжения, тока и сопротивления.Мощность измеряется в ваттах и ​​определяется как:

скорость, с которой выполняется работа, когда один ампер (А) тока проходит через разность электрических потенциалов в один вольт (В)

Колесо формул с законом Ома и PIE

Вот мы уже кое-что добились. Это колесо формул представляет собой комбинацию закона Ома и формулы ПИРОГ.

Это выглядит сложнее, но на самом деле им легко пользоваться (вам может понадобиться калькулятор), и он работает так же, как и предыдущие диаграммы.

Колесо формул разделено на четыре секции , каждая секция имеет три формул . Если вам нужно найти вольты, вы должны использовать секцию E, ток — секцию I, сопротивление — секцию R и мощность — секцию P.

При использовании колеса формул вам необходимо выполнить следующие действия:

  1. Знайте, что вы пытаетесь найти: ток (I), напряжение (E), сопротивление (R) или мощность (P).
  2. Какие значения вы уже знаете (вам нужно два): ток (I), напряжение (E), сопротивление (R) или мощность (P)
  3. Найдите часть колеса формул, в которую подставляются ваши значения.
  4. Решите уравнение

При проведении расчетов вы должны использовать совместимые значения. Я имею в виду, что киломы должны быть преобразованы в омы, миллиамперы должны быть преобразованы в амперы.

Независимо от того, являетесь ли вы электриком-подмастерьем или электриком-подмастерьем, изучение закона Ома является важной частью работы электрика.

Полезные ссылки:

Электротехника и электроника, закон Ома, формулы и уравнения

Электротехника и электроника, закон Ома, формулы и уравнения

Электротехника и электроника, Закон Ома, формулы и уравнения

Закон Ома

ЗАКОННЫЙ КАЛЬКУЛЯТОР ОМ

VOLTS = напряжение, AMPS = ток, OHMS = сопротивление, WATTS = мощность

Дайте мне любые ДВА числовых значения, и я дам вам все ЧЕТЫРЕ.После ввода значений нажмите кнопку закона Ома:

ключевые слова = Ом, Закон Ома, Вольт, Ампер, Ток, Ватты, Мощность, Калькулятор, Электричество, Электроника, Электрика, Уравнения, Формулы, Пи, Математика, Генри, Бэкон



Символическое: E = VOLTS ~ или ~ (V = VOLTS) P = WATTS ~ или ~ (W = WATTS) R = ОМ ~ или ~ (R = СОПРОТИВЛЕНИЕ) I = АМПЕР ~ или ~ (А = АМПЕР) HP = ЛОШАДЬ PF = КОЭФФИЦИЕНТ МОЩНОСТИ кВт = КИЛОВАТТ кВтч = КИЛОВАТТ-ЧАС VA = ВОЛЬТ-АМПЕР кВА = КИЛОВОЛЬТ-АМПЕР C = ЕМКОСТЬ EFF = ЭФФЕКТИВНОСТЬ (выражается в десятичной дроби)
бордюр>
АМП = ВАТТ-ВОЛЬТ I = P E A = Вт В
Вт = Вольт x ампер P = E x I W = V x A
VOLTS = WATTS AMPS E = P I V = W A
МОЩНОСТЬ ПОДКЛЮЧЕНИЯ = (V x A x EFF) 746
КПД = (746 x HP) (V x A)
граница>
ОДНОФАЗА ПЕРЕМЕННОГО ТОКА ~ 1
AMPS = Вт (ВОЛЬТЫ x PF) I = P (E x PF) A = W (V x PF)
WATTS = VOLTS x AMPS x PF P = E x I x PF W = V x A x PF
VOLTS = WATTSAMPS E = PI V = WA
ВОЛЬТ-АМП = Вольт x ампер ВА = E x I ВА = V x A
МОЩНОСТЬ = (V x A x EFF x PF) 746
МОЩНОСТЬ = ВХОДНАЯ ВАТТА (V x A)
КПД = (746 x HP) (V x A x PF)
граница>
AMPS = Вт (1. 732 x ВОЛЬТ x PF) I = P (1,732 x E x PF)
Вт = 1,732 x ВОЛЬТЫ x AMPS x PF P = 1,732 x E x I x PF
VOLTS = WATTSAMPS E = PI
ВОЛЬТ-АМП = 1,732 x НАПРЯЖЕНИЕ x АМПЕР ВА = 1,732 x E x I
МОЩНОСТЬ = (1,732 x V x A x EFF x PF) 746
МОЩНОСТЬ = ВХОДНАЯ ВАТТА (1.732 x В x А)
КПД = (746 x HP) (1,732 x V x A x PF)
бордюр>

Главная страница и введение
Калькулятор Deca-Scientific, Таблицы преобразования, Промышленная математика
Определения и терминология
Награды, полученные этим сайтом



Пожалуйста, подпишите мою гостевую книгу. Спасибо!

Подпишите мою гостевую книгу Посмотреть мою гостевую книгу




Прилагаются все усилия для обеспечения точности информации, содержащейся на этом веб-сайте. Однако автор этого сайта не несет ответственности за использование информации или ее последствия. Хотя вся информация считается точной, рекомендуется обращаться к другим источникам за дополнительной информацией или разъяснениями. Если вы студент, у вашего преподавателя может быть очень конкретная терминология, необходимая для использования в вашей конкретной области обучения, и поэтому вам следует обратиться к своим учебникам и учебным заметкам для получения этой информации. Я надеюсь, что этот сайт будет образовательным и полезным для тех из вас, кто им пользуется.Я приветствую ваши комментарии и предложения относительно этого сайта. Спасибо за визит! Генри Дж. Бэкон


Электронная почта: [email protected]

Формула закона Ома — Электротехника и электроника

Закон

Ома — один из фундаментальных принципов электротехники и электроники, который связывает ток, протекающий по резистивным цепям. Список формул закона Ома содержит все формулы, полезные уравнения и 12 различных манипуляций с законом Ома, которые используются в анализе цепей. Начнем с основной формулы:

V = IR… (Математическая форма закона Ома)

После объединения приведенного выше утверждения со степенным законом (P = VI) и выполнения подстановки у нас есть 12 различных формул, которые можно использовать для вычисления любого из двух неизвестных параметров на основе напряжения, тока, сопротивления и мощности, когда известны два фактора. В приведенной ниже таблице представлена ​​полная формула закона Ома:

Давайте решим несколько примеров, чтобы понять это:

Пример 1: Неизвестный резистор рассеивает 0.5 Вт мощности при подключении к нему источника 12 вольт. Найдите ток, проходящий через цепь.

Решение: В приведенном выше случае известно, что мощность составляет 0,5 Вт, а напряжение также известно. Из 5-й строки второго столбца диаграммы мы будем использовать формулу: I = P / V, чтобы найти текущее значение

.

I = 0,5 Вт / 12 В = 0,04 А

Итак, через область будет протекать ток силой 0,4 А.

Формулы закона Ома для вычисления:

  1. Напряжение от:
    1. Ток и сопротивление: V = IR
    2. Ток и мощность: V = P / I
    3. Мощность и сопротивление: V = SQRT (P.2) / Р

Понимание закона Ома — Pi My Life Up

Закон Ома является одной из основ электроники и невероятно удобен для быстрого расчета тока, напряжения или сопротивления цепи. Вам нужно будет знать как минимум два значения.

Закон Ома определяет математическое соотношение между током, напряжением и сопротивлением сети.

Этот закон был назван в честь немецкого физика и математика XIX века Георга Ома.Ом обнаружил эту взаимосвязь еще в то время, когда не было возможности легко измерить ток, напряжение или сопротивление.

Несмотря на холодный прием при первой публикации, он стал обязательным для всех, кто интересуется электрическими схемами. Закон Ома стал частью нашего нынешнего понимания электрических схем.

Если вы выполняете какие-либо из наших проектов электроники Raspberry Pi, которые связаны со схемами, то этот учебник может оказаться вам полезным.

Что такое закон Ома? Закон

Ома гласит, что ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению в этих двух точках и обратно пропорционален сопротивлению между двумя точками.

Проще говоря, если в цепи удваивается ток, то удваивается и напряжение. Точно так же, если сопротивление в цепи увеличится вдвое, ток упадет вдвое.

Хотя это может показаться немного сложным, фактическая математика, лежащая в основе этой теории, невероятно проста для понимания и запоминания.

Формула закона Ома

К счастью для нас, формула закона Ома невероятно проста для понимания.

Закон Ома можно выразить математической формулой, как показано ниже.

Эта формула говорит, что напряжение ( В ) равно току ( I ), умноженному на сопротивление ( R ).

Во всех формулах закона Ома мы используем следующие переменные.

  • В = напряжение, выраженное в вольтах.
  • I = ток, выраженный в амперах.
  • R = Сопротивление, выраженное в Ом.

Хотя формулу можно использовать для расчета напряжения, ею также можно управлять, чтобы вместо этого вычислить ток или сопротивление в цепи.

Для начала давайте изменим формулу так, чтобы мы могли вычислить ток ( I ) цепи.

Мы также можем изменить базовую формулу закона Ома, чтобы мы могли вычислить сопротивление ( R ) цепи.

Калькулятор закона Ома

Чтобы использовать этот калькулятор закона Ома, сначала выберите, хотите ли вы рассчитать напряжение, ток или сопротивление.

При выбранном режиме все, что вам нужно сделать, это ввести два требуемых значения. Калькулятор автоматически рассчитает правильные значения.

Треугольник закона Ома

Один из самых простых способов запомнить три различных формулы закона Ома — это треугольник.

Средний горизонтальный делитель треугольника представляет деление, то есть всякий раз, когда в формуле участвует напряжение ( В, ), все остальные буквы делятся на него.

Например, если мы хотим вычислить ток ( I ), нам нужно разделить напряжение ( В, ) на сопротивление ( R ).

Обведя кружком « I » в треугольнике, мы видим, что формула остается в треугольнике с В по R .

Мы также можем использовать тот же треугольник, чтобы разработать формулу для расчета сопротивления ( R ) цепи.

Обведя сопротивление ( R ), мы можем увидеть формулу, которую мы должны использовать: напряжение ( В ), деленное на ток ( I )

Вертикальная линия в треугольнике представляет умножение.Эта линия используется только при расчете напряжения (В).

Снова используя треугольник закона Ома, мы можем быстро увидеть формулу, которую нам нужно использовать, обведя « V », поскольку это значение, которое мы хотим вычислить.

Из этого легко видно, что для расчета напряжения ( В, ) все, что нам нужно сделать, это умножить ток ( I ) на сопротивление ( R ).

Пример действия закона Ома

Далее мы рассмотрим три различных примера схем.

Эти примеры будут касаться использования каждого варианта трех различных формул закона Ома.

Пример напряжения

В этом первом примере мы собираемся начать с формулы закона базового сопротивления для расчета напряжения цепи.

Для расчета напряжения нам необходимо знать сопротивление ( R ) и ток ( I ) цепи.

В этой примерной схеме вы можете видеть, что у нас есть сопротивление ( R ) 200 Ом и ток ( I ) 5 А.

Чтобы рассчитать напряжение, нам нужно вставить два наших значения в формулу закона Ома.

После заполнения формулы вы можете видеть, что все, что нам нужно сделать, это умножить 200 на 5 , чтобы рассчитать напряжение.

Умножив сопротивление и ток, мы увидим, что напряжение для схемы в примере равно 1000 Вольт .

Пример тока

В этом втором примере мы будем использовать модифицированную версию формулы закона Ома для расчета тока следующей цепи.

Из этой схемы мы знаем, что сопротивление ( R ) составляет 50 Ом , а напряжение ( В ) составляет 24 В .

Нам нужно поместить эти значения в формулу закона Ома, которая использовалась для расчета тока ( I ).

Используя значения сопротивления и напряжения, введенные в формулу, мы видим, что нам нужно разделить 24 на 50 , чтобы вычислить ток.

Используя закон Ома, мы вычисляем ток в цепи, равный 0.48 ампер .

Пример сопротивления

В нашем третьем и последнем примере мы будем использовать третью версию формулы закона Ома. В этом случае мы будем использовать формулу для расчета сопротивления цепи.

Для расчета сопротивления цепи нам необходимо знать напряжение ( В, ) и ток ( I ) цепи.

Из этой примерной схемы мы видим, что наша примерная схема имеет ток 10 А и напряжение 20 Вольт .

Нам нужно вставить эти два значения в формулу сопротивления закона Ома.

Отсюда мы можем рассчитать необходимое нам сопротивление, разделив напряжение 20 на 10 ампер .

Рассчитав это, мы видим, что сопротивление нашей схемы в нашем примере должно быть 2 Ом .

Надеюсь, что теперь у вас есть понимание закона Ома и то, как его использовать. Мы рассмотрели, как можно использовать треугольник закона Ома как простой способ запоминания трех различных формул.

Вы найдете эти уравнения очень удобными в проектах, использующих схемы, таких как все наши проекты Arduino.

Если у вас есть какие-либо советы или отзывы, не стесняйтесь оставлять комментарии ниже.

Как применять закон Ома — Jade Learning

Как применять закон Ома

Автор: Вес Губиц | 07 августа 2019 г.

Электроэнергия работает в предсказуемых пределах. Мы пришли к выводу, что эти границы являются законом Ома. Закон Ома был разработан как средство объяснения того, как электричество работает в замкнутой цепи.Формула закона Ома помогает установить взаимосвязь между различными свойствами в электрической цепи. Мы можем использовать закон Ома, чтобы объяснить, что произошло, а также что произойдет, когда на электрическую цепь накладываются определенные условия.

Основные характеристики электрической схемы: Напряжение, ток и сопротивление . Они специфичны, определены и не меняются — при условии, что все свойства остаются постоянными. Однако измените значение только одного из этих свойств, и все свойства изменят значение соответствующим образом.

Закон Ома — это самая основная из электрических формул, он был разработан путем простого наблюдения за свойствами электричества в электрической цепи. Электричество ведет себя иначе из-за ограничений, налагаемых формулой закона Ома; формула просто представляет наши наблюдения за поведением, уже происходящим в электрической цепи.

Хотя закон Ома — всего лишь вводная ступенька на лестнице электротехники, для понимания того, как закон Ома как формула применяется к простой цепи, необходимо базовое понимание электрической цепи.Простая схема состоит из источника питания, нагрузки, проводников, устройства максимального тока и устройства управления. Ток будет течь в этой простой цепи, если имеется достаточное напряжение, чтобы преодолеть любое сопротивление цепи.
Напряжение считается давлением в электрической цепи; это уместно называется электродвижущей силой. Это давление или «сила» вызывается разными электрическими полюсами, которые хотят уравновесить себя. Толчок и притяжение, наложенные на электроны в проводнике, подключенном к этим разным полюсам, заставят электроны двигаться, если для них существует полный путь.Единственное, что может остановить движение электронов, — это приложенное сопротивление сверх того напряжения, которое заставляет их двигаться, или разрыв цепи, который нарушает поток этих электронов. Требуется один вольт (В) этой электродвижущей силы, чтобы протолкнуть один ампер (А) тока через один ом (Ом) сопротивления — это закон Ома. Напряжение (E или V) равно току (I), умноженному на сопротивление (R). Или, другими словами, E (или V) = IR.

Обозначения

  • Вольт (E или V) = электродвижущая сила, опять же, это давление, которое заставляет электроны перемещаться по проводнику (и через нагрузку) в замкнутой цепи.
  • Ток (I) = интенсивность, представляет ток, протекающий в цепи. Помните, что «интенсивность» тока в цепи измеряется в амперах.
  • Сопротивление (R) = Ом, сопротивление току. Сопротивление может быть преднамеренным или случайным, но в любом случае оно является противодействием свободному току в цепи и отображается на вашем электрическом счетчике в виде Ом. Нулевое сопротивление или близкое к нему означает буквально отсутствие сопротивления току. Медь имеет очень низкое значение сопротивления на фут и является высококачественным материалом для создания эффективных проводников.

Давайте посмотрим на символы закона Ома внутри треугольника закона Ома.

Помните, что вольт (E или V) равняется току (I), умноженному на сопротивление (R)

Использование треугольника закона Ома в качестве наглядного пособия при запоминании трех уравнений закона Ома — не редкость.

Чтобы найти пропущенное значение в реальном уравнении закона Ома, просто закройте букву, представляющую пропущенное значение в треугольнике, и используйте оставшиеся два значения для вычисления этого пропущенного значения.

Например: если вы знаете, что лампа на 120 В (Е или В) измеряет при использовании ток 0,625 А (I), какое сопротивление оказывает лампа?

120 В (E), деленное на 0,625 А (I), равняется 192 Ом (R) сопротивления.

Что делать, если вам известны измеряемые амперы (I) протекающего тока и сопротивление (R) нити накала лампы? Можете ли вы затем рассчитать напряжение, подаваемое на эту лампу? Посмотрите на треугольник закона Ома ниже, чтобы определить свой ответ.

Ток (I), умноженный на сопротивление (R), равен напряжению, приложенному к лампе.

Правило треугольника закона Ома
Помните, глядя на треугольник закона Ома, если числа стоят бок о бок, вы умножаете, если числа расположены одно над другим, вы делите.

Заключение
Закон Ома и многие другие электрические формулы предоставляют нам средства, с помощью которых мы можем понять самые основные принципы протекания электричества и тока. Эти многочисленные формулы позволяют нам заглянуть в прошлое, а также в будущее электрических приложений.Можно сказать, что эти формулы дают нам своего рода поводок, если не контролировать это явление, то, возможно, хотя бы держаться!

Понимание формул закона сопротивления постоянного и переменного тока, формул и формул мощности


Понимание основ закона Ома — диаграммы переменного и постоянного тока .

… в чем разница?

AC = Z (импеданс) и DC = R (сопротивление) Формулы закона Ома

Колесо силы закона Ома переменного тока и колесо силы закона Ома постоянного тока

(схемы, диаграмма, диаграмма, колесо, формулы, теория электроники)

Если вам нужно иметь дело с формулами напряжения, тока, сопротивления или импеданса и мощности, и вы хотите знать, в чем разница между тем, что мы называем формулами переменного и постоянного тока, вы можете найти эти колеса силы закона Ома.Форма с четырьмя квадрантами упрощает процесс нахождения значений E, I, R или Z и P. Есть два колеса, одно для нашей диаграммы закона Ома постоянного тока (R — формулы сопротивления) и одна диаграмма закона Ома для нашего переменного тока ( Z — формулы импеданса). Если вам интересен цвет на колесе, мы используем его в качестве удобного справочника для цветов полос резистора … мы включаем их в наши часы и часы с законом Ома. Пожалуйста, прочтите дополнительную информацию о том, как читать эту таблицу.

Два основных типа электричества — это переменный ток, известный как AC, и постоянный ток, известный как DC.Разница между системами переменного и постоянного тока заключается в том, как мощность передается по линиям. При переменном токе поток энергии меняет направление — фактически 60 раз в секунду, но при постоянном токе мощность будет двигаться только в одном направлении.


Переменный ток — Think Impedance

Силовые формулы закона Ома и закона Джоуля. Как правило, если вы МАСТЕР-электрик, специалист по устранению неполадок или инженер, вы можете предпочесть наши часы, часы, наклейки, диаграммы, брелки и т.продукты. Думайте расширенно — думайте об импедансе. Нужны формулы Z? Колесо питания переменного тока

DC Direct Current — Think Resistance
Закон Ома и формулы мощности закона Джоуля. Как правило, если вы электрик, техник, подмастерье, ученик, студент или любитель, вы можете предпочесть этот продукт с колесом закона Ома. Подумайте о сопротивлении — нужны формулы R?
По мере того, как вы продвигаетесь в своем обучении, вы, несомненно, найдете также полезными формулы переменного тока для импеданса (таблица выше).

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Чтобы использовать диаграмму, в центральном круге выберите значение, которое необходимо найти; например, на диаграмме постоянного тока: I (амперы), R (Ом), E (вольты) или P (ватты). Затем выберите формулу, содержащую значения, которые вы знаете из соответствующего квадранта диаграммы.

Эти колеса силы закона Ома выше показывают нашу цветовую таблицу резисторов, которая поможет вам определить цвета резисторов … это уникальная концепция, и вы найдете ее полностью объясненной на нашей странице технических примечаний слева.Мы включаем эти диаграммы на все наши часы, наклейки, брелки, диаграммы и часы с законом Ома, поэтому не забудьте заглянуть на страницу «Наши продукты», прежде чем покинуть наш сайт. Спасибо!

Понятия (теория) напряжения, тока, сопротивления, импеданса и мощности необходимы для понимания основных электрических схем и спецификаций. Эти области должны быть полностью изучены, прежде чем можно будет понять внутренности даже самых простых электронных устройств, таких как дешевые мобильные телефоны. Как только эти концепции станут знакомыми, вы обнаружите, что наладить правильное соединение между частями оборудования будет намного проще.Вы также сможете лучше разбираться в спецификациях производителя, что поможет вам принимать более обоснованные решения о покупке. Законы Ома — один из фундаментальных законов физики. Ток в цепи увеличивается при увеличении напряжения и уменьшается при увеличении сопротивления ИЛИ ток, протекающий в цепи, прямо пропорционален напряжению, приложенному к цепи, и обратно пропорционален сопротивлению цепи.

Теория закона Ома может быть сформулирована как математический инструмент, который имеет наибольшее применение при определении неизвестного фактора тока, напряжения или сопротивления в электрической цепи, в которой известны два других фактора.Следовательно, его можно использовать вместо амперметра, вольтметра или омметра — когда вы пытаетесь определить значение цепи, в котором вам уже известны два других значения.

Текущий ВСЕГДА выражается в АМПЕРАХ и обозначается буквой I

Напряжение ВСЕГДА выражается в ВОЛЬТАХ и обозначается буквой E или V

Сопротивление ВСЕГДА выражается в ОМ и обозначается буквой R

Существует два типа тока: постоянный и переменный.Постоянный ток (DC) равномерно течет в одном направлении через проводник; переменный ток (AC) изменяет направление в проводнике с различной частотой. Чтобы увидеть пример этого, перейдите на нашу страницу технических примечаний.

Практически во всех электрических цепях существует некоторое сопротивление протеканию тока. Противодействие постоянному току называется сопротивлением, которое измеряется в единицах, называемых омами, и представлено в электрических уравнениях буквой R.

Сопротивление переменному току называется импедансом, который также измеряется в омах, но в электрических уравнениях он представлен буквой Z.


Для получения формул последовательной цепи и формул параллельной цепи для закона Ома постоянного тока и закона Ома переменного тока перейдите по этой ссылке: ohmslaw2.asp На КАРТОЧКАХ ФОРМУЛ также показаны следующие формулы:
  • Полная мощность
  • Трехфазная полная мощность

  • Коэффициент мощности

  • Реактивное сопротивление

  • Передаточные числа трансформатора

  • Motor Sync.

  • Частота генератора

  • Эффективность любого устройства

  • Трехфазная звезда

  • 3-фазный треугольник

  • Значения синусоидальной волны

    ЗАКОННЫЕ ФОРМУЛЫ OHMS ДЛЯ AC

    Полная мощность

    обозначается буквами AP

    .

    Импеданс обозначается буквой Z

    Total обозначается буквой T

    В общем, закон Ома не может применяться к цепям переменного тока, поскольку он не учитывает реактивное сопротивление, которое всегда присутствует в таких цепях.Однако, изменив закон Ома, который учитывает влияние реактивного сопротивления, мы получаем общий закон, применимый к цепям переменного тока. Поскольку полное сопротивление Z представляет собой совокупное противодействие всех реактивных сопротивлений и сопротивлений, этот общий закон для переменного тока:

    I = E

    Z

    Это общее изменение применяется к переменному току, протекающему в любой цепи, и любое из значений может быть найдено из уравнения, если другие известны.(Обратите внимание, что приведенная выше формула является только примером для упрощения. Пожалуйста, обратитесь к нашему колесу закона Ома выше — истинной формуле для импеданса. Обратите внимание на «Т», которые представляют собой сумму.)

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Каждая единица измерения названа в честь известного экспериментатора в области электричества:

  • Усилитель по мотивам француза Андре М. Ампера

  • Вольт по итальянцу Алессандро Вольт

  • Ом по немецкому Георгу Симону Ому

  • Ватт в честь шотландского изобретателя Джеймса Уоттса

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

Буква P означает мощность в ваттах.

Напряжение, измеренное в вольтах, обозначается буквами E (или V)

Электрический ток, измеряемый в амперах, обозначается буквой I

Электрическое сопротивление, измеренное в Ом, обозначается буквой R

Закон Ома: E = I R I = E / R R = E / I


ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Джеймс Прескотт Джоуль, а не Георг Саймон Ом, первым открыл математическую связь между рассеиваемой мощностью и током через сопротивление.Это открытие, опубликованное в 1841 году, по праву известно как закон Джоуля. Однако эти уравнения мощности настолько часто связаны с уравнениями закона Ома, связывающими напряжение, ток и сопротивление (E = IR; I = E / R; и R = E / I), что они часто приписываются Ому.
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Законы Кирхгофа … n: (физика) два закона, управляющие электрическими сетями, в которых протекают установившиеся токи: сумма всех токов в точке равна нулю, а сумма приростов и падений напряжения в любой замкнутой цепи равно нулю.

ЗАКОН ОМА ДЛЯ КОНДЕНСАТОРА:

V C = I C X C где:

В C = напряжение на конденсаторе
I C = ток через конденсатор
X C = емкостное реактивное сопротивление


ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

Миллиампер X Килом = Вольт

Микроампер X Мехом = Вольт


«Один ампер, протекающий на один ом, вызывает падение потенциала на один вольт.»Георг Симон Ом

Пожалуйста, ознакомьтесь с нашими другими категориями, пока вы находитесь на нашем веб-сайте. Предлагаем товары в дополнение к контенту! Такие продукты, как часы закона Ома, часы, диаграммы, отличительные знаки и монеты закона Ома! Мы предлагаем другие подарки для электриков и инженеров, такие как наклейки на окна, забавные полноцветные наклейки, плакаты, кружки, украшения, поздравительные открытки и т. Д. Просто нажмите на любой из наших отделов подарков слева. Спасибо!

Электрические формулы

Общие электрические единицы, используемые в формулах и уравнениях:

  • Вольт — единица электрического потенциала или движущей силы — потенциал требуется для передачи одного ампера тока через один ом сопротивления
  • Ом — единица сопротивления — один ом — это сопротивление, обеспечиваемое прохождению одного ампера при подаче одного вольта
  • Ампер — единицы тока — один ампер — это ток, который один вольт может передать через сопротивление в один ом
  • Ватт — единица электрической энергии или мощности — один ватт равен произведению одного ампера на один вольт — один ампер тока, протекающего под действием силы одного вольта, дает один ватт энергии
  • вольт ампер — произведение вольт и амперы, показанные вольтметром и амперметром — в системах постоянного тока вольт-ампер совпадает с ваттами или доставленной энергией — в системе переменного тока ems — вольты и амперы могут быть или не быть на 100% синхронными — при синхронности вольт-амперы равны ваттам на ваттметре — когда несинхронные вольт-амперы превышают ватты — реактивная мощность
  • киловольт-ампер — один киловольт-ампер — кВА — равен 1000 вольт-ампер
  • Коэффициент мощности — отношение ватт к вольт-амперам

Электрический потенциал — закон Ома

Закон Ома можно выразить как:

U = RI (1a)

U = P / I (1b)

U = (PR) 1/2 (1c)

Скачать и распечатать Закон Ома

Электрический ток — Закон Ома

I = U / R (2a)

I = P / U (2b)

I = (P / R) 1/2 (2c)

Электрическое сопротивление — закон Ома

R = U / I (3a)

R = U 2 / P (3b)

R = P / I 2 (3c)

Пример — закон Ома

A 12-вольтная батарея обеспечивает питание с сопротивлением 18 Ом .

I = (12 В) / (18 Ом )

= 0,67 (A)

Электроэнергия

P = UI (4a)

P = RI 2 (4b)

P = U 2 / R (4c)

где

P = мощность (Вт, Вт, Дж / с )

U = напряжение (вольт, В)

I = ток (амперы, А)

R = сопротивление (Ом, Ом)

Скачать и распечатать закон Ома

Скачать и распечатать Закон Ома

Электроэнергия

Электроэнергия — это мощность, умноженная на время:

W = P t (5)

whe re

Вт = энергия (Вт, Дж)

t = время (с)

Альтернатива — мощность может быть выражена

P = Вт / т (5b)

Мощность потребление энергии потреблением времени.

Пример — потеря энергии в резисторе

Батарея 12 В подключена последовательно с сопротивлением 50 Ом . Мощность, потребляемая резистором, может быть рассчитана как

P = (12 В) 2 / (50 Ом)

= 2,9 Вт

Энергия, рассеиваемая за 60 секунд , может быть рассчитана

Вт = (2,9 Вт) (60 с)

= 174 Вт, Дж

= 0.174 кВт

= 4,8 10 -5 кВтч

Пример — электрическая плита

Электрическая плита потребляет 5 МДж энергии от источника питания 230 В при включении в течение 60 минут .

Номинальная мощность — энергия в единицу времени — печи может быть рассчитана как

P = (5 МДж) (10 6 Дж / МДж) / ((60 мин) (60 с / мин))

= 1389 Вт

= 1.39 кВт

Ток можно рассчитать

I = (1389 Вт) / (230 В)

= 6 ампер

Электродвигатели

КПД электродвигателя

μ = 746 P / P input_w (6)

где

μ = КПД

P л.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *