Блок питания на 48 вольт своими руками: Ещё блок питания, теперь 48 Вольт 0.5 (1) Ампер. Обзор блока питания 48 Вольт. Принципиальная схема и тест блока питания 48 В

Ещё блок питания, теперь 48 Вольт 0.5 (1) Ампер. Обзор блока питания 48 Вольт. Принципиальная схема и тест блока питания 48 В

$8.21 (3шт)

Перейти в магазин

Как я писал в предыдущем обзоре, пришли ко мне несколько разных блоков питания и сегодня обзор следующего. В прошлый раз был БП на 12 Вольт, но сегодня вариант на более редкое напряжение, 48 Вольт, но при этом также имеющее свою сферу применения, о которой будет рассказано в конце обзора.
В общем как всегда, тесты, схемы и ответы на некоторые вопросы, которые задавали мне в комментариях.

Все, что касается того, как мне нравится ковырять разные блоки питания я рассказал раньше, потому сразу перейду к обзору.

Здесь я также заказал лот из трех штук, и аналогично первому БП получил три отдельных больших пакетов с защелкой.

Судя по странице товара в магазине, данный блок питания заявлен как 48 Вольт 1 Ампер, что в сумме должно дать 48 Ватт мощности.
Из названия пропала надпись — Disassembled, но зато появилось — LED.

Внешне очень аккуратно и весьма компактно.

Размеры данного блока питания составляют: 75х38х25мм, он конечно больше, чем предыдущий, но ненамного. При этом там была заявлена мощность 12 Ватт, здесь заявлено 48 Ватт. Но последнее мы еще проверим.

На одной из длинных сторон платы установлен радиатор, при этом радиатор соединен с минусом «горячей» стороны БП. Около «холодной» стороны присутствует изоляция, а сам радиатор примерно на 8-9мм короче, чем может сначала показаться по фото, т.е. изоляция выступает сильно за край радиатора.

Еще пара общих видов платы, больно уж понравилась внешне 🙂

Немного подробнее об установленных компонентах.
1. По входу присутствует предохранитель на ток 2 Ампера в стеклянном корпусе, есть также и небольшой термистор, но варистора нет. Также виден помехоподаляющий конденсатор Х типа.
2. Входной фильтр состоит из конденсатора Х типа и синфазного дросселя. Диодный мост из отдельных диодов.
3.

Входной конденсатор имеет емкость 47мкФ. Для мощности в 48 Ватт это совсем впритык, но о этом позже.
4. Я ковырял много блоков питания, но первый раз увидел керамический конденсатор параллельно входному электролитическому. Возможно такое попадалось и раньше, но не уверен.

1. Высоковольтный транзистор в изолированном корпусе, тип транзистора — STK0465, даташит не смотрел, но уже из названия можно предположить что он на ток 4 Ампера и напряжение 650 Вольт. Крепеж дополнительно залит лаком, пробовал снимать, но побоялся что просто оторву радиатор и бросил эту затею, тем более что тип транзистора мне был уже известен.
2. Трансформатор довольно компактный, это обеспечивается тем, что применен не привычный Ш-образный магнитопровод. Внутри проглядывается заливка обмоток лаком.
3. Рядом расположен конденсатор цепи питания ШИМ контроллера.
4. Между радиатором и трансформатором спрятался конденсатор Y типа, соединяющий «горячую» и «холодную» стороны блока питания. Не лез к нему по причине сложности демонтажа радиатора, но номинал разглядел — 2.

2 нФ.

1. Интересно что в цепи обратной связи применена не привычная оптопара PC817, а PS2561A, правда я большой разницы не вижу. Зато видно, что плата явно планировалась для двух вариантов выходного диода, как на фото, так и в корпусе TO220. Во втором случае скорее всего предполагался радиатор. В общем-то логично, для выходного диода критичен выходной ток, а здесь он не очень высокий.
На выходе пара конденсаторов по 220мкФ 63 Вольта соединенных параллельно. Все установленные в БП конденсаторы производства Nichicon, входной KXG серии, остальные KY.
В качестве выходного фильтра установлен двухобмоточный синфазный дроссель. Также отмечу наличие в выходной цепи стабилитрона P6KE51A, дополнительно защищающего нагрузку.

В этот раз платы явно более свежие, судя по маркировке 2012-2013 года выпуска. Больше ничего узнать не смог, придется параметры выяснять экспериментально.

Качество пайки плат назвал бы средним, есть огрехи и не очень аккуратная пайка некоторых мест.

Входная часть блока питания и ШИМ контроллер. Маркировка ШИМ контроллера читается очень плохо (LzP32), потому при составлении схемы я просто нашел ближайший аналог по совпадению назначения выводов. Также на диоде цепи питания ШИМ контроллера полностью отсутствует маркировка, причем на всех трех платах.

В выходной цепи помимо привычных компонентов присутствует и стабилитрон. Дело в том, что регулируемый стабилитрон TL431 имеет максимальное напряжение до 37 Вольт, даже с учетом оптрона это максимум 40, а выходное напряжение у блока питания составляет 48 Вольт. Потому в таких случаях последовательно с оптроном ставят стабилитрон, в данном случае на 24 Вольта, он «срезает» напряжение до безопасной величины. На фото он с маркировкой ZD2.

По поводу схемотехники блока питания вопросов почти нет. В отличии от предыдущего БП здесь применен отдельный ШИМ контроллер и мощный высоковольтный транзистор. Данный вариант имеет как свои преимущества, так и недостатки.
Из преимуществ — мощность БП почти не связана с типом ШИМ контроллера.
Из недостатков — сложнее организовать защиту от перегрева.

На входе стоит разрядная цепочка из трех резисторов по 1.5МОм, которая разряжает конденсатор СХ. Привычная цепь обратной связи с добавлением стабилитрона.
Но есть и пара мелочей:
1. Точный тип микросхемы неизвестен, но ближайший аналог FAN6862, которая имеет вход измерения температуры с внешнего датчика. В обозреваемом БП этот вход используется как защита от превышения напряжения. Если по какой-то причине произойдет отключение обратной связи, то напряжение питания ШИМ контроллера поднимется, а с ним поднимется и напряжение на выводе 3 ШИМ контроллера. В итоге ШИМ контроллер начнет ограничивать выходное напряжение. По крайней мере явно задумано именно так.

2. На плате есть свободное место под терморезистор, обозначенное как NTC2. Сначала я думал, что это должна быть цепь защиты от перегрева, но включение (да и местоположение терморезистора) несколько оригинально, потому не совсем понял цель данного решения. На схеме эта цепочка обозначена красным цветом.

Переходим к тестам.
Как я писал, на странице магазина было заявлено, что БП имеет выходное напряжение в 48 Вольт при токе до 1 Ампера. И если в прошлый раз в названии товара проскальзывало другое значение тока, то здесь ток в 1 Ампер указан везде.

Все подключения были выполнены также как и с предыдущим БП, разница только в электронной нагрузке. Дело в том, что тест данного блока питания был несколько затруднен тем, что выходной ток и мощность не очень большие, но из-за напряжения в 48 Вольт я не мог применять нагрузку показанную в прошлом обзоре. Пришлось взять более мощную, но и более грубую.
На холостом ходу выходное напряжение немного занижено относительно заявленного значения, но на самом деле это абсолютно не критично, так как разница меньше даже чем 0.1% 🙂

Вообще, когда я взял плату в руки, то первая мысль была — явно блок питания на мощность порядка 25 Ватт. Данная мысль была основана на следующих наблюдениях:
1. Габариты платы
2. Емкость входного конденсатора
3. Габарит трансформатора.

Понятно что габарит трансформатора зависит от частоты работы преобразователя, но так как частота обычно в диапазоне 66-133 кГц (чаще 100-133), то и разница в габаритах не сильно большая. Бывают конечно и исключения, но не в данном случае, так как схемотехника была понятна уже при первом взгляде.

В связи с этом тест я старался проводить аккуратно, хотя у меня было еще два «запасных» подопытных.
Ниже на фото нагрузка током 200, 400, 600, 800, 1000, 1050мА.
Последнее значение выбрано неслучайно, при токе в 1.1 Ампера БП гарантированно уходит в защиту отключая выход. После снятия нагрузки опять выходит на рабочий режим.
Ну как бы ток в 1 Ампер дает, даже несколько минут подряд 🙂 Дольше не тестировал, так как на данном этапе не стояло такой цели.

На двух последних фото может показаться, что есть какие-то странности с выходным напряжением, все нормально, по мере прогрева выходное напряжение у этого БП немного растет, а так как последние два этапа проходили не мгновенно, то и выросло оно заметнее чем на первых четырех шагах.


Размах ВЧ пульсаций я бы оценил как весьма низкий, 40 мВ даже при полной нагрузке у БП с выходным напряжением в 48 Вольт это ниже 0.1%

В прошлом обзоре меня попросили посмотреть уровень пульсаций на частоте 100 Гц, решив что информация действительно может быть полезной, снял и это.
Осциллограммы сняты при токах нагрузки — 200, 300, 400, 500, 600 и 700мА, видно что наибольший размах при токах 300-500мА (15-25 Вт), хотя я ожидал что с ростом тока размах еще увеличится.

Но как всегда, более точную информацию о реальной мощности блока питания дает тест с термопрогревом.
Методика стандартна для моих обзоров, интервал каждого шага 20 минут, шаги — 200, 400, 600 и 700мА. В последнем шаге ток нагрузки был выбран исходя из результатов измерения температуры предыдущего шага.
Было замечено, что по мере прогрева растет выходное напряжение, в таблице это будет видно, но в самом конце я резко снял нагрузку и проверил какое напряжение получается на холостом ходу в прогретом состоянии.


Слева до прогрева, справа — после. На самом деле разница оказалась не так велика, как я ожидал, кроме того напряжение по сути пришло к заявленному значению.
В любом случае точность поддержания напряжения и термостабильность находятся на довольно высоком уровне.

По поводу нагрева ситуация немного неоднозначная, почему-то я сначала ждал что начнет перегреваться трансформатор, но оказалось что я был неправ и первым на «финишную прямую» вышел выходной диод. Стоит упомянуть, что на выходе стоит обычный, быстрый диод, а не диод Шоттки, так как при таких напряжениях их ставят редко. Думаю если заменить выходной диод на более быстрый, то можно получить длительную мощность еще немного больше.
Но в любом случае я уже могу сказать, что реальная длительная мощность данного БП около 25 Ватт, как я и думал в самом начале, но кратковременно он может отдавать примерно до 45-50 Ватт.

Термофото с двух ракурсов, здесь также видно, что все тепло сосредоточено в районе выходного диода.

Кроме того меня просили провести тест с воздействием на вход блока питания импульсной помехи. Правда должен сразу сказать, что к данному тесту я отношусь весьма скептически по ряду причин:
1. Условия теста не нормированы.
2. Входной фильтр блока питания защищает от проникновения помех от блока питания в электрическую сеть, но об этом чуть ниже.

Тестовый «стенд» был собран по показанной ниже схеме. Принцип предельно прост, при нажатии на кнопку переключателя на короткое время происходит разрыв контактов, когда верхний контакт уже размокнут, а нижний еще не замкнут. Так как в качестве нагрузки подключена индуктивность, то и возникает импульсная помеха.

В реальности все выглядело куда страшнее. Я использовал трансформатор мощностью 60 Ватт, хотел найти дроссель мощностью 80 Ватт для ЛДС, но видимо или выбросил, или переложил куда-то, второе более вероятно.

Дальше шел тест. я долго и нудно тыкал кнопку, при этом иногда помеха была слышна в компьютерных колонках, которые стояли рядом. Но сам блок питания видимо меня не совсем понял, так как помеху получалось зарегистрировать примерно 1 раз на 30-50 нажатий на кнопку, а так как помеха генерится два раза (при нажатии и отпускании), то получалось 1 срабатывание на 60-100 импульсов.
В итоге несколько раз я все таки зарегистрировал всплеск на выходе, максимальный полный размах был около 1 Вольта, что для 48 Вольт БП составляет всего 2% от выходного напряжения.

Так как это второй блок питания из последних «подопытных», то я решил провести этот тест и на предыдущем.
«Стенд» почти такой же как выше, заменена только электронная нагрузка на ту, которую использовал в прошлый раз.

Здесь результаты примерно аналогичны, я опять долго пытался генерить помеху и в итоге получил на выходе несколько всплесков с размахом примерно 0.2-0.3 Вольта, с учетом выходного напряжения в 12 Вольт получились почти те же 1.5-2.5% как и в тесте выше. (первые два скриншота)

Кроме того я проверил уровень пульсаций на частоте 100Гц, здесь вообще все отлично вплоть до 900мА (предпоследний скриншот), но при токе в 1 Ампер пульсации резко выросли, начала срабатывать защита блока питания.

Теперь еще несколько слов о том, почему я скептически отнесся к тесту импульсной помехой.
Для начала давайте представим себе упрощенный вариант квартирной электросети. Если представить, что помеха (пусть это будет холодильник), генерируется в точке 2, а наш БП стоит в точке 1, то мы можем получить ощутимую помеху на входе (пользователи Синклеров помнят). Но если мы перенесем блок питания в точку 4, то уровень помехи снизится во много раз, так как на пути у неё будут:
1. Провода, которые выполнены отнюдь не из сверхпроводника
2. Автоматические выключатели, токовые катушки в которых являются хоть небольшими, но индуктивностями.
3. Нагрузка, например в точке 3. Это может быть как обычный нагреватель (резистивная нагрузка), так и блок питания компьютера (емкостная нагрузка).

Т.е. нельзя подходить к проблеме «в лоб», так как сеть представляет собой довольно сложную и несколько инертную нагрузку. Потому тест с трансформатором я воспринимаю скорее как «сферический генератор в вакууме». Нет, конечно по своему он имеет смысл, но на мой взгляд лишь условный, так как входные фильтры также бывают разными.

Вообще электрическая сеть подвержена постоянным импульсным всплескам, от холодильников, искрящих контактов, мощных нагрузок (особенно индуктивных), но больше влияют природные факторы, например гроза или перехлест проводов на столбах. Опять же, последнее в городских условиях встречается куда реже, так как силовые кабели проложены под землей. Но при этом местах с плохими условиями рекомендуется применять УЗИП (Устройство Защиты от Импульсных Перенапряжений), по сути большой варистор.

Теперь по поводу самого входного фильтра БП. Для начала следует понимать, что они могут быть разными по назначению.
В самом простом варианте (не считая специально обученных перемычек), это конденсатор Х типа и синфазный дроссель, в таком варианте фильтр защищает электрическую сеть от помех блока питания. Т.е. помеха проходя со стороны БП сначала ослабляется дросселем, а потом по сути замыкается специальным конденсатором. Вообще импульсные БП генерируют массу помех в электрическую сеть, особенно если производитель сэкономил на всем.
Если надо ослаблять помехи в обе стороны, то ставят два конденсатора, до и после дросселя. В этом случае фильтр ослабляет помехи и с со стороны сети, которые могут попасть в блок питания.
Конечно частично помеха ослабляется даже входным конденсаторов после диодного моста, но специальный конденсатор сразу после дросселя более эффективен именно в случае импульсных помех.

Все это конечно очень утрированно, но я постарался объяснить «на пальцах».

Но это не все. Выше я писал о помехе, которая приходит по сетевым проводам между фазой и нулем, а существуют еще помехи относительно земли, для этого после дросселя ставят дополнительные конденсаторы, но так как их пробой может быть опасен, то соответственно Y типа.

Вообще входной фильтр блока питания может быть весьма сложным устройством, состоящим из кучи конденсаторов и дросселей. Ниже на схеме применены двухобмоточные дроссели двух типов.

Ну и собственно к чему это я все. Да собственно к тому, что следует для начала понимать, что и зачем мы вообще делаем. Если мы проектируем оборудование, где помеха на выходе может быть критична, то применяем полный вариант фильтра, если достаточно чтобы наш БП просто не «гадил» в сеть, то вполне хватит Х конденсатора и дросселя. В нашем случае мы имеем второй вариант фильтра, не более.

Теперь собственно зачем вообще нужны блоки питания на такое «хитрое» напряжение. Ниже на фото две коробочки, соединенные кабелем, при этом одна коробочка питается от другой.

Одна коробочка представляет собой блок питания, вторая — понижающий преобразователь напряжения. В сумме это пассивный аналог PoE, т.е. предназначен для питания низковольтных устройств по кабелю локальной сети. Данный вариант был собран что называется «на скорую руку», когда мне надо было запитать роутер, стоящий в 10 метрах от ближайшей розетки, а в распоряжении был только LAN кабель.

На фото видно, что даже коробочка немного подплавлена, осталась после каких-то экспериментов, а выбросить было жалко.
Вообще обычно я делал БП на 48-55 Вольт, но в данном случае напряжение 24 Вольта.

Если блок питания, показанный выше, отличается только напряжением, то вот на удаленной стороне я делал кардинально по другому. Так как в данном случае все было в пределах квартиры, то на удаленной стороне стоял просто DC-DC преобразователь.
Но в остальных случаях я делал преобразователи с гальванической развязкой и ШИМ контроллерами типа TOP414 или DPA-Switch (в зависимости от требуемой мощности). TOP412-414 был дешевле и проще, но мощность ограничена на уровне 15 Ватт (если не путаю), DPA-Switch заметно мощнее, некоторые обеспечивают до 100 Ватт.
Вообще, показанный комплект, самое простое, что я делал в подобном плане.

Кстати, на фото видно вздувшийся конденсатор, печально известный Capxon, хотя их серия KF мне очень нравится. Показанному ниже преобразователю (как и БП) больше 10 лет, на момент демонтажа с конденсатором было все в порядке. На выходе преобразователь выдает 5 Вольт с током до 3 Ампер.

На этом наверное всё, подведу итоги.
Данные блоки питания явно новее, чем показанные ранее, кроме того у меня создалось впечатление, что они и в эксплуатации особо и не были. Установлены фирменные конденсаторы, качественный трансформатор, входной и выходной фильтр и даже неожиданно… керамический конденсатор параллельно входному электролитическому конденсатору.
Параметры неплохие, блок питания реально длительно обеспечивает мощность около 25 Ватт и кратковременно до 45-50, что в таком габарите весьма неплохо. Я думаю что если взять версию на 24 Вольт, то запросто можно сделать компактный БП для паяльника TS100 (может и стоит взять такой БП попробовать).

На странице магазина указано что выходной ток 1 Ампер, но не указано, что это кратковременный ток, потому получилось как в прошлый раз, кратковременный указали в качестве длительного.
В остальном БП понравился, хотя и бывший в употреблении, что конечно добавляет опять таки некий «элемент неожиданности». К сожалению я могу говорить только за те три штуки, которые у меня на руках.

Как всегда жду вопросов и просто комментариев, надеюсь что обзор был полезен.

Небольшое дополнение.
В обзоре я писал, что пытался найти дроссель от лампы дневного света и не смог найти. Но как часто бывает, ищешь одно, а под руку попадается совсем другое и иногда даже более интересное.
Вот так и в этот раз, попался процессор, Celeron 266/66, не удержался и сфотографировал 🙂
Чувствую, что при следующих поисках найду под него и материнскую плату.

В этом году ему будет 20 лет, как быстро время летит, уже и магазина где он куплен нет и в помине.

$8.21 (3шт)

Перейти в магазин

48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить

Многие знают мою тягу к разным блокам питания. Я обозревал блоки питания на 5, 12, 24 и 36 Вольт, а сегодня подошла очередь следующей ступени, БП на 48 Вольт.
В общем на мой операционный стол попал блок питания на 48 Вольт и 240 Ватт, будем разбирать, измерять, тестировать, ну и конечно анализировать.

Как то давненько я не разбирал блоки питания, даже скучать по ним начал.
Вообще этот блок питания лежал у меня уже давно, все как то руки не доходили, но вот дошли, тем более что БП вполне полезный.

Пришел этот блок питания в такой же стандартной белой коробке как и все остальные, вообще такая упаковка присутствует и у брендовых БП.
Конструктивно блок питания выполнен в металлическом кожухе.
На одной из боковых сторон расположен переключатель диапазона входного напряжения.
На другой наклейка, информирующая о том, что перед нами блок питания со следующими характеристиками:
Входное напряжение 110/220 Вольт
Выходное напряжение — 48 Вольт
Выходной ток — 5 Ампер
Максимальная мощность — 240 Ватт
Размеры — 200 х 110 x 50 мм

Внешне к блоку питания претензий не возникло, да и не отличается он внешне от сотен моделей других БП такого формфактора, ну разве что размерами.
Хотя есть небольшой отличие.
В прошлом обзоре модели 36 Вольт 10 Ампер БП был «зеркальным» по отношению к этому.
Иногда это может быть важно.

На одном из торцов расположен клеммник для подключения питания, заземления и нагрузки.
Клеммник допускает подключение трех выходных линий, но внутри они соединены вместе, так как БП одноканальный. Такое может быть удобно при подключении нескольких потребителей и чаще всего встречается у относительно мощных блоков питания

В этот раз крышку клеммника не получится поднять на 90 градусов, как это можно было сделать у предыдущих моделей. Хоть и небольшой, но все таки минус.
Между корпусом и клеммником приютился регулятор выходного напряжения и светодиод индикации включения БП. Причем именно приютился, при беглом взгляде можно подумать что их нет.

Так как снаружи смотреть больше не на что, то полезем внутрь 🙂
Внутри все та же классика как она есть, Г-образное шасси, которое закрывается такой же Г-образной перфорированной крышкой. Шасси алюминий, крышка — сталь.

Рассмотрим поближе. Первое что мне пожалуй бросилось в глаза, это довольно большой для такой мощности трансформатор, хотя с учетом пассивного охлаждения это нормально.
Если бы охлаждение было активным, наверняка размеры трансформатора были бы поскромнее.
Помню дешевые комповые БП JNC, где было указано 300 Ватт, а трансформатор был меньше спичечного коробка.
В остальном можно сказать что схема классическая, монтаж свободный.

Внешне один в один БП на 36 Вольт из предыдущего обзора, но как я писал выше — зеркальный. Если сравнить фото этих БП то сразу станет понятно.

Пройдемся по критичным узлам, так сказать небольшой начальный визуальный осмотр и анализ.
Начинаем как всегда с сетевого фильтра.
Здесь он есть. Единственная отсутствующая деталь — конденсатор Х2 после дросселя (со стороны БП, а не сети), но на мой взгляд он не критичен.

А теперь рассмотрим ближе. Заодно вспомним, на что обращать внимание при выборе БП.
1. Конденсатор фильтра Х2 (серый), двухобмоточный (синфазный) дроссель, пара конденсаторов типа Y2. Все на месте, здесь вопросов нет.
2. Конденсатор с минуса БП на корпус БП, здесь обычный высоковольтный. Y2 смотрелся бы лучше, но для данного места это не так критично, потому можно простить.
3. Входной диодный мост применили типа T20XB60, производитель декларирует максимальный ток до 20 ампер (при установке на радиатор конечно) и напряжение до 600 Вольт (амплитудное).
Для данного применения просто отлично.
4. От бросков тока, при заряде конденсаторов входного фильтра, защищают два термистора (NTC терморезистора), включенные параллельно. В прошлом БП стоял один, может здесь запасной поставили? 🙂
В общем пока нормально.

1. Входные электролиты заявлены как 680мкФ 250В, известной китайской фирмы RubiconG, делают видимо где то рядом с Акайвой и Абибасом. Ну ладно, потом измерим, так как термоусадка может быть любой. На вид такое чувство, что их перед монтажом грызли. О_о.
2. Высоковольные транзисторы, корпус ТО-247, прижаты пластинкой через терморезинку к корпусу, проглядывает и паста, здесь придраться не к чему.
3. Выходной диод меня в этом БП удивил дважды. Вернее даже не диод, а метод его монтажа.
Выходной ток данного БП всего 5 Ампер (рассеиваемая на диоде мощность примерно как у БП 5В 7А), но здесь ему добавили и дополнительный алюминиевый радиатор.
Здесь он даром не нужен, свинчу, может пригодится, главное чтобы производитель не знал, а то ставить перестанет 🙂
4. Выходной дроссель и конденсаторы. Дроссель мне показался несколько маленьким, да и выходной фильтр отсутствует. Но тесты покажут кто есть кто, может все и нормально.

Второе чем меня удивила выходная диодная сборка. Я понимаю что на ней выделяется не так много тепла как у более сильноточных модификаций, но так монтировать… За такое надо бить по руками, лучше очень сильно бить, потому как НАДО.
Работать все это будет, но не очень надежно. Не говоря о том, что из-за тепловых деформаций, циклов нагрева/остывания, диод может вообще вылезти из крепежа.

Первый тест.
Выходное напряжение изначально было установлено как 48.7, диапазон регулировки позволяет охватить от 35 до 53 Вольта, после я выставил положенные 48 Вольт.
Что интересно, в БП на 36 Вольт был точно такой же диапазон регулировки.

В процессе измерения выходного напряжения почувствовал запах чего то горячего (радиолюбители поймут). Сразу же взял пирометр и начал искать что греется (сначала искал классическим способом), нашел.
Между конденсаторами выходного фильтра стоит нагрузочный резистор, который греется.
номинал резистора 1 кОм, такой же как в БП на 36 Вольт, но там на нем рассеивается 1,3 Ватта, а здесь 2.3 Ватта. понятно что он перегревается. Рекомендую его либо заменить на 1.5 кОм, либо вынести немного подальше от конденсаторов, благо место есть.
Но ставить такую «мину» просто некрасиво.

После этого блок питания был разобран дальше, плата держится на одном винте и крепеже транзисторов и диода, хотя есть место под еще один крепежный винт.
Кстати, в плате есть отверстия напротив крепежных отверстий в самом корпусе, т.е. если вы решили привинтить сам блок к чему либо, то за длину винтов можете не переживать, 50мм длиной точно влезут.

Печатная плата на четверочку. Качество пайки среднее, дорожки по которым течет большой ток, пролужены. В общем обычная плата, материал — гетинакс, как в большинстве таких устройств.
Какие либо компоненты снизу отсутствуют.

В данном случае схему я не чертил, а просто внес изменения в схему от 36 Вольт БП.
Дело в том, что отличия этих БП минимальные.
1. Убрали узел питания вентилятора
2. В 36В термистор стоял до фильтра питания, теперь после диодного моста.
3. Убрали резистор R7 (цепь снаббера)
4. Изменили номинал резистора R41 (стоит последовательно со светодиодом)
5. Поставили другую выходную диодную сборку.
6. Изменили выходной дроссель.
Мало того, все позиционные обозначения элементов на печатной плате точно такие же как в версии 36 Вольт. Это удобно, но с учетом того, что плата «зеркальная», то мне кажется что это было сделано специально.

Высоковольтные транзисторы D13009K, как и в прошлом БП.
Но вот диодная сборка теперь стоит другая, C25P40F, максимальный ток 25 Ампер, напряжение до 400 Вольт. Для 5 Ампер БП это с большим запасом.

Как я писал выше, в этом Бп отсутствует узел питания вентилятора, но место на плате есть, если надо, то вполне можно впаять недостающие элементы и поставить вентилятор.
Также есть место под вторую диодную сборку, параллельно первой, но на таких токах хватает и одной.

В ходе осмотра на плате была обнаружена маркировка, указывающая, что изначально это плата от (или для) БП на 300 Ватт.
Понятно что платы унифицированные, используются во всей линейке БП такой мощности.
Правда есть маленький нюанс, БП на 5 Вольт 30 Ампер это не одно и то же, что БП на 30 Вольт и 5 Ампер, хотя оба они имеют одинаковую мощность.
Обусловлено это тем, что если инвертор применен тот же, и потери на нем одинаковые, то на выходном диоде при 30 Ампер токе выделится куда больше тепла чем при 5, даже с учетом того, что в 5 Вольт версии стоят диоды Шоттки.
Иногда производители даже занижают выходной ток, указывая для 150 Ватт БП например 30 Вольт 5 Ампер и 5 Вольт 25 Ампер.

БП собран на базе самого известного ШИМ контроллера, KA7500, более известного под оригинальным наименованием TL494. Существует и отечественный аналог этой микросхемы, ее вообще выпускали все кому не лень 🙂

Немножко расскажу о ШИМ контроллерах вообще и о TL494 в частности.
Для начала стоит сказать, что данный ШИМ контроллер очень распространен. Произошло это благодаря его простоте, низкой цене, неплохому качеству работы и хорошей предсказуемости.
Я с ним познакомился около 17 лет назад. На тот момент это было очень хорошая микросхема.
Понятно что сейчас ШИМ контроллеров стало много, низковольтных, высоковольтных, многофазных, со встроенным силовым ключом и без и т.п.

Микросхема выпускается в 16 выводном корпусе, назначение выводов показано ниже.

Внутреннее устройство микросхемы выглядит примерно так. Вернее как раз так оно выглядит более точно, примерный вид будет позже.

Для того чтобы немного объяснить что такое ШИМ контроллер, а вернее показать его основные узлы я начертил такую вот блок схему (художник из меня еще тот).
Для начала по нумерации узлов.
1. Стабилизатор питания. На основной блок схеме он не показан, но иногда присутствует
Питает всю внутренние узлы. Иногда имеет режим микромощного старта, полезно для ШИМ контроллеров которые устанавливаются на «высокой» стороне БП. Такой режим позволяет сначала зарядить конденсатор питания микросхемы, потом стартовать и дальше уже питаться от отдельной обмотки трансформатора (а иногда и без нее).
2. ИОН, он же — Источник Опорного Напряжения.
Данный стабилизатор имеет высокую точность поддержания напряжения. Является «точкой отсчета» когда происходит измерение входного напряжения.
В TL494 проверяется в первую очередь (если микруха еще не в КЗ), в нормальном режиме выдает 5 Вольт. Если на входе микросхемы есть питание, а на этом выводе нет, то микросхема неисправна.
Также часто напряжение ИОНа является входным пороговым напряжением усилителя ошибки.
3. Задающий генератор. Иногда бывает с внешними времязадающими цепями, иногда с внутренними. Если цепи внешние, то можно задать частоту в широких пределах, если внутренний, то частота либо фиксирована на одном значении, либо можно выбрать из 2-3 значений. Задает частоту работы преобразователя.
4. Усилители ошибки. У TL494 их два, один используется для измерения напряжения, второй — тока. Но чаще всего усилитель ошибки один, но это не означает что нельзя контролировать и ток и напряжение, просто для этого придется сделать пару внешних цепей и свести их обе на этот вход (так сделано во многих преобразователях со стабилизацией тока и напряжения). Кстати, если подать на этот вход напряжение, немного превышающее опорное, то можно выключить преобразователь вообще, иногда это удобно если нет специального вывода для управления включением/выключением.
5. Цепь усилителя формирователя «мертвого времени». У некоторых контроллеров можно регулировать время паузы между выходными сигналами, ну или по другому — максимальную ширину сигнала в %. Бывает необходимо для защиты от выхода из строя выходных транзисторов, чтобы не вышло так, что один еще не закрылся, а второй уже открывается.
Также часто этот вход используют для плавного старта, подключая к этому выводу конденсатор.
6. Схема управления. Условно — синхронизирует работу генератора и усилителей ошибки.
Напряжение на выходе усилителя ошибки может меняться и несколько раз за один такт и чтобы не было «дребезга» не допускает формирование еще одного импульса управления до следующего тактового сигнала.
Выглядит это так — Схема управления включила подачу управления на выходной транзистор, напряжение на входе усилителя превысило напряжение ИОН, схема управления выключила силовой транзистор и не включает его до следующего такта генератора, потом все повторяется.
Собственно это и есть сам принцип работы ШИМ.
7. Микросхемы имеющие возможность работать в два такта (та же TL494) имеют и триггер, который управляет транзисторами поочередно. Т.е. сначала обрабатывает ширину импульса одного транзистора, потом второго, и т.д.
TL494 имеет возможность перевода выхода в режим однотактного управления, при этом работа триггера блокируется и выходы работают синхронно, это необходимо для однотактных блоков питания или DC-DC преобразователей. тех же Step-down или Step-up.
Кстати, встроенные в TL494 транзисторы позволяют сделать маломощный преобразователь без внешних транзисторов. Характеристики у них конечно не очень, да и сейчас полно микросхем с мощными встроенными транзисторами, но много лет назад это было полезно.

Вообще конечно микросхема давно морально устарела, современные решения лучше, быстрее (могут работать на более высоких частотах), имеют возможность микромощного запуска, встроенные силовые транзисторы, умеют измерять ток и т. д. и т.п.
Но при этом TL494 производилась, производится и будет производится и данный блок питания яркое тому подтверждение.
Конечно хочется чего то более современного, но обычно это или обратноходовые БП или более дорогие, брендовые, решения. А в дешевом сегменте пока рулит TL494.

Перечитал то что написал и понимаю что написал криво, но к сожалению я не преподаватель и у меня не 1.5 часа времени на лекцию, а всего лишь небольшой обзор, в котором хочется и товар показать, и протестировать его, и немного рассказать о том, как он работает.
Как уместить описание в маленькое количество текста я пока не знаю, но возможно буду добавлять информацию по мере выхода новых обзоров (если будут присылать товары на растерзание), либо буду готовить большой обзор, не знаю что лучше.
——

Под конец осмотра я измерил емкость входных и выходных электролитических конденсаторов.
Входной показал емкость в 448мкФ при заявленных 680. та же картина что и в 360 Ватт БП, но здесь эта емкость вполне допустима, так как при последовательном соединении получается около 225мкФ. А для 240 Ватт считается что хорошо если будет 240. В общем без запаса, но и не совсем маленькая.
Выходные конденсаторы установлены также «безродные», три штуки по 1000мкФ 63 Вольта.
По емкости и напряжению претензий нет, 3000мкФ для 5 Ампер вполне нормально (двухтактному БП достаточно меньшей емкости), 63 Вольта также с запасом, на большее напряжение ставить смысла нет.

В прошлом обзоре поставили под сомнение методику измерения конденсаторов впаянных в плату. Чтобы в будущем не возвращаться к этому вопросу я измерил емкость и у выпаянных конденсаторов, как видно на фото, разницы нет. Вернее она в пределах погрешности измерения.

Перед началом испытаний я все таки немного сжалился и доработал БП (жалко мне детали, которые не виноваты, что сборщик идиот экономист).
Выше я писал, что выходной диод прижат с перекосом, виной тому неправильная прижимная планка, скорее всего она рассчитана на компоненты в корпусе ТО-220 (размер стандартной КРЕНки), а корпус ТО-247 немного толще, вот и получился перекос.
Вариантов переделки два.
1. Подложить кусочек текстолита
2. просверлить отверстие в корпусе и прижать диодный мост винтиком.
На фото видно что я выбрал первый, как наиболее простой.

Для тестирования БП я подготовил привычный уже многим тестовый стенд, состоящий из:
1. Электронная нагрузка
2. Осциллограф.
3. Мультиметр
4. Бесконтактный термометр
5. Кабель питания и провода для подключения нагрузки.
6. Бумажка и очень дорогая, профессиональная, ручка :))))

Электронная нагрузка создавала соответствующую нагрузку, переводя все полученное в тепло (и в шум), мультиметр измерял выходное напряжение БП, осциллограф следил за пульсациями, термометр измерял температуры компонентов, а ручка все записывала 🙂

Комментировать основные этапы теста я не буду, все видно на фото и осциллограммах, скажу лишь что напряжение всегда стояло ровно 47.9, а пульсации не превышали 25-30мВ.

1. Холостой ход
2. Нагрузка 1 А.

1. Нагрузка 2 А
2. Нагрузка 3 А

1. Нагрузка 4 А
2. Нагрузка 5 А

Так как блок питания вел себя вполне прилично (чем меня немного удивил, я ожидал худшего), то я продолжил тесты.
1. Нагрузка 6 А
2. Дальше я поднимал ток уже по 0.5 Ампера, потому 6.5 А

Но и на этом я не остановился, так как БП продолжал упорно работать, нарушив некоторые мои планы и продлив время тестирования.
1. Я прогнал дополнительные 10 минут под током 7 Ампер, БП работал, правда пульсации несколько выросли (до 50мВ), но все равно оставались вполне нормальными.
2. Под конец я не выдержал и запустил БП под током 7.5 Ампера, но было чувство, что он просто издевается надо мной. У меня начала перегреваться нагрузка (на последних фото видно, что она работает без верхней крышки) и я остановил тест.

Что я могу сказать, БП прошел тест, причем прошел на отлично, у меня такое редко бывает.
А уж с учетом того, что это не бренд, на выходе стоят безымянные конденсаторы, на входе вообще покусанные, то даже не знаю в какую сторону и думать.

Конечно же результаты измерения температуры, здесь не все гладко, есть некоторые нюансы, но в целом неплохо.
Немного о нюансах.
По результатам виден перегрев выходного дросселя, но на самом деле волноваться надо не за него, так как это не феррит и он имеет максимальную рабочую температуру в 200 градусов (и то это перегрев не материала, а оболочки).
В то время как нежелательно поднимать температуру ферритового сердечника трансформатора выше 100-110 градусов. При более высокой температуре у него резко ухудшаются характеристики и условно он из 100 Ваттного становится 20 Ваттным, в результате перегружается инвертор, дальше «бах» и поход в магазин за новыми транзисторами.
Психологическим же пределом температуры полупроводников у меня считается тоже около 100-110 градусов. Работать они могут и при большей температуре (до 125 точно), но падает надежность.

И так табличка.
Под током 7 Ампер время теста было 10 минут, под током 7.5 Ампер измерение температур не проводилось так как тест был кратковременным.
Общее время теста составило 2 часа 10 минут.

Резюме
Плюсы
Блок питания выдал более заявленной мощности
Тепловой режим работы в норме
Отличный уровень пульсаций
Наличие нормального фильтра по входу 220 Вольт
Отличная стабильность выходного напряжения
Хорошая отработка защиты от КЗ.
Хорошая ремонтопригодность

Минусы
Конденсаторы входного фильтра имеют подозрительное происхождение
Низкое качество выходных конденсаторов
Крепеж выходной диодной сборки требует обязательной доработки.
Большой нагрев нагрузочного резистора, желательна замена.

Мое мнение. В этот раз я на распутье. С одной стороны входные и выходные конденсаторы непонятного происхождения, плохо прижатая выходная диодная сборка, греющийся резистор и дроссель. С другой стороны результаты тестов, которые показали большую перегрузочную способность, очень малые пульсации и высокую стабильность выходного напряжения даже на предельных токах.
На положительной чаше весов также устойчивость к КЗ (я случайно несколько минут пытался запустить БП с закороченным выходом), полупроводники с запасом и вполне лояльная цена.

Купил бы я такой БП? Да. Но заменил бы выходные электролиты на Samwha RD серии, отодвинул бы от них нагрузочный резистор и выходной дроссель, проверил прижим диодной сборки и пользовался. С такой переделкой я бы получил вполне неплохой БП за вменяемые деньги.
Альтернативный вариант, купить БП Менвелл серии NES, но у нас он стоит в 1,5 раза дороже и это модель на 150 Ватт, а не 240.

Надеюсь что информация была полезна, а обзор интересен, как всегда жду пожеланий и вопросов в комментариях.

Немного о том, для чего хорошо может подойти данный БП

Помимо просто питания каких то нагрузок (на сайте он вообще позиционируется как БП для светодиодных лент), такой БП отлично подойдет для питания платы регулируемого преобразователя и можно будет сделать блок питания типа такого.
Я бы только советовал накрутить на выходе 53-55 Вольт, тогда можно иметь БП с выходом до 50 Вольт и током до 5.1 Ампера.

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Создайте свой собственный регулируемый фантомный источник питания с низким уровнем шума 48 В

— Реклама —

Вот регулируемый фантомный источник питания 48 В с низким уровнем пульсаций и низким уровнем шума для аудио предусилителя и драйвера. Для таких блоков питания требуется хорошо отфильтрованное выходное напряжение с низким уровнем пульсаций и шумов и током менее 200 мА. Они относительно редки и дороги. Здесь представлено простое и недорогое решение, подходящее для многих приложений, включая тестовое оборудование и аудиоприложения.

Принципиальная схема и работа

Принципиальная схема регулируемого источника питания 48 В с низким уровнем пульсаций и шума показана на рис. 1. Он построен на основе мостового выпрямителя BR1, регулятора напряжения TL783 (IC1), трех выпрямительных диодов 1N4004 ( от D1 до D3) и несколько других компонентов.

Рис. 1: Принципиальная схема регулируемого источника питания 48 В

TL783 — это высоковольтный регулируемый стабилизатор напряжения, который может обеспечивать напряжение от 1,2 В до 125 В и выходной ток примерно до 700 мА. Его внутреннее опорное напряжение составляет 1,25 В, а минимальный выходной ток — 15 мА. Вот почему сопротивление резистора R7 равно 82 Ом (1,25 В/82 Ом = 15,24 мА).

— Реклама —

Максимальная рассеиваемая мощность TL783 зависит от корпуса TO-220 и его радиатора. Здесь используется дополнительный радиатор с тепловым сопротивлением ниже 10°C/Вт. Выходное напряжение TL783 можно рассчитать, используя приблизительное соотношение:

Vout=1,25 В×(1+R8/R7)

Вход 230 В сети переменного тока подается на разъем CON1.

Вход сети переменного тока защищен предохранителем F1. Напряжение сети переменного тока может иметь значительный шум. Входной фильтр помех построен на конденсаторах C1 и C2, резисторах R1 и R2 и катушках индуктивности L1 и L2.

 

Трансформатор X1 рассчитан на первичное напряжение 230 В переменного тока, на вторичное напряжение 60 В, 1 А.

Резисторы и конденсаторы R3, R4, C3, R5, C4 и R6 обеспечивают некоторую фильтрацию помех от сети переменного тока и от включения диодов в BR1. Конденсаторы С5, С6, С7 и С8 фильтруют выпрямленное напряжение. Кроме того, C9 и C10 уменьшают шум от IC1. Диоды D1, D2 и D3 защищают IC1. Резисторы R7 и R8 фиксируют выходное регулируемое напряжение Vвых. Дроссель L4 и конденсаторы C13 и C14 дополнительно фильтруют выходное напряжение от IC1.

Схема имеет три выхода (от O/P1 до O/P3), с фантомным питанием 48 В от каждого для управления тремя различными схемами. LED1 показывает наличие выходного напряжения.

Конструкция и испытания

Схема печатной платы для регулируемого источника питания 48 В показана на рис. 2, а схема его компонентов — на рис. 3. После сборки схемы на печатной плате поместите ее в подходящий шкаф.

Рис. 2: Схема печатной платы регулируемого источника питания 48 ВРис. 3: Расположение компонентов для печатной платы

Закрепите трансформатор X1 на корпусе шкафа и соедините его первичную и вторичную обмотки на печатной плате. Кроме того, подключите сеть 230 В переменного тока к разъему CON1. Закрепите LED1 на передней панели и CON2-CON4 на задней стороне для выходных нагрузок.

Для правильной работы схема не требует настройки.


Петре Цв Петров был научным сотрудником и доцентом в Техническом университете Софии (Болгария) и экспертом-лектором в OFPPT (Casablance), Королевство Марокко. Сейчас он работает инженером-электронщиком в частном секторе Болгарии.

Для ознакомления с другими интересными проектами DIY:
нажмите здесь

 

3 Объяснение простых схем зарядного устройства 48 В

Обновлено by Swagatam 394 Комментарии

Предлагаемая схема автоматического зарядного устройства на 48 В зарядит любую батарею на 48 В до оптимального уровня полного заряда 56 В, используя самые обычные компоненты. Схема очень точная благодаря функциям отключения при перезарядке.

Описание схемы:

Как показано на принципиальной схеме, основным элементом в цепи является операционный усилитель IC 741, который используется как компаратор.

Контакт № 3, который является инвертирующим входом ИС, определяется фиксированным напряжением 4,7 В через соответствующую цепь стабилитрона/резистора.

На другой вход подается напряжение считывания, которое на самом деле является напряжением, объединенным от источника питания и от батареи, другими словами, зарядным напряжением, которое подается на батарею для зарядки.

Сеть резисторов на выводе № 2 вместе с предустановкой образует цепь делителя напряжения, которая изначально настроена таким образом, чтобы напряжение на этом выводе оставалось ниже уровня напряжения на выводе 3, который является опорным напряжением, установленным на 4,7 В стабилитроном. .

Предустановка настроена таким образом, что напряжение на контакте №2 поднимается выше отметки 4,7, как только напряжение батареи поднимается выше 50В или порогового уровня заполнения заряда батареи.

В тот момент, когда это происходит, выход операционного усилителя становится низким, отключая MOSFET и отключая напряжение на аккумуляторе.

Первоначально, пока напряжение батареи и общее напряжение от источника питания 48 В остается ниже порогового уровня полного заряда батареи, выходной сигнал операционного усилителя остается высоким, а MOSFET остается включенным.

Позволяет подавать напряжение на аккумулятор для зарядки до тех пор, пока не будет достигнуто вышеописанное пороговое значение, которое автоматически запрещает дальнейший заряд аккумулятора.

МОП-транзистор можно выбрать в соответствии с номиналом Ач батареи.


9ОБНОВЛЕНИЕ 0047: Для преобразования этого в версию Solar вы можете прочитать эту статью


1) Использование Mosfet Cut Of

2) Версия с управлением по току вышеуказанной конструкции

ПРИМЕЧАНИЕ. На приведенных выше диаграммах ошибочно показано 48 В в качестве входа, правильное значение 56В. Поскольку уровень полного заряда батареи 48 В составляет около 56/57 В.

ПРИМЕЧАНИЕ : Сначала необходимо подключить батарею, а затем включить входное питание, иначе MOSFET не сможет инициировать зарядку. процесс. Убедитесь, что зеленый светодиод продолжает гореть после включения питания, это подтверждает состояние зарядки аккумулятора.

Вышеупомянутая конструкция также может быть построена с использованием TIP142 и красного светодиодного индикатора зарядки.

Простое зарядное устройство 48 В, 100 Ач. Схема с использованием операционного усилителя и TIP142

3) Создание полностью автоматической версии

Вышеуказанная схема может быть модернизирована в систему отключения при избыточном заряде, а также систему зарядного устройства для восстановления низкого заряда, для зарядки аккумуляторов 48В.

Модификация позволяет схеме отключать процесс заряда батареи при установленном пороге перезарядки и восстанавливать процесс, когда напряжение батареи падает ниже нижнего порогового значения.

Предустановка 10k должна быть скорректирована для установки уровня полного заряда, а предустановка 22k для определения нижнего порога батареи.

ПРИМЕЧАНИЕ. В приведенных выше двух цепях соедините КРАСНЫЙ светодиод последовательно с базой BC546. Это предотвратит попадание напряжения смещения операционного усилителя на базу BC546 и ложное срабатывание.

Упрощение конструкции

Приведенную выше конструкцию можно упростить, как показано на следующем рисунке. Обратите внимание, что в этой конструкции входные контакты операционного усилителя поменялись местами, что позволило исключить из схемы дополнительный PNP BJT.

Вышеупомянутая схема также может быть построена с использованием PNP BJT вместо MOSFET, как показано ниже: вышеуказанной цепи, как показано на следующей схеме:

Пожалуйста, уменьшите базовый резистор TIP36 до 1K, чтобы увеличить ток его коллектора , мосфет изначально внимания не требует. НЕ подключайте батарею во время выполнения этой процедуры.

Также изначально отключайте предустановленную ссылку 22k.

Примените более высокий пороговый уровень к вышеупомянутым точкам и отрегулируйте предустановку 10K так, чтобы КРАСНЫЙ светодиод просто загорался. Закрепите отрегулированный пресет небольшим количеством клея.

Теперь снова подключите предустановленную связь 22k на место.

Затем уменьшите напряжение выборки до нижнего порогового значения и отрегулируйте предустановку 22k так, чтобы теперь просто загорался зеленый светодиод, а КРАСНЫЙ светодиод выключался.

Если вы не обнаружите отклика от схемы, попробуйте использовать предустановку 100К вместо предустановки 22К.

Запечатайте настроенный пресет, как указано выше.

Настройка цепи завершена.

Обратите внимание, что во время реальных операций вышеуказанная схема будет работать только до тех пор, пока батарея остается подключенной к указанным точкам, без батареи схема не обнаружит и не ответит.

Отзыв от г-на Рохита

У меня есть солнечная панель 50-52 В, которая заряжает аккумулятор 48 В 78 Ач. Что я хочу, так это то, что когда моя батарея полностью заряжена, то есть достигает 54 В, зарядка батареи прекращается, а питание, поступающее от солнечных панелей, направляется на другой порт, от которого мы можем заряжать любое другое устройство, подключенное к этому порту. Эта зарядка должна продолжаться только до тех пор, пока напряжение батареи не превысит 48 В. Как только оно достигает 48v, аккумулятор снова начинает заряжаться от солнечных батарей, и подача на другой порт прекращается.

Надеюсь, вы скоро ответите.

Мой ответ на вышеуказанный запрос схемы

Вы можете попробовать последнюю схему из следующей статьи https://www.homemade-circuits. com/48v-солнечное-зарядное устройство- схема-с/ замените «нагрузку» любым другим устройством любым другим предпочтительным устройством.
С уважением

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *