Фототранзистор принцип работы – Фототранзистор. Принцип работы и схема включения

Содержание

Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора

Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, что фототранзистор в ответ на его освещение будет либо «выключен» (отсечка), либо включен (насыщенные). Этот режим полезен, когда необходимо получить цифровой выходной сигнал.

Изменяя сопротивление резистора нагрузки в цепи усилителя, можно выбрать один из двух режимов работы. Необходимое значение резистора может быть определено с помощью следующих уравнений:

  • Активный режим: Vcc> R х I
  • Переключатель режима: Vcc <R х I 

Для работы в режиме переключения обычно используют резистор сопротивлением 5 кОм или выше. Выходное напряжение высокого уровня (лог.1) в режиме переключения будет равно напряжению питания. Выход низкого уровня (лог.0) должно быть не более 0,8 вольт.

www.joyta.ru

Фототранзисторы. Устройство и работа. Применение и особенности

Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора. Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств. Их принцип действия похож на работу фоторезистора.

Чувствительность фототранзистора гораздо выше, чем у фотодиода. Они нашли применение в различных устройствах, в которых применяется зависимость от светового потока. Такими устройствами являются лазерные радары, пульты дистанционного управления, датчики дыма и другие. Фототранзисторы могут реагировать как на обычное освещение, так и на ультрафиолетовое и инфракрасное излучение.

Фототранзисторы. Устройство

Наиболее популярны биполярные фототранзисторы структуры n-p-n.

Ф-транзисторы имеют чувствительность к свету больше, чем простые биполярные, так как они оптимизированы для лучшего взаимодействия с лучами света. В их конструкции зона коллектора и базы имеет большую площадь. Корпус выполнен из темного непрозрачного материала, с окошком для пропускания света.

Большинство таких полупроводников изготавливают из монокристаллов германия и кремния. Существуют также фототранзисторы на основе сложных материалов.

Принцип действия

Транзистор включает в себя базу, коллектор и эмиттер. При функционировании фототранзистора база не включена в работу, так как свет создает электрический сигнал, который дает возможность протекать току по полупроводниковому переходу.

При нерабочей базе переход коллектора транзистора смещается в обратном направлении, а переход эмиттера в прямом направлении. Прибор остается без активности до тех пор, пока луч света не осветит его базу. Освещение активизирует полупроводник, при этом создавая пары дырок и электронов проводимости, то есть носители заряда. В итоге через коллектор и эмиттер проходит ток.

Свойство усиления

Фототранзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.

Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.

Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.

Схемы подключения
Схема с общим эмиттером

По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.

Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.

Схема с общим коллектором

Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.

Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.

В обоих вариантах транзистор может работать в 2-х режимах:

  1. Активный режим.
  2. Режим переключения.
Активный режим

В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.

Режим переключения

Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.

Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.

Проверка фототранзистора

Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.

Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.

Применение
  • Системы охраны (чаще применяются инфракрасные ф-транзисторы).
  • Фотореле.
  • Системы расчета данных и датчики уровней.
  • Автоматические системы коммутации осветительных приборов (также применяются инфракрасные ф-транзисторы).
  • Компьютерные управляющие логические системы.
  • Кодеры.
Преимущества
  • Выдают ток больше, чем фотодиоды.
  • Способны создать мгновенную высокую величину тока выхода.
  • Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.
  • Невысокая стоимость.
Недостатки

Ф-транзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.

  • Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.
  • Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.
  • Ф-транзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда.
Маркировка

Управляемые световым потоком транзисторы, на схемах обозначаются как обычные транзисторы.

VТ1 и VТ2 – ф-транзисторы с базой, VТ3 – транзисторы без базы. Цоколевка изображена как у простых транзисторов.

Так же, как и другие приборы на основе полупроводников с переходом n-p-n, применяющиеся для преобразования светового потока, фототранзисторы можно назвать оптронами. Их на схемах изображают в виде светодиода в корпусе, или в виде оптронов со стрелками. Усилитель во многих схемах обозначается в виде базы и коллектора.

Похожие темы:

electrosam.ru

Фототранзистор. Принцип работы и схема включения. Схема подключения фототранзистора. Схема подключения фототранзистора


Фототранзистор. Принцип работы и схема включения. Схема подключения фототранзистора

Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора
Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фот

les66.ru

Фототранзистор. Принцип работы и схема включения. Схема подключения фототранзистора

Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора
Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, что фототранзистор в ответ на его освещение будет либо «выключен» (отсечка), либо включен (насыщенные). Этот режим полезен, когда необходимо получить цифровой выходной сигнал.

Изменяя сопротивление резистора нагрузки в цепи усилителя, можно выбрать один из двух режимов работы. Необходимое значение резистора может быть определено с помощью следующих уравнений:

  • Активный режим: Vcc> R х I
  • Переключатель режима: Vcc <R х I 

Для работы в режиме переключения обычно используют резистор сопротивлением 5 кОм или выше. Выходное напряжение высокого уровня (лог.1) в режиме переключения будет равно напряжению питания. Выход низкого уровня (лог.0) должно быть не более 0,8 вольт.

www.joyta.ru

Фототранзисторы. Устройство. Работа. Применение. Особенности

Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора. Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств. Их принцип действия похож на работу фоторезистора.

Чувствительность фототранзистора гораздо выше, чем у фотодиода. Они нашли применение в различных устройствах, в которых применяется зависимость от светового потока. Такими устройствами являются лазерные радары, пульты дистанционного управления, датчики дыма и другие. Фототранзисторы могут реагировать как на обычное освещение, так и на ультрафиолетовое и инфракрасное излучение.

Фототранзисторы. Устройство

Наиболее популярны биполярные фототранзисторы структуры n-p-n.

Ф-транзисторы имеют чувствительность к свету больше, чем простые биполярные, так как они оптимизированы для лучшего взаимодействия с лучами света. В их конструкции зона коллектора и базы имеет большую площадь. Корпус выполнен из темного непрозрачного материала, с окошком для пропускания света.

Большинство таких полупроводников изготавливают из монокристаллов германия и кремния. Существуют также фототранзисторы на основе сложных материалов.

Принцип действия

Транзистор включает в себя базу, коллектор и эмиттер. При функционировании фототранзистора база не включена в работу, так как свет создает электрический сигнал, который дает возможность протекать току по полупроводниковому переходу.

При нерабочей базе переход коллектора транзистора смещается в обратном направлении, а переход эми

szemp.ru

5.4.1.  Биполярные фототранзисторы

Транзистор, реагирующий на облучение световым потоком и способный одновременно усиливать фототок, называют фототранзистором.

В фототранзисторе переход коллек­тор-база представляет собой фотодиод. На рис.5.17, а показана структура фототранзистора, на рис. 5.17, б – схемное обозначение, а на рис. 5.17, в – его схе­ма замещения.

Рис. 5.17. Фототранзистор: а – структура; б – обозначение; в – схема замещения

Биполярный фототранзистор может быть включен в схему по-разному. Если подать напряжение между базой и коллектором, сместив коллекторный переход в обратном направлении и оста­вив эмиттерный вывод неподключен­ным к схеме, то такое включение бипо­лярного фототранзистора ничем не бу­дет отличаться от схемы включения фотодиода. При поглощении квантов света в базовой и коллекторной об­ластях образуются неравновесные па­ры носителей заряда (электроны и дырки). Неосновные носители (дырки в n-базе и электроны в p-коллекторе для транзистора р-п-р-типа) диффунди­руют к коллекторному переходу, втя­гиваются существующим там электри­ческим полем в коллекторный переход и проходят через него, создавая тем самым фототок ().

Однако биполярный фототранзи­стор обычно применяют при включении его по схеме с общим эмиттером. По­этому рассмотрим принцип действия биполярного фототранзистора, вклю­ченного по схеме с общим эмиттером (ОЭ).

Рис. 5.18. Выходные характеристики фототранзистора в схеме ОЭ

Предположим вначале, что базовый вывод не подключен к схеме, т.е. ток базы равен нулю (= 0). В этом случае неосновные носители заряда, проходя через p—n-переход коллектора, создают тот же фототок (). Неравновесные основные носители (электро­ны в n-базе, возникшие из-за поглощения там квантов света, и электроны, пришедшие в базу из коллектора) оказываются в своеобразной потенциальной яме. Накопление в базе неравновесных основных носителей заряда понижает высоту потенциальных барьеров эмиттерного и коллекторного переходов. Из-за уменьшения высоты потенциального барьера эмиттерного перехода увеличивается инжекция дырок из эмиттера в базу. Соответственно возрастает и ток коллектора. Та­ким образом, накопленный в базе биполярного фототранзистора дополнительный заряд неравновесных основных носителей обес­печивает усиление фототока, т.е. при освещении результирую­щий ток коллектора равн:

.

Следовательно, фототок, пропорциональный световому потоку, играет роль тока базы, который в схеме с общим эмиттером усиливается в  раз. Семейство выходных характеристик будет иметь вид (рис.5.18). Параметром семейства вместо входного тока базы выступает световой поток (Ф).

При подключении вывода базы к внешней схеме ток базы мо­жет изменяться при освещении фототранзистора. Степень изме­нения этого тока зависит от сопротивлений в цепи базы. Изме­нение тока базы происходит в результате выхода неравновесных электронов из нее во внешнюю базовую цепь. В результате на­копленный в базе заряд основных носителей уменьшается, что уменьшает усиление фототока.

Таким образом, биполярный фототранзистор обладает наи­большей чувствительностью к облучению светом базовой области при включении по схеме с общим эмиттером и отключенной базе. Поэтому у первых конструкций биполярных фототранзисторов вывод базы вообще отсутствовал. Однако наличие вывода базы у биполярных фототранзисторов позволяет использовать не только оптическое, но и электрическое управление фототранзис­тором, осуществлять компенсацию посторонних внешних воздей­ствий (например, изменение параметров, вызванное изменением температуры в процессе работы).

Для получения большего усиления фо­тотока в фототранзисторах используют схему Дарлингтона (рис. 5.19). Из схемы

electrono.ru

мир электроники — Фототранзистор своими руками

или

Как изготовить фототранзистор самостоятельно

категория Практическая электроника материалы в категории

 Во многих радиолюбительских конструкциях встречается такой элемент как фототранзистор. Он нужен в основном в оптических устройства: в тех где какое-то устройство должно реагировать на свет (фототир, например…).

Фототранзистор, конечно, можно и купить, но можно сделать его и самостоятельно из обыкновенного транзистора. 

Известно что p-n переход реагирует на внешние факторы- температуру и освещение.Именно это свойство и послужило основанием для создания таких радиоэлементов как терморезисторы, фоторезисторы (они хоть и имеют название резисторы, но в их основе содержится полупроводник), фотодиоды и фототранзисторы.

Весь смысл фототранзистора заключается в том что при внешнем освещении у него начинает открываться переход Коллектор-Эмиттер и поэтому фототранзисторы изготавливаются в прозрачном корпусе.Обыкновенные-же транзисторы имеют, напротив, закрытый корпус чтобы избежать этого фотоэффекта. Но ведь его можно и спилить…!

Лучше всего для этих целей подходят транзисторы выполненные в металлическом корпусе. Из отечественных «малогабаритных» это КТ342, КТ3102. Из супер- древних это серия МП (МП25, МП35, МП40 и так далее).

Итак, изготавливаем фототранзистор из простого транзистора

Берем любой подходящий в металлическом корпусе( например КТ342) и спиливаем с него верхушку. При этом нужно быть по-аккуратнее чтобы не повредить сам кристалл.

Подключаемся мультиметром к выводам Коллектор и Эммитер в режиме измерения сопротивления и видим что этот переход стал проводить ток:

В освещенном виде этот переход имеет сопротивление 3,29 кОм,а если его закрыть бумажкой то сопротивление поднимается до 373 кОм. Все работает!

 

Теперь нужно принять меры чтобы защитить кристалл от пыли. Для этого можно залить его эпоксидной смолою или канифолью (кстати это даже еще и увеличит фотоэффект так как в результате мы получим своеобразную линзу).

Примечания Полистав различную литературу и пробежавшись по форумам я выяснил что лучшие результаты при самостоятельном изготовлении фототранзистора дают отечественные маломощные кремниевые, причем желательно чтобы коэффициент усиления у них был по-больше. 

radio-uchebnik.ru

Фототранзистор — WiKi

Фототранзистор Схематическое изображение фототранзистора на электрических схемах

Фототранзи́стор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от обычного биполярного транзистора тем, что полупроводниковый базовый слой прибора доступен для воздействия внешнего оптического облучения, за счёт этого ток через прибор зависит от интенсивности этого облучения.

Отличается от фотодиода тем, что обладает внутренним усилением фототока и поэтому большей чувствительностью к потокам оптического излучения.

Фототранзистор может иметь полупроводниковую структуру как n-p-n, так и p-n-p транзистора.

Большинство промышленных типов фототранзисторов не имеют электрического вывода базы, но в некоторых моделях такой вывод имеется и обычно служит для смещения начальной рабочей точки прибора посредством подачи в базу некоторого тока.

История

Фототранзистор изобрёл Джон Нортроп Шив (John Northrup Shive) в 1948 г., во время его работы в Bell Laboratories[1], но об этом изобретении было заявлено только в 1950 г.[2] Тогда же фототранзисторы были впервые применены в считывателе перфокарт в автоматической телефонной станции.

Принцип работы фототранзистора

Биполярный фототранзистор — полупроводниковый прибор с двумя p-n переходами и тремя слоями полупроводника чередующегося типа проводимости — аналог обычного биполярного транзистора с управлением базовым током. Но в фототранзисторе базовым током является фототок. При освещении базового слоя фототранзистора в его базе за счет внутреннего фотоэффекта генерируются электронно-дырочные пары, порождая фототок. Этот процесс снижает потенциальный барьер от контактной разности потенциалов в эмиттерно-базовом переходе, что увеличивает диффузию неосновных носителей (для базы) из эмиттера в базу, то есть можно считать, что в этом приборе фототок является базовым током обычного транзистора. Можно сказать, что фототранзистор подобен обычному биполярному транзистору, между выводами коллектора и базы которого включен обратносмещенный фотодиод.

Как известно, транзистор обладает способностью усиливать базовый ток IB{\displaystyle I_{B}} , коэффициент усиления β=IC/IB>>1{\displaystyle \beta =I_{C}/I_{B}>>1} , поэтому ток коллектора IC{\displaystyle I_{C}}  и равный ему ток эмиттера IE{\displaystyle I_{E}}  в β{\displaystyle \beta }  раз больше исходного фототока. Таким образом, светочувствительность фототранзистора больше светочувствительности фотодиода с равной площадью фотоприемной поверхности в несколько десятков и до нескольких сотен раз.

Основные параметры фототранзистора

Чувствительность

Токовая чувствительность Si,Φ{\displaystyle S_{i,{\Phi }}}  по световому потоку фототранзистора определяется отношением тока через прибор IΦ{\displaystyle I_{\Phi }}  к вызвавшему этот ток световому потоку Φ{\displaystyle \Phi } :

Si,Φ=IΦΦ{\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}} 

Токовая чувствительность современных фототранзисторов достигает нескольких сотен мА/лм.

Темновой ток

Даже в отсутствие освещения через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.

При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.

Спектральная чувствительность
  Типовая спектральная чувствительность кремниевого фототранзистора

Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.

Быстродействие

Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.

Включение фототранзисторов в электрические цепи

Классическое включение прибора — с обратносмещенным коллекторным переходом, то есть для прибора со структурой n-p-n на коллектор подается положительное относительно эмиттера напряжение и наоборот для структуры p-n-p.

Для приборов, имеющих третий электрический вывод базы, возможно включение по любой из схем включения обычного биполярного транзистора — с общим эмиттером, базой или коллектором. При этом ток базы задает положение «темновой рабочей точки» на вольт-амперной характеристике.

Иногда трёхвыводные фототранзисторы для увеличения быстродействия включают как обычный фотодиод, проигрывая при этом в чувствительности.

Преимущества и недостатки фототранзисторов

Основное преимущество фототранзисторов по сравнению с фотодиодами — высокая чувствительность к потоку излучения.

Недостатки — низкое быстродействие, поэтому эти приборы непригодны для применения в качестве приемников излучения в высокоскоростных оптоволоконных линиях связи. Также недостаток фототранзисторов — относительно большой темновой ток.

Конструкция корпусов

Приборы, предназначенные для приема внешнего излучения заключают в пластмассовый, металлостеклянный или металлокерамический корпус с прозрачным окошком или линзой, изготовленных из пластмассы или стекла. Исключение составляют фототранзисторы, входящие в состав оптронов, заключенные совместно с источником излучения в непрозрачный корпус.

Приборы, оформленные в металлостеклянных и металлокерамических корпусах, обычно имеют электрический вывод базы.

Применение

Так как фототранзисторы более чувствительны чем фотодиоды их удобно применять в качестве приемников излучения в различных системах автоматики безопасности, системах охранной сигнализации, считывателях перфокарт и перфолент, датчиках положения и расстояния и др. применениях, где некритично быстродействие.

Часто фототранзисторы применяют в оптопарах в качестве приёмников излучения в оптронах.

См. также

Примечания

ru-wiki.org

49.Фототранзисторы. Основные схемы включения.

Различают две основные схемы включения фототранзисторов: с отключенной базой и с присоединенной. В обеих преобразователь включается по схеме с общим эмиттером.

В первой, являющейся наиболее простой, фототранзистор применяется как двухполюсник. Фотоприемник обладает, наибольшим усилением, но невысоким быстродействием и температурной стабильностью.

Включение фототранзистора с присоединенной базой позволяет управлять положением рабочей точки, а также уменьшить темновой ток через коллекторный переход и повысить граничную частоту. Кроме того, фототранзистор может функционировать как фотодиод. Для этого обычно используют переход коллектор-база, площадь которого больше площади перехода эмиттер-база. В зависимости от напряжения, приложенного к переходу, получают фотодиодный или фотогальванический режимы работы.

По сравнению с фотодиодами фототранзисторы редко используются для работы со слабыми сигналами, для прецизионных аналоговых измерений, а в случае приема модулированных сигналов строгие требования предъявляются к стабилизации рабочей точки. Напротив, достаточно высокое усиление фототока, в результате чего нередко отпадает необхрдимость в промежуточных усилителях, успешная работа с немодулированными сигналами, высокими уровнями излучения, схемотехническая гибкость предопределили широкое применение фототранзисторов в различных пороговых схемах автоматики, оптронах. л ж.

Фототранзисторы могут непосредственно управлять работой маломощных электромеханических реле, тиристоров. Необходимым условием при построении таких схем является превышение тока коллектора, который устанавливается под действием на преобразователь лучистого потока, над порогом срабатывания ключевого элемента. Назначение диода — защита фотоприемника от индуцированной э.д.с. в момент запирания. Порог срабатывания тиристора устанавливается сопротивлением Ri. Конденсатор С препятствует отпиранию тиристора при кратковременных изменениях освещенности, скачках напряжения или тока в сети. При коммутации более мощных цепей, а также в фотореле с большей чувствительностью фототранзисторы нередко включают по схеме Дарлингтона. Общий коэффициент усиления первичного фототока схем равен произведению коэффициентов усиления фотоприемника и транзистора. Реле Р срабатывает при освещении фототранзисторов В схемах с тиристорами делители задают напряжение на коллекторах транзисторов, которое обычно значительно меньше величины напряжения Е. Фотореле срабатывает при засветке фототранзистора, а фотореле при его затемнении.

Включение по схеме Дарлингтона применяется в составном фототранзисторе. В корпусе этого фотоприемника на одном кристалле кремния размещаются транзистор и фототранзистор, причем на последний с помощью линзы фокусируется световой поток.

Аналогично фотодиодам фототранзисторы используются для управления работой усилительных каскадов на транзисторах. В зависимости от соотношения выходного сопротивления фотоприемника с входным сопротивлением усилителя может быть управление по току либо по напряжению. Выходной (коллекторный) ток фототранзи стора задает режим на базе транзистора. Резистор служит для ограничения тока через фотоприемник. Значение сопротивления выбирается так, чтобы ограничить мощность рассеивания, которая не должна превышать допустимой мощности рассеивания фототранзистора при работе с интенсивными засветками. Обычно сопротивление Ri значительно меньше сопротивления нагрузки. Выходное напряжение Схемы падает с ростом освещенности. Разброс параметров фотоприемников компенсируется регулировкой сопротивления.

studfiles.net

Фотореле на транзисторах « схемопедия

Фоторезисторы – полупроводниковые резисторы, сопротивление которых изменяется под воздействием электромагнитного излучения оптического диапазона.

Светочувствительный элемент у таких приборов представляет собой прямоугольную или круглую таблетку спрессованную из полупроводникового материала, или тонкий слой полупроводника, нанесённого на стеклянную пластинку – подложку. Полупроводниковый слой с обеих сторон имеет выводы для подключения фоторезистора в схему. На принципиальных схемах фоторезистор обозначается знаком резистора в кружке с боковыми стрелками.

Электропроводность фоторезистора зависит от освещенности. Чем ярче освещение прибора, тем меньше сопротивление фоторезистора и больше ток цепи.

Данные приборы используются в схемах автоматического регулирования.

Фотодиоды являются разновидностью полупроводниковых диодов. Пока фотоэлемент не освежён, запирающий слой препятствует взаимному обмену электронов и дырок между слоями полупроводника. При облучении свет проникает в слой «р» и выбивает из него электроны. Освободившиеся электроны проходят в слой «n» и там нейтрализуют дырки. Между выводами фотодиода возникает разность потенциалов, которая может быть усилена электронной схемой для включения устройств автоматики и телемеханики.

Из фотодиодов собираются батареи питания в быту и на космических кораблях.

Фототранзисторы – фотоэлементы, основой которого служат транзисторы. В данном фотореле освещения применён фототранзистор прямой проводимости. Для поступления светового потока на полупроводниковый кристалл крышка транзистора удаляется простым снятием кусачками.

Фотореле на рисунке выше служит для автоматического отключения или включения исполнительных устройств при изменении освещения.

Резистор R1,R2 и фототранзистор VT1 представляют делитель напряжения на базе транзистора VT2. При освещении фототранзистора VT1 напряжение на базе транзистора VT2 понижается, транзистор VT2 закрывается, а VT3 открывается.

Реле К1 срабатывает от прохождения тока и размыкает контакты К 1-2, питание нагрузки прекращается. Диод VD2 защищает транзистор VT3 от импульсных помех, которые возникают при переключениях тока в обмотке реле К1.

Контакты реле могут использоваться для переключений исполнительных устройств автоматики и телемеханики.

Резистором R1 устанавливается порог чувствительности, а R4 порог освещённости.

Светодиод HL1 индицирует включение питания и режим срабатывания реле К1. Конденсатор С1 устраняет срабатывание реле при наличии помех. Питание схемы реле стабилизировано аналоговой микросхемой DA1. Конденсаторы С2,С3 входят в сглаживающий фильтр. Диодный мост VD1 выбран на ток до 1 ампера и напряжение 50-100 Вольт.

Устройство снабжено выключателем электросети S1 и предохранителем F1.

Конструкция фототранзистора VT1 простая: удаляется «шапка» транзистора кусачками, транзистор приклеивается к гайке М.8,а гайка с транзистором к кусочку стекла и крепится на прибор.

НаименованиеТип ЗаменаКоличествоПримечание
VТ1ФототранзисторМП42БМП41Б1по рисунку
VT2ТранзисторМП42БМП41Б1PNP-тип
VT3ТранзисторМП25БМП21Б1PNP-тип
R1, R4РезисторыСП-3СПО2Переменные тип-А
С1-С3КонденсаторыК50-3БЭМ3Элекролиты
К1РелеРЭС-10 19-12 Вольт
VD1-VD2Диоды1N40051N4007  
VD3ДиодКД512БКД1061 
DA1Стабилизатор781278L121 

Правильно собранное устройство должно работать сразу. При верхнем положении движка резистора R1 и среднем положении резистора R4,при подаче освещения на фототранзистор VT1 реле К1 должно срабатывать. Предварительно реле проверить прямым включением питания 12 вольт. Резистором R1 «подогнать» чувствительность фотореле при заданном освещении R4.

Скачать печатную плату в формате Sprint-Layout

Автор: В.Коновалов. Е.Юрьев. Лаборатория «Автоматика и связь» ИРК ПО Министерства образования Иркутской области

shemopedia.ru

les66.ru

Фототранзистор. Принцип работы и схема включения. Схема подключения фототранзистора


Фототранзистор. Принцип работы и схема включения

Фототранзистор представляет собой твердотельное полупроводниковое устройство с внутренним усилением, которое используются для обеспечения аналоговых или цифровых сигналов. Фототранзисторы используются практически во всех электронных устройствах, функционирование которых, так или иначе, зависит от света, например, детекторы дыма, лазерные радары, системы дистанционного управления.

Фототранзисторы способны реагировать не только на обычное освещение, но и на инфракрасное и ультрафиолетовое излучение. Фототранзисторы более чувствительные и создают больший ток по сравнению с фотодиодами.

Конструкция фототранзистора

Как известно, самым распространенным видом транзистора является биполярный транзистор. Фототранзисторы, как правило, биполярные устройства NPN типа.

Несмотря на то, что и обычные биполярные транзисторы достаточно чувствительные к свету, фототранзисторы дополнительно оптимизированы для более четкой работы с источником света. Они имеют большую зону базы и коллектора по сравнению с обычными транзисторами. Как правило, они имеют непрозрачный темный корпус с прозрачным окошком для света.

Большинство фототранзисторов производят из полупроводникового монокристалла (кремний, германий), хотя встречаются фототранзисторы, построенные и на основе сложных типов полупроводниковых материалов, например, арсенид галлия.

Принцип работы фототранзистора

Обычный транзистор состоит из коллектора, эмиттера и базы. В работе фототранзистора, как правило, вывод базы остается отключенным, так как свет генерирует электрический сигнал, позволяющий току протекать через фототранзистор.

При отключенной базе, коллекторный переход фототранзистора смещен в обратном, а эмиттерный переход — в прямом направлении. Фототранзистор остается неактивным до тех пор, пока свет не попадает на базу. Свет активирует фототранзистор, образуя электроны и дырки проводимости — носители заряда, в результате чего через коллектор — эмиттер протекает электрический ток.

Усиление фототранзистора

Диапазон работы фототранзистора напрямую зависит от интенсивности его освещения, поскольку от этого зависит положительный потенциал базы.

Базовый ток от падающих фотонов усиливается с коэффициентом усиления транзистора, который варьируется от нескольких сотен до нескольких тысяч единиц. Следует отметить, что фототранзистор с коэффициентом усиления от 50 до 100 более чувствителен, чем фотодиод.

Дополнительное усиление сигнала может быть обеспечено с помощью фототранзистора Дарлингтона. Фототранзистор Дарлингтона представляет собой фототранзистор, выход которого (эмиттер) соединен с базой второго биполярного транзистора. Схематическое изображение фототранзистора Дарлингтона:

Это позволяет обеспечить высокую чувствительность при низких уровнях освещения, так как это дает фактическое усиление равное усилению двумя транзисторами. Два каскада усиления может образовать коэффициент усиления до 100 000 . Однако необходимо учесть, что фототранзистор Дарлингтона имеет более медленную реакцию, чем обычный фототранзистор.

Основные схемы включения фототранзистора

Схема усилителя с общим эмиттером

В данном случае формируется выходной сигнал, который переходит из высокого состояния в низкое в момент освещения фототранзистора.

Данная схема получается путем подключения резистора между источником питания и коллектором фототранзистора. Выходное напряжение снимается с коллектора.

Схема усилителя с общим коллектором

Усилитель с общим коллектором формирует выходной сигнал, который при освещении фототранзистора, переходит из низкого состояния в высокое состояние.

Схема создается путем подключения резистора между эмиттером и минусом источника питания (земля). Выходной сигнал снимается с эмиттера.

В обоих случаях фототранзистор может быть использован в двух режимах, в активном режиме и в режиме переключения.

  • Работа в активном режиме означает, что фототранзистор генерирует выходной сигнал пропорциональный степени его освещенности. Когда количество света превышает определенный уровень, фототранзистор насыщается, и выходной сигнал уже не будет увеличиваться, даже при дальнейшем увеличении освещения. Этот режим работы фототранзистора полезен в устройствах, где необходимо различить для сравнения два порога освещенности.
  • Работа в режиме переключения означает, ч

10i5.ru

59. Фототранзистор, устройство, принцип действия, схема включения, выходные характеристики.

Фототранзисторы

Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя взаимодействующими p-n-переходами (рис. 7.6)

Фототранзисторы, как и обычные транзисторы, могут иметь p-n-p- и n-p-n-структуру Конструктивно фототранзистор выполнен так, что световой поток облучает область базы Наибольшее практическое применение нашло включение фототранзистора в схеме с ОЭ, при этом нагрузка включается в коллекторную цепь Входным сигналом фототранзистора является модулированный световой поток, а выходным — изменение напряжения на резисторе нагрузки в коллекторной цепи.

Напряжение питания на фототранзистор подают, как и на обычный биполярный транзистор, работающий в активном режиме, т е эмиттерный переход смещен в прямом направлении, а коллекторный- в обратном. Однако он может работать и с отключенным выводом базы, а напряжение прикладывается между эмиттером и коллектором Такое включение называется включением с плавающей базой и характерно только для фототранзисторов При этом фототранзистор работает в активном режиме близко к границе отсечки При Ф = 0 ток очень мал и равен темновому току. ВАХ аналогичны выходным характеристикам биполярного транзистора, включенного по схеме с ОЭ, где параметром является не ток базы, а световой поток или фототок при IБ=const

Энергетические и спектральные характеристики такие же, как у фотодиода

Основными параметрами фототранзистора являются:

  • рабочее напряжение (10 15 В),

  • темновой ток (до сотен микроампер),

  • рабочий ток (до десятков миллиампер),

  • максимально допустимая мощность рассеяния (до десятков ватт),

  • статический коэффициент усиления по фототоку , который измеряется как отношение фототока коллектора транзистора с плавающей базой к фототоку коллекторного перехода при отключенном эмиттере и достоянном световом потоке й лежит в диапазоне значений (1 6) 10 ,

  • интегральная чувствительность- отношение фототока к падающему световому потоку, составляет 0,2 2 А/лм, что выше по сравнению с чувствительностью эквивалентного диода

  • отношение тока на выходе оптрона к вызвавшему его входному току для статического и динамического режимов

Рис. 1

60. Полупроводниковые источники излучения. Светоизлучающие диоды. Оптопары.

Светодиод

Одним из наиболее распространенных источников оптического излучения является светодиод- полупроводниковый прибор с одним или несколькими электрическими переходами, преобразующий электрическую энергию в энергию обычного некогерентного светового излучения, при смещении p-n-перехода в прямом направлении. Условное обазначение на рис. 7.7

При приложении прямого напряжения UВНк p-n-переходу происходит диффузионный перенос носителей через переход Увеличивается инжекция дырок в n-область, а электронов в p-область Прохождение тока через р n-переход в прямом направлении сопровождается рекомбинацией инжектированных неосновных носителей заряда Рекомбинация происходит как в самом p-n-переходе, так и в примыкающих к переходу слоях, ширина которых определяется диффузионными длинами Lnи LpВ большинстве полупроводников рекомбинация осуществляется через примесные центры (ловушки) вблизи середины запрещенной зоны и сопровождается выделением тепловой энергия — фонона Такая рекомбинация называется безызлучательной В ряде случаев процесс рекомбинации сопровождается выделением кванта света -фотона. Это происходит у полупроводников с большой шириной запрещенной зоны — прямозонных полупроводников Электроны с более высоких энергетических уровней зоны проводимости переходят на более низкие энергетические уровни валентной зоны (переход зона- зона), при рекомбинации происходит выделение фотонов и возникает некогерентное оптическое излучение Из-за относительно большой ширины запрещенной зоны исходного полупроводника рекомбинационный ток р n-перехода оказывается большим по сравнению с током инжекции, особенно при малых прямых напряжениях, процесс рекомбинации в этом случае реализуется в основном в p-n-переходе Излучательная способность светодвода характеризуется

  • внутренней квантовой эффективностью (или внутренним квантовым выходом), определяемой отношением числа генерируемых фотонов к числу инжектированных в активную область носителей заряда за один и тот же промежуток времени Так как часть фотонов покидает полупроводник, а другая часть отражается от поверхности полупроводника и затем поглощается объемом полупроводника, то вводится понятие квантовой эффективности излучения,

  • внешней квантовой эффективностью излучения (квантовым выходом), определяемой отношением числа фотонов, испускаемых диодом во внешнее пространство, к числу инжектируемых носителей через p-n-переход

Внешний квантовый выход является интегральным показателем излучательной способности светодиода, который учитывает эффективность инжекции, электролюминесценцию и вывод излучения во внешнее пространство С целью повышения эффективности вывода излучения светодиода используют различные конструкции (рис 1 2) полусферы, отражающие металлизированные поверхности и др., у которых практически отсутствует полное внутреннее отражение

Основными характеристиками светодиодов являются:

  • ВАХ Различие прямых ветвей ВАХ из разных полупроводниковых материалов связано с различной шириной запрещенной зоны Чем больше прямое падение напряжения на диоде, тем меньше длина волны излучения и больше потери электрической энергии в нем Обратные ветви ВАХ имеют относительно малые пробивные напряжения, что объясняется малой толщиной p-n-переходов Светодиоды работают преимущественно при прямом включении При работе в схеме с большими обратными напряжениями последовательно со светодиодом необходимо включать обычный (неизлучающий) диод, имеющий достаточное значение допустимого обратного напряжения

  • Яркостная характеристика — это зависимость яркости излучения от величины тока, протекающего через p-n-переход (рис 4)

  • Спектральная характеристика — зависимость интенсивности излучения от длины волны излучаемого света или от энергии излучаемых квантов Длина волны излучения определяется разностью двух энергетических уровней, между которыми происходит переход электронов при люминесценции Поэтому светодиоды на основе полупроводников с разной шириной запрещенной зоны имеют спектральные характеристики с максимумом излучения при различных длинах волн

Параметры светодиодов:

  • Сила света IV— световой поток, приходящийся на единицу телесного угла в заданном направлении, выражается в канделах (кд) и составляет десятые доли единицы милликанел. Кандела есть единица силы света, испускаемого специальным стандартным источником

  • Яркость излучения — отношение силы света к площади светящейся поверхности Она составляет десятки сотни кандел на квадратный сантиметр

  • Постоянное прямое напряжение — падение напряжения на диоде при заданном токе (2 4 В)

  • Цвет свечения или длина волны, соответствующая максимальному световому потоку. Зависит от примесей: ZnO — красный, N — зеленый

  • Максимально допустимый постоянный прямой ток составляет десятки миллиампер и определяет максимальную яркость излучения

  • Максимальное допустимое постоянное обратное напряжение (единицы вольт)

  • Быстродействие излучающего диода определяется инерционностью возникновения излучения при подаче прямоугольного импульса прямою тока

  • Время переключения tПЕРскладывается из времени включения tВКЛи выключения tвыклизлучения. Инерционность излучающего диода определяется процессом перезарядки барьерной емкости и процессами накопления и рассасывания неосновных носителей в активной области диода

Оптопары

Оптопара (оптрон) -оптоэлектрический п/п прибор, содержащий излучающий и принимающи элементы, оптически и конструктивно связанные друг с другом. В качестве излучателя обычно используются СИД, а в качестве приемника — ФС, ФД, ФТ. Структурная схема оптопары представлена на рис. 7.8.

В качестве оптоканала (ОК) может использоваться воздух, стекло, пластмасса, волоконнооптические материалы.

Средой ОК (ее прозрачностью можно управлять с помощью внешнего УУ (устройства управления).

Важным свойством оптопар является их способность усиливать эл. сигналы по напряжению, току и мощности, а так же полная эл. развязка между узлами аппаратуры, находящимися под различными потенциалами или имеющих различные значения логических уровне, в качестве эл-тов оптического управления сильноточными и высоковольтными узлами.

На рис. 7.9представлены резисторная (а), диодная (б) и транзисторная (в) оптопары.

Рис. 1 Рис. 2

Рис. 3

87

studfiles.net

32. Фототранзистор. Принцип действия. Параметры.

Фототранзистор — оптоэлектронный полупроводниковый прибор, вариант биполярного транзистора. Отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения.

Фототранзистор имеет структуру n-p-n или p-n-p транзистора и может усиливать ток. Дырки электронно-дырочных пар, рождённых излучением, находятся в базе, а электроны переходят в эмиттер или коллектор. При увеличении положительного потенциала базы происходит усиление фототока за счёт инжекции электронов из эмиттера в базу.

Биполярный фототранзистор — полупроводниковый прибор с двумя p-n переходами — предназначен для преобразования светового потока в электрический ток. Фототранзисторы обладают значительной большей, чем фотодиоды, чувствительностью — порядка сотни миллиампер на люмен. Биполярный фототранзистор подобен обычному биполярному транзистору, между выводами коллектора и базы которого включен фотодиод. Таким образом, ток фотодиода оказывается током фототранзистора и создает усиленный в n раз ток в цепи коллектора. Если на фототранзистор подается только электрический сигнал, его параметры почти не отличаются от параметров обычного транзистора.

Фототранзистор можно включать по схемам со свободным коллектором, со свободной базой и со свободным эмиттером. На фототранзистор можно подавать оптические и электрические сигналы. Без входного электрического сигнала, который обычно необходим для смещения, компенсирующего наводки, фототранзистор работает как фотодиод с высокой интегральной чувствительностью, небольшой граничной частотой и большим темновым током. Фототранзисторы целесообразно использовать для регистрации больших световых сигналов; при регистрации малых световых сигналов следует подать положительное смещение на базу. Применяют два варианта включения фототранзисторов: диодное — с использованием только двух выводов (эмиттера и коллектора) и транзисторное — с использованием трех выводов, когда на вход подают не только световой, но и электрический сигналы. Фототранзисторы используются в качестве фотоприемников и транзисторных оптопарах.

Недостатком фототранзисторов является большая инерционность, что ограничивает их применение в качестве быстродействующих выключателей.

33. Варикап. Применение варикапов

Варикап (англ. vari(able) — переменный и cap(acity) — ёмкость) — полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Обладает высокой добротностью (малыми потерями электрической энергии), малым температурным коэффициентом ёмкости, независимостью от частоты практически во всём диапазоне радиочастот, стабильностью параметров во времени. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкиваетэлектроныв глубь n-области, в результате чего происходит расширение обеднённой области p-n перехода, которую можно представить как простейший плоскийконденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.

Рисунок. Зависимость емкости варикапа от напряжения.

studfiles.net

52. Фототранзистор, фототиристор

Фототранзистор представляет собой структуру из чередующих слоев p-n-p и n-p-n. Внешнее напряжение (минус на эмиттере) включает эмиттерный p-n- переход в прямом направлении, а коллекторный переход – в обратном. В темноте практически все внешнее напряжение падает на коллекторный переход. Освещение средней части (базы) ведется через тонкий слой эмиттера. Возникающий в базе и в обоих переходах фотоэлектроны попадают в области эмиттера и коллектора, а дырки собираются в средней p – обл. В рез-те к левому p-n-переходу оказывается приложенным дополнительное напряжение в прямом направлении и возникает инжекция темновых электронов через сниженный барьер в базу и далее – в коллекторный переход.

— энергетичная схема (левый p-n-переход включен в прямом, правый – в обратном направлении)

— ВАХ

Фототиристор имеет чередующиеся области p,n,p,n – типов проводимости и соответственно три p-n-перехода, из к-ых средний наз коллекторный, а 2 крайних – эмиттерными. Структура включается так, чтобы коллекторный переход был смещен в обратном направлении, а оба эмиттерных в прямом(+ источника на внешней р-обл структуры, а минус- на n-обл.

Если напряжение на всем тиристоре повысить до Uп, при к-ом эмиттерные переходы заметно уменьшатся), то через тиристор начинает идти значительный ток, к-ый приводит к накоплению в р- базе положительного заряда, а в n- базе отрицательного. При этом общее падение напряжения на тиристоре снижается, т.к. токи сами теперь поддерживают нужную степень накопления зарядов. Таким образом тиристор может находится в 2-х состояниях, соответсвующих большим или малым токам, т.е. тиристор может работать как ключ в электрической цепи.

У фототиристора накопление положительного и отрицательного зарядов, необходимых дл яперевода его во включенное состояние, производится при облучении светом из области собственного поглащения материала. Поле среднего перехода направляет фотодырки в р-базу, а электроны в n- базу, что снижает высоту обоих эмиттерных барьеров и создает сильные темновые токи через тиристор. Таким образом, свет играет роль управляющего электрического сигнала у тиристора с 3-им выводом (от базы) и позволяет безконтактным образом управлять токами в различных эл цепях

53. Оптроны. Конструкция и принцип действия. Разновидности и сравнительная характеристика.

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены источник и приемник излучения, имеющие между собой оптическую связь. В источнике излучения электрические сигналы преобразуются в световые, которые воздействуют на фотоприемник и создают в нем снова электрические сигналы. Если оптрон имеет только один излучатель и один приемник излучения, то его называют оптопарой или элементарным оптроном. Микросхема, состоящая из одной или нескольких опт опар с дополнительными устройствами, называется оптоэлектронной интегральной микросхемой. На входе и выходе оптрона всегда имеются электрические сигналы, а связь входа с выходом осуществляется световыми сигналами. Цепь излучателя является управляющей, а цепь фотоприемника – управляемой. Конструктивно в оптронах излучатель и приемник излучения помещаются в корпус и заменяются оптически прозрачным клеем рис (13.16).

Достоинства: полная гальваническая развязка, однонаправленная передача информации, низкое напряжение питания, широкая полоса частот. Недостатки: низкий коэффициент усиления, сложный прибор, низкий КПД, низкая термостабильность. Виды оптопар:

Резисторные – излучатель представляет собой лампочку накаливания, приемник – фоторезистор из селенида кадмия или сульфида кадмия для видимого излучения, для инфракрасного – из селенида и сульфида свинца;

Диодные оптроны – имеют обычно кремниевый фотодиод и инфракрасный арсенид-галлиевый светодиод. Фотодиод может работать как в фотогенераторном, так и в фотопреобразовательном режиме;

Транзисторные оптроны – имеют обычно в качестве излучателя арсенид-галлиевый светодиод, а приемника излучения – биполярный кремниевый фототранзистор типа n-p-n. Оптопары этого типа работают главным образом в ключевом режиме и применяются в коммутаторных схемах, устройствах связи различных датчиков или в качестве реле;

Тиристорные оптроны – имеют в качестве оптопары кремниевый фототиристор и применяются в ключевых режимах. Основная область использования – схемы для формирования мощных импульсов, управления мощными тиристорами, управления и коммутации различных устройств с мощными нагрузками.

Параметры и характеристики оптронов.

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены источник и приемник излучения, имеющие между собой оптическую связь. В качестве параметров резисторных оптронов обычно указываются максимальные токи и напряжения на входе и выходе, выходное сопротивление при нормальной работе и так называемое темновое выходное сопротивление, сопротивлении изоляции и максимальное напряжение изоляции между входом и выходом. Важнейшие характеристики оптопары – входная вольт-амперная и передаточная. Последняя показывает зависимость выходного сопротивления от входного тока.

Основные параметры диодных оптопар – входные и выходные напряжения и токи, коэффициент передачи тока (отношение выходного тока к входному), время нарастания и спада выходного сигнала. Коэффициент передачи тока обычно составляет лишь единицы процентов, а время нарастания и спада может быть снижено до нескольких наносекунд. Свойства диодных оптопар отображаются входными и выходными ВАХ и передаточными характеристиками для фотогенераторного и фотопреобразовательного режима.

Транзисторные оптроны благодаря большей чувствительности фотоприемника экономичнее диодных. Однако быстродействие их меньше, максимальная частота коммутации обычно не превышает 105 Гц. Так же как и диодные оптроны, транзисторные имеют малое сопротивление в открытом состоянии и большое в закрытом и обеспечивают полную гальваническую развязку входных и выходных цепей.

Параметры тиристорных оптопар – входные и выходные токи и напряжения, соответствующие включению, рабочему режиму и максимальным допустимым зажимам, а также время включения и выключения, параметры изоляции между входной и выходной цепями.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *