Электромагнитная левитация своими руками. Как сделать левитрон своими руками: пошаговая инструкция по созданию устройства магнитной левитации

Как работает магнитная левитация. Какие компоненты нужны для создания левитрона. Пошаговая инструкция по сборке левитрона своими руками. Как настроить и отладить работу самодельного левитрона. Какие существуют виды магнитной левитации.

Содержание

Что такое магнитная левитация и как она работает

Магнитная левитация — это явление, при котором объект «парит» в воздухе под действием магнитного поля. Для создания эффекта левитации используется электромагнит, который то поднимает, то опускает магнитный объект. Ключевые компоненты устройства магнитной левитации (левитрона):

  • Электромагнитная катушка
  • Датчик Холла для определения положения магнита
  • Схема управления на основе операционного усилителя
  • Постоянный магнит в качестве левитирующего объекта

Принцип работы левитрона заключается в том, что при приближении магнита ток в катушке отключается и магнит начинает падать. При удалении магнита катушка снова включается, поднимая его. Таким образом создается эффект «зависания» магнита в воздухе.


Необходимые компоненты для сборки левитрона своими руками

Для создания простого левитрона в домашних условиях потребуются следующие компоненты:

  • Медный эмалированный провод сечением 0.4-0.5 мм для намотки катушки
  • Линейный датчик Холла (например, SS49E)
  • Операционный усилитель LM358
  • Транзистор (например, BC337)
  • Резисторы и конденсаторы по схеме
  • Источник питания 5-12В
  • Неодимовый магнит для левитации
  • Материалы для каркаса катушки и основания

Пошаговая инструкция по сборке левитрона

Шаг 1: Изготовление электромагнитной катушки

Намотайте на каркас 500-600 витков медного провода. Сопротивление катушки должно составлять 10-15 Ом. Закрепите концы обмотки.

Шаг 2: Подготовка основания

Вырежьте металлический диск по диаметру катушки толщиной 5 мм. Он будет служить магнитопроводом для усиления поля катушки.

Шаг 3: Установка датчика Холла

Закрепите датчик Холла по центру металлического диска плоской стороной к катушке. Для удобства можно использовать пластиковую прокладку.

Шаг 4: Сборка электронной схемы

Соберите схему управления на основе операционного усилителя LM358 согласно приведенной принципиальной схеме. Подключите к ней катушку и датчик Холла.


Шаг 5: Настройка и отладка

Подайте питание на схему. Поднесите магнит к катушке и отрегулируйте положение датчика и чувствительность схемы для стабильной левитации магнита.

Настройка и отладка работы самодельного левитрона

При настройке левитрона важно учитывать следующие моменты:

  • Правильная ориентация датчика Холла относительно магнита и катушки
  • Подбор оптимального напряжения питания (обычно 5-12В)
  • Регулировка чувствительности схемы с помощью подстроечного резистора
  • Балансировка веса левитирующего магнита
  • Устранение раскачивания магнита с помощью демпфирующих элементов

Для стабильной работы может потребоваться небольшая доработка конструкции и электронной схемы.

Виды магнитной левитации и их особенности

Существует несколько основных типов магнитной левитации:

  • Электромагнитная левитация (EMS) — наиболее распространенный тип, используемый в левитронах
  • Электродинамическая левитация (EDS) — применяется в поездах на магнитной подушке
  • Левитация на сверхпроводниках — позволяет достичь идеальной стабильности
  • Диамагнитная левитация — используется для левитации слабомагнитных материалов

Каждый тип имеет свои преимущества и ограничения. Для домашних экспериментов наиболее доступна электромагнитная левитация.


Применение магнитной левитации в науке и технике

Технология магнитной левитации находит применение во многих областях:

  • Транспорт — поезда на магнитной подушке
  • Промышленность — магнитные подшипники
  • Медицина — искусственные сердечные клапаны
  • Космические технологии — системы позиционирования спутников
  • Научные исследования — левитационное плавление металлов

Развитие технологий магнитной левитации открывает новые возможности для создания эффективных и экологичных технических решений.

Советы по улучшению работы самодельного левитрона

Чтобы добиться более стабильной и эффектной левитации, можно применить следующие приемы:

  • Использовать более мощный электромагнит с сердечником из магнитомягкого материала
  • Применить цифровую схему управления на микроконтроллере
  • Добавить систему боковой стабилизации магнита
  • Использовать левитирующий объект сложной формы вместо простого магнита
  • Дополнить конструкцию декоративными элементами и подсветкой

Экспериментируя с различными вариантами, можно создать уникальный и впечатляющий левитрон своими руками.



Как самому собрать аналоговый левитрон / Хабр

0.Предисловие

Начитался тут всяких интернетов и решил сваять свой собственный левитрон, без всяких цифровых глупостей. Сказано – сделано. Выкладываю муки творчества на всеобщее обозрение.

1.Краткое описание

Левитрон – это устройство, удерживающее объект в равновесии с силами гравитации с помощью магнитного поля. Давно известно, что невозможно левитировать объект, используя статичные магнитные поля. В школьной физике это называлось состоянием неустойчивого равновесия, насколько я помню. Однако, затратив немного желания, знаний, усилий, денег и времени, возможно левитировать объект динамически путем использования электроники в качестве обратной связи.

Получилось вот что:



2.Фунциональная схема

Электро-магнитные датчики, расположенные на торцах катушки, выдают напряжение, пропорциональное уровню магнитной индукции. В случае отсутствия внешнего магнитного поля эти напряжения будут одинаковы вне зависимости от величины тока катушки.

При наличии постоянного магнита вблизи нижнего датчика блок управления будет формировать сигнал, пропорциональный полю магнита, усиливать его до нужного уровня и передавать на ШИМ для управления током через катушку. Таким образом, возникает обратная связь и катушка будет генерировать такое магнитное поле, которое будет удерживать магнит в равновесии с силами гравитации.

Что-то заумно все получилось, попробую по другому:
— Нет никакого магнита — индукция на торцах катушки одинакова — сигнал с датчиков одинаков — блок управления выдает минимальный сигнал — катушка работает на всю мощь;
— Близко поднесли магнит — индукция сильно разная — сигналы от датчиков сильно разные — блок управления выдает максимальный сигнал — катушка отключается совсем — магнит никто не держит и он начинает падать;
— Манит падает — отдаляется от катушки — разница сигналов с датчиков уменьшается — блок управления уменьшает выходной сигнал — ток через катушку увеличивается — увеличивается индукция катушки — магнит начинает притягиваться;

— Манит притягивается — приближается к катушке — разница сигналов с датчиков увеличивается — блок управления увеличивает выходной сигнал — ток через катушку уменьшается — уменьшается индукция катушки — магнит начинает падать;
— Чудо — магнит не падает и не притягивается — вернее, и падает и притягивается несколько тысяч раз в секунду — то есть возникает динамическое равновесие — магнит просто висит в воздухе.

3.Конструкция

Главным элементом конструкции является электро-магнитная катушка (соленоид), которая и удерживает своим полем постоянный магнит.

На пластиковый каркас D36x48 плотно намотано 78 метров медного эмалированного провода диаметром 0.6 мм, получилось где-то 600 витков. По расчетам, при сопротивлении 4.8Ом и питании 12В, ток будет 2.5А, мощность 30Вт. Это необходимо для подбора внешнего блока питания. (По факту получилось 6.0Ом, вряд ли нарезали больше провода, скорее сэкономили на диаметре.)

Внутрь катушки вставлен стальной сердечник от дверной петли диаметром 20мм. На его торцах с помощью термоклея закреплены датчики, которые обязательно должны быть ориентированы в одинаковом направлении.

Катушка с датчиками закреплена на кронштейне из алюминиевой полосы, который, в свою очередь, крепится к корпусу, внутри которого находится плата управления.

На корпусе расположен светодиод, выключатель и гнездо питания.

Внешний блок питания (GA-1040U) взят с запасом по мощности и обеспечивает ток до 3.2А при 12В.

В качестве левтитрующего объекта используется N35H магнит D15x5 с приклеенной банкой из под кока-колы. Сразу скажу, что полная банка не годится, поэтому тонким сверлом делаем отверстия по торцам, сливаем ценный напиток (можно выпить если не боитесь стружки) и к верхнему колечку клеим магнит.

4.Принципиальная схема

Сигналы с датчиков U1 и U2 подаются на операционный усилитель OP1/4, включенный по дифференциальной схеме. Верхний датчик U1 подключен к инвертирующему входу, нижний U2 – к неинвертирующему, то есть сигналы вычитаются, и на выходе OP1/4 получаем напряжение, пропорциональное только уровню магнитной индукции, создаваемому постоянным магнитом вблизи нижнего датчика U2.

Комбинация элементов C1,R6 и R7 является изюминкой данной схемы и позволяет достичь эффекта полной стабильности, магнит будет висеть как вкопанный. Как это работает? Постоянная составляющая сигнала проходит через делитель R6R7 и ослабляется в 11 раз. Переменная составляющая проходит через фильтр C1R7 без ослабления. Откуда вообще берется переменная составляющая? Постоянная часть зависит от положения магнита вблизи нижнего датчика, переменная часть возникает из-за колебаний магнита вокруг точки равновесия, т.е. от изменения положения во времени, т.е. от скорости. Нам интересно, чтобы магнит был неподвижен, т.е. его скорость была равна 0. Таким образом, в управляющем сигнале мы имеем две составляющих – постоянная отвечает за положение, а переменная – за стабильность этого положения.

Далее, подготовленный сигнал усиливается на OP1/3. С помощью переменного резистора P2 устанавливается необходимый коэффициент усиления на этапе настройки для достижения равновесия в зависимости от конкретных параметров магнита и катушки.

На OP1/1 собран простой компаратор, который отключает ШИМ и, соответственно, катушку, когда рядом нет магнита. Очень удобная вещь, не надо вынимать блок питания из розетки если убрали магнит. Уровень срабатывания задается переменным резистором P1.

Далее, управляющий сигнал подается на широтно-импульсный модулятор U3. Размах выходного напряжения 12В, частота выходных импульсов задается номиналами C2,R10 и P3, а скважность зависит от уровня входного сигнала на входе DTC.
ШИМ управляет переключением силового транзистора T1, а тот, в свою очередь, током через катушку.

Светодиод LED1 можно и не ставить, а вот диод SD1 нужен обязятельно, для слива лишнего тока и избежания перенапряжения в моменты выключения катушки из-за явления самоиндукции.

NL1 – это наша самодельная катушка, коей посвящен отдельный раздел.

В результате, в режиме равновесия, картина будет примерно такая: U1_OUT=2.9V, U2_OUT=3.6V, OP1/4_OUT=0.7V, U3_IN=1.8V, T1_OPEN=25%, NL1_CURR=0.5A.

Для наглядности прикладываю графики передаточной характеристики, АЧХ и ФЧХ, и осциллогаммы на выходе ШИМ и катушки.



5.Выбор компонентов

Устройство собрано из недорогих и доступных компонентов. Самой дорогой оказалась медная проволока WIK06N, за 78 метров WIK06N заплатил 1200 руб, все остальное, вместе взятое, обошлось значительно дешевле. Тут вообще широкое поле для экспериментов, можно обойтись без сердечника, можно взять проволоку потоньше. Главное не забывать, что индукция по оси катушки зависит от количества витков, тока по ним и геометрии катушки.

В качестве датчиков магнитного поля U1 и U2 используются аналоговые датчики Холла SS496A с линейной характеристикой вплоть до 840Гс, это самое то для нашего случая. При использовании аналогов с другой чувствительностью потребуется корректировка коэффициента усиления на OP1/3, а также проверка на уровень максимальной индукции на торцах вашей катушки (в нашем случае с сердечником она достигает 500Гс), чтобы датчики не входили в насыщение при пиковой нагрузке.

OP1 -это счетверенный операционный усилитель LM324N. При выключенной катушке выдает 20мВ вместо нуля на 14 выходе, но это вполне приемлемо. Главное не забыть выбрать из кучки 100К резисторов наиболее близкие по фактическому номиналу для установки в качестве R1,R2,R3,R4.

Номиналы C1,R6 и R7 выбраны путем проб и ошибок как самый оптимальный вариант для стабилизации магнитов разных калибров (тестировались N35H магниты D27x8, D15x5 и D12x3). Соотношение R6/R7 можно оставить как есть, а номинал C1 увеличивать до 2-5мкФ, в случае возникновения проблем.

При использовании очень маленьких магнитов, вам возможно будет не хватать коэффициента усиления, в этом случае урежьте номинал R8 до 500Ом.

D1 и D2 это обычные выпрямительные диоды 1N4001, тут подойдут любые.

В качестве широтно-импульсного модулятора U3 используется распространенная микросхема TL494CN. Частота работы задается элементами C2, R10 и P3 (по схеме 20кГц). Оптимальный диапазон 20-30кГц, при меньшей частоте появляется свист катушки. Вместо R10 и P3 можно просто поставить резистор 5.6K.

T1 это полевой транзистор IRFZ44N, подойдет и любой другой из этой же серии. При выборе других транзисторов может потребоваться установка радиатора, ориентируйтесь на минимальные значения сопротивления канала и заряда затвора.
SD1 это диод шоттки VS-25CTQ045, тут я хватанул с большим запасом, подойдет и обычный быстродействующий диод, но, возможно, будет сильно греться.

LED1 желтый светодиод L-63YT, здесь, как говорится, на вкус и цвет, можно их и побольше наставить, чтобы все светилось разноцветными огнями.

U4 это стабилизатор напряжения 5В L78L05ACZ для питания датчиков и операционного усилителя. При использовании внешнего блока питания с дополнительным выходом 5В, можно обойись и без него, но конденсаторы лучше оставить.

6.Заключение

Все получилось как задумано. Устройство стабильно работает круглые сутки, потребляет всего 6Вт. Ни диод, ни катушка, ни транзистор не греются. Прикладываю еще пару фоток и финальное видео:

7. Дисклаймер

Я не электронщик и не писатель, просто решил поделиться опытом. Может что-то покажется вам слишком очевидным, а что-то слишком сложным, а о чем-то забыл упомянуть вообще. Не стесняйтесь вносить конструктивные предложения и по тексту и по улучшению схемы, чтобы люди могли запросто это повторить, если будет такое желание.

Магнитная левитация своими руками в домашних условиях

Магнитная левитация — метод, позволяющий с использованием только силы магнитного поля поднять и переместить предметы. Подобное явление применяют для нейтрализации различных ускорений, например, свободного падения.

Сам термин «левитация» имеет английское происхождение: levitate – подняться в воздухе. Это состояние, преодоления объектом гравитации: парение в воздухе, ни на что не опираясь, не отталкиваясь, не используя реактивную тягу. Физики дают такое определение левитации: стабильное положение предмета в поле гравитации, где сила тяжести встречает сопротивление возвращающей силы, что обеспечивает стабильное положение в пространстве. Левитация в естественном состоянии не существует.

Способы реализации магнитной левитации

Обеспечить равновесие объекта в пространстве можно, применив несколько способов: сервомеханизмы, диамагнетики, сверхпроводники и системы с вихревыми токами. Такие устройства дают возможность объекту сохранить равновесие, когда он поднят над основой с магнитом. Как сделать левитирующий прибор самостоятельно выясним в статье.

Электромагнитная левитация с системой слежения

Собрав устройство на основе электромагнита с использованием фотореле достигают левитации мелких металлических предметов. Они зависают в воздухе, приподнимаясь над электромагнитом, который закреплен на стойке. Электромагнит работает, пока предмет не затеняет фотоэлемент в стойке, то есть он получает световой сигнал от контрольной точки и предмет медленно поднимается.

Поднявшись на расчётное расстояние, предмет перекрывает контрольную точку, на фотоэлемент попадает тень, магнит отключается и предмет падает. Но окончательно упасть на стойку он не успевает: как только с контрольной точки уходит тень, фотоэлемент срабатывает, и магнит вновь включается. Досконально отрегулировав систему можно добиться ощущения парения предмета в воздухе.

Этот принцип положен в основу изготовления сувенирных левитирующих глобусов

Диамагнитная левитация

Самым доступным диамагнетиком (свойство намагничиваться против магнитного поля) является грифель карандаша из графита. У него сильная магнитная восприимчивость. Способен проявлять левитацию над неодимовым магнитом при температуре от 15 °C до 25 °C. Для создания магнитной ловушки полюса магнитов располагают в шахматном порядке.

Магнит с показателем индукции в 1Тл способен повиснуть между висмутовыми пластинами. Создав магнитное поле в 11 Тл, можно стабилизировать его левитацию даже между пальцами, так как они тоже диамагнетики.

Левитация магнита над сверхпроводником (эффект Мейснера)

Взяв пластину из оксида иттрия-бария-меди и охладив ее до −195,75 °C (жидкий азот), мы придаем ей свойства сверхпроводника. Положим под подставку с неодимовым магнитом эту пластину и уберем подставку: мы видим как магнит левитирует в воздухе.

Минимальная индукция в 1мТл способна приподнять на 4 миллиметра магнит над подобным сверхпроводником. Добавляя индукцию, увеличивается расстояние между пластиной и магнитом.

Это явление основывается на свойстве сверхпроводника выталкивать магнитное поле из сверхпроводящей фазы. Поэтому магнит, сталкиваясь с полем противоположного заряда, отталкивается от него и зависает над сверхпроводником, пока тот не потеряет свойства.

Левитация в условиях вихревых токов

Вихревой ток, возникающий в переменном магнитном поле больших проводников, может удержать некоторые металлические предметы, вызывая левитацию. Например: диск из алюминия может парить над катушкой переменного тока.

Это явление объясняет закон Ленца: индуцированный диском ток создает поле, противоположного направления. Таким образом, диск будет левитировать пока в катушке есть переменный ток. Главное подобрать подходящие габариты катушки.

Такое явление можно увидеть, запустив неодимовый магнит в медную трубу. Опять же индуцированное магнитное поле направляется противоположно магниту и заставляет его парить внутри трубы.

Основные типы магнитной левитации

На парящий предмет воздействует давление, которое можно получить, используя несколько конструкций. Принято выделять электромагнитные конструкции (ЕМS) и электродинамические устройства (EDS).

Системы ЕМS нестабильны в равновесном положении. Для приемлемой работы требуется оснащение автоматизированной системой управления, которая обеспечивает бесперебойный контроль.

Притяжение возможно между ферромагнетическими проводниками и электрическим магнитом. Работа подобных систем основана на принципах действия вихревого тока в проводящем компоненте. Это возможно при наличии переменного магнитного поля.

Система EDS может быть представлена двумя типами взаимодействий:

  1. Стационарная катушка находится во взаимосвязи с магнитом, который является сверхпроводником.
  2. Изменение в магнитном поле вызывает воздействие силы, генерирующей переменный ток.

Сила отталкивания, используемая в электродинамической системе, делает ее инертно стабильной. Что обуславливает использование постоянных магнитов в установках гибридного типа, а не в самостоятельных. Потому что постоянные магниты не обеспечивают стабильности положения в различных степенях свободы.

То есть, не поддерживая другими силами, которые воздействуют на статичность, невозможно обеспечить правильное функционирование системы.

Иногда планируется для обеспечения процесса левитации отойти от применения магнитных материалов и собрать систему из элементов отличной структуры. Тогда все равно возникает необходимость применять магнитные посредники (вставки).

Как сделать магнит своими руками

В основе действия всех левитаторов лежит магнитное основание. При желании можно сделать магнит в домашних условиях. Например, чтобы превратить обычную отвертку в магнитную. Понадобятся: батарейка 5 или 12 вольт, медная проволока, изолента, отвертка.

Порядок работы:

  1. Берем отвертку и наматываем на нее от 280 до 350 витков очень плотно друг к другу.
  2. Поверх проволоки наматываем изоленту, также тщательно.
  3. Подключаем один конец проволоки к плюсу батарейки, другой к минусу и оцениваем магнитный эффект.

Магнитная левитация в домашних условиях

В 90х годах XX века очень популярной стала игрушка Левитрон, основанный на воздействии магнитного поля.

Это волчок-левитатор, зависший в воздухе. Подобную игрушку можно собрать в домашних условиях, чтобы понять сущность магнитной левитации. Как сделать левитрон – представим подробную инструкцию.

Список материалов:

  • доска из дерева;
  • простой карандаш;
  • изолента;
  • шайбы из пластика или латуни;
  • картон;
  • 13 дисковых неодимовых магнитов марки N52 размером 12*3 мм;
  • широкий кольцевой магнит с наружным диаметром 20, внутренним 10мм марки N42.

Описание процесса сборки пошагово:

  1. Изготовление раскладки. Изначально волчок собирался на двух керамических кольцевых магнитах. В нашей конструкции мы применим стандартные неодимовые магниты. Для начала распечатаем схему отверстий разметки для установки магнитов. Перед началом работ проверьте соответствие размеров в распечатанной схеме и указанных в исходнике. Если все соответствует, то вырежьте макет.
  2. Готовим основание. На доску приложите бумажную схему и разметьте в соответствии с ней. Обратите внимание, что толщина деревянной заготовки должна быть от 6мм.
  3. Перенос всех блоков схемы на основу. Приклейте бумажный носитель к получившейся основе. Используя сверло Форстнера (d=12мм), накерните центр кругов. Это обеспечит дальнейшую точность сверления.
  4. Высверливаем отверстия. Применяя сверло Форстнера (d=12мм) делаем отверстия в заготовке так, чтобы дно отверстия заходило на 3 мм в верхнюю часть блока. Следует обеспечить расположение магнитов на максимально близком расстоянии к верхней части.
  5. Установка магнитов. Когда отверстия готовы, вы еще раз проверили их размеры, установите магниты одним полюсом вверх, например южным. Для определения полюсности можно применить маркированный магнит D68PC-RB. Положим блок на стальную пластину, чтобы магниты легче прошли на дно отверстий. Возьмем магниты марки N52 и разложим в отверстия по одному как можно глубже. Если необходимо протолкнуть магнит, можно взять деревянный дюбель.
  6. Как сделать волчок. Берем карандаш длиной 40 мм с заостренным концом. Наматываем на него изоленту, для увеличения диаметра подходящего под центральную часть кольцевого магнита. Вставьте карандаш в магнит, чтобы южный полюс располагался внизу, как и заостренная часть карандаша. Чтобы добавить вес волчку, воспользуйтесь пластмассовыми или латунными шайбами: наденьте несколько сверху. Для обеспечения правильной работы необходимо методом подбора определить приемлемое количество шайб.
  7. Запускаем систему. Отрезаем картон или пластик для платформы. Укладываем его на магнитное основание. На платформе волчок начинает раскручиваться и постепенно с платформой поднимается вверх до попадания в яму магнитного поля.

Если все сделано правильно, то волчок зависнет. Отладка механизма может занять продолжительное время.

Советы по регулированию волчка:

  • Постарайтесь обеспечить баланс основания. Применяйте кусочки картона или бумаги для поднятия сторон основания и его выравнивания. При отклонении от центра к какой-то стороне, поднимайте ее, подкладывая кусочки бумаги.
  • Примените трехточечное нивелирование.
  • Учитывайте вес волчка: устройство предполагает наличие магнитной ямы – сила магнита в центре слабее, чем возле края. Для удержания магнита в центре, следует добавить вес (при вылетании волчка) или уменьшить (если волчок не поднимается от платформы).
  • Еще одним значимым показателем является высота платформы: низкая платформа не дает волчку достаточно раскрутиться. Следовательно, нужно подложить под нее бумагу или картон.
  • При наличии под рукой 3D-принтера, можно распечатать на нем игрушку.

Таким образом, сделать левитрон своими руками в домашних условиях возможно. На основании представленных материалов можно сконструировать различные сувениры, предметы интерьера, способные порадовать вас и ваших знакомых. Помимо этого можно показывать всевозможные фокусы с магнитами и левитацией детям.

Левитрон – схема устройства электромагнитной левитации своими руками

Идея устройства очень проста, электромагнит поднимает в воздух магнит, а для создания эффекта левитации в магнитном поле, он подключен к высокочастотному источнику, который то поднимает, то опускает объект.

Шаг 1: Схема устройства

Схема на удивление проста и я полагаю, что у вас не составит труда собрать левитрон своими руками. Вот список компонентов:

Шаг 2: Сборка

Приступим к сборке. Сперва нам нужно сделать рамку для электромагнита примерно таких размеров: диаметр 6 мм, высота мотка примерно 23 мм, и диаметр ушек около 25 мм. Как видите, изготовить её можно из обычного листа, картона и суперклея. теперь закрепим начало мотка на рамке и расслабимся — нам нужно будет сделать около 550 оборотов, неважно в каком набавлении. Я сделал 12 слоёв, что отняло у меня 1.5 часа.

Шаг 3: Спайка

Спаиваем всё по схеме, без каких-либо нюансов. Датчик Холла припаян к проводам, т.к. он будет помещён в катушку. Когда всё спаяете, поместите датчик в катушку, закрепите его, подвесьте катушку и подайте ток. Поднеся магнит, вы почувствуете, что он притягивается или отталкивается, в зависимости от полюса, и пытается зависнуть в воздухе, но неудачно.

Шаг 4: Настройка

После 30 минут, потраченных над разгадкой вопроса, «почему эта штука не работает?», я пришел в отчаяние и прибегнул к крайним мерам — начал читать спецификацию к датчику, которую создают для таких людей как я. В спецификации имелись картинки, на которых было изображено, какая из сторон чувствительная.

Вытащив датчик и согнув его таким образом, чтобы плоская сторона с надписями была параллельна земле, я вернул его на место — самодельное устройство стало работать заметно лучше, но магнит всё ещё не левитировал. Понять в чём проблема удалось достаточно быстро: магнит в форме таблетки — не самый лучший экземпляр для левитации. Было достаточно сместить центр тяжести к нижней части магнита (я сделал это при помощи куска толстой бумаги ). Кстати, не забудьте проверить, какая сторона магнита притягивается к катушке. Теперь всё работало более или менее нормально и осталось закрепить и защитить датчик.

Какие еще нюансы есть в этом проекте? Сначала я хотел использовать адаптер на 12V, но электромагнит быстро грелся, и мне пришлось переключить его на 5V, я не заметил никаких ухудшений в работе, а нагрев был практически устранён. Диод и ограничивающий резистор были практически сразу отключены. Также я снял с катушки синюю бумагу — мотки медной проволоки смотрятся гораздо красивее.

Шаг 5: Финал

Левитирующая катушка своими руками — Сделай сам

  • Pete
  • Back Shed
  • Этот одновременно забавный и поучительный проект демонстрирует магнитную левитацию.

Магнитная левитация

Однажды я увидел устройство, в котором магнит парил в воздухе и, задавшись вопросом, как это сделано, решил проверить некоторые теории. После многих проб и ошибок мне удалось получить то, что вы можете видеть на Рисунке 1.

Рисунок 1.Магнитная левитация в действии.

Основные элементы устройства – катушка, создающая магнитное поле, и установленный на ее торцевой поверхности линейный датчик Холла, необходимый для обнаружения поля постоянного магнита.

Под контролем этого датчика при приближении постоянного магнита ток катушки выключается, магнит начинает падать, удаляясь от катушки, и катушка включается опять, эффективно удерживая магнит «подвешенным» в воздухе.

Эмалированным медным проводом сечением 0.45 мм я намотал небольшую катушку (Рисунок 2).

Ее размеры и количество витков не столь важны, как электрическое сопротивление, которое должно быть достаточно большим, чтобы ограничить ток, забираемый от источника питания. Я стремился не выйти за пределы 0.

5 А при напряжении питания 5 В, для чего сопротивление должно было находиться в диапазоне от 10 до 15 Ом (5 В/0.5 А = 10 Ом).

Рисунок 2.Электромагнитная катушка.

Однако, поскольку схема теперь доработана таким образом, чтобы в отсутствие магнита ток катушки выключался, ее сопротивление можно снизить, но до значения не менее 5 Ом.

Поскольку собственной мощности катушки недостаточно, ее требуется дополнить металлической пластиной. Я вырезал стальной диск толщиной 5 мм с диаметром, равным внешнему диаметру катушки, хотя диаметр может быть и немного меньше (Рисунок 3).

Рисунок 3.К нижней части катушки должна быть прикреплена металлическая пластина.

Магнит левитирует в узком интервале расстояний, в котором сам не способен примагнититься к пластине, и нуждается в небольшой помощи поля катушки, поддерживающей его в «подвешенном» состоянии.

К металлическому диску крепится датчик Холла, плоская сторона которого должна быть обращена в сторону катушки (Рисунки 4, 5).

Рисунок 4.Эта сторона датчика должна быть обращена к катушке.
Рисунок 5.Эта сторона датчика должна «смотреть» на магнит.

Для удобства я установил датчик в пластиковый диск (Рисунок 6), который вырезал из акрилового листа, но можно обойтись и просто клеем или двухсторонним скотчем.

Рисунок 6.Датчик установлен скругленными гранями в сторону магнита.

Очень важно установить датчик по центру катушки и ее металлического сердечника.

Первоначально я пытался считывать сигнал датчика Холла и управлять катушкой через транзистор с помощью системы PICAXE, выпускаемой фирмой Revolution Education на основе микроконтроллера PIC, но PICAXE оказалась слишком медленной. Тогда я решил воспользоваться операционным усилителем (ОУ) LM358, и это дало желаемый результат.

Конструкция получилась очень простой. Я обнаружил, что когда магнит левитирует, схема, в зависимости от веса объекта, потребляет всего 50…150 мА. Но если магнит убрать, управляющий транзистор полностью открывается, средний ток увеличивается, и стабилизатор 5 В начинает перегреваться.

Поэтому схема была переработана (Рисунок 7). Чтобы отключать катушку при отсутствии магнита, я использовал второй операционный усилитель микросхемы LM358.

Рисунок 7.Принципиальная схема устройства.

Вся схема, включая катушку, питается напряжением 5 В, стабилизированным микросхемой LM7805, максимальный ток которой не должен превышать 0.5 А.

В отсутствие внешнего поля выходное напряжение линейного датчика Холла UGN3503U равно примерно половине напряжения питания 5 В.

Если к датчику поднести магнит, выходное напряжение увеличивается или уменьшается, в зависимости от того, каким полюсом магнит направлен к датчику (северным или южным).

В этой схеме при приближении магнита напряжение должно повышаться, поэтому подносить магнит к датчику нужно южным полюсом.

Выход датчика подключен к инвертирующему входу первого операционного усилителя (ОУ1), на неинвертирующий вход которого подается напряжение с делителя напряжения R1/R2. Подстроечный резистор R2 используется для уравновешивания в точке левитации разных по размерам и весу магнитов и объектов.

Выход ОУ1 через резистор 1 кОм соединен с базой транзистора BD681, управляющего включением катушки. Здесь подойдет практически любой NPN транзистор или MOSFET с допустимым током не менее 1 А.

Второй операционный усилитель микросхемы (ОУ2) используется для слежения за частотой переключения транзистора Q1. Для этого выходное напряжение ОУ1, эффективно сглаженное RC-фильтром R9/С4 (100 кОм/1 мкФ), подается на неинвертирующий вход ОУ2.

На инвертирующий вход ОУ2 поступает напряжение с делителя R7/R8, в одно плечо которого включен подстроечный резистор.

Пока ток катушки, управляемый выходом ОУ1, пульсирует, стремясь удерживать магнит в подвешенном состоянии, аналоговое напряжение на неинвертирующем входе ОУ2 ниже установленного делителем на инвертирующем входе.

Но если убрать магнит, напряжение на этом входе увеличится, поскольку ОУ1 будет пытаться вернуть магнит на место, непрерывно открывая транзистор управления током катушки, колебания прекратятся, и выходное напряжение ОУ1 станет постоянно высоким.

В результате напряжение на неинвертирующем входе ОУ2 превысит напряжение на инвертирующем, и уровень выходного сигнала переключится на высокий. К выходу ОУ2 через резистор 5.1 кОм подключена база NPN транзистора BC337, коллектор которого соединен с базой транзистора BD681, управляющего током катушки. Шунтируя базовый резистор 1 кОм (R3) на землю, Q2 отключает катушку.

Второй транзистор BC337 (Q3), также подключенный к выходу ОУ2, управляет светодиодами, закорачивая на землю токоограничительный резистор R12, когда их надо погасить.

Установка точки отключения катушки легко выполняется вращением движка подстроечного резистора R8 до положения, в котором светодиоды погаснут. Если внести магнит в зону чувствительности датчика, светодиоды зажгутся вновь, ток катушки начнет пульсировать, и далее лишь останется с помощью подстроечного резистора R2 найти точку равновесия магнита.

Теперь, после того, как все ошибки схемы были устранены, имея несколько простых компонентов, ее очень легко повторить.

Рисунок 8.Вид печатной платы со стороны элементов.

Конструкция печатной платы представлена на Рисунках 8 и 9. Площадки, помеченные «TP», служили тестовыми точками, в которые в процессе отладки я запаивал штырьки для подключения приборов. При повторении схемы их можно не устанавливать.

Рисунок 9.Рисунок печатной платы со стороны проводников.

Несколько советов и замечаний

Выводы катушки должны быть подключены так, чтобы создавать магнитное поле нужного направления. Проверить правильность их присоединения очень просто: если схема не работает, поменяйте местами провода.

Размеры магнита не слишком важны, но он должен быть достаточно сильным. Хорошо подойдет редкоземельный магнит, например, неодимовый.

Во избежание перегрева стабилизатора напряжения, обязательно установите его на радиатор. Выберите источник питания с напряжением 7 … 12 В, поскольку чем выше входное напряжение, тем больше нагревается стабилизатор напряжения 5 В.

Максимально допустимое входное напряжение датчика Холла равно 6 В, поэтому для питания схемы выбрано напряжение 5 В.

Если ваш магнит сильно вибрирует, или вообще не хочет левитировать, это может быть вызвано несколькими причинами, главной из которых является недостаточная толщина металлической пластины на катушке. Попробуйте добавить к ней еще несколько шайб.

Возможно также, что датчик Холла смещен относительно центра катушки, или же зазор, установленный между катушкой и магнитом, слишком мал, и магнит нужно немного опустить регулировкой подстроечного резистора R2. (Это очень тонкая настройка).

А может быть, катушка перекошена и установлена не вертикально.

Добавление мигающих RGB светодиодов сверху и снизу магнита создаст приятный эффект, если вы заставите левитировать какой-либо блестящий объект, такой, например, как шарик из алюминиевой фольги (Рисунки 10 и 11). Поскольку верхний светодиод находится ближе к объекту, желательно расширить угол его излучения, спилив линзу напильником.

Рисунок 10.Установка мигающих цветных светодиодов создаст приятный эффект.
Рисунок 11.Интересным левитирующим объектом может стать небольшой пропеллер с магнитом,прикрепленным в его центре.

Совсем другой эффект можно получить, изготовив небольшой пропеллер с прикрепленным в его центре магнитом. Я вырезал его из банки от Кока-Колы.

Затем поместите под пропеллером плоскую свечку-таблетку или ароматическую масляную горелку, и поднимающийся поток теплого воздуха заставит левитирующий пропеллер вращаться.

Для вращения пропеллера требуется совсем небольшая разница температур, и если воздух в помещении холодный, будет вполне достаточно тепла, выделяемого катушкой. Конечно же, если воздух теплый, это работать не будет.

В устройстве можно использовать катушку от ненужного соленоида, но предварительно необходимо убедиться в том, что потребляемый ею ток не перегрузит схему, поскольку многие соленоиды очень прожорливы.

Материалы по теме

Источник: https://www.rlocman.ru/shem/schematics.html?di=163231

Аналоговый левитрон на ШИМ

  • Здесь рассказано и показано, как сделать крутой левитрон своими руками!
  • Эту поделку меня вынудили собрать в универе 🙂
  • Делал я её в паре с одногруппником, задачей которого было сделать чумовой корпус, а с меня — электронную начинку.
  • Насколько всё классно получилось — судите сами, пишите комментарии, интересно будет почитать, обсудить.

Не помню, как именно мы пришли именно к идее сделать левитрон, тема поделки была вольная. Конструкция вроде и простая, но глаз притягивает.

Вообще сам левитрон — устройство, которое поддерживает какой-либо предмет в среде, которая никак не соприкасается с какой-либо поверхностью, кроме как через воздух. В вакууме тоже будет работать.

В данном случае электроника заставляет парить магнит, а магнит уже можно приклеить к, например, банке из-под вкусного недорогого напитка 🙂

Если хорошенько поискать в интернете, то можно увидеть много разных вариантов электромагнитного левитрона, например:

Их можно условно разделить на подвесной и отталкивающий. Если в первом случае необходимо просто компенсировать силу тяжести, то во втором ещё и смещение в горизонтальной плоскости, так как согласно теореме Ирншоу «всякая равновесная конфигурация точечных зарядов неустойчива, если на них кроме кулоновских сил притяжения и отталкивания ничто не действует.» — цитата из вики.

Из этого вытекает, что подвесной левитрон проще в изготовлении и настройке, если таковая вообще необходима.

Сильно заморачиваться не хотелось, поэтому для универа сделали подвесной левитрон, о котором здесь идёт речь, а отталкивающий уже делал для себя любимого 🙂 О нём в другой статье будет написано.

Чуть позднее удалю этот текст и дам тут ссылку на него. Работает великолепно, но минусы свои тоже имеет.

В свою очередь все подвесные левитроны можно так же условно разделить на цифровые и аналоговые по способу удержания предмета на одном расстоянии. А по типу датчиков их можно разделить на оптические, электромагнитные, звуковые и, наверное, всё.

Итого мы представили подвесной левитрон с цифровым регулированием высоты (ШИМ сигнал тут рулит) с электромагнитными датчиками Холла.

То есть сигнал о расстоянии магнита до левитрона мы получаем аналоговый, а корректируем силу воздействия на магнит уже цифровым способом. Hi-tech, однако.

Сама идея была позаимствована на сайте geektimes, а печатная плата была изготовлена уже персонально под наш набор деталей.

Так же в исходном проекте были использованы трёхвыводные датчики SS49, но сроки были весьма сжатые, у нас они стоили мягко говоря неоправданно дорого ($4 за штуку против $6 за 10 штук в китае — ссылка для примера), поэтому мы использовали четырёхвыводные датчики Холла. Пришлось изменить схему и внести конструктивные дополнения в устройство.

Так же для большей понтовости был добавлен блок светодиодов, которые плавно загораются при поднесении магнита, то есть когда левитрон начинает работать и плавно выключаются, когда магнит убирают. Всё это будет отражено на схеме.

Собственно, схема левитрона на четырёхвыводных датчиках:

И схема левитрона на трёхвыводных датчиках и более простой подсветкой:

Принцип действия довольно прост. Катушка, являющаяся электромагнитом при подаче питания притягивает магнит — предмет притягивается. Датчик, прикреплённый между магнитом и катушкой фиксирует увеличение магнитного потока, что означает приближение магнита. Электроника это отслеживает и отключает катушку от источника напряжения. Магнит начинает падать под действием силы тяжести.

Датчик фиксирует уменьшение магнитного потока, что сразу же обнаруживается электроникой и на электромагнит подаётся напряжение, магнит притягивается — и так происходит очень часто — около 100 тысяч раз в секунду. Возникает динамическое равновесие. Человеческий глаз не успевает заметить этого. Частота генератора задаётся резистором и конденсатором на выводах 5 и 6 микросхемы TL494.

Второй датчик на другой стороне электромагнита нужен для того, чтобы компенсировать магнитное поле, создаваемое самой катушкой. То есть, если бы не было этого второго датчика — при включении электромагнита система бы не могла отличить интенсивность магнитного поля неодимового магнита от магнитного поля, создаваемого самим электромагнитом.

Итак, мы имеем систему двух датчиков, сигнал с которых поступает на операционный усилитель в дифференциальном включении. Это значит, что на выходе операционного усилителя появляется лишь разность напряжений, получаемых с датчиков.

Для примера. На одном из датчиков на выходе напряжение 2,5 В, а на другом — 2,6 В. На выходе будет 0,1 В. Этот дифференциальный сигнал находится на выводе 14 микросхемы LM324 по схеме.

Далее этот сигнал поступает на два следующих операционных усилителя — OP1.1, OP 1.3, выходные сигналы которых через диодный вентиль идут на 4 вывод микросхемы TL494. Диодный вентиль на диодах D1, D2 пропускает только одно из напряжений — то, которое будет больше по номиналу.

Вывод №4 ШИМ контроллера рулит следующим образом — чем выше напряжение на этом выводе — тем меньше скважность импульсов.

Резистор R9 предназначен для того, чтобы в ситуации, когда на входах диодного вентиля напряжения меньше 0,6 В — вывод №4 был однозначно притянут к земле — при этом ШИМ будет выдавать максимально большую скважность.

Вернёмся к операционным усилителям OP1.1, OP 1.3. Первый служит для выключения ШИМ контроллера, пока магнит находится на достаточно большом расстоянии от датчика, чтобы катушка не работала на максимуме вхолостую.

С помощью OP 1.3 задаём коэффициент усиления дифференциального сигнала — по сути задаёт глубину обратной связи (ОС). Чем сильнее обратная связь — тем сильнее система будет реагировать на приближение магнита.

Если глубина ОС не достаточна — магнит можно будет поднести вплотную, а прибор не начнёт снижать мощность, накачиваемую в электромагнит.

А если глубина ОС будет слишком большая — то скважность начнёт падать до того, как сила притяжения магнита сможет его удерживать на этом расстоянии.

Переменный резистор P3 ставить не обязательно — он служит для настройки частоты генератора.

OP1.2 является генератором напряжения 2,5 В, необходимый для четырёхвыводных датчиков. Для трёхвыводных датчиков типа SS49 он не нужен.

Забыл упомянуть о элементах C1, R6 и R7. Их фишка в том, что постоянный сигнал здесь урезается в 10 раз за счёт резисторов, а переменный за счёт конденсатора спокойно проходит дальше, тем самым достигается упор работы схемы на резкие изменения расстояния магнита до датчика.

  1. Диод SD1 предназначен для гашения обратных выбросов в момент отключения напряжения на электромагните.
  2. Узел на T2 позволяет плавно включать и выключать светодиодную линейку при появлении импульсов на электромагните.
  3. Перейдём к конструктивному исполнению.

Одним из ключевых моментов в левитроне является электромагнит. Мы делали каркас на основе какого-то строительного болта, на котором были вырезаны круглые бортики из фанеры.

Магнитный поток здесь зависит от нескольких ключевых факторов:

  • наличие сердечника;
  • геометрия катушки;
  • ток в катушке

Если проще, то чем больше катушка и больший ток течёт в ней — тем сильнее она притягивает магнитные материалы.

В качестве обмотки использовали провод ПЭЛ 0,8 мм. Мотали на глаз, пока размеры катушки не показались внушительными. Получилось следующее:

Найти необходимый провод в наших краях может не получиться, однако вполне легко находится в интернет магазинах — провод 0,4 мм для намотки катушки.

Далее был отрезан болт, чтобы он не выступал за пределы бортика, чтобы было удобно крепить датчик.

А пока моталась катушка была подготовлена и вытравлена плата. Делалась по технологии ЛУТ, рисунок платы был сделан в программе Sprint LayOut. Скачать плату левитрона можно по ссылке.

Травилась плата в остатках аммония персульфата, пустая банка которого была успешно применена далее в этом проекте 🙂

Хочу отметить, что размещение деталей, а так же разводка дорожек подразумевают очень аккуратную пайку, так как легко наделать соединений там, где их быть не должно. Если таковых навыков нету — вполне дозволительно это сделать компонентами больших размеров на макетной плате, типо такой, а соединения выполнять с помощью проводов с обратной стороны.

По итогу плата получилась такая:

  • Плата очень эргономично вписалась в габариты катушки и была прикреплена прямо на неё с помощью могучего термоклея, тем самым превращаясь в единый моноблок — подключил питание, настроил и система работает.

Но это всё было до того, как был готов электромагнит. Плата была сделана немного раньше и чтобы хоть как-то протестировать работоспособность устройства была временно подключена менее габаритная катушка. Первый результат порадовал.

Датчики, как уже писалось выше, применены от систем слежения положения BLDC двигателей, четырёхвыводные. Так как не удалось найти на них документацию пришлось опытным путём выяснять, какие выводы за что отвечают. Форм-фактор получился такой:

  1. Тем временем подоспел крупногабаритный электромагнит. Эта штука вселяла большую надежду 🙂

Первые испытания с большим электромагнитом показали довольно большое рабочее расстояние. Тут есть один нюанс — датчик, который расположен на стороне неодимового магнита должен быть немного дальше от катушки для уверенного срабатывания электроники.

Последнее фото больше напоминает некий космический спутник. Кстати, именно так и можно было бы оформить этот левитрон. И у тех, кто намерен повторить конструкцию — всё впереди 🙂

Неодимовые магниты были заказаны в Минске, разных форм и размеров. Опять же, из-за спешки. А так, у китайцев тоже можно легко найти: раз, два, три.

В качестве левитирующего предмета было решено использовать банку прохладительного напитка. Лепим на двухсторонний скотч магнит к банке, проверяем.

Работает прекрасно, в целом, устройство можно считать готовым. Осталось внешнее оформление. Из брусков и палок была сделана опорная балка, корпус нашего моноблока был выполнен из той самой пустой пластиковой банки из-под аммония персульфата. Из моноблока выходит всего два провода на питание, как и задумывалось.

  • К этому моменту уже была напаяна навесным монтажом схема плавного включения линейки светодиодов, сама линейка успешно примонтирована на вездесущий термоклей.
  • В качестве блока питания выступает позаимствованный у какого-то принтера блок, переделанный с 42 В на 12 В.
  • Внешний вид блока питания тоже покажу 🙂
  • Похожий по характеристикам блок питания в интернете.

Далее из фанеры была сделана подставка, в котором помещался блок питания и разъём для подключения 220 В. Наверху была наклеена матерчатая ткань для красоты, вся конструкция окрашена в жёлто-чёрный цвет. Банку поменяли, так как в ходе экспериментов она немного помялась.

  1. Из этого всего помимо эффекта левитации получился ещё очень даже замечательный ночник.
  2. Видео добавлю чуть позднее, а пока в довершение всему хочу сказать, что мою конструкцию легко повторил 13-летний учащийся моего радиокружка.
  3. Пока ещё внешний вид до законченного варианта не доведён, но электронная начинка работает как положено. Фото его конструкции:

Источник: http://tokes.ru/diy/analogovyj-levitron-na-shim

Создаем эффект левитации с помощью Ардуино

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием «Air Bonsai», действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Шаг 1: Как это работает

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, «плавающую» над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

  • Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.
  • Основание
  • Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита — пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу.

Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла.

Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: «Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе — интеграл сигнала рассогласования, третье — производная сигнала рассогласования.»

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера: в автомобиле у нас три значения (Вход, Установка, выход) будут — скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение — это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал — скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino. Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.

  • 1x — LM324N
  • 4x — левитационная катушка
  • 2x — SS495a датчик Холла
  • 1x — 12V 2A DC адаптер
  • 8x — Кольцевой магнит D15*4 мм
  • 1x — Разъем питания постоянного тока
  • 4x — Кольцевой магнит D15*3 мм
  • 1x — Arduino pro mini
  • 1x — Модуль L298N
  • 1x — 14 гнездовой сокет
  • 2x — Магнит D35*5мм
  • 2x — Резистор 5.6 KОм
  • 2x — Резистор 180 КОм
  • 2x — Резистор 47 KОм
  • 2x- 10 Kом потенциометр
  • 1x — Акриловый лист A5 размера
  • 1x — Деревянный горшок
  • 1x — PCB макет
  • 8x — 3 мм винт
  • провода
  • Мини-растение (суккулент, кактус, мини-бонсай, карликовое дерево)

Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого — увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля.

Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino.

Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

  1. Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.
  2. В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.
  3. Распиновка модулей:
  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a — это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: «Неодим — химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения.»

Неодим — это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом.

Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах.

Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный — это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части


Скачать нужные файлы .zip

Если у вас есть 3D-принтер — здорово. У вас есть возможность сделать все с помощью него. Если принтера нет — не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше — файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные — для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой — к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг — собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

  • Подключите модуль L298N к Arduino, следуя приведенной выше схеме:
  • L298N → Ардуино
    5V → VCC
    GND → GND
    EnA → 7
    В1 → 6
    В2 → 5
    В3 → 4
    В4 → 3
  • EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Шаг 16: Подготовка плавающей части

Соедините два магнита D35*5 для увеличения магнетизма.

Шаг 17: Калибровка

Загрузите программу ReadSetpoint.ino в Arduino, которую можно скачать выше. Эта программа будет считывать значения датчика Холла и отправлять их на компьютер через последовательный порт. Откройте COM-порт, чтобы увидеть его. Подключите 12 В постоянного тока к гнезду питания постоянного тока, вы также используете осциллограф для считывания значения датчика.

Наблюдайте значения на экране и внесите корректировки, установив два потенциометра. Наилучшее значение — 560, при этом выход датчика составляет около 2,5 В. После установки заданного значения поместите плавающий магнит над базовой частью и встряхните его, чтобы увидеть изменение значения установки (Setpoint) на экране.

Шаг 18: Загрузка основной программы

После калибровки значения установки (Setpoint) самое время получить результаты. Загрузите основную программу Levitation.ino, которая приведена выше.

Используйте супер клей для фиксации магнита и держателя магнита, который ранее был напечатан на 3D-принтере. После загрузки основной программы вы можете внести небольшие корректировки на потенциометры, чтобы плавающая деталь была зафиксирована в центре.

Шаг 19: Собираем всё вместе

Сначала прикрепите гнездо питания постоянного тока к горшку, затем поместите оставшиеся части в горшок. Наконец, используйте оставшийся акриловый лист, чтобы сделать поверхность горшка.

Шаг 20: Подготовка растения

Прикрепите деревянный горшок к плавающей части магнита. Мы использовали маленький кактус для посадки. Вы можете использовать кактус или суккулент или любой мини-бонсай, который является маленьким и легким.

Шаг 21: Финальный результат

  1. Наслаждайтесь своим результатом, благодаря вашим усилиям вы сделали отличный проект, который теперь будет радовать вас и ваших друзей.

Источник: https://ArduinoPlus.ru/arduino-levitaciya/

Устройство электромагнитной левитации

Необычные схемы

Левитация (от лат. levitas «легкость, легковесность») — физическое явление, при котором предмет без видимой опоры пари́т в пространстве, не касаясь твёрдой поверхности.

Люди часто связывают это явление с магией, привидениями, НЛО и прочими невероятных явлениями.

С другой стороны, левитация относительно простое физическое явление для металлических предметов, находящихся в магнитном поле.

Предлагаю вам ознакомиться с устройством, предназначенным для левитации металлических предметов. Принцип работы прост.

Для того, чтобы предмет мог висеть в пространстве, вместо постоянного магнита надо использовать электромагнит, управляемый с помощью электронной схемы таким образом, чтобы металлический предмет как бы парил на некотором расстоянии от электромагнита.

За положением предмета в пространстве следит оптическая пара, которая состоит из инфракрасного фото и светодиодов. Если объект поднимается слишком высоко, то фотодиод будет менее освещен-ток через обмотку электромагнита уменьшится и его сила притяжения также уменьшится.

Если объект опустится слишком низко, фотодиод будет более освещенным, ток через обмотку электромагнита увеличивается, и его сила притяжения увеличится.

Рис. 1 Схема устройства электромагнитной левитации

В схема управления устройства магнитной левитации (рис.1) используется операционный усилитель (ОУ) 1458 или 4558 и мощный MOSFET с теплоотводом.

Опорное напряжение снимается с делителя R3-R4 и подается на неинвертирующий вход 3 ОУ. Контролируемое напряжение подается с делителя R2-VD2 на вход 2 ОУ.

При небольшом изменении напряжения на R2-VD2 появляется сигнал рассогласования, который многократно, усиливается и изменяет напряжение на транзисторе VT1.

Электромагнит можно намотать на каркасе большого старого реле. Катушка содержит 1200 витков провода диаметром 0,4-0,5 мм. Железный сердечник имеет диаметр 8-10 мм.

Особых критериев для используемого фотодиода нет, можно использовать ту модель, которая есть у вас под рукой. Но т. к, их характеристики разнятся, резистором R1 настраивают четкую работу схемы при данных параметрах фотодиода.

Если у вас возникнут проблемы с устойчивостью работы устройства (объект вибрирует),то, возможно, потребуется изменить постоянную времени контура. Для этого необходимо экспериментально подобрать номинал конденсатора С1, от 22 мкф до 1мкф, пока цепь не станет работать устойчиво.

Источник: http://radiopolyus.ru/neobychnye-sxemy/320-ustrojstvo-elektromagnitnoj-

Самодельная индукционная катушка Румкорфа

Для проведения опытов с электричеством и для постройки некоторых приборов, будет необходим, кроме понижающего, и мощный повышающий трансформатор, каким является катушка Румкорфа — индукционная катушка.

Желательно построить катушку, которая давала бы искру длиной в 10—15 сантиметров. Это в значительной степени облегчило бы постройку таких приборов, как, например, рентгеновский аппарат.

Но особенно увлекаться большой мощностью индукционной катушки не следует, так как изоляция провода может не выдержать слишком высокого напряжения и катушка сгорит.

При наличии же материалов, имеющихся в продаже, вполне возможно построить индукционную катушку с искрой в 8—10 сантиметров. А этого для начала будет вполне достаточно.

Принцип действия индукционной катушки в точности такой же, как и трансформатора, поэтому мы не будем останавливаться на этом вопросе.

Катушку Румкорфа для нас вполне может заменить бобина от автомашины. Но если такой не окажется в нашем распоряжении, то индукционную катушку придется изготовить самим.

Детали катушки Румкорфа

Сердечник

Сердечник катушки делается из железной проволоки, которая употребляется для упаковки ящиков, или жести от консервных банок.

Проволоку или жесть, предназначенную для сердечника, необходимо отжечь, то есть накалить в печи до тёмно-красного накала и затем медленно остудить в горячей золе.

После этого с проволоки надо тщательно счистить окалину и покрыть проволоку спиртовым лаком, или, лучше, шеллаком.

После того как проволока просохнет, ее складывают в пучок и крепко обматывают изоляционной лентой. Поверх изоляционной ленты на сердечник следует намотать еще слоя четыре пропарафиненной бумаги.

После этого можно приступить к изготовлению обмоток.

Обмотка сердечника

Обмотка сердечника производится в той же последовательности, как и у всякого трансформатора, то есть сначала наматывается первичная обмотка и на нее — вторичная, повышающая обмотка.

Так как большинство аккумуляторов и батарей накала имеет в среднем напряжение 4 вольта, то и нам лучше сделать индукционную катушку, которая работала бы от 4 вольт.

Для этого на первичную обмотку нам потребуется медный изолированный провод, желательно с двойной шелковой изоляцией, диаметром 1,5 мм. Такой проволоки нам потребуется 25 метров.

Закрепив конец провода ниткой на расстоянии 40 мм от торца сердечника и оставив конец провода длиной в 100 мм, намотку производят по часовой стрелке, с плотной укладкой витка к витку. Когда таким образом сердечник будет обмотан одним слоем провода по длине 220 мм, делается петля длиной в 100 мм, провод снова закрепляется ниткой и ведется второй слой намотки в том же направлении.

Намотав второй слой, конец обмотки нужно прочно закрепить с помощью суровой нитки и всю обмотку залить горячим парафином.

Средний отвод от первичной обмотки позволит нам применять в работе напряжение в 2 вольта, а следовательно, вдвое повысить коэффициент трансформации и в конечном итоге увеличить длину искры. Использованием же одновременно обеих секций, параллельно включенных, мы сможем подать на первичную обмотку повышенный ток и тем самым еще несколько увеличить мощность искры.

Вторичную обмотку катушки необходимо сделать многосекционной. Многосекционная обмотка облегчит ее исправление в случае повреждения. Ведь перемотать одну поврежденную секцию значительно легче, чем перематывать всю обмотку, состоящую из многих тысяч витков тончайшего провода.

Для вторичной обмотки нам придется изготовить 10 таких секций, которые нанизываются на сердечник одна за другой. Каждая секция изготовливается из картона толщиной в 1 мм, предварительно проваренного в парафине. Это необходимо для повышения изоляционных качеств картона. Лучше, конечно, если вы сделаете катушки из тонкой фибры.

Внутреннее отверстие катушек должно быть таким, чтобы они с трением надевались на сердечник с первичной обмоткой, поверх которой предварительно будет намотано еще два слоя пропарафиненной бумаги.

Когда все катушки будут готовы, можно приступить к изготовлению вторичной обмотки. Для вторичной обмотки нам потребуется изолированный провод ПЭ или ПШО, диаметром 0,1 мм. Будьте осторожны, особенно при намотке проводом ПШО, так как под шелко­вой изоляцией трудно заметить обрыв такого тонкого проводника. А если будет обрыв, то вся работа пойдет впустую.

Секции вторичной обмотки также надо наматывать аккуратно, виток к витку, и обязательно все секции должны быть намотаны в одном направлении. Следует также, намотав несколько слоев, проложить слой пропарафиненной бумаги и продолжать намотку.

Если во время намотки будет обнаружен обрыв провода, то концы его надо тщательно зачистить, скрутить между собой и обязательно спаять, а затем тщательно изолировать пропарафиненной бумагой.

Намотку каждой секции следует закончить, не доходя 5 мм до верхнего борта катушки. На этом расстоянии делается тонкий прокол в щечке катушки; провод прочно закрепляют в ней и оставляют свободный конец в 5—7 см.

Обмотку катушки сверху покрывают несколькими слоями пропарафиненной бумаги и изоляционной лентой.

Когда будут намотаны все 10 секций, первичная обмотка покрывается 2—3 слоями пропарафиненной бумаги и на нее надеваются секции второй обмотки.

При этом надо следить, чтобы все катушки были надеты в последовательном порядке, то есть их обмотки составляли бы продолжение одна другой.

В таком же последовательном порядке их и соединяют между собой: конец обмотки первой секции соединяется с началом обмотки второй секции, а конец второй секции — с началом третьей секции и т.д.

К началу и концу вторичной обмотки припаивается по куску толстого гибкого провода длиной по 15 см каждый; после этого вся катушка заливается парафином так, чтобы она представляла сплошную парафиновую массу.

При этом надо следить, чтобы не оставалось пустот между секциями, не залитых парафином. Следовательно, катушку надо заливать постепенно.

Для удобства заливки надо склеить из картона цилиндр диаметром 115 мм и длиной 240 мм.

Катушку устанавливают в цилиндре так, чтобы между ней и стенками цилиндра было одинаковое расстояние. После этого в цилиндр осторожно, не спеша, наливают расплавленный парафин. После остывания парафина цилиндр с катушки снимать не надо — он будет служить футляром. Его нужно только закрыть с торцов картонными дисками.

Механический прерыватель для катушки

Механический прерыватель для катушки можно сделать таким же, как и у электрического звонка. Поэтому, если у кого найдется старый электрический звонок, то им вполне можно воспользоваться.

Прерыватель необходим для того, чтобы из постоянного тока, который поступает от аккумулятора, получалось переменное напряжение, иначе трансформатор-катушка не будет трансформировать ток.

Для механического прерывателя надо изготовить детали, указанные на рис. 2. Якорь а вырезается из упругого железа. Лучше, конечно, сделать его из тонкой стальной пластинки, потому что он должен хорошо пружинить. Контактную пластину б можно сделать из латуни толщиной в 2 мм или из жести.

Прерыватель собирается на внутренних стенках футляра катушки. На нижней стенке прикрепляется якорь так, чтобы он был на расстоянии 2—3 мм от сердечника катушки.

К противоположной стенке прикрепляется контактная пластина так, чтобы она своим серебряным контактом хорошо прижималась к серебряному контакту якоря (см. рис. 2в).

Конец первичной обмотки катушки присоединяется к якорю, а от контактной пластины делается отвод, к которому мы будем присоединять второй полюс аккумулятора.

Прерыватель действует так: когда мы включаем напряжение, то ток через контактную пластину, соединенную с якорем, проходит по первичной обмотке катушки. В это время сердечник намагничивается и притягивает якорь.

Якорь, притянувшись к сердечнику, размыкает цепь.

С отсутствием электрического тока магнитные силы исчезают из сердечника, якорь вновь возвращается в прежнее положение, то есть замыкает цепь, ток вновь поступает в катушку, сердечник опять притягивает якорь и т.д.

Таким образом в первичной обмотке нашей катушки создается переменное напряжение, которое трансформируется вторичной обмоткой и повышается в несколько сот раз.

Из сказанного выше нетрудно понять, что если у кого-нибудь найдется повышающий трансформатор, то его легко можно переделать в катушку Румкорфа. Для этого придется только сменить сердечник—сделать его прямым, не замыкающимся, как у обычных трансформаторов, и устроить прерыватель.

Искра такой катушки будет зависеть от соотношения витков первичной и вторичной обмоток.

У кого найдется понижающий трансформатор с напряжением в 4—6 вольт, тот может использовать катушку Румкорфа как повышающий трансформатор, включив в нее переменный ток в 4—6 вольт, и снять то же напряжение с повышающей обмотки, как и от аккумуляторов. Только в этом случае включать напряжение надо прямо в первичную обмотку катушки, минуя прерыватель.

Разрядник

Разрядник устроен очень просто. Он состоит из двух стоек с контактами, к которым присоединяются концы вторичной обмотки катушки. На вершинах стоек укреплены два стержня, направленных друг к другу.

Если стержни будут сдвинуты на такое расстояние, которое может покрыть искра, вырабатываемая нашей катушкой, то между стержнями образуется сплошная дуга из электрических искр.

Стойки устанавливаются на крышке деревянного футляра катушки на расстоянии 150 мм. Их можно изготовить из сухого дерева или изоляционных материалов — фибры, эбонита, карболита.

Стойки делаются длиной 150 мм и диаметром 20 мм.

На расстоянии 30 мм от одного торца в стойках просверливаются сквозные отверстия для стержней, а с торцов просверливаются отверстия по центру до пересечения стержневых отверстий. В них будут ввертываться крепящие винты.

Если стойки будут сделаны из дерева, то в торцы можно просто ввернуть шурупы. Рядом со стойками ввертываются две клеммы, к которым снизу крышки присоединяются начало и конец вторичной обмотки, если катушка будет работать от переменного тока.

Если же она будет работать от аккумулятора, то нужно будет изготовить еще и прерыватель. Тогда соединение будет иным. Готовый и установленный разрядник показан на рис. 1в. Для лучшего предохранения катушки от всяких случайных повреждений надо сделать деревянный футляр. Размеры его показаны на рис. 1в.

Источник: http://electro-shema.ru/handmade/samodelnaya-indukcionnaya-katushka-rumkorfa.html

Устройство электромагнитной левитации

Необычные схемы

 

Левитация (от лат. levitas «легкость, легковесность») — физическое явление, при котором предмет без видимой опоры пари́т в пространстве, не касаясь твёрдой поверхности. Люди часто связывают это явление с магией, привидениями, НЛО и прочими невероятных явлениями.
С другой стороны, левитация относительно простое физическое явление для металлических предметов, находящихся в магнитном поле.

 

Предлагаю вам ознакомиться с устройством, предназначенным для левитации металлических предметов. Принцип работы прост. Для того, чтобы предмет мог висеть в пространстве, вместо постоянного магнита надо использовать электромагнит, управляемый с помощью электронной схемы таким образом, чтобы металлический предмет как бы парил на некотором расстоянии от электромагнита. За положением предмета в пространстве следит оптическая пара, которая состоит из инфракрасного фото и светодиодов. Если объект поднимается слишком высоко, то фотодиод будет менее освещен-ток через обмотку электромагнита уменьшится и его сила притяжения также уменьшится. Если объект опустится слишком низко, фотодиод будет более освещенным, ток через обмотку электромагнита увеличивается, и его сила притяжения увеличится.

Рис. 1 Схема устройства электромагнитной левитации

В схема управления устройства магнитной левитации (рис.1) используется операционный усилитель (ОУ) 1458 или 4558 и мощный MOSFET с теплоотводом. Опорное напряжение снимается с делителя R3-R4 и подается на неинвертирующий вход 3 ОУ. Контролируемое напряжение подается с делителя R2-VD2 на вход 2 ОУ. При небольшом изменении напряжения на R2-VD2 появляется сигнал рассогласования, который многократно, усиливается и изменяет напряжение на транзисторе VT1.

Электромагнит можно намотать на каркасе большого старого реле. Катушка содержит 1200 витков провода диаметром 0,4-0,5 мм. Железный сердечник имеет диаметр 8-10 мм.

Особых критериев для используемого фотодиода нет, можно использовать ту модель, которая есть у вас под рукой. Но т. к, их характеристики разнятся, резистором R1 настраивают четкую работу схемы при данных параметрах фотодиода.

Если у вас возникнут проблемы с устойчивостью работы устройства (объект вибрирует),то, возможно, потребуется изменить постоянную времени контура. Для этого необходимо экспериментально подобрать номинал конденсатора С1, от 22 мкф до 1мкф, пока цепь не станет работать устойчиво.

 


Как моделировать устройства, основанные на электродинамической магнитной левитации

Электродинамическая магнитная левитация может возникнуть при наличии переменного магнитного поля в окрестности проводящего материала. В этой статье мы расскажем и покажем, как моделировать магнитную левитацию, на двух примерах: верификационной задаче TEAM про устройство, основанное электродинамической левитации и модели электродинамического колеса.

Что такое электродинамическая магнитная левитация?

Явление электродинамической магнитной левитации возникает, когда вращающийся и/или движущийся постоянный магнит либо катушка с током создают переменное магнитное поле близи проводника. Переменное магнитное поле наводит вихревые токи в проводнике, которые создают поле в противоположном направлении. Оно, в свою очередь, создаёт отталкивающую силу между проводящим материалом и источником магнитного поля. Этот процесс является основополагающим принципом действия всех магнитных левитирующих устройств.


Магнит, левитирующий над сверхпроводником. Изображение предоставлено Julien Bobroff. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

Анализ эталонной задачи на электродинамическую левитацию

Рассмотрим верификационную задачу №28, описанную в Testing Electromagnetic Analysis Methods (TEAM) (от общества Compumag) и посвященную расчету электромагнитного левитирующего устройства В данной задаче круглый алюминиевый проводящий диск расположен над двумя цилиндрическими, концентрическими катушками переменного тока, протекающего в противоположных направлениях. Поперечное сечение элементов задачи показано на рисунке ниже.


Поперечное сечение концентрических катушек и алюминиевого диска. Все размеры указаны в миллиметрах.

3D модель изображена ниже.


3D-модель электродинамического левитирующего устройства. На ней изображёны левитирующий диск и две концентрических катушки переменного тока, протекающего в противоположных направлениях.

Для моделирования такого устройства в программном обеспечении COMSOL Multiphysics® мы используем 2D осесимметричную геометрию. Будем использовать физический интерфейс Magnetic Fields (Магнитные поля), который доступен в модуле AC/DC и позволяет корректно описать переменные токи в катушках, а также наводимые вихревые токи. Концентрические катушки с протекающими в противоположных направлениях токами опишем с помощью двух отдельных узлов Coil (Катушка), выбрав в настройках Homogenized Multi-Turn Coil (Гомогенизированная многовитковая катушка). Электродинамическая сила, возникающая в алюминиевом диске, будет рассчитана с помощью узла Force Calculation (Расчёт силы), который вычисляет тензор напряжений Максвелла.

Динамика твёрдого тела задаётся обыкновенным дифференциальным уравнением (ОДУ, англ. ODE) в физическом интерфейсе Global ODEs and DAEs. ОДУ первого порядка, задающие положение и скорость имеют следующий вид:

\frac {dv}{dt}=\frac{F_{em}-F_{g}}{m_p}

\frac{du}{dt}=v

Так как электродинамическая сила изменяется в зависимости от расстояния между диском и катушками, наша модель должна учитывать динамику изменения положения диска. Для этого мы воспользуемся интерфейсом Moving Mesh (Подвижная сетка). Ниже на графике мы привели сравнение опорных данных, указанных в тесте TEAM, и результатов, полученных с помощью моделирования в COMSOL.


Сравнение результатов моделирования и данных TEAM на одном графике. Показана зависимость перемещения диска от времени.

Анимация перемещения диска над двумя концентрическими катушками в течении 0.6 с.

Моделирование электродинамического колеса в COMSOL Multiphysics®

Механические вращение источников магнитного поля, таких как радиально намагниченный ротор Халбаха, наводит вихревые токи в проводящем материале (например, алюминии). Они создают противоположно направленное магнитное поле, которое взаимодействует с источником магнитного поля и отталкивает его. Одновременно создаются подъемная сила и сила тяги. Такое устройство называется электродинамическим колесом (ЭДК).

На рисунке ниже показан принцип левитации ЭДК при высокоскоростном движении. Сила тяги или тормозящая сила зависят от относительной скорости скольжения, sl, которая определяется, как разница между азимутальной vc и поступательной vx скоростями. Например, sl = vcvx, где vc = ωmro и ωm = ωeP. Где ωm — это механическая угловая скорость, ωe — электрическая угловая скорость, P — число пар полюсов ротора Халбаха.


Конструкция четырёхполюсного ЭДК, основанного на принципе магнитной левитации (maglev — маглева). На рисунке изображёны проводящий слой и вращающийся и/или перемещающийся ротор Халбаха.

Если азимутальная скорость больше, чем поступательная (скольжение положительно), то создаётся подъёмная сила. В противном случае создаётся тормозящая сила.

Используя физический интерфейс Rotating Machinery in 2D and 3D, Magnetic (Вращающиеся машины в 2D и 3D), мы можем учитывать оба этих движения в одной модели. Вращательное движение задаётся узлом Prescribed Rotational Velocity (Заданное вращательное движение). Поступательное движение ротора Халбаха задаётся в противоположном направлении узлом Velocity (Lorentz) (Скорость по Лоренцу). Постоянные магниты задаются узлами Ampère’s Law (Закон Ампера) с указанием остаточной магнитной индукцией Br = 1.42[Тл]. Так как намагниченность создаётся в радиальном или азимутальном направлениях, для удобства выберем цилиндрическую систему координат.

В итоге, было выполнено моделирование переходного процесса для разных механических угловых скоростей ротора. На графиках ниже показаны зависимости подъёмной силы и силы тяги от времени. Две этих силы вычисляются различными способами: расчётом тензора напряжений Максвелла и методом Лоренца.

На графиках изображены зависимости подъёмной силы и силы тяги от времени. Синим цветом показан расчёт тензора напряжений Максвелла, зелёным — метод Лоренца.

На втором этапе проводилось стационарное исследование для различных поступательных скоростей. Тормозящая сила возникает при отсутствии вращения или если азимутальная скорость меньше, чем прямолинейная. Результаты моделирования подъёмной и тормозящей силы для различных скоростей показаны на графиках ниже.

Зависимости подъёмной и тормозящей силы от времени. Синим цветом показан расчёт тензора напряжений Максвелла, зелёным — метод Лоренца.

Анимация показывает поверхностный график распределения магнитного поля в воздухе и магнитах; плотность тока в проводящем слое; силовые линии векторного магнитного потенциала, Az. Изображено вращение ротора по часовой стрелке и взаимодействие полей.

Выводы по моделированию электродинамической магнитной левитации

В данной статье мы показали, как моделировать два электродинамических магнитных устройства, используя модуль AC/DC пакета COMSOL Multiphysics. Мы разобрали верификационную задачу №28 от TEAM: Электродинамическое левитирующее устройство и сравнили результаты моделирования с данными эксперимента. Также мы постарались доступно объяснить принцип действия электродинамического колеса, основанного на явлении магнитной левитации. Наши результаты моделирования оказались довольно точными и полностью сошлись с экспериментальными результатами.

Дополнительные ресурсы

  • Узнайте больше о примерах, представленных в данной статье:
  • Ознакомьтесь с тем, как другие пользователи COMSOL Multiphysics решают подобные задачи
  • Следите за нашим блогом по проектированию Электромагнитных устройств
  • Захотелось заняться моделированием устройств, основанных на принципе магнитной левитации в COMSOL Multiphysics или у вас остались какие-либо вопросы по поводу данной статьи? Свяжитесь с нами

Магнитная левитация своими руками на постоянных магнитах

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием «Air Bonsai», действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Шаг 1: Как это работает

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, «плавающую» над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита – пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: «Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе — интеграл сигнала рассогласования, третье — производная сигнала рассогласования.»

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение – это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал – скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino. Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.

  • 1x – LM324N
  • 4x – левитационная катушка
  • 2x – SS495a датчик Холла
  • 1x – 12V 2A DC адаптер
  • 8x – Кольцевой магнит D15*4 мм
  • 1x – Разъем питания постоянного тока
  • 4x – Кольцевой магнит D15*3 мм
  • 1x – Arduino pro mini
  • 1x – Модуль L298N
  • 1x – 14 гнездовой сокет
  • 2x – Магнит D35*5мм
  • 2x – Резистор 5.6 KОм
  • 2x – Резистор 180 КОм
  • 2x – Резистор 47 KОм
  • 2x- 10 Kом потенциометр
  • 1x – Акриловый лист A5 размера
  • 1x – Деревянный горшок
  • 1x – PCB макет
  • 8x – 3 мм винт
  • провода
  • Мини-растение (суккулент, кактус, мини-бонсай, карликовое дерево)

Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого – увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a – это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: «Неодим — химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения.»

Неодим – это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный – это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер – здорово. У вас есть возможность сделать все с помощью него. Если принтера нет – не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше – файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные – для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой – к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг – собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Шаг 16: Подготовка плавающей части

Соедините два магнита D35*5 для увеличения магнетизма.

Шаг 17: Калибровка

Загрузите программу ReadSetpoint.ino в Arduino, которую можно скачать выше. Эта программа будет считывать значения датчика Холла и отправлять их на компьютер через последовательный порт. Откройте COM-порт, чтобы увидеть его. Подключите 12 В постоянного тока к гнезду питания постоянного тока, вы также используете осциллограф для считывания значения датчика.

Наблюдайте значения на экране и внесите корректировки, установив два потенциометра. Наилучшее значение – 560, при этом выход датчика составляет около 2,5 В. После установки заданного значения поместите плавающий магнит над базовой частью и встряхните его, чтобы увидеть изменение значения установки (Setpoint) на экране.

Шаг 18: Загрузка основной программы

После калибровки значения установки (Setpoint) самое время получить результаты. Загрузите основную программу Levitation.ino, которая приведена выше.

Используйте супер клей для фиксации магнита и держателя магнита, который ранее был напечатан на 3D-принтере. После загрузки основной программы вы можете внести небольшие корректировки на потенциометры, чтобы плавающая деталь была зафиксирована в центре.

Шаг 19: Собираем всё вместе

Сначала прикрепите гнездо питания постоянного тока к горшку, затем поместите оставшиеся части в горшок. Наконец, используйте оставшийся акриловый лист, чтобы сделать поверхность горшка.

Шаг 20: Подготовка растения

Прикрепите деревянный горшок к плавающей части магнита. Мы использовали маленький кактус для посадки. Вы можете использовать кактус или суккулент или любой мини-бонсай, который является маленьким и легким.

Шаг 21: Финальный результат

Наслаждайтесь своим результатом, благодаря вашим усилиям вы сделали отличный проект, который теперь будет радовать вас и ваших друзей.

0.Предисловие

Начитался тут всяких интернетов и решил сваять свой собственный левитрон, без всяких цифровых глупостей. Сказано – сделано. Выкладываю муки творчества на всеобщее обозрение.

1.Краткое описание

Левитрон – это устройство, удерживающее объект в равновесии с силами гравитации с помощью магнитного поля. Давно известно, что невозможно левитировать объект, используя статичные магнитные поля. В школьной физике это называлось состоянием неустойчивого равновесия, насколько я помню. Однако, затратив немного желания, знаний, усилий, денег и времени, возможно левитировать объект динамически путем использования электроники в качестве обратной связи.

Получилось вот что:

2.Фунциональная схема

Электро-магнитные датчики, расположенные на торцах катушки, выдают напряжение, пропорциональное уровню магнитной индукции. В случае отсутствия внешнего магнитного поля эти напряжения будут одинаковы вне зависимости от величины тока катушки.

При наличии постоянного магнита вблизи нижнего датчика блок управления будет формировать сигнал, пропорциональный полю магнита, усиливать его до нужного уровня и передавать на ШИМ для управления током через катушку. Таким образом, возникает обратная связь и катушка будет генерировать такое магнитное поле, которое будет удерживать магнит в равновесии с силами гравитации.

Что-то заумно все получилось, попробую по другому:
— Нет никакого магнита — индукция на торцах катушки одинакова — сигнал с датчиков одинаков — блок управления выдает минимальный сигнал — катушка работает на всю мощь;
— Близко поднесли магнит — индукция сильно разная — сигналы от датчиков сильно разные — блок управления выдает максимальный сигнал — катушка отключается совсем — магнит никто не держит и он начинает падать;
— Манит падает — отдаляется от катушки — разница сигналов с датчиков уменьшается — блок управления уменьшает выходной сигнал — ток через катушку увеличивается — увеличивается индукция катушки — магнит начинает притягиваться;
— Манит притягивается — приближается к катушке — разница сигналов с датчиков увеличивается — блок управления увеличивает выходной сигнал — ток через катушку уменьшается — уменьшается индукция катушки — магнит начинает падать;
— Чудо — магнит не падает и не притягивается — вернее, и падает и притягивается несколько тысяч раз в секунду — то есть возникает динамическое равновесие — магнит просто висит в воздухе.

3.Конструкция

Главным элементом конструкции является электро-магнитная катушка (соленоид), которая и удерживает своим полем постоянный магнит.

На пластиковый каркас D36x48 плотно намотано 78 метров медного эмалированного провода диаметром 0.6 мм, получилось где-то 600 витков. По расчетам, при сопротивлении 4.8Ом и питании 12В, ток будет 2.5А, мощность 30Вт. Это необходимо для подбора внешнего блока питания. (По факту получилось 6.0Ом, вряд ли нарезали больше провода, скорее сэкономили на диаметре.)

Внутрь катушки вставлен стальной сердечник от дверной петли диаметром 20мм. На его торцах с помощью термоклея закреплены датчики, которые обязательно должны быть ориентированы в одинаковом направлении.

Катушка с датчиками закреплена на кронштейне из алюминиевой полосы, который, в свою очередь, крепится к корпусу, внутри которого находится плата управления.

На корпусе расположен светодиод, выключатель и гнездо питания.

Внешний блок питания (GA-1040U) взят с запасом по мощности и обеспечивает ток до 3.2А при 12В.

В качестве левтитрующего объекта используется N35H магнит D15x5 с приклеенной банкой из под кока-колы. Сразу скажу, что полная банка не годится, поэтому тонким сверлом делаем отверстия по торцам, сливаем ценный напиток (можно выпить если не боитесь стружки) и к верхнему колечку клеим магнит.

4.Принципиальная схема

Сигналы с датчиков U1 и U2 подаются на операционный усилитель OP1/4, включенный по дифференциальной схеме. Верхний датчик U1 подключен к инвертирующему входу, нижний U2 – к неинвертирующему, то есть сигналы вычитаются, и на выходе OP1/4 получаем напряжение, пропорциональное только уровню магнитной индукции, создаваемому постоянным магнитом вблизи нижнего датчика U2.

Комбинация элементов C1,R6 и R7 является изюминкой данной схемы и позволяет достичь эффекта полной стабильности, магнит будет висеть как вкопанный. Как это работает? Постоянная составляющая сигнала проходит через делитель R6R7 и ослабляется в 11 раз. Переменная составляющая проходит через фильтр C1R7 без ослабления. Откуда вообще берется переменная составляющая? Постоянная часть зависит от положения магнита вблизи нижнего датчика, переменная часть возникает из-за колебаний магнита вокруг точки равновесия, т.е. от изменения положения во времени, т.е. от скорости. Нам интересно, чтобы магнит был неподвижен, т.е. его скорость была равна 0. Таким образом, в управляющем сигнале мы имеем две составляющих – постоянная отвечает за положение, а переменная – за стабильность этого положения.
Далее, подготовленный сигнал усиливается на OP1/3. С помощью переменного резистора P2 устанавливается необходимый коэффициент усиления на этапе настройки для достижения равновесия в зависимости от конкретных параметров магнита и катушки.

На OP1/1 собран простой компаратор, который отключает ШИМ и, соответственно, катушку, когда рядом нет магнита. Очень удобная вещь, не надо вынимать блок питания из розетки если убрали магнит. Уровень срабатывания задается переменным резистором P1.

Далее, управляющий сигнал подается на широтно-импульсный модулятор U3. Размах выходного напряжения 12В, частота выходных импульсов задается номиналами C2,R10 и P3, а скважность зависит от уровня входного сигнала на входе DTC.
ШИМ управляет переключением силового транзистора T1, а тот, в свою очередь, током через катушку.

Светодиод LED1 можно и не ставить, а вот диод SD1 нужен обязятельно, для слива лишнего тока и избежания перенапряжения в моменты выключения катушки из-за явления самоиндукции.

NL1 – это наша самодельная катушка, коей посвящен отдельный раздел.

В результате, в режиме равновесия, картина будет примерно такая: U1_OUT=2.9V, U2_OUT=3.6V, OP1/4_OUT=0.7V, U3_IN=1.8V, T1_OPEN=25%, NL1_CURR=0.5A.

Для наглядности прикладываю графики передаточной характеристики, АЧХ и ФЧХ, и осциллогаммы на выходе ШИМ и катушки.



5.Выбор компонентов

Устройство собрано из недорогих и доступных компонентов. Самой дорогой оказалась медная проволока WIK06N, за 78 метров WIK06N заплатил 1200 руб, все остальное, вместе взятое, обошлось значительно дешевле. Тут вообще широкое поле для экспериментов, можно обойтись без сердечника, можно взять проволоку потоньше. Главное не забывать, что индукция по оси катушки зависит от количества витков, тока по ним и геометрии катушки.

В качестве датчиков магнитного поля U1 и U2 используются аналоговые датчики Холла SS496A с линейной характеристикой вплоть до 840Гс, это самое то для нашего случая. При использовании аналогов с другой чувствительностью потребуется корректировка коэффициента усиления на OP1/3, а также проверка на уровень максимальной индукции на торцах вашей катушки (в нашем случае с сердечником она достигает 500Гс), чтобы датчики не входили в насыщение при пиковой нагрузке.

OP1 -это счетверенный операционный усилитель LM324N. При выключенной катушке выдает 20мВ вместо нуля на 14 выходе, но это вполне приемлемо. Главное не забыть выбрать из кучки 100К резисторов наиболее близкие по фактическому номиналу для установки в качестве R1,R2,R3,R4.

Номиналы C1,R6 и R7 выбраны путем проб и ошибок как самый оптимальный вариант для стабилизации магнитов разных калибров (тестировались N35H магниты D27x8, D15x5 и D12x3). Соотношение R6/R7 можно оставить как есть, а номинал C1 увеличивать до 2-5мкФ, в случае возникновения проблем.

При использовании очень маленьких магнитов, вам возможно будет не хватать коэффициента усиления, в этом случае урежьте номинал R8 до 500Ом.

D1 и D2 это обычные выпрямительные диоды 1N4001, тут подойдут любые.

В качестве широтно-импульсного модулятора U3 используется распространенная микросхема TL494CN. Частота работы задается элементами C2, R10 и P3 (по схеме 20кГц). Оптимальный диапазон 20-30кГц, при меньшей частоте появляется свист катушки. Вместо R10 и P3 можно просто поставить резистор 5.6K.

T1 это полевой транзистор IRFZ44N, подойдет и любой другой из этой же серии. При выборе других транзисторов может потребоваться установка радиатора, ориентируйтесь на минимальные значения сопротивления канала и заряда затвора.
SD1 это диод шоттки VS-25CTQ045, тут я хватанул с большим запасом, подойдет и обычный быстродействующий диод, но, возможно, будет сильно греться.

LED1 желтый светодиод L-63YT, здесь, как говорится, на вкус и цвет, можно их и побольше наставить, чтобы все светилось разноцветными огнями.

U4 это стабилизатор напряжения 5В L78L05ACZ для питания датчиков и операционного усилителя. При использовании внешнего блока питания с дополнительным выходом 5В, можно обойись и без него, но конденсаторы лучше оставить.

6.Заключение

Все получилось как задумано. Устройство стабильно работает круглые сутки, потребляет всего 6Вт. Ни диод, ни катушка, ни транзистор не греются. Прикладываю еще пару фоток и финальное видео:

Когда-то из каких-то хороших, но разрушенных компьютерных колонок ко мне попала микросхема TDA1552Q. Ознакомившись с даташитом (http://www.nxp.com/documents/data_sheet/TDA1552Q_CNV.pdf), я отложил ее «до лучших времен». Но недавно в Интернете мне случайно попалось слово «Левитрон» и множество изображений рекламного характера. Мозг быстро отбросил простые «волчки» и подвесные конструкции, остались «платформы» и вопрос: а получится ли у меня сделать нечто похожее, да еще и из хлама? Скажу сразу – получилось. Предлагаемая статья не только о том, как сделан левитрон (в Интернете хватает примеров), но и о том, как его настроить (чего я не нашел вовсе).

Сразу хочется поблагодарить участников форума РадиоКот, наполнивших сообщениями длинную ветку о левитроне, а также неизвестного автора схемы и чертежа. Особая благодарность – Barry Hansen за статью, которая для моего мозга стала мощным катализатором в работе над левитроном, хотя она посвящена подвесной, а не платформенной конструкции. Статья написана простым английским языком, с легким юмором и объяснениями, доступными даже школьнику.
Ссылки в благодарностях приведены не случайно, а рекомендованы для ознакомления всем желающим попробовать свои силы в конструировании левитронов.

Коротенькое видео:

Немного теории

Начнем, пожалуй, с механической схемы платформенного левитрона, сложившейся в моем понимании. Магнит, который парит над платформой, я буду здесь для краткости называть словом «фишка».
Эскиз платформы левитрона (сверху) изображен на рис. 1.

Рис. 1

На рис. 2 – силовая схема вертикального разреза по центральной оси платформы (как я ее себе представляю) в состоянии покоя и без тока в катушках. Все хорошо, кроме того, что состояние покоя в такой системе нестабильно. Фишка стремится сместиться с вертикальной оси системы и с силой шлепнуться на один из магнитов. При «ощупывании» фишкой пространства над магнитами ощущается силовой «горб» над центром платформы с вершиной, лежащей на центральной оси.

Рис. 2

mg – вес фишки,
F1 и F2 – силы взаимодействия фишки с магнитами платформы,
Fmag – суммарное воздействие, уравновешивающее вес фишки,
ДХ – датчики Холла.

На рис. 3. изображено взаимодействие фишки с катушками (опять же, по моему понятию), а остальные силы – опущены.

Рис. 3.

Из рисунка 3 видно, что цель управления катушками – создать горизонтальную силу Fss, направленную всегда к оси равновесия при возникновении смещения Х. Для этого достаточно включить катушки так, чтобы одинаковый ток в них создавал магнитное поле противоположного направления. Остался пустяк: измерить смещение фишки от оси (величину Х) и определить направление этого смещения с помошью датчиков Холла, а потом пропустить в катушках подходящей силы токи.

Простой повтор электронных схем – не в наших традициях, тем более, что:
— нет в наличии двух TDA2030A, а есть TDA1552Q;
— нет датчиков Холла SS496 (доступны примерно по $2 за штуку), а есть датчики, похожие на HW101, по 3 шт даром в каждом двигателе диска CD- или DVD-драйва;
— лень возиться с двуполярным питанием.
Даташиты:
SS496 — http://sccatalog.honeywell.com/pdbdownload/images/ss496.series.chart.1.pdf
HW101- http://www.alldatasheet.com/datasheet-pdf/pdf/143838/ETC1/HW101A.html

Схема представляет собой два идентичных усилительных канала с дифференциальными входами и мостовыми выходами. На рис. 4 приведена полностью схема только одного канала усиления. Использованы микросхемы LM358 (http://www.ti.com/lit/ds/symlink/lm158-n.pdf) и TDA1552Q (http://www.nxp.com/documents/data_sheet/TDA1552Q_CNV.pdf).

Рис. 4.

На вход каждого канала подключена пара датчиков Холла так, чтобы подать на усилитель разностный сигнал. Выходы датчиков включены встречно. Это значит, что, когда пара датчиков находится в магнитном поле с одинаковой напряженностью, с нее на вход усилителя поступает нулевое разностное напряжение.
Балансировочные резисторы R10 взяты многооборотные, старые, советские.
В попытках выжать из усилителя достаточно высокий коэффициент усиления, я получил банальное самовозбуждение, предположительно, из-за бардака на монтажной плате. Вместо «уборки» в схему введены частотнозависимые RС-цепочки R15C2; они не обязательны. Если все же пришлось их установить, то сопротивление R15 нужно подобрать наибольшим, при котором самовозбуждение гаснет.
Питание всего устройства — адаптер (импульсный) на 12В 1,2А, перенастроенный на 15В. Энергопотребление в нормальном состоянии (с выключенным вентилятором) в итоге оказалось вполне скромным: 210-220 мА.

Конструкция
В качестве корпуса выбран кожух дисковода 3,5”, что приблизительно соответствует габаритам прототипов. Для горизонтирования платформы
ножки сделаны из винтов М3.
В верхней части корпуса вырезано фигурное отверстие, хорошо видимое на рис.5. Впоследствии оно закрыто декоративной зеркальной пластиной из хромированной латуни, закрепленной винтиками от винчестеров.

Рис. 5.

1 – места установки магнитов (снизу) и индикаторов баланса (опционально)
2 – «полюсные наконечники» катушек
3 – датчики Холла
4 – светодиоды подсветки (опционально)

Датчики Холла расположены в отверстиях стеклотекстолитового основания платформы и распаяны на разогнутых ножках разъемов (не знаю типа). Разъемы выглядели как на рис.6.

Рис. 6.

Датчики выпаяны из двигателей CD- или DVD-привода. Там они расположены под краем ротора и хорошо видны на рис.7. На один канал нужно брать пару датчиков из одного двигателя – так они будут наиболее одинаковыми. Выпаянные датчики – на рис.8.

Рис. 7. Рис. 8.

Для катушек были куплены пластмассовые шпули для швейных машинок, но на них оказалось мало места для обмотки. Тогда от шпуль были отрезаны щечки и приклеены на отрезки тонкостенной латунной трубки наружным диаметром 6мм и длиной 14мм. Трубка раньше была сегментом телескопической стержневой антенны. На четырех таких каркасах проводом 0,3 мм намотаны обмотки «почти послойно» (без фанатизма!) до заполнения. Сопротивление выровнено на 13 Ом.

Магниты – прямоугольные 20х10х5 мм и дисковые диаметром 25 и 30 мм толщиной 4 мм (рис.9) – пришлось все-таки купить… Прямоугольные магниты установлены под основанием платформы, а из дисковых сделаны фишки.

Рис. 9.

Вид устройства снизу и сзади (вверх дном) – на рис. 10 и 11 (легенда одна на оба рисунка). Бардак, конечно, живописный…
Микросхема U2 TDA1552Q (3) размещена на теплоотводе (9), который раньше работал на видеокарте. Сам радиатор закреплен винтами на отогнутых частях верхней крышки корпуса. На радиаторе (9) закреплены также гнездо питания (1), контрольные гнезда (2) и узел терморегулирования (5).
Кусок стеклотекстолита, который раньше был клавиатурой, служит основанием платформы. Катушки (7) закреплены на основании винтами М4 и гайками. На нем же с помощью хомутов и саморезов укреплены магниты (6).
Контрольные гнезда (2) сделаны из компьютерного разъема питания и закреплены сзади устройства вблизи балансировочных резисторов (10) так, что легко доступны без разборки. Подключены гнезда, естественно, к выходам обоих каналов усилителя.
Схема предусилителя и его стабилизатора питания, включая балансировочные резисторы (10), смонтирована на макетной плате и в результате наладки превратилась в живописный свинарничек, от макрофотографирования которого пришлось воздержаться.

Рис.10. Рис.11.

1 – крепление гнезда питания
2 – контрольные гнезда
3 – TDA1552Q
4 – выключатель питания
5 – узел терморегулирования
6 – магниты под хомутиками
7 – катушки
8 – магнитные шунты
9 – теплоотвод
10 – балансировочные резисторы

Наладка

Выставление нулей на выходах обоих каналов при каждом отладочном включении – обязательно. Можно без фанатизма: +–20 мВ – вполне приемлемая точность. Возможно некоторое взаимовлияние между каналами, так что при значительном начальном отклонении (больше 1-1.5 вольт по выходу канала) выставление нулей лучше сделать дважды. Стоит помнить, что при железном корпусе баланс разобранного и собранного устройства – это две большие разницы.

Проверка фазировки каналов

Фишку нужно взять в руку и поместить над центром платформы включенного левитрона на высоте примерно 10-12мм. Каналы проверяются поочередно и раздельно. При смещении фишки рукой вдоль линии, соединяющей противоположные от центра датчики, рука должна чувствовать заметное сопротивление, создаваемое магнитным полем катушек. Если сопротивления не чувствуется, а руку с фишкой «сносит» от оси, нужно поменять местами провода с выхода проверяемого канала.

Настройка положения парящей фишки

На видеороликах о самодельных платформенных левитронах нередко можно видеть, что фишка парит в наклонном положении, даже если сделана на базе дисковых магнитов, то есть, достаточно хорошо симметрирована. Не обошлось без перекоса и в описываемой конструкции. Возможно, в этом виноват металлический корпус…
Первая мысль: сместить вниз магниты с той стороны, где фишку излишне «подпирает».
Вторая мысль: сместить дальше от центра магниты с той стороны, где фишку излишне «подпирает».
Третья мысль: если магниты смещать, то магнитной ось системы постоянных магнитов платформы перекосится относительно магнитной оси системы катушек, из-за чего поведение фишки станет непредсказуемым (особенно при разном ее весе).
Четвертая мысль: сделать сильнее магниты с той стороны, куда наклонена фишка – была отброшена как несбыточная, потому что широкого ассортимента магнитов для подгонки негде было взять.
Пятая мысль: сделать слабее магниты с той стороны, где фишку излишне «подпирает» – оказалась удачной. Более того, достаточно простой в реализации. Магнит, как источник магнитного поля, можно шунтировать, то есть, закоротить часть магнитного потока, так что в окружающем пространстве магнитное поле станет немного слабее. В качестве магнитных шунтов были применены маленькие ферритовые кольца (10х6х3, 8х4х2 и т.д.), бесплатно выковырянные из дохлых ламп-экономок (8 на рис.10). Эти кольца нужно просто примагнитить к слишком сильному магниту (или двум-трем) с той их стороны, что дальше от центра платформы. Оказалось, что подбирая количество и размеры шунтов для каждого «слишком сильного» магнита, можно достаточно точно отгоризонтировать положение парящей симметричной фишки. Не забывайте выполнить электрическую балансировку после каждого изменения в магнитной системе!

Опции

К опциям относятся: индикаторы разбаланса усилителя, узел терморегулирования, подсветка и регулируемые ножки платформы.
Индикаторы разбаланса усилителя – две пары светодиодов, расположенные на тех же радиусах, что и датчики, в толще стеклотекстолитового основания платформы (1 на рис. 5). Светодиоды, очень маленькие и плоские, раньше работали в каком-то модеме, но подойдут и от старой мобилки (в SMD исполнении). Светодиоды утоплены в отверстиях, так как фишка, срываясь из центра, шлепается на ближайший магнит и вполне способна разрушить светодиод.
Схема индикатора для одного канала – на рис. 12. Светодиоды должны быть с рабочим напряжением 1,1-1,2 В, т.е. простенькие красные, оранжевые, желтые. При более высоких напряжениях LED-ов (2,9-3,3 В для сверхъярких) следует пересчитать количество диодов в цепочке D3-D6 для сведения к минимуму «мертвой зоны» – минимального напряжения на выходе канала, при котором ни один из светодиодов не светится.

Рис. 12.

Я расположил индикаторы так, чтобы светился тот, в сторону которого фишка смещена от центра. Индикаторы помогают легко повесить фишку над левитроном, а также горизонтировать платформу. В нормальном состоянии все они погашены.

Схема узла терморегулирования – на рис. 13. Его назначение – не дать оконечному усилителю перегреться. На выходе термоузла включен вентилятор 50х50 мм 12В 0,13А от компьютера.

Рис. 13.

В схеме термоузла легко узнать немного измененный триггер Шмитта. Вместо первого транзистора использована микросхема TL431. Тип транзистора Q1 указан условно – я воткнул первый попавшийся NPN, способный выдержать рабочий ток вентилятора. В качестве термодатчика использован терморезистор, найденный на старой материнской плате в процессорном сокете. Термодатчик приклеен на радиатор оконечного усилителя. Подбором резистора R1 можно отрегулировать термоузел на срабатывание при температуре 50-60С. Резистор R5 совместно с коллекторным током Q1 определяет величину гистерезиса схемы относительно напряжения на управляющем входе U1.
В схеме на рис. 13 резистор R7 введен для снижения напряжения на вентиляторе и, соответственно, шума от него.
На рис. 14 видно, как вентилятор врезан в нижнюю крышку корпуса.

Рис. 14.

Другой способ применения термоузла – подключение к управляющему выводу MUTE микросхемы оконечного усилителя (рис. 15). Величина указанного на схеме номинала R5 предполагает подключение MUTE (вывода 11 микросхемы U2 по рис. 4) к питанию через резистор 1кОм (НЕ напрямую, как в даташите!). Вентилятор в таком случае не нужен. Правда, при подаче сигнала MUTE на усилитель фишка падает, и после снятия сигнала MUTE сама (почему-то?) не взлетает.

Рис. 15.

Подсветка – 4 ярких светодиода диаметром 3мм, расположенные наклонно к центру в отверстиях основания платформы и декоративной пластины в тех местах, куда фишка не падает. Они включены последовательно и через резистор 150 Ом – к цепи общего питания устройства 15В.

Заключение

Грузоподъемность

Чтоб «добить» тему, сняты «грузовые характеристики» левитрона с фишками 25 и 30 мм диаметром. Грузовыми характеристиками я тут назвал зависимость высоты парения фишки над платформой (от декоративной пластины) от суммарного веса фишки.
Для фишки с магнитом 25 мм и общим весом 19г максимальная высота составила 16мм, а минимальная – 8 мм при весе 38г. Между этими точками характеристика практически линейная. Для фишки с магнитом 30 мм грузовая характеристика оказалась между точками 16 мм при 24г и 8 мм при 48г.
С высоты ниже 8 мм от платформы фишка падает, притягиваясь к железным сердечникам катушек.

НЕ делай, как я!

Во-первых, не стоит экономить на датчиках. «Голые» датчики Холла, вынутые попарно для каждого канала из двух двигателей (то есть, практически одинаковые!) – все равно проявляют свой безобразно большой температурный коэффициент сопротивления. Даже при одинаковых цепях питания и встречно-разностном включении выходов датчиков, можно получить заметное смещение нуля на выходе канала при изменении температуры. Интегральные датчики SS496 (SS495) имеют не только встроенный усилитель, но и термостабилизацию. Внутренний усилитель датчиков позволит сделать существенно выше общий коэффициент усиления каналов, да и схема их питания выходит попроще.
Во-вторых, следует, по возможности, воздержаться от размещения левитрона в железном корпусе.
В-третьих, двуполярное питание все-таки предпочтительнее, потому что управление коэффициентом усиления и юстировкой нулей получаются проще.

Как построить устройство электромагнитной левитации

«Не левитируйте ложку; это невозможно. Вместо этого попробуйте понять правду. Ложки нет». — п. Матрица (1999)

А что, если есть ложка? Или какой-нибудь другой объект. Вы не можете просто полагаться на силу своего разума, чтобы левитировать объекты. Этот проект от Дрю Пола из Drew Paul Designs представляет собой самодельное устройство с электромагнитной левитацией, которое может поднять в воздух небольшой металлический предмет.Используйте его в качестве украшения на следующем званом обеде … или обманите друзей, заставив думать, что вы обладаете магическими способностями. Просто помните старую поговорку: единственная разница между фокусником и инженером в том, что инженер расскажет вам, как это делается.

Наблюдайте за работой устройства электромагнитной левитации.

Для инструментов вам также понадобятся паяльник и припой, сверло и биты до 5/16 дюйма, немного изоленты или термоусадочной пленки, клей и гаечный ключ на 5/16 дюйма.

СКАЧАТЬ ПОЛНУЮ СХЕМУ ЗДЕСЬ:

Для тех, кто не хочет покупать отдельные детали, Дрю Пол также сделал набор всех доступных компонентов.

Основные компоненты

Почему мы не можем просто расположить магнит на нужном расстоянии, чтобы левитировать металлические предметы? Это потому, что по мере того, как железный материал приближается к магнитному полю, сила увеличивается экспоненциально. Это описывается так называемым магнитным законом обратных квадратов:

Интенсивность1 / Интенсивность2 = Расстояние1 / Расстояние2

Итак, нет точки в космосе, где магнит или электромагнит естественным образом подвешивали бы объект, не вступая в контакт.Попав в поле, пути назад нет! … Если только …

Распространяющееся магнитное поле может быть показано на 2D-диаграммах или на магнитной пленке в виде силовых линий, исходящих от полюсов. Даже с помощью осциллографа невозможно многое сказать о движении и направлении поля с помощью только двухмерных снимков (как эта пресловутая иллюзия). При наблюдении в 3D это поле можно увидеть и почувствовать как тороидальное, а во времени мы начинаем видеть, что возникает распространяющееся спиральное поле.То же самое и в случае электромагнита, и когда поле схлопывается, оно происходит в противоположном направлении. Это описывается тем, что обычно называют Правилами Флемингса для правой и левой руки.

Итак, теоретически можно создать чередующиеся вихри / спирали, чтобы привести объект в желаемое положение. После выполнения некоторых вычислений на основе приведенной выше формулы мы обнаруживаем, что это возможно только при точном и быстром чередовании этих полей (50000 раз в секунду или больше!)

С помощью нескольких компонентов мы можем создать распространяющееся и коллапсирующее электромагнитное поле, управляемое датчик, который определяет напряженность поля, и цепь, которая прикладывает соответствующее поле к электромагниту.

Сборка корпуса

По завершении корпус должен иметь размеры 8 x 10 x 12 дюймов.

1.) Сначала сложите и закрепите наше оргстекло, измерьте и просверлите четыре отверстия рядом с углами, следя за тем, чтобы оставалось пространство от краев, и просверлите сверлами постепенно увеличивающегося размера, чтобы избежать трещин. У вас должно получиться четыре 5/16-дюймовых отверстия в углах всех трех листов оргстекла. Обязательно обратите внимание на ориентацию, чтобы у вас была симметричная посадка.

2.) Далее просверливаем на одном из листов отверстие или дырочки для нашего входного домкрата. Это может отличаться в зависимости от вашего разъема, но должно быть рядом с задней частью корпуса.

3.) Чтобы построить корпус, сначала вставьте четыре стержня с резьбой 5/16 дюйма в отверстия одного из листов. Закрепите лист примерно на 1,5-2 дюйма от нижней части стержней с помощью одной шайбы и гайки с каждой стороны оргстекла и добавьте резиновую ножку на дно каждого стержня. Прежде чем продолжить, убедитесь, что все выровнено.

4.) Затем вставьте гайку и шайбу примерно на 3-4 дюйма от верха наших стержней и поместите лист с отверстием для домкрата сверху.

5.) Последний шаг к нашему корпусу — закрепить последний лист оргстекла наверху после того, как вы добавите компоненты из следующего раздела.

Установка и закрепление компонентов

Теперь, когда у нас есть платформа, мы можем создавать и устанавливать наши компоненты.

1.) Эта относительно простая пара цепи и соленоида может быть построена в соответствии с приведенной ниже схемой.Обратите внимание, что SS495 крепится к нижней части катушки. Добавление светодиода позволяет вам проверять мощность, а цифровой вольтметр позволяет обнаруживать нагрузку для целей настройки, оба опционально, они могут быть подключены непосредственно к входу цепи 12 В с помощью встроенного резистора 10 кОм на горячем выводе (+).

2.) Подключите разъем к входу схемы, обращая внимание на принципиальную схему и помните, что корпус разъема является заземлением (-).

3.) Подключите выходы 1 и 2 микросхемы LMD18201 к катушке соленоида.Вставьте стальной болт в центр катушки и в головку болта крепления датчика Холла SS495 A, к которому будут подключены провода в соответствии со схемой.

(На этом этапе может оказаться полезным временно все обезопасить, аккуратно подключить питание и проверить поле соленоида с помощью магнита).

4.) После получения результата закрепите компоненты на платформе. Схема должна быть вертикальной, чтобы обеспечить поток воздуха, рядом с разъемом, сторона соленоида должна быть обращена датчиком вниз, а дополнительный светодиод и ЖК-дисплей можно разместить в любом удобном месте.Добавление термоусадочной пленки и крышек для проводов на этом этапе делает все аккуратным и помогает избежать коротких замыканий и перетягивания проводов.

5.) Чтобы еще больше закрепить и закрыть все, добавьте последний лист оргстекла. Сначала добавьте гайку и шайбу к каждому стержню, затем последний лист оргстекла и отрегулируйте его так, чтобы верхний лист соприкасался с вашим соленоидом, плотно удерживая его на месте. После установки и уровня добавьте еще четыре шайбы, гайки и колпачок с резиновыми торцевыми колпачками.

Настройка и тестирование

1.) При установке соленоида наша ориентация не учитывала полярность. Следовательно, нам нужно будет выбрать правильный полюс нашего магнита, чтобы он был обращен к нашей катушке. Для этого подключите питание и начните вводить магнит в поле соленоида. Одна сторона магнита будет непрерывно притягиваться, а другая будет иметь тенденцию блокироваться в нескольких дюймах от катушки. Обратите внимание на эту сторону магнита. Будьте осторожны, не подходите слишком близко; оба полюса будут сильно притягиваться, если поднести их слишком близко к катушке под напряжением.

2.) Теперь, когда мы знаем, какой полюс нашего магнита мы используем, мы теперь определим, какой вес он может выдержать. Слишком маленький вес — и груз будет притягиваться без левитации, слишком большой вес — и магнитное поле не сможет преодолеть силу тяжести, и объект упадет.

Метод проб и ошибок должен помочь вам найти оптимальный вес, прикрепив к магниту случайные предметы. Однако вы также можете использовать более точный подход:

Используя маленькие гайки и болты, постепенно добавляйте их к своему магниту и проверяйте.Как только вы найдете точку равновесия (вы почувствуете легкий щелчок, когда она встанет на место), отметьте вес груза с помощью небольших весов. Затем добавьте или уберите небольшой вес, чтобы найти свой диапазон и оптимизировать для устойчивости. Затем вы можете использовать это как ориентир и начать левитировать что-либо в этом диапазоне веса, который обычно составляет 45-55 граммов, не считая самого магнита.

3.) Когда все работает правильно, подключите осциллограф, чтобы увидеть поля в действии!

Вдохновляй и удивляй!

Теперь ваше устройство электромагнитной левитации должно быть укомплектовано и функционирует.Он поднимет в воздух любой предмет в определенном диапазоне веса. Для неметаллических предметов попробуйте атаковать их гвоздями или орехами.

[Все изображения любезно предоставлены Drew Paul / Drew Paul Designs]

DIY Электромагнитное левитационное устройство

Это Электромагнитное левитационное устройство — это круто для создания антигравитационного проекта , который является захватывающим и интересным для просмотра.Устройство может заставить что-то плавать без какой-либо видимой поддержки, это как объект, плавающий в свободном пространстве или в воздухе. Чтобы это устройство работало, вам нужно привлечь объект с помощью электромагнита, но когда он находится очень близко к электромагниту, электромагнит должен отключиться, и привлеченный объект должен упасть под действием силы тяжести и снова привлечь падающий объект, прежде чем он упадет. полностью из-за силы тяжести, и этот процесс продолжается. Проект похож на нашу ультразвуковую акустическую левитацию, но здесь вместо использования ультразвуковых волн мы будем использовать электромагнитные волны.

Теперь возвращаясь к концепции, человек не может включать и выключать электромагнит, потому что этот процесс переключения должен происходить очень быстро и с заданным интервалом. Итак, мы создали схему переключения, которая управляет электромагнитом для достижения электромагнитного плавающего положения .

Требуемый компонент
S.No Детали / Название компонента Тип / Модель / Значение Кол. Акций
1 Датчик эффекта Холла A3144

1

2

МОП-транзистор

Irfz44N

1

3

Сопротивление

330 Ом

1

4

Сопротивление

1

5

Обозначение L.E.D

5мм любой цвет

1

6

Диод

IN4007

1

7

Магнитный провод калибра 26 или 27

от 0,41 до 0,46 мм

1 кг или более

8

Пунктирная доска Vero

Малый

1

Схема магнитной левитации

Полную схему магнитной левитации можно найти ниже.Как видите, он состоит только из нескольких обычно доступных компонентов.

Основными компонентами схемы DIY Magnetic levitation являются датчик Холла, полевой МОП-транзистор и электромагнитная катушка. Ранее мы использовали электромагнитные катушки для создания других интересных проектов, таких как миниатюрная катушка Тесла, пистолет с электромагнитной катушкой и т. Д.

Мы используем N-канальный Mosfet Irfz44N для самого первого включения и выключения электромагнитов.Irfz44n / любой N-канальный MOSFET или аналогичный (NPN) мощный транзистор может быть использован для этой цели, который имеет способность выдерживать большие токи, как TIP122 / 2N3055 и т.д. легко доступны на местных рынках. С другой стороны, он имеет способность выдерживать ток утечки 49А при температуре 25 градусов. Его можно использовать в широком диапазоне напряжений.

Сначала я экспериментировал и тестировал схему и весь проект на 12-вольтовой конфигурации, но обнаружил, что моя электромагнитная катушка и полевой МОП-транзистор сильно нагреваются, поэтому мне пришлось снова переключиться на 5 В.Я не заметил никакой разницы или проблем, а МОП-транзистор и катушка были при нормальной температуре. Также не было необходимости в радиаторе Mosfet.

Резистор R1 используется для поддержания высокого напряжения на выводах затвора полевого МОП-транзистора (как подтягивающий резистор) для получения надлежащего порогового напряжения или напряжения запуска. Но когда неодимовые магниты находятся рядом с центральным датчиком эффекта Холла (в середине электромагнитов) или неодимовые магниты находятся в пределах диапазона датчика Холла, наша схема должна обеспечивать отрицательный выход на выводе затвора MOSFET.В результате падает напряжение на выводе / управляющем выводе, вывод стока на МОП-транзисторе для индикатора L.E.D. и электромагнита также падает, и он отключается. Когда объекты, прикрепленные к неодимовым магнитам, падают или падают из-за силы тяжести, неодимовые магниты выходят за пределы диапазона датчика Холла, и теперь датчик Холла не обеспечивает никакого выходного сигнала. Вывод затвора полевого МОП-транзистора становится высоким и быстро срабатывает (для контакта управления сопротивлением R1 / вывода затвора уже высокий), быстро подает питание на электромагнитную катушку и притягивает объект, прикрепленный неодимовыми магнитами.Этот цикл продолжается, а объекты остаются висящими.

Сопротивление 330 Ом R2 используется для свечения светодиода при 5 В (индикаторный светодиод) и ограничивает ток и напряжение для защиты светодиода. Диод D1 — это не что иное, как диод блокировки обратной связи, используемый в каждом устройстве катушки, например реле для блокировки обратного напряжения обратной связи.

Создание контура магнитной левитации

Начнем с создания катушки для электромагнита. Для изготовления электромагнита воздухозаборника в первую очередь необходимо изготовить раму или корпус для электромагнитов.Для этого возьмите старую ручку диаметром около 8 мм, в которой уже есть центральное отверстие (в моем случае я измерил диаметр по шкале Вернье). Отметьте необходимую длину перманентным маркером и отрежьте примерно на 25 мм.

Затем возьмите небольшой кусок картона / любого твердого бумажного материала, или вы можете использовать оргстекло и вырезать два куска намотки диаметром около 25 мм длиной с центральным отверстием, как показано на рисунке ниже.

Закрепить все с помощью «feviquick» или любого прочного клея.Наконец, рамка должна выглядеть так.

Если лень строить такое, можно взять старый держатель для паяльной проволоки.

Рама электромагнита готова. Теперь перейдем к изготовлению электромагнитной катушки. Сначала проделайте небольшое отверстие на одной стороне диаметра намотки и закрепите проволоку. Начните наматывать электромагнит и убедитесь, что он делает около 550 оборотов. Каждый слой отделяется лентой для виолончели или лентой другого типа. Если вам так лень делать свои электромагниты (в моем случае я сделал свои электромагниты, которые также имеют преимущество работы с 5 В), вы можете вынуть его из реле 6 В или 12 В, но вы должны быть осторожны, чтобы ваши Датчик Холла A3144 принимает максимум 5 В.Таким образом, вам нужно использовать микросхему регулятора напряжения LM7805 для подачи питания на датчик Холла.

Когда ваша центральная катушка электромагнита с воздушным сердечником будет готова, отложите ее в сторону и переходите к шагу 2. Разместите все компоненты и припаяйте их на плате Vero, как вы можете видеть на рисунках здесь.

Для фиксации электромагнитной катушки и датчика Холла необходима подставка, поскольку выравнивание состояния катушки и датчика важно для устойчивого подвешивания объекта к силе тяжести.Я разложил два куска трубки, картон и небольшой кусочек полиэтилентерефталата. проводка кожуха. Чтобы обозначить нужную длину, я использовал перманентный маркер, а для резки — ручную пилу и нож. И зафиксировал все с помощью клея и клеевого пистолета.

Проделайте отверстие в середине P.V.C. проводка кожуха и закрепить катушку с помощью клея. После этого сложите датчик. Вставьте внутрь отверстие электромагнитной катушки. Помните, что расстояние от подвешенного объекта (прикрепленного с помощью неодимовых магнитов) до электромагнитной катушки зависит от того, насколько датчик вставлен в центральное отверстие электромагнита.Датчик на эффекте Холла имеет определенное расстояние срабатывания, которое должно быть в пределах диапазона электромагнитного притяжения, чтобы объекты идеально подвешивались. Наше самодельное устройство электромагнитной левитации готово к работе.

Работа и проверка цепи магнитной левитации

Закрепите плату управления картоном, используя ленту с обеих сторон. Соедините их с рамой стойки с помощью кабельной стяжки. Выполните все подключения к цепи управления.Поместите датчик в центральное отверстие электромагнита. Настройте идеальное положение датчика Холла внутри электромагнита и установите максимальное расстояние между электромагнитом и неодимовыми магнитами. Расстояние может варьироваться в зависимости от силы притяжения вашего электромагнита. Включите его от мобильного зарядного устройства 5V 1Amp или 2Amp и сделайте первое испытание того, как работает проект.

Пожалуйста, обратите внимание на некоторые важные моменты этого проекта электромагнитной левитации.Выравнивание катушки и датчика очень важно. Поэтому необходимо подвешивать предметы устойчиво и прямо по отношению к силе тяжести. Стабильная система означает, что что-то сбалансировано. В качестве примера рассмотрим длинную палку, которую держат сверху. Он устойчив и свисает под действием силы тяжести. Если вы оттолкнете нижнюю часть от прямого нижнего положения, сила тяжести будет стремиться вернуть ее в устойчивое положение. Итак, из этого примера вы ясно понимаете, насколько важно прямое совмещение катушки и датчика.Важно, чтобы объект долго не падал ровно, поэтому мы делаем подставку для этого проекта. Для вашего лучшего понимания я создал блок-схему, показывающую важность стабильного подвешивания и способ монтажа датчика и катушки для достижения отличных характеристик.

  • Если вы хотите увеличить расстояние между висящими предметами от электромагнита, вы должны увеличить мощность и диапазон притяжения электромагнита и изменить расположение / положение датчика.
  • Если вы хотите повесить более крупные предметы, вам нужно увеличить электромагнитную мощность. Для этого вам нужно увеличить ДАТЧИК магнитного провода и количество витков, а также требуется увеличенное количество неодимовых магнитов, прикрепленных к висящим предметам.
  • Электромагнит большего размера потребляет больше тока, и моя схема в настоящее время работает только на 5 В, но в некоторых случаях может возникнуть необходимость в повышении напряжения в зависимости от параметра катушки.
  • Если вы используете катушку реле 12 В или любую мощную электромагнитную катушку высокого напряжения, не забудьте использовать регулятор напряжения LM7805 для датчика Холла A3144.

На рисунке ниже показано, как работает наш проект после завершения. Надеюсь, вы поняли руководство и узнали что-то полезное.

Вы также можете увидеть полную работу этого проекта в видео, прикрепленном ниже. Если у вас есть какие-либо вопросы, вы можете оставить их в разделе комментариев ниже или вы можете использовать наши форумы для других технических вопросов.

DIY Подставка для магнитной левитации | Приложения

Магнитная левитация, также известная как магнитная подвеска, — это метод, при котором объект подвешивается без какой-либо поддержки, кроме магнитных полей.Чтобы магнитная левитация произошла, вам потребуются два больших и сильных магнита, настроенных на отталкивание, и один будет левитировать над другим. Однако это не так просто, как может показаться, потому что магниты всегда хотят притягиваться друг к другу. Это заставляет отталкивающие магниты двигаться и переворачиваться, чтобы они могли снова соединиться. Итак, прежде чем попробовать магнитную левитацию, имейте в виду, что приложение очень неудобное и требует большого терпения и осторожности, так как вы не хотите, чтобы пальцы застревали между магнитами.Однако после того, как вы взломали приложение, результаты довольно крутые!

Эрик, один из наших экспертов по магнитам, недавно посетил бросил вызов и создал подставку для магнитной левитации для своей фигурки Йоды. Эрик хотел поделиться этой демонстрацией, потому что он знает, что многие наши клиенты энтузиасты создания моделей и думали, что это будет крутой и уникальный способ демонстрируют свои модели и фигурки.

Для этого приложения Эрик использовал 2 ферритовых кольцевых магнита, в качестве альтернативы можно использовать стальной лоток и медную проволоку или шнур.Для основания он просто поместил один из магнитов на стальной лоток, это означало, что магнит удерживался на месте с помощью магнита. Вам не обязательно использовать стальной лоток в качестве основы, так как основание может быть сделано из чего угодно, вам просто нужно будет просто приклеить магнит на место. Далее вы будете делать крепления из медной проволоки. Для этого вам нужно будет убедиться, что вы можете привязать или прикрепить проволоку к своей основе. К счастью, в стальном подносе, который использовал Эрик, были отверстия, которые позволили ему продеть и закрепить медную проволоку на месте.Эрик сделал 4 крепления из медной проволоки вокруг основания, чтобы удерживать второй магнит на месте.

«Терпение у тебя должно быть, мой юный падаван». — Йода

Далее потребуется много терпения, так как вам нужно закрепить второй магнит на месте. Совет: мы рекомендуем вам пометить отталкивающую сторону магнита, чтобы вы знали, каким образом вам нужно закрепить магнит. Как упоминалось ранее, когда магниты отталкиваются друг от друга, кривая магнитного поля будет вращать / переворачивать магнит в сторону, чтобы они притягивались, медная проволока остановит это движение, поэтому он будет только отталкиваться и не может перевернуться или переместиться в одну сторону. .Крепления из медной проволоки должны иметь одинаковое натяжение, это требует много проб и ошибок, чтобы исправить это, и при этом иметь достаточную силу отталкивания, чтобы выдержать вес вашей фигурки / модели. Если применение оказывается затруднительным, мы рекомендуем надеть магниты на стержень из цветного металла, пока вы закрепляете крепления и регулируете натяжение проволоки. После завершения стержень можно удалить.

Вот готовый результат:

Как это круто? А теперь представьте, как бы это выглядело, если бы вы сделали это с некоторыми из своей коллекции моделей, какой это был бы крутой дисплей! Удачи вам в изготовлении стендов на магнитной левитации, если вы добьетесь успеха, мы будем рады увидеть быстрое изображение магнитов в действии! Не стесняйтесь присылать любые изображения, которые могут у вас возникнуть, по адресу sales @ first4magents.com. Но до тех пор, Да пребудет с вами Сила!

Хотите попробовать сами?

Схема набора DIY магнитного левитатора

КОМПЛЕКТ магнитной левитации

Некоторое время назад я купил этот комплект магнитной левитации на eBay, чтобы посмотреть, как он работает и что нам нужно для его изготовления. Я планирую создать свою собственную схему левитации с использованием Arduino, но это для будущего проекта. В комплекте, который я получил, не было ни руководства, ни схемы, поэтому мне пришлось внести некоторые изменения в конструкцию, чтобы получить схему.Но все значения для каждого компонента указаны на печатной плате, поэтому его легко установить. В этом руководстве у вас будут файлы GERBER для печатной платы, схема и все детали, которые вам нужны для этого, если вы хотите создать свою собственную. Так что посмотрим …

ЧАСТЬ 1 — Взгляните на печатную плату?

Когда вы получите этот комплект, вы получите 2 печатные платы, 4 катушки и 12 маленьких неодимовых магнитов, 1 большой магнит и множество пластиковых пакетов со всеми компонентами. На каждом пакете есть ярлыки, а на печатных платах есть шелкопласт с названием и стоимостью каждого компонента, поэтому его установка выполняется только в соответствии с компонентами.Поэтому вам нужно проверить значение на печатной плате, найти этот компонент в пакетах и ​​припаять его. Нам нужны 2 печатные платы, потому что на одной у нас будут компоненты, а на другой — катушки и магниты, которые будут удерживать большой магнит в воздухе.

Прежде чем приступить к работе с деталями, имейте в виду, что есть некоторые компоненты, у которых нет маркировки, которая является лицевой стороной, но имейте в виду, что обычно квадратная площадка представляет собой первый штифт этого компонента. Итак, просто посмотрите на контактную площадку, проверьте компонент в Интернете, чтобы узнать, какой из контактов является первым, а затем припаяйте его.Итак, сначала я спаяю два LM234 OPAMP.


ЧАСТЬ 2 — Припаиваем все

A. Нижняя плата

Итак, мы припаяли эти два усилителя LM324. Затем я припаиваю и небольшой усилитель LM393. После этого припаиваю эталон напряжения и регуляторы напряжения 78L05ML и эталон TL431. Для этих двух компонентов посмотрите на квадратную площадку для первого контакта и убедитесь, что вы не припаяли ее обратно. Теперь можно приступить к пайке всех резисторов. Все это корыто.Просто посмотрите на значение, указанное на печатной плате, найдите резистор в пластиковых пакетах и ​​поместите его на печатную плату. Затем переворачиваю плату и припаиваю все резисторы.


После добавления резисторов я могу разместить конденсаторы. Остерегайтесь поляризованных крышек и не кладите их обратно. Также у нас есть 2 неполяризованных конденсатора по 100 нФ. Затем мы можем добавить все диоды, включая этот маленький светодиод. Мы добавляем два потенциометра, разъем постоянного тока и, наконец, добавляем транзисторы BJT. Всего у нас 9 транзисторов.Добавляем маленькие штыри, и печатная плата готова. Все компоненты расположены на верхней стороне печатной платы, за исключением штырей. Эти штыревые контакты будут использоваться для соединения этой печатной платы с нижней печатной платой.




B. TOP PCB

Теперь, когда у нас есть нижняя плата, мы начнем со второй платы. Теперь очень важно установить датчики холла в правильное положение. Но сначала для этого нам нужно разместить катушки. Поэтому добавьте винт на нижнюю сторону и установите винт на место каждой катушки с проводами на верхней стороне.У нас один конец провода находится посередине катушки, а другой — сбоку катушки. После того, как мы установили катушки, мы можем добавить датчики Холла, потому что теперь мы знаем высоту катушек, и это важно.


Хорошо, теперь нам нужно согнуть один датчик Холла на 90 градусов передней частью вверх. Затем мы припаиваем его к контактным площадкам h4 на высоте катушек, как вы можете видеть на фотографиях. Затем припаиваем два других датчика Холла под углом 90 градусов друг к другу и примерно на высоте середины катушек.Смотрите изображения для более подробной информации. И вот оно что. Не можем паять провода от катушек.


Теперь нужно припаять провода от катушек. Провод, выходящий из середины катушки, идет к контактной площадке X или Y. Имейте в виду, что мы должны соединить X1 с Y1 и X2 с Y2. Затем припаяйте провода со стороны катушек к двум другим контактным площадкам и выполните соединения. Наконец, мы добавляем магниты, по 3 на каждую упаковку, используя данные винты, и плата готова.Обе доски готовы.



Помогите мне, поделившись этим постом

Как сделать самодельную магнитную левитацию

Магниты могут толкать и тянуть друг друга, не касаясь друг друга из-за магнитной силы между ними. Магниты — это материалы, излучающие магнитное поле, притягивающее определенные металлы. Магниты находят множество применений в современном мире, от промышленности до стереосистем. Обучение магнетизму часто включает демонстрацию более интересных эффектов магнетизма.Одна из самых популярных демонстраций магнетизма — магнитная левитация.

С помощью очень простой настройки можно сделать так, чтобы один магнит заставлял другой магнит левитировать — парить в воздухе. Его даже можно заставить нести груз. Это потому, что каждый магнит имеет два полюса и одинаковые полюса отталкиваются друг от друга. Магнитная левитация — превосходная демонстрация относительной силы двух фундаментальных сил, магнетизма и гравитации. Хотя вся Земля притягивает плавающий магнит и его нагрузку гравитационно, только один крошечный магнит может преодолеть это нисходящее притяжение с помощью магнетизма и заставить его подняться в воздух.

Левитирующий магнит

    Держите по одному магниту в каждой руке. Поднесите их друг к другу. Если они попытаются прижать друг друга поближе, разверните одного из них. Если они попытаются оттолкнуть друг друга, отметьте маркером стороны, обращенные друг к другу. Вы знаете, что эти отмеченные стороны являются одним и тем же магнитным полюсом, потому что одинаковые полюса отталкиваются.

    Установите зажимную стойку. Вытяните зажимной рычаг как можно дальше, чтобы освободить место для работы. Отрегулируйте зажим по ширине трубки.Установите трубку в зажим. Установите трубку так, чтобы ее дно было немного выше, чем ширина вашего пальца плюс ширина одного из магнитов.

    Поместите груз на один из магнитов на немаркированной стороне. Вставьте магнит и вставьте в нижнюю часть тубуса маркированной стороной вниз и удерживайте одним пальцем, чтобы он не выпал.

    Поместите другой магнит прямо под дном трубки маркированной стороной вверх. Уберите палец. Магнит на столешнице отталкивает магнит в трубке и заставляет его левитировать вместе с грузом, если он не слишком тяжелый.

    • Если магнит не будет левитировать вместе с грузом на нем, это может быть слишком большой груз.

      Если магнит не левитирует без нагрузки, то магниты слишком слабы для этой демонстрации. Магниты на холодильник не подойдут.

      Трубка необходима, чтобы левитирующий магнит не «падал» с магнитного поля, которое его удерживает.

      Если вы не можете найти подставку для зажима, ее можно легко заменить. Вырежьте отверстие в куске картона так, чтобы оно было того же диаметра, что и трубка.Подвесьте трубку над столом на две стопки книг. Возможно, вам придется приклеить тюбик к картону.

Создайте свою собственную установку на магнитной левитации

Фотографии Джеффа Олсона Читайте статьи из журнала прямо здесь, на сайте Make: . Еще нет подписки? Получите сегодня.

В прошлом году я обнаружил левитирующую сеялку Lyfe (229 долларов) и подумал, что смогу сделать свою собственную за меньшие деньги. Я купил дешевый электромагнит на Amazon и разместил свое первое творение на Reddit.

Все считали, что это круто, но меня не удовлетворили расстояние левитации и стабильность этой версии, поэтому я решил найти производителя того же магнита, который используется в сеялке Lyfe.

Это просто более крупный магнит, который левитирует выше и более устойчив в воздухе.

Вот как собрать свой собственный:

1. Создайте проем для источника питания

Просверлите отверстие ½ дюйма в задней части коробки для сигар, чтобы через него проходил шнур питания.

2. Установите основание и заглушку

Подсоедините шнур питания к основанию электромагнита и закройте коробку. Если коробка для сигар слишком глубокая, вам следует поднять электромагнит выше, чтобы он находился как можно ближе к крышке. Я вырезал кусок МДФ и приклеил его ко дну коробки для сигар, чтобы сократить расстояние.

3. Снимите верхнюю часть банки

Отрежьте верхнюю часть старой стальной пивной банки с помощью кухонного консервного ножа.

4. Присоедините магнитный диск

Прикрепите магнит диска левитации ко дну банки.В стальной банке клей не нужен, так как магнит будет держаться крепко. Если вы используете другой контейнер, вам нужно будет приклеить левитационный магнит к дну.

ВНИМАНИЕ: Не поднимайте диск в воздух, не положив какую-либо подкладку на основание электромагнита (например, крышку коробки для сигар). Открытые магниты могут быть повреждены, если они врежутся друг в друга.

5. Добавьте зелени

Поместите воздушную установку в сеялку.

Используйте это

Может быть немного сложно найти золотую середину левитации, но с практикой это станет легко.Убедитесь, что база вставлена ​​в розетку, и держите подальше от металлических предметов, чтобы не мешать работе магнита. Держите магнитный диск примерно на 15 см (6 дюймов) над основанием. Опустите диск обеими руками прямо над центром основания, удерживая его ровно, пока не почувствуете направленную вверх магнитную силу, поддерживающую вес диска. Осторожно отпустите, удерживая его по центру и ровно.

Если он упал, просто поднимите диск и повторите попытку. Ожидайте, что потребуется несколько попыток и может потребоваться некоторая практика для освоения.

Ваша парящая сеялка будет мягко вращаться в течение нескольких часов, позволяя воздушному растению получать 360 ° солнечного света.

Магнит, который я использовал, совершенно бесшумный; нет абсолютно никакого гула или электронного шума. Что еще более важно, это просто круто выглядит!

Мощная миниатюрная система электромагнитной левитации

Недавно я закончил еще одну простую версию своего демонстрационного устройства с электромагнитной левитацией, которое левитирует небольшой объект под действием электромагнита.Что отличает его от моей предыдущей модели, так это введение дешевого датчика на эффекте Холла, поскольку датчик положения размещен непосредственно на нижней части сердечника электромагнита. Остальная часть системы представляет собой небольшую электронную схему, соединенную с одним популярным чипом операционного усилителя, сконфигурированным как мозг устройства. Вся система может питаться от любого «чистого» блока питания 12 В / 1 А.

(принципиальная схема)

В принципе, система электромагнитной левитации управляет магнитным полем, создаваемым электромагнитом (L1), чтобы левитировать небольшой магнитный объект в воздухе.Вертикальное положение (воздушный зазор) объекта, парящего в воздухе, измеряется с помощью линейного датчика Холла (h2), а ток в электромагните регулируется с помощью операционного усилителя (IC1). В системе есть потенциометр (P1) для регулировки вертикального положения левитирующего объекта. Транзистор средней мощности (T1) используется для включения и выключения катушки, а диод с обратным смещением (D1) на катушке защищает электронику от обратных токов.

Сердце схемы — электромагнит — следует готовить с большой осторожностью.Во-первых, вам понадобится подходящая шпулька и достаточная длина эмалированного медного провода (магнитного провода). Затем намотайте примерно 2800 витков магнитного провода 33-SWG на бобину и осторожно удалите изоляцию примерно с 1 дюйма на концах провода. Когда закончите, вставьте 2-дюйм. ввинтить в шпульку как сердечник электромагнита. Обратите внимание, что общий размер и количество витков катушки не очень важны, но сопротивление катушки должно быть достаточно высоким, чтобы не превышать предельный ток источника питания.Кроме того, не забудьте «спрятать» небольшой неодимовый магнит наверху (южным полюсом вверх) подвешиваемого объекта.

Вы можете установить датчик Холла на дне сердечника с помощью эпоксидного клея. Датчик на эффекте Холла должен быть установлен таким образом, чтобы ось обнаружения датчика была выровнена с осью сердечника, а его маркированная сторона была обращена к объекту. Обратите внимание, что линейный датчик на эффекте Холла имеет номинальный выходной сигнал, равный примерно половине напряжения питания.Когда магнит (внутри объекта) движется к датчику Холла, его выходное напряжение увеличивается или уменьшается в зависимости от того, какой полюс магнита используется. Здесь он должен быть настроен на получение более высоких напряжений (+) по мере приближения южного полюса магнита к датчику Холла. На выполнение этой работы уходит некоторое время, потому что очень важно убедиться, что каждая часть функционирует должным образом. Если это не так, возможно, вам придется поменять местами силовые соединения электромагнита и перевернуть неодимовый магнит.

Предлагаемая установка

Наконец, существуют ограничения, связанные с размером / мощностью электромагнита и скоростью переключения поля. Основываясь на моих быстрых экспериментах, максимальный вес, который может выдержать система, составляет от 15 до 30 граммов, а воздушный зазор может быть увеличен от ¾ до 1 дюйма в зависимости от фактического веса объекта. Далее показан авторский прототип (только электроника), построенный на небольшом куске перфорированной платы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *