Что такое плазма и какими свойствами она обладает. Как плазма отличается от газа. Какие виды плазмы существуют. Где встречается плазма в природе и как она применяется человеком.
Что такое плазма и ее основные характеристики
Плазма представляет собой частично или полностью ионизированный газ, состоящий из свободных электронов, ионов и нейтральных атомов. Она обладает рядом уникальных свойств, которые позволяют выделить ее в отдельное, четвертое агрегатное состояние вещества наряду с твердым, жидким и газообразным.
Основные характеристики плазмы:
- Высокая электропроводность из-за наличия свободных заряженных частиц
- Квазинейтральность — суммарный заряд близок к нулю
- Сильное взаимодействие с электромагнитными полями
- Коллективное поведение частиц
- Способность к самоорганизации и образованию сложных структур
Плазма может существовать в широком диапазоне температур и плотностей — от холодной разреженной до сверхгорячей и сверхплотной. Это определяет огромное разнообразие ее видов и свойств.
История открытия и изучения плазмы
Термин «плазма» для обозначения ионизированного газа был впервые введен американским физиком Ирвингом Ленгмюром в 1928 году. Однако изучение плазменного состояния вещества началось значительно раньше:
- В 1879 году английский физик Уильям Крукс открыл «лучистую материю» в газоразрядных трубках
- В начале XX века были разработаны первые газоразрядные и дуговые источники плазмы
- В 1920-х годах начались систематические исследования свойств плазмы
- В 1950-х активно развивается физика высокотемпературной плазмы в связи с проблемой управляемого термоядерного синтеза
Сегодня физика плазмы является одним из важнейших направлений современной науки, имеющим множество практических приложений.
Основные виды и классификация плазмы
Существует несколько способов классификации плазмы по различным параметрам:
По температуре:
- Низкотемпературная (до 100 000 К)
- Высокотемпературная (свыше 100 000 К)
По степени ионизации:
- Слабоионизированная (менее 1% ионизированных частиц)
- Сильноионизированная (более 1% ионизированных частиц)
- Полностью ионизированная (100% ионизация)
По плотности:
- Разреженная (менее 10^8 частиц/см^3)
- Плотная (более 10^8 частиц/см^3)
По соотношению температур компонентов:
- Изотермическая (температуры электронов и ионов равны)
- Неизотермическая (температура электронов выше температуры ионов)
Разнообразие видов плазмы определяет широкий спектр ее свойств и возможностей применения.
Как плазма отличается от газообразного состояния
Хотя плазма во многом похожа на газ, она обладает рядом уникальных свойств, которые позволяют выделить ее в отдельное агрегатное состояние:
Свойство | Газ | Плазма |
---|---|---|
Электропроводность | Очень низкая | Очень высокая |
Взаимодействие частиц | Парные столкновения | Коллективные взаимодействия |
Реакция на эл.-маг. поля | Слабая | Сильная |
Самоорганизация | Отсутствует | Возможна |
Эти различия обусловлены наличием в плазме свободных заряженных частиц и их коллективным поведением.
Где встречается плазма в природе
Вопреки распространенному мнению, плазма — самое распространенное состояние вещества во Вселенной. По оценкам ученых, более 99% видимой материи находится в плазменном состоянии. Вот некоторые примеры плазмы в природе:
- Звезды, включая наше Солнце
- Солнечный ветер и магнитосфера Земли
- Ионосфера Земли
- Межзвездная среда
- Молнии
- Полярные сияния
- Ядра комет
На Земле плазма в естественных условиях встречается редко из-за относительно низких температур. Однако человек научился создавать и использовать плазму в различных технологиях.
Применение плазмы в современных технологиях
Уникальные свойства плазмы нашли широкое применение в различных областях науки и техники:
- Термоядерный синтез — попытки получения энергии путем слияния легких ядер в горячей плазме
- Плазменные двигатели для космических аппаратов
- Плазменная обработка материалов — резка, сварка, напыление покрытий
- Плазмохимия — получение новых материалов
- Плазменные дисплеи
- Газоразрядные источники света
- Плазменная стерилизация
- Плазменная медицина
Развитие плазменных технологий открывает новые возможности в энергетике, космонавтике, материаловедении и других областях.
Методы получения и диагностики плазмы
Существует несколько основных способов создания плазмы в лабораторных и промышленных условиях:
- Тепловая ионизация газа при высоких температурах
- Электрический разряд в газе
- Воздействие сильного электромагнитного излучения на вещество
- Инжекция пучков заряженных частиц
Для изучения свойств плазмы применяются различные методы диагностики:
- Зондовые измерения
- Спектроскопия
- Лазерное рассеяние
- Микроволновые измерения
- Магнитные измерения
Развитие методов получения и диагностики плазмы позволяет создавать плазму с заданными параметрами и эффективно управлять ее свойствами.
Перспективы исследований плазмы
Физика плазмы остается одной из наиболее динамично развивающихся областей современной науки. Основные направления исследований включают:
- Управляемый термоядерный синтез
- Астрофизическая плазма
- Плазменная электроника
- Плазменные технологии обработки материалов
- Плазменная медицина
- Плазменные ракетные двигатели
Успехи в этих областях могут привести к революционным изменениям в энергетике, космонавтике, материаловедении и других сферах. Плазма, как четвертое состояние вещества, продолжает удивлять ученых своими уникальными свойствами и открывает новые горизонты для технологического прогресса.
Плазма Википедия
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества.
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.
История открытия[ | ]
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
ru-wiki.ru
ПЛАЗМА — ЧТО ТАКОЕ? КТО ТАКОЙ?
Такого слова ты, возможно, даже не слышал, хотя с самой плазмой встречался не раз, например, когда зажигал спичку. Воздух вокруг спички сильно нагревается, его АТОМЫ начинают двигаться очень быстро, часто сталкиваются между собой, и от многих из них отрываются ЭЛЕКТРОНЫ. При этом атомы превращаются в ИОНЫ, а вместо газа получается смесь из атомов, электронов и ионов. Это и есть плазма.
Плазма возникает и во многих других случаях: в электросварке, в искре между электрическими проводами, в молнии, в разноцветных трубках рекламы, которые холодным светом горят по вечерам. Ионизацию газа в этих случаях вызывает не горячее пламя, а электрический разряд между концами трубки, между облаком и землёй, между проводами и так далее.
Плазма хорошо проводит электрический ток. Это её свойство позволило создать особые плазменные генераторы, вырабатывающие электрический ток, и плазменные двигатели, уже испытанные на советской космической автоматической станции «Зонд-2».
Но всё это относится к плазме, температура которой не больше 100 000°. А бывает и другая плазма — высокотемпературная, нагретая до нескольких миллионов градусов. При такой жаре не остаётся ни одного целого атома, все атомы газа распадаются, теряют свои электроны и превращаются в «голые» ядра. В таком состоянии находится вещество Солнцв и звёзд. Такая же плазма будет работать и на термоядерных электростанциях, которые создадут учёные, когда научатся управлять термоядерной реакцией.
Ты, наверное, уже знаешь, что все вещества бывают твёрдыми, жидкими или газообразными. Это три состояния. А плазму называют «четвёртым состоянием» вещества. Изучать плазму стали совсем недавно. Но, оказывается, плазма— это самое распространённое во Вселенной состояние вещества. Всё вещество звёзд, межзвёздного и межпланетного пространства находится в виде плазмы. А на Земле, как и на других планетах, плазма встречается крайне редко. Вот почему, чтобы использовать её ценные свойства, людям приходится создавать её искусственно.
www.what-who.com
Плазма — Википедия
Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является её квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году, возможно из-за ассоциации с плазмой крови. Ленгмюр писал:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в представление о четырёх агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь[1]. Свойства плазмы изучает физика плазмы.
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10
Свойства и параметры плазмы[править]
Определение плазмы[править]
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:[5][6][7]
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- , где — концентрация заряженных частиц.
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
Классификация[править]
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура[править]
Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9].
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Степень и кратность ионизации[править]
Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизовать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z>ni, где <Z> — среднее значение заряда ионов плазмы, или кратность ионизации плазмы. Очевидно, что максимальное значение α равно 1 (или 100 %), такую плазму называют полностью ионизованной.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служить Солнце.
Концентрация частиц в плазме[править]
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является концентрация заряженных частиц. Словосочетание концентрация плазмы обычно обозначает концентрация электронов, то есть число свободных электронов в единице объёма. В квазинейтральной плазме концентрация ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является концентрация нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром концентрации становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора.
Квазинейтральность[править]
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Отличия от газообразного состояния[править]
Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость | Крайне мала К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[10] | Очень высока
|
Число сортов частиц | Один Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях. | Два, или три, или более Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям | Максвелловское Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. | Может быть немаксвелловское Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны. |
Тип взаимодействий | Бинарные Как правило двухчастичные столкновения, трёхчастичные крайне редки. | Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Сложные плазменные явления[править]
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Математическое описание[править]
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель[править]
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание[править]
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)[править]
Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.
Базовые характеристики плазмы[править]
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты[править]
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
- ионная плазменная частота:
- частота столкновений электронов
- частота столкновений ионов
Длины[править]
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
Скорости[править]
- тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- скорость ионного звука, скорость продольных ионно-звуковых волн:
Безразмерные величины[править]
- квадратный корень из отношения масс электрона и протона:
- Число частиц в сфере Дебая:
- Отношение Альфвеновской скорости к скорости света
- отношение плазменной и ларморовской частот для электрона
- отношение плазменной и ларморовской частот для иона
- отношение тепловой и магнитной энергий
- отношение магнитной энергии к энергии покоя ионов
Прочее[править]
- Бомовский коэффициент диффузии
- Поперечное сопротивление Спитцера
Современные исследования[править]
www.wiki-wiki.ru
Плазма — это… Что такое Плазма?
Плазменная лампа, иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая филаментацию. Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу.Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») — частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году, возможно из-за ассоциации с плазмой крови. Ленгмюр писал:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Философы античности, начиная с Эмпедокла, утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёх агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.[1] Свойства плазмы изучает физика плазмы.
Формы плазмы
По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма).
Свойства и параметры плазмы
Определение плазмы
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:[5][6][7]
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- , где — концентрация заряженных частиц.
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
Классификация
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура
При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).
Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.
Степень ионизации
Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z> ni, где <Z> — среднее значение заряда ионов плазмы.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служить Солнце.
Плотность
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора.
Квазинейтральность
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Отличия от газообразного состояния
Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:
Свойство | Газ | Плазма |
---|---|---|
Электрическая проводимость | Крайне мала К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр.[9] | Очень высока
|
Число сортов частиц | Один Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации, а друг с другом взаимодействуют только на сравнительно небольших расстояниях. | Два, или три, или более Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей. |
Распределение по скоростям | Максвелловское Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей, согласно которому очень малая часть молекул газа имеют относительно большие скорости движения. | Может быть немаксвелловское Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны. |
Тип взаимодействий | Бинарные Как правило двухчастичные столкновения, трёхчастичные крайне редки. | Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные. |
Сложные плазменные явления
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Математическое описание
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)
Модели Particle-In-Cell являются более подробными, чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности электрического заряда и тока определяются путём суммирования числа частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число частиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек.
Базовые характеристики плазмы
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
- ионная плазменная частота:
- частота столкновений электронов
- частота столкновений ионов
Длины
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
Скорости
- тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- скорость ионного звука, скорость продольных ионно-звуковых волн:
Безразмерные величины
- квадратный корень из отношения масс электрона и протона:
- Число частиц в сфере Дебая:
- Отношение Альфвеновской скорости к скорости света
- отношение плазменной и ларморовской частот для электрона
- отношение плазменной и ларморовской частот для иона
- отношение тепловой и магнитной энергий
- отношение магнитной энергии к энергии покоя ионов
Прочее
- Бомовский коэффициент диффузии
- Поперечное сопротивление Спитцера
Современные исследования
- Теория плазмы
- Плазма в природе
- Источники плазмы
- Диагностика плазмы
- Применения плазмы
См. также
Примечания
Ссылки
dic.academic.ru
Plazma — Википедия. Что такое Plazma
Plazma (оригин. PLAZMA) — российская музыкальная группа, работающая в жанрах от синти-попа и евродэнса до поп-рока[2]. Одна из первых начала исполнять песни исключительно на английском языке для русскоговорящей аудитории[1].
Бессменными участниками коллектива являются Роман Черницын (вокалист, композитор, автор текстов) и Максим Постельный (клавишник, бэк-вокалист, композитор, аранжировщик), в концертах также периодически принимают участие музыканты Александр Лучков (скрипач, гитарист) и Николай Трофимов (гитарист).
Известность группа приобрела после выпуска первого сингла «Take My Love», который стал активным участником многих радийных чартов. Первые два альбома — Take My Love и 607 — были проданы тиражом более чем в 1 миллион копий. Также Plazma получила премию Попова за наибольшее количество радиоэфиров[3].
Plazma является участником финала отборочного тура международного конкурса «Евровидение-2009», в котором исполнила композицию «Never Ending Story». Также группа подавала заявку на участие в 2007 и 2010 годах с композициями «Living in the Past» и «Mystery (The Power Within)» соответственно.
История группы
Период Slow Motion
Осенью 1986 года Роман Черницын был принят в качестве вокалиста в музыкальную группу при Доме учителя в городе Волгограде. Также членами коллектива были два его одноклассника — Сергей Стародуб (гитара) и Роман Рыбин (звук) — а также Алексей Воронков (ударные) и Николай Романов (бас-гитара). Руководителем и автором всего музыкального материала был Андрей Трясучёв.
В 1990 году коллектив распался. Трое бывших участников: Роман Черницын, Максим Постельный и Николай Романов — создали группу Slow Motion («Медленное движение»), взяв в качестве названия одну из песен Modern Talking с их альбома «In The Garden Of Venus». Уже тогда членами коллектива было принято решение, что все песни из репертуара будут исполняться только на английском языке[4]. По словам самих музыкантов, это объясняется тем, что они являются поклонниками западной прогрессивной музыки, основная часть которой исполняется на английском языке и стремлением показать, что в России тоже могут делать качественную музыку.
В любой стране существуют англоязычные группы — в Швеции — около 45%, в Германии — 25%, и это нормально. В России пока никто не поет на английском, мы стали первыми. |
В том же году в студии Волгоградского училища культуры группа записала основную часть всего музыкального материала для своего первого альбома, записанного с аранжировщиком Андреем Жигуновым и звукорежиссёром Вячеславом Тимировым. Альбом Falling In Love («Влюбляясь») вышел в 1991 году. К тому времени группу уже покинул Николай Романов. В том же году на две композиции из первого альбома, одна из которых называлась Hungry for Love, при участии коллектива кабельного телевидения «Юг России» были сняты видеоклипы. С материалом первого альбома группа не раз выступала перед публикой. Работа Slow Motion была отмечена на волгоградских фестивалях: на I рок-старте в 1991 году коллектив занял второе место, на II рок-старте в 1992 году — первое.
В период со второй половины 1992 по начало 1993 года из-за творческого бездействия группы, Черницын устроился работать на завод «Спецэнергоремонт», а Постельный продолжал учиться в училище искусств. После того, как кассета с записями Slow Motion попала в руки на тот момент генерального директора внешнеторгового дома «Хелп» Сергея Ивановича Олейника, Олейник решил спонсировать дуэт и оказывать им всяческую поддержку. Вскоре группа получила приглашение принять участие в программе «Звёздный дождь» на телеканале РТР.
После этого у Slow Motion появился свой продюсер[4]. Им стал Анатолий Аболихин, который работал с Дмитрием Маликовым. В 1993 году группа перезаписала несколько старых и записала ещё несколько новых песен в Волгоградских студиях. В Москве была записана обновлённая версия Take My Love. Режиссёром Михаилом Макаренковым был снят клип на песню Climb any hill.
Во время своего творческого отпуска, в котором находилась группа, начиная с 1994 года, Черницын и Постельный стали работать на студии радиостанции «Магнат», основанной Олейником.
В 1995 году Черницын был приглашён в качестве временного вокалиста в рок-группу Casus Belli, заменив покинувшего коллектив Николая Крупатина. Результатом сотрудничества стал альбом Vae Victis!.. («Горе побеждённым»). Находясь в составе группы, Черницын исполнил две песни на русском языке[4]. Композиция I’m Out была записана уже как дуэт групп Casus Belli и Slow Motion. Сотрудничество с Casus Belli продолжалось до конца 1996 года.
На протяжении всего 1997 года группа продолжала записывать новый материал и выступать в клубах. Коллектив стал одним из самых известных в Волгограде[4]. Летом 1997 года наряду с другими волгоградскими коллективами: «Например» и «Штурманом Жорж» — Slow Motion обратились к хозяину «Союза-Паритета А», чтобы тот показал их записи ZeKo Records. Представители компании пожелали заключить с дуэтом контракт[4], но предложили им прежде перепеть несколько песен на русском и взять русское название. В итоге название осталось тем же, но к двум композициям — Take My Love и Jump In My Car — были написаны русские тексты. Успеха этот эксперимент не имел[4].
В марте 1998 года был дописан альбом Prologue. Наконец подготовив полноценную программу, члены группы решили переехать в Москву. Прежде чем окончательно покинуть Волгоград, коллектив решил провести сольный концерт. Но, боясь, что существующего материала будет недостаточно для реализации задуманного, Slow Motion выступили в Доме офицеров вместе с домом моды «Харита». По идее, показ моделей этого дома должен был проходить в перерывах между исполнениями песен, что существенно увеличило концертную программу. Мероприятие прошло с аншлагом[4].
Но после событий августа 1998 года переезд в Москву пришлось отложить. В декабре 1998 года альбом Prologue был выпущен в продажу. В него вошло 10 композиций, записанных в период с декабря 1996 по март 1998 годов, Take My Love образца 1994 года, а также композиция In My Little Room, в записи которой принимал участие бывший гитарист групп «Атолл» и «Хозяин ключа» Игорь Колобов.
После того как ситуация в стране стала постепенно стабилизироваться в конце января — начале февраля 1999 года дуэт переехал в Москву. В первое время пребывания в столице Максим Постельный работал звукорежиссёром на радио «Европа Плюс».
В 1999 году коллектив подписал контракт с Дмитрием Маликовым, который являлся их продюсером на протяжении последующих пяти лет. В том же году было изменено название группы на Plazma. Как объясняют сами участники коллектива, это было сделано для того, чтобы найти «яркое» и легко запоминающееся название[1]:
Просто мы искали яркое слово, которое звучало бы одинаково на всех языках и сразу запоминалось.
Период Plazma
Начала группа Plazma свою всероссийскую карьеру с сингла «Take My Love», написанного Романом и Максимом очень давно и перепетой на новый, современный лад. В 2000 году этот трек разрывал радио-чарты страны.
14 декабря 2000 года группа Plazma выпускает свой дебютный альбом под знакомым названием Take My Love. Сразу же после выхода диск стал лидером продаж по России. Популярность группы росла с огромной скоростью не только в родной стране, но и за её пределами. Plazma побывала с гастролями почти во всех странах ближнего зарубежья. В этом же году были сняты два клипа — «Take My Love» и «The Sweetest Surrender» (режиссёр Филипп Янковский).
В конце 2001 года был снят третий клип группы на композицию «Lonely». Съёмки проходили в узбекском ресторане «Ходжа Насреддин» при участии кошек породы «русская голубая» и очаровательных девушек. Следующим творением группы стала композиция «You’ll Never Meet an Angel», на которую в августе 2002 года был снят четвёртый видеоролик. По замыслу режиссёра Олега Гусева, в клипе принял участие и сам продюсер группы Plazma Дмитрий Маликов в роли некоего босса, который курит сигару и держит свою личность в тайне от посторонних глаз. В результате получился настоящий боевик.
В конце 2002 года выходит второй альбом под загадочным названием 607, смысл которого до сих пор остается тайной. В отличие от танцевального «Take My Love», в стилистике «607» преобладает серьёзная музыка. Альбом очень лиричен, и песни явились настоящим шагом вперед в творчестве группы.
В начале 2003 года Роман и Максим приглашают в свой коллектив гитариста Николая Трофимова, с которым ребята знакомы ещё по совместным волгоградским проектам (таким как Slow Motion и Casus Belli). География гастрольного тура ещё более расширилась — группа побывала во Вьетнаме, а также во многих европейских странах: Финляндии, Франции, Прибалтике.
Предпосылкам третьего альбома под названием Black & White стала пронзительная лирическая баллада «Save». Главным хитом из альбома стал трек «Black Would Be White». На сингл «One Life» был снят клип. Его режиссёр Кевин Джексон снял красивую историю спасения больной девушки, которая лежит в стеклянной камере, изолированная от мира, и надеется лишь на чудо. И, конечно же, этим чудом, побеждающим смерть, становится Любовь. Большой интерес к композиции «Living in the Past» проявили иностранные диджеи — на этот трек было создано огромное количество ремиксов.
В 2007 году группа записала свою вторую композицию на русском языке — «Бумажное небо» совместно с Алёной Водонаевой. Вопреки распространённому мнению, участницей группы Алёна не являлась[5]. Первой была русскоязычная версия песни «Black Would Be White» — «И даже светом станет тьма…»
В начале 2009 года Plazma проходит в финал отборочного тура «Евровидение 2009» с песней «Never Ending Story», но победа досталась другому участнику. В конце того же года был записан трек «The Real Song».
Также в конце 2009 года выходит композиция «Mystery (The Power Within)». В марте 2010 года был снят клип на эту песню, презентация которого состоялась в клубе «XXXX» (г. Москва, филиал МосConcert). В июне 2011 года вышла композиция группы под названием «Angel of Snow»[6], релиз которой в качестве сингла состоялся 28 марта 2012 года[7]. 30 октября 2013 года группа выпустила очередной сингл — «Black Leather Boys»[8]. В ноябре 2014 года в эфире радиостанции «Пионер FM» прозвучала композиция «Lucky Rider», которая стала доступна в качестве сингла 15 июня 2015 года[9]. 21 августа того же года на радиостанции «Кекс FM» состоялась премьера композиции «Tame Your Ghosts»[10], вышедшей в качестве сингла 31 августа[11]. 8 декабря 2017 года вышел в свет четвёртый альбом под названием Indian Summer[12].
Участники
Основной состав
Дополнительный концертный состав
Бывшие участники
Дискография
Альбомы
Сборники и переиздания
Синглы
|
|
Видеоклипы
Примечания
Ссылки
wiki.sc
Plazma — это… Что такое Plazma?
Plazma — музыкальная группа из России (город Волгоград). В её состав входят Роман Черницын (вокал, музыка, тексты), Максим Постельный (клавишные, бэк-вокал, музыка, аранжировки), Николай Трофимов (гитара) и Александр Лучков (скрипка, гитара). Отличительной чертой этого коллектива является то, что они стали одной из первых российских поп-групп, исполняющих свои песни исключительно на английском языке для русскоговорящей аудитории[1]. Стиль исполнения колеблется от синти-попа до поп-рока[2].
Известность приобрели после выпуска первого сингла Take My Love, который стал активным участником многих радийных чартов. Первые два альбома — «Take My Love» и «607» — были проданы тиражом более чем в 1 000 000 копий.
Группа Plazma получила премию Попова за наибольшее количество радиоэфиров[3].
История группы
Период Slow Motion
Осенью 1988 года Роман Черницын был принят в качестве вокалиста в музыкальную группу при Доме учителя в городе Волгограде. Также членами коллектива были два его одноклассника — Сергей Стародуб (гитара) и Роман Рыбин (звук) — а также Алексей Воронков (ударные), позже Николай Романов (бас-гитара). Руководителем и автором всего музыкального материала был Андрей Трясучёв.
В 1990 году коллектив распался. Трое бывших участников: Роман Черницын, Максим Постельный и Николай Романов — создали группу Slow Motion («Медленное движение»), взяв в качестве названия одну из песен Modern Talking с их альбома «In The Garden Of Venus». Уже тогда членами коллектива было принято решение, что все песни из репертуара будут исполняться только на английском языке.[4] По словам самих музыкантов, это объясняется тем, что они являются поклонниками западной прогрессивной музыки, основная часть которой исполняется на английском языке и стремлением показать, что в России тоже могут делать качественную музыку.
В том же году в студии Волгоградского училища культуры группа записала основную часть всего музыкального материала для своего первого альбома, записанного с аранжировщиком Андреем Жигуновым и звукорежиссёром Вячеславом Тимировым. Альбом Falling In Love («Влюбляясь») вышел в 1991 году. К тому времени группу уже покинул Николай Романов. В том же году на две композиции из первого альбома, одна из которых называлась Hungry for Love, при участии коллектива кабельного телевидения «Юг России» были сняты видеоклипы. С материалом первого альбома группа не раз выступала перед публикой. Работа Slow Motion была отмечена на волгоградских фестивалях: на I рок-старте в 1991 году коллектив занял второе место, на II рок-старте в 1992 году — первое.
В период со второй половины 1992 по начало 1993 года из-за творческого бездействия группы, Черницын устроился работать на завод «Спецэнергоремонт», а Постельный продолжал учиться в училище искусств. После того, как кассета с записями Slow Motion попала в руки на тот момент генерального директора внешнеторгового дома «Хелп» Сергея Ивановича Олейника, Олейник решил спонсировать дуэт и оказывать им всяческую поддержку. Вскоре группа получила приглашение принять участие в программе «Звёздный дождь» на телеканале РТР.
После этого у Slow Motion появился свой продюсер[4]. Им стал Анатолий Аболихин, который работал с Дмитрием Маликовым. В 1993 году группа перезаписала несколько старых и записала ещё несколько новых песен в Волгоградских студиях. В Москве была записана обновлённая версия Take My Love. Режиссёром Михаилом Макаренковым был снят клип на песню Climb any hill.
Во время своего творческого отпуска, в котором находилась группа, начиная с 1994 года, Черницын и Постельный стали работать на студии радиостанции «Магнат», основанной Олейником.
В 1995 году Черницын был приглашён в качестве временного вокалиста в рок-группу Casus Belli, заменив покинувшего коллектив Николая Крупатина. Результатом сотрудничества стал альбом Vae Victis!.. («Горе побеждённым»). Находясь в составе группы, Черницын исполнил две песни на русском языке[4]. Композиция I’m Out была записана уже как дуэт групп Casus Belli и Slow Motion. Сотрудничество с Casus Belli продолжалось до конца 1996 года.
На протяжении всего 1997 года группа продолжала записывать новый материал и выступать в клубах. Коллектив стал одним из самых известных в Волгограде.[4] Летом 1997 года наряду с другими волгоградскими коллективами: «Например» и «Штурманом Жорж» — Slow Motion обратились к хозяину «Союза-Паритета А», чтобы тот показал их записи ZeKo Records. Представители компании пожелали заключить с дуэтом контракт[4], но предложили им прежде перепеть несколько песен на русском и взять русское название. В итоге название осталось тем же, но к двум композициям — Take My Love и Jump In My Car — были написаны русские тексты. Успеха этот эксперимент не имел[4].
В марте 1998 года был дописан альбом Prologue. Наконец подготовив полноценную программу, члены группы решили переехать в Москву. Прежде чем окончательно покинуть Волгоград, коллектив решил провести сольный концерт. Но, боясь, что существующего материала будет недостаточно для реализации задуманного, Slow Motion выступили в Доме офицеров вместе с домом моды «Харита». По идее, показ моделей этого дома должен был проходить в перерывах между исполнениями песен, что существенно увеличило концертную программу. Мероприятие прошло с аншлагом[4].
Но после событий августа 1998 года переезд в Москву пришлось отложить. В декабре 1998 года альбом Prologue был выпущен в продажу. В него вошло 10 композиций, записанных в период с декабря 1996 по март 1998 годов, Take My Love образца 1994 года, а также композиция In My Little Room, в записи которой принимал участие бывший гитарист групп «Атолл» и «Хозяин ключа» Игорь Колобов.
После того как ситуация в стране стала постепенно стабилизироваться в конце января — начале февраля 1999 года дуэт переехал в Москву. В первое время пребывания в столице Максим Постельный работал звукорежиссёром на радио «Европа Плюс».
В 1999 году коллектив подписал контракт с Дмитрием Маликовым, который являлся их продюсером на протяжении последующих пяти лет. В том же году было изменено название группы на Plazma. Как объясняют сами участники коллектива, это было сделано для того, чтобы найти «яркое» и легко запоминающееся название[1]:
Просто мы искали яркое слово, которое звучало бы одинаково на всех языках и сразу запоминалось.
Период Plazma
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 12 мая 2011. |
Начала группа Plazma свою всероссийскую карьеру с сингла «Take My Love», написанного Романом и Максимом очень давно и перепетой на новый, современный лад. В 2000 году этот трек разрывал радио-чарты страны.
14 декабря 2000 года группа Plazma выпускает свой дебютный альбом под знакомым названием «Take My Love». Сразу же после выхода диск стал лидером продаж по России. Популярность группы росла с огромной скоростью не только в родной стране, но и за ее пределами. Plazma побывала с гастролями почти во всех странах ближнего зарубежья. В этом же году были сняты два клипа — «Take My Love» и «The Sweetest Surrender» (режиссёр Филипп Янковский).
В конце 2001 года был снят третий клип группы на композицию «Lonely». Съемки проходили в узбекском ресторане «Ходжа Насреддин» при участии кошек породы «русская голубая» и очаровательных девушек. Следующим творением группы стала композиция «You’ll Never Meet an Angel», на которую в августе 2002 года был снят четвертый видеоролик. По замыслу режиссера Олега Гусева, в клипе принял участие и сам продюсер группы Plazma Дмитрий Маликов в роли некоего босса, который курит сигару и держит свою личность в тайне от посторонних глаз. В результате получился настоящий боевик.
В конце 2002 года выходит второй альбом под загадочным названием «607», смысл которого до сих пор остается тайной. В отличие от танцевального «Take My Love», в стилистике «607» преобладает серьёзная музыка. Альбом очень лиричен, и песни явились настоящим шагом вперед в творчестве группы.
В начале 2003 года Роман и Максим приглашают в свой коллектив гитариста Николая Трофимова, с которым ребята знакомы еще по совместным волгоградским проектам (таким как Slow Motion и Casus Belli). География гастрольного тура еще более расширилась — группа побывала во Вьетнаме, а также во многих европейских странах: Финляндии, Франции, Прибалтике.
Предпосылком третьего альбома под названием «Black and White» стала пронзительная лирическая баллада «Save». Главным хитом из альбома стал трек «Black would be white». На сингл «One Life» был снят клип. Его режиссер Кевин Джексон снял красивую историю спасения больной девушки, которая лежит в стеклянной камере, изолированная от мира, и надеется лишь на чудо. И, конечно же, этим чудом, побеждающим смерть, становится Любовь. Большой интерес к композиции «Living in the past» проявили иностранные диджеи — на этот трек было созданно огромное количество ремиксов.
В 2007 году группа записывает композицию «Бумажное небо» совместно с Алёной Водонаевой.
В начале 2009 года Plazma проходит в финал отборочного тура «Евровидение 2009» с песней «Never ending story». К сожалению поклонников группы, победа досталась другому участнику. В конце этого года был записан трек «The Real Song».
Также в конце 2009 года выходит композиция «Mystery (The Power Within)». В марте 2010 года был снят клип на эту песню, презентация которого состоялась в клубе «XXXX» (г. Москва, филиал МосConcert).
В 2010 году Роман Черницын и Максим Постельный рассказали о планах выпуска нового сингла и видеоклипа на него, а также о записи нового альбома[5]. В июне 2011 года группа выпустила новый сингл под названием «Angel Of Snow»[6].
Участники
Основной состав
Второстепенный состав
Дискография
Альбомы
Переиздания
Разное
Синглы
- 2000 год —Take My Love
- 2000 год — The Sweetest Surrender
- 2001 год — Jump In My Car
- 2001 год — Fading Like A Rose
- 2001 год — Lonely
- 2002 год — You’ll Never Meet An Angel
- 2004 год — The Power Of Your Spell
- 2004 год — Lonely II
- 2005 год — One Life
- 2005 год — One Of A Kind
- 2006 год — Save
- 2006 год — Black Would Be White
- 2006 год — Living In The Past
- 2009 год — Never Ending Story
- 2009 год — The Real Song
- 2009 год — Mystery (The Power Within)
- 2011 год — Angel Of Snow
Видеоклипы
- 2000 год — Take My Love
- 2000 год — The Sweetest Surrender
- 2001 год — Lonely
- 2002 год — You’ll Never Meet An Angel
- 2003 год — A Bit Of Perfection (невышедший)
- 2004 год — Lonely II
- 2005 год — One Life
- 2010 год — Mystery (The Power Within)
Примечания
Ссылки
в социальных сетях
Plazma | |
---|---|
Основной состав: Роман Черницын • Максим Постельный Второстепенный состав: Николай Трофимов • Александр Лучков Дискография | |
Студийные альбомы | Take My Love • 607 • Black & White |
Синглы | Take My Love • The Sweetest Surrender • Jump In My Car • Fading Like A Rose • You’ll Never Meet An Angel • Lonely • Lonely II • One Life • One Of A Kind • Save • Black Would Be White • Living In The Past • Never Ending Story • The Real Song • Mystery (The Power Within) • Angel Of Snow |
Видеоклипы | Take My Love • The Sweetest Surrender • Lonely • You’ll Never Meet An Angel • Lonely II • One Life • Mystery (The Power Within) |
plazma.ru |
dic.academic.ru
Плазма — Википедия
Материал из Википедии — свободной энциклопедии
Плазменная лампа, иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая . Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу.Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества.
Ионизированный газ содержит свободные электроны и положительные и отрицательные ионы. В более широком смысле, плазма может состоять из любых заряженных частиц (например, кварк-глюонная плазма). Квазинейтральность означает, что суммарный заряд в любом малом по сравнению с размерами системы объёме равен нулю, является её ключевым отличием от других систем, содержащих заряженные частицы (например, электронные или ионные пучки). Поскольку при нагреве газа до достаточно высоких температур, он переходит в плазму, она называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества.
Поскольку частицы в газе обладают подвижностью, плазма обладает способностью проводить электрический ток. В стационарном случае плазма экранирует постоянное внешнее по отношению к ней электрическое поле за счёт пространственного разделения зарядов. Однако из-за наличия ненулевой температуры заряженных частиц существует минимальный масштаб, на расстояниях меньше которого квазинейтральность нарушается.
История открытия[ | ]
Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году. Ленгмюр писал[1]:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Древние философы полагали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Можно сказать, что это положение с учетом некоторых допущений укладывается в современное представление о четырёх агрегатных состояниях вещества, причём плазме соответствует огонь. Свойства плазмы изучает физика плазмы.
Виды[ | ]
По сегодняшним представлениям, фазовым состоянием большей части барионного вещества (по массе ок. 99,9 %) во Вселенной является плазма.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвёздное пространство). К примеру, планета Юпитер сосредоточила в себе практически всё вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твёрдом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём — и того меньше: всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определённый электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжёлых заряженных ионов (см. пылевая плазма).
Наиболее типичные формы плазмы | ||
Искусственно созданная плазма |
encyclopaedia.bid