Частотник для трехфазного – Частотник для трехфазного электродвигателя-принцип работы

Содержание

Частотник для трехфазного электродвигателя-принцип работы

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.

Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.

Принцип работы частотного преобразователя

Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.

Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.

Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:

  1. Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
  2. Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
  3. Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.

Как правильно подобрать преобразователь частот

Наиболее значимо при покупке частотника — не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.

Также следует обратить внимание на тип управления преобразователя:

Высокоточная установка величины тока.

Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.

Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.

Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.

Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.

Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.

Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.

Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Самодельный частотный преобразователь 220-380V собственной сборки


Watch this video on YouTube

chistotnik.ru

Частотник для трехфазного электродвигателя

Содержание:
  1. Устройство и принцип действия преобразователя
  2. Подключение и настройка преобразователя частоты
  3. Самостоятельное изготовление частотного преобразователя
  4. Обслуживание устройства в процессе эксплуатации
  5. Преимущества частотников в асинхронных двигателях
  6. Видео: Самодельный частотник 220-380V

Трехфазные асинхронные двигатели уже долгое время используются в промышленности и других сферах жизни и деятельности людей. Среди всех этапов рабочего процесса, более всего уделяется внимание обеспечению плавного пуска и торможения агрегата. Для того чтобы выполнить это условие, необходимо использовать – частотник для трехфазного электродвигателя. Кроме своего основного названия – частотный преобразователь известен также, как инвертор, частотно регулируемый привод или преобразователь частоты переменного тока.

Основной функцией частотного преобразователя является регулировка скорости вращения асинхронных двигателей, с помощью которых электрическая энергия преобразуется в механическую. Первоначальное движение трансформируется в другие типы движений, необходимые для выполнения конкретной технологической операции. Использование частотных преобразователей позволяет довести коэффициент полезного действия электродвигателя до 98%.


Устройство и принцип действия преобразователя

Частотный преобразователь регулирует скорость вращения трехфазных электрических двигателей асинхронного типа. Вращение, полученное под действием электроэнергии, превращается в механическое движение с помощью специальных приводных устройств. Регулировка скорости вращения может осуществляться и другими устройствами. Однако все они обладают серьезными недостатками в виде высокой стоимости, сложной конструкции и низкого качества. Кроме того, диапазон регулировок подобных приспособлений совершенно недостаточный для нормальной работы.

Все эти проблемы эффективно решаются с помощью частотного преобразователя. Этот аппарат помимо обеспечения плавного пуска и остановки, контролирует и другие процессы, происходящие в двигателе. Использование частотника сократило до минимума риск возникновения неисправностей и аварийных ситуаций. Быстродействие и плавную регулировку обеспечивает специально разработанная схема частотного преобразователя для трехфазного двигателя. В результате ее применения существенно возросла продолжительность непрерывной работы электродвигателя, удалось добиться значительной экономии электроэнергии и увеличения КПД.

За счет чего же становится возможным управлять скоростью вращения электродвигателя? Прежде всего в частотном преобразователе изменяется напряжение, поступающее из сети. Далее, из него формируется уже нормальное трехфазное напряжение с нужной амплитудой и частотой, которое и потребляет электродвигатель. Регулировка скоростей осуществляется в достаточно широком диапазоне. В случае необходимости частотник позволяет переключить вращение ротора на противоположное направление. Все регулировки должны выполняться с учетом паспортных данных агрегата, с учетом максимально допустимых оборотов и установленной мощности.

Общее устройство частотного преобразователя представлено на схеме. В конструкцию аппарата входят три составные части:

  • Выпрямитель. При подключении к источнику электропитания формирует напряжение постоянного тока. В зависимости от модификации бывает управляемым или неуправляемым.
  • Фильтр. Предназначен для сглаживания выпрямленного напряжения, поэтому в его конструкцию входят конденсаторы.
  • Инвертор. Непосредственно формирует напряжение с нужной частотой и подает его на двигатель.

Основная классификация частотников осуществляется в зависимости от вида управления скоростью вращения. Существует два основных режима:

  1. Скалярный режим без обратной связи. В данном случае осуществляется управление магнитным полем статора.
  2. Векторный режим с обратной связью или без нее. Тут взаимодействуют магнитные поля ротора и статора, что и учитывается при управлении. В этом режиме происходит оптимизация момента вращения на различных скоростях. Данный способ управления считается более точным и эффективным. Однако он требует специальных знаний и навыков, более дорогой в обслуживании.

Подключение и настройка преобразователя частоты

Подключение частотных преобразователей особенно актуально для частных владельцев оборудования с асинхронными двигателями. Предварительно рекомендуется установить автоматический выключатель, который обесточит сеть при возможном коротком замыкании в одной из фаз.

В схемах частотники для асинхронных двигателей подключаются к электродвигателям двумя способами – «треугольником» и «звездой». Первая схема применяется для однофазных регулируемых приводов, без потери мощности. Такие частотники обладают максимальной мощностью 3 кВт и предназначены в основном для эксплуатации в бытовых условиях. Схема «звезда» используется там, где имеются трехфазные промышленные сети.

С целью ограничения пускового тока и уменьшения пускового момента, запуск двигателей, мощностью свыше 5 кВт осуществляется по смешанной схеме «звезда-треугольник». «Звезда» используется в момент запуска, когда напряжение подается на статор. После того как двигатель достигнет номинальной скорости, подача питания переключается на другую схему – «треугольник». Данный способ применяется не везде, а только там, где имеется возможность подключения сразу обеих схем.

Подключение пульта осуществляется в соответствии со схемой, прилагаемой к частотному преобразователю. Перед началом монтажа и до подачи питания управляющий рычаг должен находиться в положении ВЫКЛЮЧЕНО. Когда рычаг переводится в положение ВКЛЮЧЕНО, это действие подтверждается световым индикатором. Во многих моделях запуск по умолчанию осуществляется путем нажатия на кнопку RUN. Постепенное наращивание оборотов электродвигателя производится медленным поворотом рукоятки пульта. По достижении необходимой скорости, рукоятка фиксируется в этом положении. Для переключения режима на обратное вращение существует кнопка реверса.


Самостоятельное изготовление частотного преобразователя

В последнее время широкое распространение в быту получили асинхронные электродвигатели малой мощности, используемые в приводах различных устройств. Поэтому чтобы не приобретать к ним дорогостоящее дополнительное оборудование, многие домашние мастера обеспечивают частотное регулирование электродвигателей путем изготовления преобразователей своими руками. Таким образом, достигается экономия электроэнергии с сохранением мощности двигателя.

Домашняя однофазная сеть позволяет подключать электродвигатель, мощность которого не превышает 1 кВт. Именно для таких агрегатов в основном и изготавливаются самодельные частотники. Нужно заранее продумать схему подключения треугольников, предназначенную для однофазной сети. С этой целью выводы обмоток последовательно соединяются между собой, по принципу подключения вывода одной обмотки к вводу другой. Также рекомендуется, чтобы схема частотного преобразователя, собираемого собственноручно, была составлена заранее.

Перед началом конструирования нужно подготовить все необходимые элементы и материалы. Можно воспользоваться любым микроконтроллером – аналогом модели АТ90РWМ3В и драйвером трехфазного моста, аналогичного модели IR2135. Кроме того, нужно запастись 6 транзисторами типа IRG4BC30W, 6 кнопками и индикатором. Все детали располагаются на двух платах, соединяемых между собой гибким шлейфом.

Конструкция частотного преобразователя дополняется импульсным блоком питания. Эту деталь можно приобрести в готовом виде или собрать своими руками по отдельной схеме. Контроль над работой двигателя осуществляется с помощью внешнего управляющего тока или микросхемы IL300, имеющей линейную развязку. Для монтажа транзисторов и диодного моста используется общий радиатор. Управляющие кнопки дублируются оптронами ОС2-4.

Если электродвигатель обладает небольшой мощностью, то устанавливать трансформатор на однофазный частотный преобразователь необязательно. Вместо него можно использовать токовый шунт, в котором провода имеют сечение 0,5 мм. К нему же подключается и усилитель DA-1, выполняющий дополнительную функцию измерения напряжения.


Обслуживание устройства в процессе эксплуатации

Выполнение обязательных рекомендаций способствует значительному увеличению сроков эксплуатации частотных преобразователей.

  • В первую очередь нужно выполнять своевременную очистку устройства изнутри от пыли. Основная процедура выполняется с помощью пылесоса, но полную очистку таким способом выполнить невозможно. Пылесос просто не справляется с толстыми и плотными слоями скопившейся пыли. Поэтому рекомендуется использовать компрессор или проводить чистку вручную.
  • Большое значение придается своевременной периодической замене элементов, деталей и узлов. Вентиляторы охлаждения рекомендуется менять через 2-3 года эксплуатации. Существуют сроки для предохранителей, внутренних шлейфов и других частей. При соблюдении этих сроков частотник для электродвигателя будет служить значительно дольше.
  • Необходимо в обязательном порядке контролировать внутреннею температуру и напряжение на шине. Слишком высокая температура приводит к негативным последствиям, когда разрушаются конденсаторы и начинает засыхать термопроводящая паста.
  • Пасту рекомендуется менять, не реже, чем один раз в три года. Температура окружающей среды не должна превышать 40 градусов, а влажность и концентрация пыли – допустимых пределов.

Преимущества частотников в асинхронных двигателях

Асинхронные двигатели обладают многими преимуществами по сравнению с устройствами постоянного тока. Они отличаются простотой конструкции и высокой надежностью. Поэтому для бытовых и промышленных целей чаще всего выбираются асинхронные агрегаты.

В настоящее время многие пользователи отказываются от механического управления током в процессе эксплуатации двигателей. Такой способ не гарантирует надлежащее качество работы оборудования. Вместо него уже давно используются частотные преобразователи. Электронное управление позволяет существенно сократить потребление электроэнергии, сохраняя при этом собственную мощность двигателя.

Эксплуатировать частотные преобразователи следует в соответствии с техническими характеристиками, отраженными в документации оборудования. Самодельные устройства рекомендуется использовать только в бытовых условиях, а на производстве применять аппаратуру заводского изготовления. Ремонт и обслуживание преобразователей должны выполнять только квалифицированные специалисты.


electric-220.ru

частотный преобразователь своими руками, как сделать

Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. В наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт.

Стабилизатор на 5 вольт.

Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

После сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.


220v.guru

Принцип работы частотного преобразователя для асинхронного двигателя

Содержание:
  1. Что такое частотный преобразователь
  2. Принцип действия
  3. Настройка частотного преобразователя для электродвигателя
  4. Подбор частотного преобразователя для двигателя
  5. Видео

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.


Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.


Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.


Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.


electric-220.ru

Как выбрать частотный преобразователь для электродвигателя

Изменение скорости и направления вращения асинхронного двигателя – проблема, которую приходится решать в ряде задач. Для этого можно использовать преобразователь частоты. Это силовой преобразователь, к которому подключают асинхронные двигатели, в результате изменения частоты выходного напряжения изменяется и скорость вращения ротора двигателя. Правильное управление электроприводом позволяет повысить эффективность его применения. В этой статье мы расскажем, как выбрать частотный преобразователь для электродвигателя по мощности, току и другим параметрам.

На какие параметры обратить внимание

Сразу стоит отметить, что с помощью частотного преобразователя вы можете подключить асинхронный трёхфазный двигатель к однофазной сети без конденсаторов, соответственно и без потери мощности.

Чтобы понять, как правильно выбрать частотный преобразователь, давайте рассмотрим ряд основных параметров:

  1. Мощность. Подбирают большую, чем полная мощность двигателя, который будет к нему подключен. Для двигателя на 2.5 кВт, если он работает с редкими незначительными перегрузками или в номинале, частотный преобразователь выбирают ближайший в сторону увеличения из модельного ряда, допустим на 3 кВт.
  2. Количество питающих фаз и напряжение – однофазные и трёхфазные. К однофазным на вход подключается на 220В, а на выходе мы получаем 3 фазы с линейным напряжением 220В или на 380В (уточняйте какое выходное напряжение при покупке, это важно для правильного соединения обмоток двигателя). К мощным трёхфазным приборам подключается три фазы соответственно.
  3. Тип управления – векторное и скалярное. Частотные преобразователи со скалярным управлением не обеспечивают точной регулировки в широких пределах, при слишком низких или слишком высоких частотах могут изменяться параметры двигателя (падает момент). Сам же момент поддерживается так называемой ВЧХ (функция U/f=const), где напряжение на выходе зависит от частоты. Для частотников с векторным управлением применяются цепи обратной связи, с их помощью поддерживается стабильность работы в широком диапазоне частот. А также, когда при постоянной частоте изменяется нагрузка на двигатель, такие преобразователи частоты более точно поддерживают момент на валу таким образом снижая реактивную мощность двигателя. На практике чаще встречаются частотные преобразователи со скалярным управлением, например, для насосов, вентиляторов, компрессоров и прочего. Однако при повышении частоты выше чем в сети (50 Гц) момент начинает снижаться, говоря простым языком – некуда повышать напряжение с увеличением оборотов. Модели с векторным управлением стоят дороже, их основная задача – поддержание высокого момента на валу, независимо от нагрузки, что может быть полезным для токарного или фрезерного станка, для поддержания стабильных оборотов шпинделя.
  4. Диапазон регулирования. Этот параметр важен, когда вам нужно регулировать электропривод в широком диапазоне. Если вам, например, нужно подстраивать производительность насоса – регулировка будет происходить в пределах 10% от номинала.
  5. Функциональным особенности. Например, для управления насосом будет хорошо, если в частотном преобразователе будет функция отслеживания режима «сухого хода».
  6. Исполнение и влагозащищенность. Этот параметр определяет, где может быть установлен частотник. Чтобы сделать правильный выбор определитесь где вы его установите, если это будет сырое помещение – подвал, например, то лучше поместить прибор в щит с классом защиты IP55 или близкий к нему.
  7. Способ торможения вала. Инерционное торможение происходит при простом отключении питания от двигателя. Для резкого разгона и торможения применяется рекуперативное или динамическое торможение, за счет обратного вращения электромагнитного поля в статоре, или быстрое понижение частоты с помощью преобразователя.
  8. Способ отвода тепла. При работе полупроводниковые ключи выделяют достаточно большое количество тепла. В связи с этим их устанавливают на радиаторы для охлаждения. В мощных моделях используется активная система охлаждения (с помощью кулеров), что позволяет снизить габариты и вес радиаторов. Это нужно учесть еще до покупки, перед тем как вы решите выбрать ту или иную модель. Сперва определите где и как будет проведен монтаж. Если он будет установлен в шкафу, то следует учесть и то, что при малом объеме пространства вокруг прибора охлаждение будет затруднено.

Часто преобразователи частоты подбирают для глубинного насоса. Он нужен для регулирования производительности насоса и поддерживания постоянного давления, плавного пуска, контроля работы «на сухую» и экономии электроэнергии. Для этого есть специальные приборы, которые отличаются от частотников общего назначения.

Как рассчитать частотник под двигатель

Есть несколько способов расчета для выбора частотного преобразователя. Рассмотрим их.

Подбор по току:

Ток преобразователя частоты должен быть равен или большим чем ток для трёхфазного электродвигателя, потребляемый при полной нагрузке.

Допустим есть асинхронный двигатель с характеристиками:

  • P = 7,5 кВт;
  • U = 3х400 В;
  • I = 14,73 А.

Значит длительный выходной ток частотного должен быть равен или больше чем 14.73А. Расчет показывает, что это равняется 9.6 кВА при постоянной или квадратичной характеристике крутящего момента. Таким требованиям с небольшим запасом соответствует модель: Danfoss VLT Micro Drive FC 51 11 кВт/3ф, которую будет вполне разумно выбрать.

Выбор по полной мощности:

Допустим есть двигатель АИР 80А2, на табличке которого указано (для треугольника):

  • P= 1,5 кВт;
  • U=220 В;
  • I=6 А.

Рассчитаем S:

S=3*220*(6/1,73)=2283 Вт =2,3 кВт

Выбираем преобразователь частоты с хорошим запасом, при том что мы его будем подключать к однофазной сети и использовать для управления вращением шпинделя токарного станка. Ближайшая модель, которая для этого подойдет: CFM210 3,3 кВт.

Стоит отметить, что модельный ряд большинства производителей соответствует стандартному ряду мощностей асинхронных двигателей, что позволит сделать выбор частотника с соответствующей мощностью (не превышающей). Если вы используете заведомо более мощный двигатель и не нагружаете его полностью, можно измерить фактический ток потребления и подобрать преобразователь частоты исходя из этих данных. В общем при расчёте частотника для двигателя учитывайте:

  1. Максимальный потребляемый ток.
  2. Перегрузочную способность преобразователя.
  3. Тип нагрузки.
  4. Как часто и насколько долго могут возникать перегрузки.

Теперь вы знаете, как выбрать частотный преобразователь для электродвигателя и на что обратить внимание при выборе данного типа устройств. Надеемся, предоставленные советы помогли вам подобрать подходящую модель под собственные условия!

Материалы по теме:

Нравится(0)Не нравится(0)

samelectrik.ru

Разрабатываем частотник. Часть первая, силовая часть.

Самостоятельная разработка частотника для трехфазного электродвигателя, дело достаточно затратное и хлопотное. Но если есть желание и интерес к данной теме огромен, то можно попробовать. Данный пост не
претендует на оригинальность и писатель из меня честно говоря плохой. Итак обо всем по порядку.

Начнем с общей структурной схемы.

Данная структурная схема построена по так называемой схеме двойного преобразования. Трехфазное напряжение 380В частотой 50 Гц поступает на вход неуправляемого выпрямителя. На выходе выпрямителя напряжение составляет около 540 В. Это и есть первый этап преобразования. На втором этапе напряжение при помощи инвертора преобразуется в широтно-модулированные импульсы, которые и поступают на обмотки электродвигателя. Статорные обмотки имеют активно-индуктивный характер сопротивления и являются фильтрами, сглаживающими ток. Среднее значение тока будет зависеть от среднего значения приложенного напряжения, то есть от соотношения длительностей внутри периода ШИМ. Блок управления реализует основные алгоритмы управления инвертором. Обеспечивает диагностику силового модуля, а также выполняет функции противоаварийной защиты. Блок питания предназначен для питания цепей управления.

Выпрямитель.

Схема выпрямителя предельно проста.

На вход силового блока поступает трехфазное напряжение сети амплитудой 380 В, и частотой 50 Гц. Для защиты от перенапряжения в схеме используются варисторы VR1- VR3. Далее входное напряжение поступает на выпрямитель с промежуточным звеном постоянного тока. Выпрямитель 36МТ160 представляет собой трехфазную мостовую схему (т.н схема Ларионова) конструктивно выполненную в одном модуле.

Во время зарядки конденсатора промежуточного контура протекает очень большой кратковременный ток. Это может вывести из строя выпрямитель. Ток зарядки ограничивается включением балластного резистора R4 последовательно с конденсаторами DC-звена, который активизируется только при включении преобразователя. После зарядки конденсаторов резистор шунтируется, контактными реле К1. Большая емкость конденсаторов требуется для сглаживания напряжения промежуточного звена. После выключения инвертора из сети, конденсаторы сохраняют высокое напряжение в течение определенного времени.

Вот что получилось в итоге.

Блок питания.

Собран на микросхеме UC3843. Вообще, что касается блока питания, то вовсе не важно какой будет использован.

Хоть самодельный хоть купленный. Главное, на мой взгляд, по возможности питание драйвера IGBT и питания блока управления было от отдельных обмоток трансформатора.

Схема.

Фото.

Инвертор.

Схема инвертора.

IGBT-драйвер собран на транзисторах FGA25N120 и связке оптопары TLP250 и микросхемы TC4420. Что касается микросхемы TC4420 то ее мне посоветовал использовать один мой друг который занимается усилителями «класса D».

Готовый инвертор.

Подопытный кролик Электродвигатель.

Двигатель взял для начала малой мощности. Закрепил на нем инкрементальный энкодер «RO6345» фирмы «IFM».

Все это протестировано, проверено и ждет изготовления блока управления. Будем надеется что у меня хватит терпения, времени и сил довести этот проект до работающего прототипа.

Продолжение следует…

we.easyelectronics.ru

Схема частотного преобразователя для трехфазного мотора

В этом видео канала “Rinat Pak” автор показал свою новую работу. Давно хотел собрать по схеме частотный преобразователь. Использоваться он будет на трехфазном двигателе. Нашел очень хорошую схему. На форуме полностью детально описано, как собрать преобразователь. В архиве на форуме есть все печатные платы, прошивки и подробное описание.

Устройство называется Восьмикрут. Если кто-то не поймет по инструкции или другими словами путеводителя, как собрать частотный преобразователь, читайте форум, там всё подробно расписано. На все вопросы можно найти ответы.

Мастер собирал устройство в течение 3-4 дней. Многие детали он покупал в китайском магазине. Восьмикрут рассчитан на двигатели до 4 киловатт. На Youtube можно найти много обзоров его. Устанавливают на токарные станки, дровоколы, сверлильные станки. Схема отлично показала себя в работе.
Найти схему можно по ссылке radiokot.ru/circuit/digital/security/31/

В показанном случае трехфазный мотор на 600 ватт. Частотный преобразователь изготавливался для сверлильного станка. В мастерской уже было старое устройство, но надоело переключаться с одного станка на другой.

Для тех, кто соображает в электронике, показана схема – простой и бюджетный вариант. Готовые устройства стоят очень дорого. Много денег пришли заплатить за силовые транзисторы. Они установлены на радиаторе. Все остальные радиодетали не такие дорогие. Многие удалось использовать из старых запасов. Всё прекрасно работает, без каких-либо блоков.

Структура. Сборка конденсаторов, dc преобразователь, блок питания на 24 вольта, плата управления, кнопки включения, дисплей, регулятор частоты для управления оборотами трехфазного двигателя.
Работает конструкция от 220 вольт. Схема несложная, но очень много радиодеталей. Надо внимательно собирать.

Установлен микроконтроллер, которой надо прошивать программатором. Также установлена показаметре. Ты на плате управления. Здесь также требуется прошивка.

Включи мы посмотрим, как частотный самодельный преобразователь работает. При включении щелкает реле. Кнопка реверс, пуск, сброс. Есть ли защита от короткого замыкания, от сверхтока. В описании все это есть. Кому интересно, сможете прочитать. Нажимаем кнопку сброса. Пуск. Регулятором можно менять обороты трехфазного мотора. Нажимаем пуск и смотрим, как двигатель крутится. Мастер плавно регулирует скорость обращения с помощью крутилки. Есть функция auto реверса.

izobreteniya.net

Отправить ответ

avatar
  Подписаться  
Уведомление о