Замер напряжения в сети. Измерение напряжения в розетке мультиметром: пошаговая инструкция и нормы напряжения

Как правильно измерить напряжение в розетке мультиметром. Какое напряжение должно быть в розетке по нормам. Что делать при отклонении напряжения от нормы. Как часто нужно проверять напряжение в сети.

Содержание

Как измерить напряжение в розетке мультиметром

Измерение напряжения в розетке с помощью мультиметра — важная процедура для оценки качества электроснабжения и безопасности электросети. Вот пошаговая инструкция:

  1. Подключите измерительные щупы к мультиметру: красный в гнездо «V», черный в гнездо «COM».
  2. Установите переключатель режимов мультиметра в положение измерения переменного напряжения (обычно обозначается «V~» или «ACV»).
  3. Выберите диапазон измерения выше 250 В.
  4. Вставьте щупы в гнезда розетки: красный в фазу, черный в ноль.
  5. Считайте показания с дисплея мультиметра.

При измерении соблюдайте осторожность и не касайтесь металлических частей щупов во избежание поражения током.

Нормы напряжения в бытовой электросети

Согласно действующим стандартам, номинальное напряжение в розетках должно составлять:


  • 220 В ± 10% (198-242 В) по старому ГОСТу
  • 230 В ± 10% (207-253 В) по новому ГОСТу

Таким образом, допустимый диапазон напряжения в розетке составляет 198-253 В. Значения за пределами этого диапазона считаются отклонением от нормы.

Причины отклонения напряжения от нормы

Отклонение напряжения от нормативных значений может быть вызвано различными факторами:

  • Перегрузка электросети
  • Неисправности на подстанции или в распределительных сетях
  • Проблемы с внутридомовой проводкой
  • Неправильно подобранное сечение проводов
  • Плохие контакты в соединениях

Определить точную причину без специального оборудования сложно, поэтому при серьезных отклонениях лучше обратиться к специалистам.

Последствия отклонения напряжения от нормы

Отклонение напряжения от нормативных значений может привести к различным проблемам:

  • Выход из строя бытовой техники и электроники
  • Снижение срока службы электроприборов
  • Некорректная работа чувствительного оборудования
  • Повышенный расход электроэнергии
  • Риск возникновения пожара при значительном превышении напряжения

Поэтому важно своевременно выявлять и устранять проблемы с напряжением в сети.


Что делать при отклонении напряжения от нормы

Если вы обнаружили, что напряжение в розетке выходит за пределы допустимого диапазона, следует предпринять следующие шаги:

  1. Проверьте напряжение в нескольких розетках, чтобы исключить локальную проблему.
  2. Обратитесь в управляющую компанию или энергоснабжающую организацию с жалобой.
  3. Вызовите электрика для проверки внутридомовой проводки.
  4. Рассмотрите возможность установки стабилизатора напряжения.
  5. При значительных отклонениях отключите чувствительную технику до устранения проблемы.

Помните, что решение проблем с напряжением в сети требует участия квалифицированных специалистов.

Как часто нужно проверять напряжение в сети

Регулярная проверка напряжения в розетках поможет вовремя выявить проблемы с электроснабжением. Рекомендуемая частота проверок:

  • Раз в полгода в качестве профилактики
  • При подключении нового мощного оборудования
  • При появлении признаков нестабильной работы электроприборов
  • После ремонта или изменений в электропроводке
  • При частых отключениях электричества в доме

Своевременное выявление проблем с напряжением поможет предотвратить выход из строя дорогостоящей техники и обеспечить безопасность электросети.


Дополнительные параметры качества электроснабжения

Помимо уровня напряжения, на качество электроснабжения влияют и другие параметры:

  • Частота тока (номинал 50 Гц ± 0,2 Гц)
  • Несимметрия напряжений в трехфазной сети
  • Коэффициент несинусоидальности напряжения
  • Отклонение формы синусоиды от идеальной
  • Наличие высших гармоник

Для полноценной оценки качества электроснабжения требуется специальное оборудование — анализаторы качества электроэнергии.

Использование стабилизаторов напряжения

Стабилизаторы напряжения помогают защитить технику от перепадов напряжения в сети. Основные типы стабилизаторов:

  • Релейные — самые доступные, но с низкой точностью стабилизации
  • Электромеханические — более точные, но медленные и шумные
  • Электронные — самые точные и быстродействующие, но дорогие

При выборе стабилизатора учитывайте мощность подключаемой техники и диапазон входных напряжений. В некоторых случаях может потребоваться установка трехфазного стабилизатора.


Как измерить напряжение в розетке мультиметром

Одна из основных причин выхода из строя электроприборов дома – это проблемы с напряжением сети.

Оно может быть слишком низким, недостаточным для работы оборудования, либо наоборот слишком высоким, из-за чего бытовая техника сгорает. Нередко бывает, что напряжение то растёт, то падает, скачкообразно, что еще более губительно для любого электрического оборудования.

Именно поэтому, измерение напряжения в розетке в быту – это основной, главный этап диагностики электросети, если замечена её нестабильная работа.

Главным инструментом для измерения напряжения является мультиметр или тестер. Ведь для понимания причин проблемы, важно знать точные характеристики электрического тока, никакая индикаторная отвертка или контрольная лампочка вам такой информации не даст.

Абсолютно любой мультиметр имеет функцию измерения напряжения с диапазонами, которые позволят определить стандартные бытовые 220В и 380В.

Это его базовая, одна из самых важных функций. В ящике с инструментами абсолютно каждого домашнего мастера мультиметр должен быть обязательно. Тем более, что сейчас довольно просто купить качественные и недорогие модели, практически в любом уголке России.

Сама диагностика розетки, довольно проста, ниже она подробно описана.

1. Подключаем измерительные щупы к мультиметру и выставляем режим определения напряжения переменного тока

В первую очередь необходимо правильно подключить щупы к мультиметру:

— Штекер красного щупа устанавливается в разъем «VΩmA»;

— Черный щуп подключается к разъему «COM»;

Затем выбирается режим работы и диапазон измерения:

В бытовых розетках наших домов и квартир протекает переменный электрический ток, стандартная его величина 220 – 230 Вольт.

Соответственно, колесо выбора режима работы необходимо перевести на:

— измерение напряжения переменного тока «

ACAlternating Current», которое маркируется как «~V»

— рабочий диапазон больший чем 230 Вольт, в нашем случае 500В

Теперь, когда подготовительные работы завершены, можно приступать непосредственно к замерам.

2. Измеряем величину напряжения в розетке

Держа щупы за изолированные, пластиковые ручки, не касаясь токопроводящих стержней-наконечников, помещаем их в гнезда розетки. Один щуп в левое, а другой в правое гнездо, как показано на изображении ниже. Порядок установки не важен, главное правило – наконечники щупов должны коснуться токопроводящих контактов розетки в гнездах.

Измерение проводится без отключения электрического тока. Для чистоты эксперимента, лучше всего тестировать в условиях, приближенных к тем, когда проявляются странности в работе электрооборудования.

3. Результаты измерения напряжения в розетке

Как только щупы коснуться контактов розетки, на экране мультиметра сразу же покажется результат измерения напряжения, количество вольт.

Если вы всё правильно сделали, на дисплее отразится три возможных вида результатов измерения:

1. Нормальное напряжение

2. Слишком низкое, высокое или меняющееся

3. Отсутствие какого-либо сигнала

Давайте коротко рассмотрим каждый из этих пунктов. Какие должны быть показатели, что может их вызывать и главное, что дальше делать в той или иной ситуации:

1. Нормальное напряжение в розетке

По современным нормам, стандартное напряжение в сети 220 – 230В. Я не зря указываю такой диапазон, а не какую-то определенную, точную величину.

Всё дело в том, что долгое время стандарт напряжения бытовой электрической сети у нас в стране был 220 Вольт, именно под него выпускалось оборудование, прокладывались сети. Позже, стандартным стало напряжение 230 Вольт и во всех современных домах его величина в розетках скорее всего будет именно таким.

Для удобства, дальше, я буду указывать именно 230В, как основной показатель напряжения в электрической сети, но вы должны знать, что 220В также не является свидетельством неисправности.

Более того, современные стандарты допускают отклонения он номинальной величины напряжения на 10% в каждую сторону. Соответственно, при измерении напряжения в розетке мультиметром, нормальным результатом будет являться любой в диапазоне от 207 до 253 Вольт.

Но я бы на вашем месте дополнительно проинспектировал все элементы электроустановки и сделал заявку в обслуживающую дом организацию, чтобы проверить, почему величина напряжения в розетках отличается от 220-230В.

2. Аварийная величина напряжения в бытовой сети

Как я уже сказал ранее, всё напряжение, что попадает в диапазон от 207 до 253 Вольт, условно считается нормальным. Соответственно, любой показатель за его пределами – это сигнал об аварийной ситуации в электросети. Опять же я говорю УСЛОВНО нормальным потому, что всё же любая величина напряжения, которая отличается от 220 или 230В, не мой взгляд уже не нормальная, где то есть потери, либо наоборот причины перенапряжения.

Причин, приводящих к слишком низкому или наоборот, чрезмерно высокому напряжению в сети довольно много. В условиях квартиры, обычно к этому приводят проблемы с контактами, особенно в местах соединения проводников, а также нередко ошибки при проектировании электросети, в частности неправильный выбор сечения проводов.

Но чаще всего, проблема с напряжением в розетках лежит вне ваших квартир и домов, она связана:

— с ветхостью наружных электросетей и оборудования;

— с неправильно подобранными характеристиками распределяющего или генерирующего электрооборудования, например, трансформатора;

— с перегрузкой электросети, при активном потреблении электроэнергии сразу многими потребителями;

В первую очередь, выявив проблемы с напряжением в вашей сети, необходимо:

— Узнать, проявляются ли они во всех помещениях или четко локализован;

— Принять меры к защите электрооборудования дома, отключив его от питающей сети;

— Приступить к диагностике;

И в первую очередь, по описанном в этой статье методике, замерьте напряжение на вводном автомате в квартиру.

Если в квартиру поступает стандартное напряжение, находящееся в условно нормальном диапазоне от 207 до 253В, то проверяйте внутреннюю электросеть:

Если вы своими силами не способны провести комплексную диагностику вашей электроустановки – обязательно обратитесь к профессионалу, например, вызовете электрика. В одной из предыдущих статей я достаточно подробно описал все возможные способы вызова специалиста, их описания и недостатки. И это не реклама конкретной компании или специалиста, а простое перечисление доступных вам вариантов.

Если же проблемы с напряжением подтвердились и на вводном кабеле в квартиру или дом, то необходимо обратится в вашу электроснабжающую, обслуживающую или управляющую компанию, для выяснения причин проблем.

До завершения проверки, выявления и устранения причин неисправности, не пользуйтесь электрооборудованием дома, либо подключайте его через стабилизатор. А что такое стабилизатор напряжения, зачем он нужен и когда используется простым и понятным языком я уже описал ЗДЕСЬ, на примере релейной и электромеханической модели.

Зная расторопность при выполнении заявок потребителей специалистами обслуживающих компаний, я рекомендую, в случае с внешними проблемами с напряжением, сразу купить стабилизатор. Тем более есть вполне недорогие, доступные модели, которые позволят вам, не теряя в комфорте, дождаться восстановления параметров сети, защитив ваше электрооборудование и в будущем.

3. Отсутствие напряжения в розетке

Если же мультиметр при измерении показал, что напряжение в розетке отсутствует, необходимо тщательно проверить всю электрическую цепь до неё. Особенно работу защитной автоматики.

Лучшим способом, найти причину неисправности и отсутствия напряжения в розетке – прозвонить её мультиметром. О том, как это сделать самому, в домашних условиях, используя возможности мультиметра – я подробно описал, в соответствующем цикле статей, доступных по ссылке.

Как видите, мультиметр незаменимый помощник любому домашнему мастеру. При этом не обязательно обладать какой-то особой квалификацией или большим опытом, чтобы эффективно работать с этим многофункциональным измерительным прибором.

Если же вы хотите замерить мультиметром еще какие-то параметры электрических приборов, оборудования, проводки и их компонентов, но не знаете, как это сделать – пишите об этом в комментариях к статье. На основе ваших запросов, мы подготовим и выпустим новую, наглядную инструкцию, со всеми необходимыми описаниями, схемами, рекомендациями, необходимыми для решения ВАШЕЙ задачи.

А для того, чтобы оперативно узнавать анонсы о выходе новых материалов, подписывайтесь на нашу группу вконтакте. Получайте первым информацию в ленту о выходе статей, без рекламы и флуда.

Напряжение в розетке: как оценить качество | Публикации

Для того, чтобы понять, насколько качественное напряжение поступает к нам в розетку, необходимы две вещи — знать стандарты качества и знать, как измерить эти стандарты. В статье я подробно расскажу, что такое качество напряжения и как измерить его характеристики. Это будет не теоретическая википедийная статья, а материал, максимально приближенный к реальной жизни.

Посмотрим, что мы можем измерить и посмотреть реально в питающей сети. Я приведу официальные стандарты качества и покажу, что в сети может происходить на самом деле.

Как и зачем оценивать качество напряжения в сети?

Действительно, зачем? Ведь достаточно нажать кнопку на пульте телевизора или воткнуть зарядное устройство айфона в розетку и пользоваться благами электрификации всей страны!

Но бывают моменты, когда что-то идет не так: крокодил не ловится, айфон не заряжается, кондиционер вместо прохлады выдает натужное гудение, а телевизор после щелчка не подает признаков жизни.

Тут собрались люди знающие, которые понимают, что значения основных параметров электрической сети — напряжения и частоты — можно узнать в первую очередь посредством мультиметра. Но что делать, если нужно посмотреть, что делается в розетке в течение суток? А что если нужно отследить скачок напряжения, который по времени гораздо короче интервала измерения мультиметра? Причем может быть так, что время появления этого артефакта неизвестно.

Обычно при любых проблемах с напряжением ставят стабилизаторы, но они помогают далеко не всегда. Ведь стабилизатор устраняет следствие, но не причину проблемы. А если происходит скачкообразное кратковременное изменение напряжения, то стабилизатор не только не поможет, но и усугубит положение.

И чтобы понять, что делать в том или ином случае — проверить качество контактов на вводе или поставить стабилизатор, — нужен анализатор качества электроэнергии (Power Quality Analyzer).

Анализатор качества электроэнергии дает полную картину того, что происходит в розетке.

Я использую в своей работе анализатор качества электрической энергии HIOKI 3197, фото которого будут приведены в статье.

Без анализатора качества часто вообще непонятно, что происходит в сети: какие помехи, импульсные перенапряжения и провалы, коэффициент мощности cos и так далее. Приходится действовать наугад, используя свой опыт и эксперименты. А с японцем HIOKI из Нагано все ясно-понятно. Для того, чтобы составить полную картину того, что творится в сети, прибор имеет клещи для измерения тока и зажимы для измерения напряжения, а также зажим для подключения к нейтрали. Итого — 7 точек подключения.

Анализатор качества электроэнергии

Реальный случай, когда без анализатора качества не обойтись. Контроллер в технологической линии периодически зависал и выдавал ошибки. Когда все перелопатили, а причину не нашли, на помощь пришел анализатор качества электроэнергии. После непродолжительного наблюдения напряжения 220 В, поступающего на питание контроллера, выяснилось, что причина в плохом контакте внутри сетевого фильтра.

Напряжение в электросети

Это самый важный параметр, определяющий в основном качество и характеристики всей энергосистемы.

Старый ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения» гласит, что действующее (или среднеквадратическое, что для синуса одинаково) фазное напряжение в питающей сети должно составлять 220±10 %=198…242 В.

Однако новый ГОСТ 29322-2014 «Напряжения стандартные» «повысил» напряжение до 230 В±10 % =207…253 В. При этом разрешено действие напряжения 220 В. Линейные напряжения (между фазами) будут соответственно 380 и 400 В.

Получается, что если напряжение в розетке «плавает» от 198 до 253 В, то это укладывается в норму.

Рассмотрим трехфазную систему питания. Пример того, что может происходить на вводе в электрошкаф, виден на экране анализатора качества электроэнергии HIOKI 3197.

Фазные напряжения в трехфазной сети

На графиках видно, что уровень фазного напряжения колеблется около среднего уровня 238–240 В за время измерения 2 минуты. Судя по одинаковым провалам на всех фазах, за это время несколько раз включалась относительно мощная трехфазная нагрузка.

График напряжения, приведенный выше, может записываться в память прибора несколько дней. Таким образом, можно проанализировать, как меняется напряжение в течение суток, и подобрать стабилизатор. Либо вообще его не ставить, а отремонтировать электропроводку или предъявить претензии энергоснабжающей организации.

Кроме того (что очень важно!), можно зафиксировать и посмотреть все артефакты на напряжении. Например, скачки и провалы напряжения (последствия плохих контактов или помех), моменты пуска мощных приводов и т. д. Пороги событий устанавливаются в настройках. Пример экрана, на котором отображены события:

События и деталировка на экране анализатора качества электроэнергии

Ток в электросети

Когда-то в детстве отец мне купил мой первый тестер ТЛ-4М. Я мерил все подряд, пока мою голову не посетила «гениальная» идея — измерить ток в розетке. В итоге — выбило пробки, в тестере сгорел шунт, а я понял — ток измеряется всегда только через нагрузку. С тех пор средства измерения тока сильно шагнули вперед, и для этого используются только токовые клещи (трансформаторный метод), шунты практически не применяются.

Ток, точнее, его значение, форма и составляющие, значительно зависит от нагрузки. Например, вот как выглядит форма напряжения и тока при работе диммера:

Напряжение в сети и ток ЧЕРЕЗ диммер

Естественно, присутствуют гармоники тока и напряжения. Гармоники говорят о том, как отличаются формы напряжения и тока от синусоидальной.

Гармоники напряжения и тока

Гармоники напряжения и тока можно увидеть в графическом виде, как на скрине выше, так и в виде таблицы — с 1-й до 50-й гармоники. И для однофазной, и для трехфазной сети.

Частота

Все знают, что частота питающего напряжения у нас в розетке равна 50 Гц. Это означает, что 50 раз в секунду все повторяется. Иначе говоря, длительность периода напряжения равна 20 мс. Если точнее, то согласно ГОСТ 29322-2014 частота напряжения должна быть 50±0,2 Гц. То есть от 49,8 до 50,2 Гц.

Пожалуй, частота — единственный параметр, на который ничего не влияет. И ее стабильность зависит только от работы электростанции. Вот как график частоты выглядит на экране анализатора качества электроэнергии:

Частота питающей сети

Из графика видно, что частота отклоняется не более чем на 0,03 Гц от номинала, что с большим запасом укладывается в ГОСТ.

Заключение

HIOKI умеет гораздо больше, чем изложено в этой короткой статье. Например, служить в качестве эталонного электросчетчика и строить график потребляемой мощности, измерять коэффициент мощности cos и коэффициент реактивной мощности tg. Применение прибора обосновано при проведении энергоаудита и при выявлении сложных неисправностей оборудования.

Источник: Александр Ярошенко, автор блога SamElectric.ru. Опубликовано в журнале «Электротехнический рынок» №3 2020

Как измерять напряжение, ток и мощность

Трансформаторы тока (ТТ)

Трансформаторы тока (ТТ) — это датчики, используемые для линейного понижения тока, проходящего через датчик, до более низкого уровня, совместимого с измерительной аппаратурой. Сердечник трансформатора тока имеет тороидальную или кольцевую форму с отверстием в центре. Проволока обвивается вокруг сердечника, образуя вторичную обмотку, и закрывается кожухом или пластиковым кожухом. Количество проволочных витков вокруг сердечника определяет коэффициент понижения, или коэффициент ТТ, между током в измеряемой линии (первичный) и выходным током, подключенным к контрольно-измерительным приборам (вторичный). Измеряемый провод нагрузки пропускается через отверстие в центре трансформатора тока. Пример: ТТ с соотношением 500:5 означает, что нагрузка 500 ARMS на основной линии приведет к выходу 5 ARMS на вторичном трансформаторе тока. Прибор будет измерять 5 ARMS на клеммах и может применять коэффициент масштабирования, введенный пользователем, для отображения полных 500 ARMS. ТТ указывается с номинальным значением, но часто указана точность более 100% от номинальной. Трансформаторы тока могут быть с разъемным сердечником или сплошным сердечником. ТТ с разъемным сердечником имеют открытый шарнир или съемную секцию, чтобы установщик мог подключить ТТ к проводу нагрузки без физического отсоединения измеряемого провода нагрузки.

Предупреждение о безопасности. Несмотря на то, что CT может физически подключаться к установленной линии, перед установкой CT необходимо безопасно отключить питание. Открытые соединения вторичной обмотки при подаче питания на первичную обмотку могут привести к чрезвычайно опасным потенциалам напряжения.

Параметры ТТ при покупке включают номинальный диапазон, диаметр отверстия, разъемный/сплошной сердечник, тип выхода (напряжение/ток) и диапазон выхода (0,333 ВСКЗ, ±10 В, 1 СКЗ, 5 СКЗ и т. д.). Поставщики CT часто могут настроить датчик для конкретных нужд, таких как входной или выходной диапазон.

 

 

 

Рис. 5. Трансформаторные трансформаторы тока с разъемным сердечником обычно имеют петлю или съемную секцию для установки вокруг линии без физического демонтажа, хотя питание все равно должно быть отключено. (Изображение предоставлено Magnelab)

Рис. 6. ТТ со сплошным сердечником дешевле, но для его установки в уже работающих цепях может потребоваться больше труда.
(Изображение предоставлено Magnelab)

Полоса пропускания измерения ТТ

Полоса пропускания от 1 кГц до 2 кГц достаточна для большинства приложений по обеспечению качества электроэнергии в цепях переменного тока. Для приложений с более высокой частотой подключайтесь напрямую к NI 9246 или NI 9247 для полосы пропускания до 24 кГц или выбирайте более дорогие высокочастотные трансформаторы тока. Все модули, перечисленные в таблице выше, имеют полосу пропускания приблизительно 24 кГц для сигналов, подключенных напрямую. Высокочастотные ТТ более специализированы и имеют характеристики полосы пропускания в диапазоне сотен МГц. NI 9215, NI 9222 и NI 9223 измерительных модуля с частотами дискретизации от 100 квыб/с/канал до 1 Мвыб/с/канал при 16-битном разрешении для высокочастотных измерений.

Для высокочастотных измерений, выходящих за рамки возможностей NI 9223, NI рекомендует осциллограф или дигитайзер для PXI, предназначенный для лабораторных, исследовательских и испытательных систем.

 

Измерение постоянного тока

Трансформаторы тока не измеряют постоянный ток или составляющую постоянного смещения сигнала переменного тока. Для большинства приложений переменного тока в этом нет необходимости. Когда необходимо измерение постоянного тока, NI 9227 имеет встроенные калиброванные шунты и может измерять постоянный ток до 5 Ампер. Для измерения постоянного тока более 5 А используется шунт для измерения тока большой мощности (см. ниже) или датчик Холла (см. ниже), подключенный к соответствующему измерительному модулю.

 

Катушки Роговского

Катушки Роговского, иногда называемые «канатными ТТ», представляют собой еще один вариант датчиков для измерения тока в линии. Катушки Роговского похожи тем, что они наматываются на провод нагрузки, но они гибкие, имеют гораздо большее отверстие, чем стандартные трансформаторы тока, и принцип измерения другой. Катушки Роговского индуцируют напряжение, пропорциональное скорости изменения тока, и поэтому требуют в цепи интегратора преобразования в пропорциональный ток. Интегратор представляет собой отдельный блок/компонент, который обычно монтируется на панель или на DIN-рейку, требует источника питания постоянного тока и выдает на приборы сигналы низкого напряжения или тока. Размер и гибкость поясов Роговского делают их хорошо подходящими для замыкания вокруг более крупных сборных шин в коммерческих зданиях или на заводах, особенно когда они уже построены, а измерение мощности добавлено в качестве модернизации, но они дороже, чем ТТ с сопоставимым входом. диапазон.

Рис. 7. Для катушек Роговского требуется внешнее питание, интегрирующая схема (расположена в черном монтажном блоке на изображении выше) и они дороже, чем типичные твердотельные/разъемные ТТ, но обеспечивают быструю фазовую характеристику и подходят для модернизации установках и шинах больших размеров благодаря их большому гибкому отверстию. (Изображение предоставлено Magnelab)

Датчики на эффекте Холла

Датчики на эффекте Холла основаны на «эффекте Холла», названном в честь Эдвина Холла, когда ток, протекающий через полупроводник, расположенный перпендикулярно магнитному полю, создает потенциал напряжения на полупроводнике материал. Для целей измерения тока схема на эффекте Холла размещается в сердечнике перпендикулярно магнитному полю и выдает напряжение, масштабированное к текущей нагрузке в измеряемой линии. ТТ на эффекте Холла обычно имеют лучшую частотную характеристику и могут измерять смещение постоянного тока, но они дороже, требуют питания и могут быть подвержены температурному дрейфу.

Рис. 8. Датчики Холла имеют чувствительную цепь, перпендикулярную магнитному полю, и требуют питания. Датчики на эффекте Холла не имеют ограничений по насыщению, как ТТ, и могут измерять постоянные токи, но они более дорогие.

 

Токовые шунтирующие резисторы

Токовые шунты или токовые шунтирующие резисторы представляют собой резисторы, помещаемые в цепь с целью измерения тока, протекающего через шунт. Это довольно распространенные электрические компоненты, и они существуют для различных применений. Размер шунта будет основан на диапазоне измеряемого тока, диапазоне выходного сигнала и мощности, протекающей по цепи. Для большей точности доступны более дорогие прецизионные резисторы. Шунты не наматываются на провод цепи и размещаются на линии как компонент. Это устраняет изолирующий барьер между измеряемой цепью и измерительным оборудованием и может усложнить установку по сравнению с трансформатором тока или поясом Роговского. Однако шунты могут измерять постоянные токи, имеют лучшую частотную характеристику и лучшую фазовую характеристику. НИ 9238 для CompactRIO и CompactDAQ был разработан с низкочастотным аналоговым интерфейсом (±0,5 В) специально для токовых шунтирующих резисторов. Кроме того, NI 9238 имеет межканальную изоляцию 250 В.

 

Измерение напряжения постоянного тока (DC)

 

При измерении напряжения следует учитывать такие аспекты, как измерение высокого напряжения, контуры заземления, синфазное напряжение и топологии изоляции.

 

Высоковольтные измерения и изоляция

 

При измерении более высоких напряжений необходимо учитывать множество факторов. При определении системы сбора данных первый вопрос, который вы должны задать, — будет ли система безопасной. Выполнение высоковольтных измерений может быть опасным для вашего оборудования, тестируемого устройства и даже для вас и ваших коллег. Чтобы обеспечить безопасность вашей системы, вы должны обеспечить изолирующий барьер между пользователем и опасным напряжением с помощью изолированных измерительных устройств.

 

Изоляция , средства физического и электрического разделения двух частей измерительного устройства, которые можно разделить на электрическую и защитную изоляцию. Электрическая изоляция относится к устранению путей заземления между двумя электрическими системами. Обеспечив гальваническую развязку, вы можете разорвать контуры заземления, увеличить диапазон синфазных сигналов системы сбора данных и сместить опорный уровень сигнала на единую системную землю. Защитная изоляция ссылается на стандарты, содержащие особые требования к изоляции людей от контакта с опасным напряжением. Он также характеризует способность электрической системы предотвращать передачу высокого напряжения и переходных напряжений через ее границу на другие электрические системы, с которыми может контактировать пользователь.

 

Включение изоляции в систему сбора данных имеет три основные функции: предотвращение контуров заземления, подавление синфазного напряжения и обеспечение безопасности.

 

Узнайте больше об измерениях высокого напряжения и изоляции.

 

 

Контуры заземления

Контуры заземления являются наиболее распространенным источником шума в приложениях сбора данных. Они возникают, когда две соединенные клеммы в цепи имеют разные потенциалы земли, что приводит к протеканию тока между двумя точками. Местное заземление вашей системы может быть на несколько вольт выше или ниже уровня земли ближайшего здания, а близлежащие удары молнии могут увеличить разницу до нескольких сотен или тысяч вольт. Это дополнительное напряжение само по себе может вызвать значительную ошибку в измерении, но вызывающий его ток может также связывать напряжения в близлежащих проводах. Эти ошибки могут проявляться в виде переходных процессов или периодических сигналов. Например, если контур заземления образован линиями электропередач переменного тока с частотой 60 Гц, нежелательный сигнал переменного тока появляется при измерении в виде периодической ошибки напряжения.

 

При наличии контура заземления измеренное напряжение , ΔV m , представляет собой сумму напряжения сигнала, Vs, и разности потенциалов, ΔV g , которая существует между землей источника сигнала и заземление измерительной системы, как показано на рис. 6. Этот потенциал обычно не является уровнем постоянного тока; таким образом, результатом является зашумленная измерительная система, часто показывающая в показаниях частотные составляющие сети 60 Гц.

 

 

Рис. 3. Заземленный источник сигнала, измеренный с помощью системы заземления, включает контуры заземления 004 Во избежание контуров заземления убедитесь, что в измерительной системе имеется только один эталон заземления, или использовать изолированное измерительное оборудование. Использование изолированного оборудования устраняет путь между землей источника сигнала и измерительным устройством, тем самым предотвращая протекание тока между несколькими точками заземления.

 

 

Синфазное напряжение

Идеальная дифференциальная измерительная система реагирует только на разность потенциалов между двумя ее клеммами, входами (+) и (-). Дифференциальное напряжение на паре цепей является полезным сигналом, однако может существовать нежелательный сигнал, общий для обеих сторон пары дифференциальных цепей. Это напряжение известно как синфазное напряжение . Идеальная дифференциальная измерительная система полностью отбрасывает синфазное напряжение, а не измеряет его. Однако практические устройства имеют несколько ограничений, описываемых такими параметрами, как диапазон синфазного напряжения и коэффициент подавления синфазного сигнала (CMRR), которые ограничивают возможность подавления синфазного напряжения.

 

Диапазон синфазного напряжения определяется как максимально допустимый размах напряжения на каждом входе относительно земли измерительной системы. Нарушение этого ограничения приводит не только к ошибке измерения, но и к возможному повреждению компонентов устройства.

 

Коэффициент подавления синфазных сигналов описывает способность измерительной системы подавлять синфазные напряжения. Усилители с более высокими коэффициентами подавления синфазных сигналов более эффективны при подавлении синфазных напряжений.

 

В неизолированной дифференциальной измерительной системе в цепи между входом и выходом все еще существует электрический путь. Поэтому электрические характеристики усилителя ограничивают уровень синфазного сигнала, который можно подать на вход. При использовании изолирующих усилителей устраняется токопроводящий электрический путь, а коэффициент подавления синфазных сигналов резко увеличивается.

 

 

Топологии изоляции

Важно понимать топологию изоляции устройства при настройке измерительной системы. Различные топологии имеют несколько связанных с ними соображений стоимости и скорости. Двумя распространенными топологиями являются канал-канал и банк.

 

 

Между каналами

Наиболее надежной топологией изоляции является изоляция между каналами . В этой топологии каждый канал индивидуально изолирован друг от друга и от других неизолированных компонентов системы. Кроме того, каждый канал имеет свой изолированный источник питания.

Что касается скорости, то есть несколько архитектур на выбор. Использование разделительного усилителя с аналого-цифровым преобразователем (АЦП) на канал обычно быстрее, поскольку вы можете получить доступ ко всем каналам параллельно. Более экономичная, но более медленная архитектура включает мультиплексирование каждого изолированного входного канала в один АЦП.

Другой метод обеспечения межканальной изоляции заключается в использовании общего изолированного источника питания для всех каналов. В этом случае синфазный диапазон усилителей ограничен шинами питания этого источника питания, если только вы не используете входные аттенюаторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *