Резистивный делитель тока – Резистивный делитель тока. Формула для расчета делителя тока на сопротивлениях.

Содержание

Резистивный делитель тока. Формула для расчета делителя тока на сопротивлениях.

Делитель тока на резисторах — электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь тока посредством элементов электрической цепи, состоящей из резисторов.

При проектировании электрических цепей возникают случаи, когда в цепи протекает ток одного номинала, а номинально-допустимый ток нагрузки должен быть меньше. Для этих целей используют делители тока. Делители тока основаны на первом законе Кирхгофа. 

Самая простая схема резистивного делителя тока — это два параллельно подключенных сопротивления и источник напряжения или тока.

На приведенной ниже схеме ток I при достижении узла разделяется на два тока I2 и I3. Согласно первому закону Кирхгофа ток I равен сумме токов I2 и I3.

 

Напряжение на сопротивлениях UR2 и UR3 одинаковое, т.к. они соединены параллельно.

 

Если к сопротивлениям R2 и R3 приложено напряжение U, то ток через сопротивления, согласно закону Ома:

     

Подключаем нагрузку последовательно к R1 или к R2. Выбираем то сопротивление, через которое протекает нужный ток. В результате через нагрузку будет протекать ток IR3=I3.

Примеры применения делителя тока 

  1. Как делитель тока. Представьте, что у Вас есть светодиод, номинальный ток через который 17 мА (миллиампер) и есть схема, через которую протекает ток 30 мА. При маленьком токе светодиод будет гореть тускло, при большем — выйдет из строя.  Для того, чтобы светодиод работала в номинальном режиме (ток 17 мА) необходимо ток 30 мА разделить на 17 и 13 миллиампер. Данную задачу выполняют простейшие делители тока на резисторах.
  2. Датчик параметр — ток. Сопротивление резистивных элементов зависит от многих параметров, например растяжение и сжатие. Начинаем выполнять механические воздействия над одним из сопротивлений. В результате изменяется его сопротивление. Согласно закону Ома ток через это сопротивление будет изменяться. Согласно первому закону Кирхгофа общий ток так же будет изменяться.
  3. Измерение больших токов. Через первое сопротивление пропускается почти весь ток, через второй малая часть (миллиамперы или микроамперы). Измерение производится миллиамперов.

Ограничения при использовании резистивных делителей тока

Номинал сопротивления нагрузки должен быть на несколько порядков меньше, чем величина сопротивлений делителя тока. В противном случае нагрузка будет влиять на протекающий через цепь ток. В результате делитель напряжения будет работать неверно.

Резистивный делитель тока уменьшает КПД электрической цепи за счет потребления активной мощности сопротивлениями.

Необходимо использовать высокоточные прецизионные сопротивления.

www.kurstoe.ru

Делитель тока

 

В этой статье расскажем о делители тока, где он применяется и примеры решения задач.

Представьте, что течёт река, и вдруг ширина её русла резко уменьшается, через некоторое расстояние ширина русла снова увеличивается. Что же происходит в том месте, где русло узкое? Скорость потока воды резко возрастает, вода пытается расширить русло реки, происходит разрушение берегов и углубление русла. Для того, чтобы скорость потока упала, достаточно прорыть дополнительный параллельный канал, по которому пустить часть потока. При этом, этот искусственный канал можно использовать в своих целях, например крутить водяное колесо (по современному — гидроэлектростанцию). Как правило, сначала делают «колесо», а потом перекрывают основное русло реки. Другими словами — поток воды делят на два потока, которые потом всё равно объединяются, но при этом один из потоков используют в своих определённых целях. В частности, на гидроэлектростанциях всегда имеется два потока — один используется для вращения турбин электростанции, а другой в зависимости от полноводности реки — «сброс», или дополнительный канал отвода воды — водосливную плотину, предназначенную для регулирования уровня воды перед плотиной ГЭС.

Делитель тока на резисторах предназначен для того, чтобы, не изменяя общего тока протекающего через электрическую цепь, часть его направить в другое плечо делителя, а после выполнения определённой функции вернуть эту часть обратно.

Где применяется делитель тока? Делитель тока применяется в измерительных приборах, когда необходимо измерить большой ток (единицы, или сотни Ампер) прибором, рассчитанным на маленький ток (миллиамперы или даже микроамперы). В этом случае, внутреннее сопротивление измерительного прибора выступает в качестве одного из резисторов, а второй резистор в таком случае называют «шунтом», так как он шунтирует проходящий ток (основная часть тока бежит через него). Шунт в схеме измерения имеет сопротивление, которое намного меньше внутреннего сопротивления измерительного прибора. Кроме того, делитель тока применяется в различных схемах автоматического регулирования, использующих в качестве контролируемого параметра — ток, проходящий через электрическую цепь. Делитель тока может применяться в различных каскадах передачи, или усиления тока, когда один пассивный, или усилительный элемент по своим электрическим параметрам не способен обеспечить прохождение через него большого тока. В этом случае их подключают параллельно, разделяя ток на равные доли (пополам). Наглядным примером использования делителя тока является его применение в цепи автоматического регулирования и измерения в Универсальном зарядном устройстве, или в цепи контроля схемы защиты от перегрузки по току и удвоения мощности выходных транзисторов в Универсальном блоке стабилизированного питания.

 

Изобразим цепь делителя тока:

На рисунке видно, что общий входящий ток делится на два, и проходя цепь, снова объединяется в один.

Расчёт делителя тока на резисторах основывается на законе Ома, правиле сложения токов (законе Кирхгофа) и формуле параллельного соединения резисторов:

(14)

(15)

(16)

Выведем закон Ома для этой цепи. Его можно записать в следующем виде:

(17)

Преобразовывая указанные формулы так, как нам удобно, мы можем определить:

1. Определить ток I1 и I2 в плечах резисторов R1, R2 по известным значениям общего тока Iобщ и сопротивлений резисторов R1, R2 :

(18)

(19)

Пример: Определить значения I1 и I1 делителя тока, если значение общего тока

Iобщ = 0,6А, сопротивление R1 =100 Ом, а R2 = 20 Ом.

Решение: По формуле (18) вычисляем : I1 = 0,6 * 20 / (100 + 20) = 0,1 А; По формуле (19) вычисляем : I2 = 0,6 * 100 / (100 + 20) = 0,5 А; Не забывайте, что резисторы поглощают мощность, поэтому её необходимо рассчитать, (формула3):

P = I * I * R

Определим рассеиваемую мощность резисторов по формуле (3):

Для резистора R1 :       P = 0,1 * 0,1 * 100 = 1 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт;

Для резистора R2 :       P = 0,5 * 0,5 * 20 = 5 Вт; по правилу (1) выбираем резистор мощностью P = 10 Вт.


2. Рассчитать шунт R2 в цепи измерительного прибора, при известных: внутреннем сопротивлении R1, максимальном токе обмотки катушки прибора I1 и максимальном значении общего тока Iобщ
цепи делителя тока, представленного на схеме:

(19)

Пример: Полное отклонение стрелки миллиамперметра при значении I1 = 1 мА, внутреннее сопротивление катушки прибора R1 = 200 Ом. Рассчитайте шунт R2, чтобы стрелка прибора отклонялась на максимальное значение при общем токе Iобщ = 1 А.

Решение: По формуле (19) вычисляем :        R2 = 0,001 * 200 / (1 – 0,001) = 0,2 Ом; Рассчитаем поглощаемую (рассеиваемую) мощность R2 (формула 3): P = I2 * I2 * R2 , где I2 = Iобщ — I1 = 999 мА, P = 0,999 * 0,999 * 0,2 = 0,199 Вт; по правилу (1) выбираем резистор мощностью P = 0,25 Вт

Для достижения точности в измерительных цепях, выбирают высокоточные резисторы, кроме того, используют их последовательное и параллельное соединение.

Как и в случае с делителем напряжения, Вы спросите: Если это делитель, должен быть коэффициент деления? Да он есть, но в определении необходимых величин, пользоваться им крайне неудобно, поэтому не буду ломать голову ни себе, ни Вам.

Далее будем рассматривать Конденсатор.

meanders.ru

Делитель тока | Практическая электроника

Предисловие

Какие ассоциации у вас возникают при словосочетании “делитель тока”? У меня сразу возникает ассоциация с делителем потока. Давайте представим себе реку, у которой очень большой поток.

Это поток воды бежит с очень большой скоростью! Он смывает на своем пути камни, землю, деревья. Представьте, что эта река находится рядом с вашим домом. Через год-два ваш дом смоет под чистую! Чтобы этого не произошло, надо ослабить течение реки, чтобы ее поток был слабый. Например как здесь:

Но как это сделать? А почему бы нам  не прорыть большой канал, чтобы бОльшая часть воды текла через него. А это хорошая идея не так ли?

Весь смак заключается в том, что в каждой отдельной речке скорость воды будет меньше. В электротехнике и электронике все тоже самое! Река – это провод, сила потока  – это сила тока, ширина реки – сопротивление, напряжение – угол наклона реки. Все элементарно и просто!

Делитель тока (теория)

Для того, чтобы разделить силу тока, нам потребуются два резистора. В статье про сопротивление мы знаем, что резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов у нас на каждом резисторе падало напряжение, тем самым мы получили делитель напряжения. При параллельном соединении резисторов мы получим делитель тока.

Давайте рассмотрим вот такую схемку, состоящую из двух резисторов, соединенных параллельно:

Вот эти два резистора можно заменить одним резистором. Общее сопротивление будет равно:

Напряжение U между точками A и В считается общим для каждого резистора, так как у нас эти два резистора соединены параллельно. Значит, через них должен также протекать общий ток. Запомните правило, при параллельном соединении напряжение на резисторах одно и то же, а ток будет равен:

Как же нам определить, какой ток у нас проходит через каждый резистор? Согласно Закону Ома

Следовательно  получаем:

Отсюда 

и

Проще говоря, если вместо какого-то резистора подсоединить какую-нибудь  нагрузку, например вентилятор от компьютера, то мы можем регулировать в ней силу тока, а следовательно и мощность, параллельно выводам подключив какой-нить резистор. А какой именно, можно глянуть на формулы. Этот процесс называется шунтирование.

Делитель тока (практика)

Вот два наших резистора

Замеряем значение сопротивления первого толстого резистора. Кто не помнит, как это делается, прошу сюда.

Замеряем значение второго маленького резистора

Берем наш лабораторный блок питания и выставляем на нем 12 Вольт

Спаиваем два конца резисторов и замеряем силу тока сначала на толстом резисторе

Потом замеряем силу тока на тонком резисторе

Спаиваем их параллельно и замеряем силу тока на параллельно соединенных резисторах

У нас получилось, что общая сила тока через оба резистора будет равняться сумме токов, протекающих через каждый  отдельный резистор. 0,06 + 0,14 = 20. У нас же амперметр на блоке питания показал 0,21 Ампер. 0,01   – погрешность прибора.

Отсюда делаем вывод: сила тока, протекающая через параллельно соединенные сопротивления будет равняться сумме токов, протекающих через каждое отдельное сопротивление.

Резюме

Делитель тока имеет важное значение в схемотехнике в качестве элемента цепи для подключения устройства с номинальным током меньшим, чем протекающий в цепи.

На величину сопротивления влияют внешние факторы, например температура. Изменение температуры приводит к измерению сопротивления делителя тока. В результате изменяется ток через ветвь цепи.

Измерение больших величин токов. Подключается два сопротивления. Через одно протекает почти весь ток, через второе — малый ток (миллиамперы). Измеряется ток через второе сопротивление. Далее выполняется расчет общего тока.

Номинал нагрузки, подключаемой в ветвь делителя тока, должен быть в 100—1000 раз меньше, чем сопротивление делителей. В противном случае схема делителя будет работать неверно.

Активные сопротивления делителя тока снижают КПД схемы.

Целесообразно применять прецизионные сопротивления. Это увеличивает точность, но повышает стоимость.

Также про делитель тока можно прочитать в Википедии по этой ссылке.

www.ruselectronic.com

Делитель тока

делитель токарный, делитель тока тока
Дели́тель то́ка — простейшая линейная электрическая цепь, выходной ток которой представляет собой часть входного тока Это обеспечивается распределением тока между ветвями делителя

В качестве делителя тока обычно применяют элементы с регулируемым сопротивлением потенциометры, подключаемые параллельноисточник не указан 425 дней Можно представить как русло реки, разделяющееся на несколько рек Согласно первому закону Кирхгофа, сумма токов, входящих в узел и выходящих из узла, равна нулю Применяемые сопротивления для деления токов могут быть как активными, так и реактивными Реактивные сопротивления возможно использовать только на переменном токе

Содержание

  • 1 Резистивный делитель тока
  • 2 Применение
  • 3 Ограничения в применении резистивных делителей тока
  • 4 См также
  • 5 Ссылки

Резистивный делитель токаправить | править код

Простейший резистивный делитель тока — это два параллельно включённых резистора R 1 и R 2 , подключённых к источнику напряжения U Поскольку резисторы соединены параллельно, то к ним приложено одинаковое напряжение

Ток через них можно определить согласно закону Ома:

  I 1 = U / R 1 =U/R_

  I 2 = U / R 2 =U/R_

Общий ток в цепи согласно первому закону Кирхгофа

  I = I 1 + I 2 +I_

Применениеправить | править код

  • Делитель тока имеет важное значение в схемотехнике в качестве элемента цепи для подключения устройства с номинальным током меньшим, чем протекающий в цепи
  • Датчик параметр-ток На величину сопротивления влияют внешние факторы, например температура Изменение температуры приводит к изменению сопротивления делителя тока В результате изменяется ток через ветвь цепи
  • Измерение больших величин токов Подключается два сопротивления Через одно протекает малый ток миллиамперы, через второе называемое шунтом — весь оставшийся ток Измеряется ток через первое сопротивление Далее выполняется расчет общего тока

Ограничения в применении резистивных делителей токаправить | править код

Для поддержания приемлемой точности работы делителя, необходимо, чтобы величина тока, протекающего через сопротивления делителя, была не менее чем в 10 раз больше, чем ток, протекающий в нагрузке см аналогичное требование у делителя напряжения Увеличение этого показателя до ×100,×1000 или больше пропорционально увеличивает точность работы делителя, однако это также увеличивает поперечное сечение проводников, что увеличивает размеры, стоимость и снижает КПД схемы Это одна из причин, по которой делители тока малопригодны в качестве источников постоянного тока для питания нагрузок Для этой цели применяют иные схемотехнические решения, например стабилизаторы тока

См такжеправить | править код

  • Делитель напряжения
  • Автотрансформатор

Ссылкиправить | править код

  • Делитель тока

делитель тока китчен, делитель тока тока, делитель токарный, делитель токарь


Делитель тока Информацию О




Делитель тока Комментарии

Делитель тока
Делитель тока
Делитель тока Вы просматриваете субъект

Делитель тока что, Делитель тока кто, Делитель тока описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Делитель тока

Делитель тока – устройство позволяющее поделить ток в цепи на две составные части, с целью использования одной из них. Другими словами, делитель тока необходим в том случае, если устройство не рассчитано на большой ток, и нам необходима лишь некоторая часть этого тока.

Принцип действия делителя тока основан на первом законе Кирхгофа – сумма токов сходящихся в узле равна нулю. Если провести аналогию с водой, то его  можно представить как русло реки, которое разветвляется на два более маленьких оттока.

 

Для нахождения токов I1 и I2 воспользуемся законом Ома, но для начала найдем эквивалентное сопротивление для параллельного соединения. 

Делители тока применяются в измерительных устройствах, например при измерении больших токов. С помощью добавочного сопротивления – “шунта” расширяют предел измерения амперметра. Для этого, шунт подключается параллельно амперметру. В результате, через амперметр протекает ток, зная который, можно найти общий ток, протекающий в цепи. Обычно шунт имеет сопротивление меньше, чем амперметр, для того чтобы значительная часть тока ушла через него.

Выведем коэффициент деления (шунтирования) n. Будем считать, что параметры с индексом 1 принадлежат амперметру (прибору), а параметры с индексом 2 – шунту. Параметры без индексов общие.

Рассмотрим пример.

Амперметром с пределом измерения 1 А и внутренним сопротивлением 12 Ом, необходимо измерить ток в 3 А. Каким должно быть сопротивление шунта?

Из формулы для коэффициента шунтирования, выразим Rш 

Еще один пример

Каким станет новый предел измерения амперметра, после его шунтирования сопротивлением в 10 Ом, если старый предел был равен 0,5 А? Сопротивление измерительного механизма амперметра – 25 Ом.

Посчитаем коэффициент шунтирования 

Тогда новый предел измерения амперметра

 

Спасибо за внимание!

Рекомендуем — делитель напряжения

  • Просмотров: 4362
  • electroandi.ru

    Резистивный делитель напряжения. Расчет делителя напряжения на резисторах

    При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

    Самая простая схема — резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

     

    При последовательном подключении сопротивлений через них протекает одинаковый ток I.

     

    В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

        

    Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное UR2.

    Примеры применения делителя напряжения 

    1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
    2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
    3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

    Ограничения при использовании резистивных делителей напряжения

    • Номинал сопротивлений делителя напряжения на резисторах должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки, подключаемой к делителю. В противном случае сопротивление нагрузки уменьшит величину разделенного делителем напряжения.
    • Малые значения сопротивлений, являющихся делителем напряжения, приводят к большим потерям активной мощности. Через делитель протекают большие токи. Необходимо подбирать сопротивления, чтобы они не перегорали и могли рассеять такую величину отдаваемой энергии в окружающую среду.
    • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы, индукционные печи.
    • Снижение КПД схемы за счет потерь на активных элементах делителя напряжения.
    • Для получения точных результатов в делителе напряжения необходимо использовать прецизионные (высокоточные) сопротивления.

    www.kurstoe.ru

    Делитель тока Википедия

    Дели́тель то́ка — простейшая линейная электрическая цепь, выходной ток которой представляет собой часть входного тока. Это обеспечивается распределением тока между ветвями делителя.

    В качестве делителя тока обычно применяют элементы с регулируемым сопротивлением (потенциометры), подключаемые параллельно.[источник не указан 1005 дней] Можно представить как русло реки, разделяющееся на несколько рек. Согласно первому закону Кирхгофа, сумма токов, входящих в узел и выходящих из узла, равна нулю. Применяемые сопротивления для деления токов могут быть как активными, так и реактивными. Реактивные сопротивления возможно использовать только на переменном токе.

    Резистивный делитель тока[ | ]

    Простейший резистивный делитель тока — это два параллельно включённых резистора R1{\displaystyle R_{1}} и R2{\displaystyle R_{2}}, подключённых к источнику напряжения U{\displaystyle U}. Поскольку резисторы соединены параллельно, то к ним приложено одинаковое напряжение.

    Ток через них можно определить согласно закону Ома:

     I1=U/R1{\displaystyle \ I_{1}=U/R_{1}}.

     I2=U/R2{\displaystyle \ I_{2}=U/R_{2}}.

    Общий ток в цепи согласно первому закону Кирхгофа

     I=I1+I2{\displaystyle \ I=I_{1}+I_{2}}.

    Применение[ | ]

    • Делитель тока имеет важное значение в схемотехнике в качестве элемента цепи для подключения устройства с номинальным током меньшим, чем протекающий в цепи.
    • Датчик параметр-ток. На величину сопротивления влияют внешние факторы, например температура. Изменение температуры приводит к изменению сопротивления делителя тока. В результате изменяется ток через ветвь цепи.
    • Измерение больших величин токов. Подключается два сопротивления. Чере

    ru-wiki.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *