Фототранзистор своими руками: Фототранзисторы

Содержание

Фототранзисторы

Каталог товаров Каталог

  • Предохранители и защита (5311)
    • Промышленные предохранители (825)
      • Предохранители 10,3×38мм (274)
        • Предохранители 10,3×38мм быстрые (129)
        • Предохранители 10,3×38мм медленные (60)
        • Предохранители сверхбыстродей. 10,3×38мм (85)
      • Предохранители прочие (207)
      • Предохранители высокого и среднего напряжения (39)
      • Предохранители NH (153)
      • Предохранители 14×51мм (103)
      • Предохранители 22×58мм (30)
      • Предохранители 8×31мм (19)
    • Предохранители — держатели (266)
      • Предохранители — держатели PCB (98)
      • Предохранители — держатель под шину DIN (46)
      • Предохранители — держатели для панели
        (75)
      • Предохранители — держатели для кабеля (47)
    • Силовые устройства защиты электроники (793)
      • Выключатели двигательные (167)
      • Разъединители (51)
      • Аксессуары (88)
      • Выключатели максимального тока (401)
      • Дифференциальные выключатели (51)
      • Ограничители перенапряжения (35)
    • Предохранители полимерные PTC (305)
      • Предохранители полимерные SMD (92)
      • Предохранители полимерные THT (213)
    • Предохранители автомобильные (185)
      • Предохранители автомобильные мини (38)
      • Автомобильные предохранители — аксесс. (5)
      • Предохранители автомобильные макси (17)
      • Предохранители автомобильные стандартные (33)
      • Другие автомобильные предохранители (92)
    • Предохранители SMD (476)
      • Предохранители SMD 5×20мм (20)
        • Предохранители SMD 5×20мм инерционные (20)
      • Предохранители SMD с подставкой (34)
        • Предохранители SMD с подставкой быстрые (10)
        • Предохранители SMD с подст. ультрабыст. (10)
        • Предохранители SMD с подставкой медлен. (14)
      • Предохранители SMD MGA (12)
        • Предохранители SMD MGA сверхбыстродей. (12)
      • Предохранители SMD 0603 (20)
        • Предохранители SMD 0603 ультрабыстрые (20)
      • Предохранители SMD 0402 (8)
        • Предохранители SMD 0402 сверхбыстродей.
          (8)
      • Предохранители SMD 0805 (6)
        • Предохранители SMD 0805 ультрабыстрые (6)
      • Предохранители SMD PICO (23)
        • Предохранители SMD PICO инерционные (10)
        • Предохранители SMD PICO сверхбыстродей. (13)
      • Предохранители SMD 8×4,5×4,5мм (26)
        • Предохранители SMD 8×4,5×4,5мм медленные (26)
      • Предохранители SMD 1206 (47)
        • Предохранители SMD 1206 быстродейств. (12)
        • Предохранители SMD 1206 ультрабыстрые (27)
        • Предохранители SMD 1206 инерционные (8)
      • Предохранители SMD остальные (32)
      • Предохранители SMD UM (64)
        • Предохранители SMD UMT медленные
          (41)
        • Предохранители SMD UMF быстродействующие (5)
        • Предохранители SMD UMZ инерционные (18)
      • Предохранители SMD OM (88)
        • Предохранители SMD OMF быстродействующие (65)
        • Предохранители SMD OMT инерционные (23)
      • Предохранители SMD 2410 (96)
        • Предохранители SMD 2410 сверхбыстрые (29)
        • Предохранители SMD 2410 медленные (44)
        • Предохранители SMD 2410 быстрые (23)
    • Миниатюрные предохранители (1436)
      • Другие предохранители (7)
      • Предохранители 5×15мм (13)
        • Предохранители 5×15мм медленные (6)
        • Предохранители 5×15мм быстрые (7)
      • Предохранители TE5 (43)
      • Предохранители 5×25мм (18)
        • Предохранители 5×25мм быстрые
          (9)
        • Предохранители 5×25мм средне медленные (9)
      • Осевые предохранители (2)
        • Осевые сверхбыстродейств. предохранители (54)
        • Осевые быстродействующие предохранители (41)
        • Осевые предохранители инерционные (31)
      • Предохранители 6,3×32мм (455)
        • Предохранители 6,3×32мм быстрые (158)
        • Предохранители 6,3×32мм медленные (252)
        • Предохранители сверхбыстродейс. 6,3×32мм (45)
      • Предохранители TR5 (214)
        • Предохранители быстродействующие TR5 (103)
        • Предохранители TR5 инерционные (111)
      • Предохранители 5×20мм (558)
        • Предохранители 5×20мм быстрые
          (202)
        • Предохранители 5×20мм медленные (260)
        • Предохранители сверхбыстродейств. 5×20мм (38)
        • Предохранители 5×20мм средне медленные (58)
    • Предохранитель специального назначения (7)
    • Предохранители термические (77)
    • Комплекты предохранителей (22)
    • Термисторы PTC (48)
    • Прерыватели (871)
      • Разъединители (177)
      • Аксессуары (113)
      • Реле КЗ на землю (30)
      • Дифференциальные выключатели (94)
      • Выключатели максимального тока (251)
      • Выключатели двигательные (146)
      • Ограничители перенапряжения (60)
  • Трансформаторы и сердечники (3338)
    • Каркасы и аксессуары (158)
    • Сердечники ферритовые
      (97)
    • Трансформаторы с креплением (695)
    • Трансформаторы защитные (248)
    • Трансформаторы для печатных плат (564)
    • Трансформаторы тороидальные (651)
    • Токовые измерительные трансформаторы (516)
    • Автотрансформаторы (97)
    • Трансформаторы для печати (312)
  • Корпуса в ассортименте (4004)
    • Корпуса для 19 дюймовых систем (25)
      • Аксессуары для корпусов 19 дюймов (9)
      • Корпуса система 19 дюймов (16)
    • Аксессуары для корпусов (796)
      • Заглушки (48)
      • Защитные кромки (46)
      • Ножки (287)
      • Остальные аксессуары для корпусов (201)
      • Держатели (128)
      • Ручки (86)
    • Корпуса для пультов (160)
    • Корпуса для устройств с индикатором (74)
    • Корпуса на DIN рейку (146)
    • Корпуса настенные (115)
    • Корпуса с креплением (284)
    • Корпуса с панелью (507)
    • Корпуса устройств сигнализ. и датчиков (37)
    • Корпуса пультовые (52)
    • Корпуса универсальные (1614)
    • Корпуса панельные (30)
    • Корпуса для модульной аппаратуры (84)
    • Корпуса для герметизации (34)
    • Корпуса для блоков питания (46)
  • Пассивные компоненты (29763)
    • Защитные устройства от перенапряжения (84)
      • Устройства защиты от перенапряжений THT (41)
      • Устройства защиты от перенапряжений SMD
        (43)
    • Варисторы (278)
      • Варисторы блочные (10)
      • Варисторы THT (228)
      • Варисторы SMD (40)
    • Круглые ручки (853)
      • Поворотные ручки для монтаж. потенциом. (33)
      • Ручки для ползунковых потенциометров (19)
      • Шкалы (17)
      • Поворотные ручки для (749)
      • Повор. ручки прециз. для осевых потенц. (35)
    • Потенциометры (2412)
      • Потенциометры ползунковые (35)
      • Потенциометры осевые (877)
        • Потенциометры аксиальные однооборотные (745)
          • Потенциометры однооборотные угольные (327)
          • Потенциометры однооборотные керметные (101)
          • Потенциометры одноооб. из пров. пластика
            (231)
          • Потенциометры однооборотные проволочные (86)
        • Потенциометры аксиальные многооборотные (132)
          • Потенциометры многооборотные проволочные (116)
          • Потенциометры многооборотные керметные (16)
      • Потенциометры монтажные (1500)
        • Потенциометры монтажные THT (1196)
          • Потенциометры THT однооборотные (610)
          • Потенциометры THT многооборотные 1/2 дм. (16)
          • Потенциометры THT многооборотные 1/4 дм. (93)
          • Потенциометры THT многооборот. 5/16 дм. (21)
          • Потенциометры THT многооборотные 19мм (123)
          • Потенциометры THT многооборотные 3/8 дм. (333)
        • Потенциометры монтажные SMD (301)
          • Потенциометры SMD многооборотные (144)
          • Потенциометры SMD однооборотные (157)
        • Инстр. для настройки потенциометров (3)
    • Дроссели (2097)
      • Дроссели SMD мощности (597)
      • Дроссели SMD (501)
        • SMD 1206 Inductors (6)
        • SMD 0805 Inductors (7)
        • SMD 1210 Inductors (8)
        • SMD 1812 Inductors (17)
        • Дроссели SMD прочие (5)
      • Дроссели THT (805)
        • Дроссели аксиальные (195)
        • Дроссели кольцевые (361)
        • Дроссели вертикальные (249)
      • Катушки SMD (156)
      • Audio Coils,Audio Coils (38)
    • Конденсаторы (10094)
      • Триммеры (10)
      • Конденсаторы ниобиевые SMD (21)
      • Полимерные конденсаторы (85)
      • Конденсаторы MLCC THT (139)
      • Конденсаторы SMD остальные (26)
      • Конденсаторы электр. винтовые и другие (99)
      • Конденсаторы для ламп (42)
      • Конденсаторы полиэфирные (677)
        • Конденсаторы полиэфирные THT (638)
        • Конденсаторы полиэфирные SMD (39)
      • Конденсаторы для двигателей (221)
      • Конденсаторы керамические THT (263)
        • Конденсаторы керамические THT 50В (32)
        • Конденсаторы керамические THT 100В (32)
        • Конденсаторы керамические THT 3кВ (21)
        • Конденсаторы керамические THT 10кВ (8)
        • Конденсаторы керамические THT 500В (34)
        • Конденсаторы керамические THT 4кВ (6)
        • Конденсаторы керам. противопомеховые (87)
        • Конденсаторы керамические THT 1кВ (26)
        • Конденсаторы керамические THT 2кВ (17)
      • Суперконденсаторы (69)
      • Конденсаторы полипропиленовые (1056)
        • Конденсаторы полипропиленовые X2/Y2 (376)
        • Конденсаторы полипропиленовые стандарт. (674)
        • Полипропиленовые конденсаторы X1 (6)
      • Конденсаторы танталовые (1119)
        • Конденсаторы танталовые THT (152)
        • Конденсаторы танталовые SMD (863)
        • Полимерные танталовые конденсаторы (104)
      • Конденсаторы электролитические SMD (760)
        • Конденсаторы электролитические SMD 125°C (76)
        • Конденсаторы электролитические SMD 85°C (100)
        • Конденсаторы электролитические SMD 105°C (333)
        • Конденсаторы электр. SMD низкоимпенданс. (251)
      • Конденсаторы электролитические SNAPIN (835)
        • Конденсаторы электр. SNAPIN 85°C (312)
        • Конденсаторы электр. SNAPIN 105°C (523)
      • Конденсаторы MLCC SMD (1867)
        • Конденсаторы MLCC SMD 0603 (440)
        • Конденсаторы MLCC SMD 0402 (173)
        • Конденсаторы MLCC SMD 1206 (445)
        • Конденсаторы MLCC SMD 0805 (600)
        • Конденсаторы MLCC SMD 1210 (137)
        • Конденсаторы MLCC SMD 1812 (38)
        • Конденсаторные сборки MLCC SMD (15)
        • Конденсаторы MLCC SMD 2220 (19)
      • Конденсаторы электролитические THT (2455)
        • Конденсаторы электролитические THT 105°C (872)
        • Конденсаторы электролитические THT 85°C (542)
        • Конденсаторы электр. THT низкоимпендан. (862)
        • Конденсаторы электр. THT биполярные (96)
        • Конденсаторы электролитические THT 125°C (83)
      • Бумажные конденсаторы (20)
      • Полипропиленовые конденсаторы аудио (178)
      • Электролитические конденсаторы аудио (152)
        • Электролитические конденсаторы аудио THT (152)
    • Улучшение коэффициента мощности (267)
      • Конденсаторы для компенсации реактивной мощности (174)
      • Дроссели (62)
      • Конденсаторы (1)
      • Контакторы для конденсаторов (17)
      • Регуляторы мощности (13)
    • Кварцы и фильтры (820)
      • Фильтры и резонаторы SAW (12)
      • Генераторы кварцевые (359)
        • Кварцевые генераторы SMD (320)
        • Кварцевые генераторы THT (39)
      • Фильтры и резонаторы керамические (12)
        • Фильтры и резонаторы керамические THT (29)
        • Фильтры и резонаторы керамические SMD (38)
      • Резонаторы кварцевые (370)
        • Кварцевые резонаторы SMD (199)
        • Кварцевые резонаторы THT (171)
    • Ферриты EMI/EMC (845)
      • Ферриты — бусинки (150)
      • Ферриты цилиндрические (198)
      • Ферриты на провод (180)
      • Ферриты — дроссели (21)
      • Ферриты кольцевые (295)
      • Ферриты SMD (1)
    • Фильтры противопомеховые (300)
      • Противопомеховые фильтры другие (118)
      • Противопомеховые фильтры THT (102)
      • Противопомеховые фильтры SMD (55)
      • Трехфазные фильтры (25)
    • Термисторы NTC (с отрицат. темп. коэфф.) (146)
      • Термисторы NTC измерительные (98)
        • Термисторы NTC измерительные THT (67)
        • Термисторы NTC измерительные SMD (31)
      • Термисторы NTC предохранительные (48)
    • Резисторы (11535)
      • Прецизионные резисторы SMD (529)
        • Прецизионные резисторы SMD 0402 (90)
        • Прецизионные резисторы SMD 0603 (104)
        • Прецизионные резисторы SMD 0805 (104)
        • Прецизионные резисторы SMD 1206 (104)
        • Прецизионные резисторы SMD 2010 (18)
        • Прецизионные резисторы SMD 2512 (109)
      • Резисторы металлизированные THT (2197)
        • Резисторы металлизированные THT 0,6Вт (781)
        • Резисторы металлизированные THT 1Вт (374)
        • Резисторы металлизированные THT 2Вт (528)
        • Резисторы металлизированные THT 3Вт (260)
        • Резисторы металлизированные THT 5Вт (35)
        • Резисторы металлизированные THT 0,4Вт (219)
      • Резисторы угольные THT (999)
        • Резисторы угольные THT 1/2Вт (351)
        • Резисторы угольные THT 1/4Вт (339)
        • Резисторы угольные THT 1/4Вт субминиат. (309)
      • Резисторы мощности (2407)
        • Резисторы мощные остальные (49)
        • Резисторы проволочные 30Вт (25)
        • Резисторы проволочные 80Вт (21)
        • Резисторы проволочные 8Вт (74)
        • Резисторы проволочные 40Вт (26)
        • Резисторы проволочные 3Вт (156)
        • Резисторы проволочные 100Вт (125)
        • Резисторы проволочные 5Вт (564)
        • Резисторы проволочные 200Вт и более (299)
        • Резисторы мощные TO220 (80)
        • Резисторы проволочные 10Вт (205)
        • Резисторы проволочные 15 Вт (145)
        • Резисторы проволочные 50Вт (136)
        • Резисторы проволочные 20Вт (48)
        • Резисторы проволочные 25Вт (90)
        • Резисторы проволочные 7Вт (85)
        • Резисторы проволочные 2Вт (159)
        • Резисторы проволочные 1Вт (120)
      • Резистивные сборки (363)
        • Резисторные сборки SMD (75)
        • Резисторные сборки THT (288)
      • Резисторы SMD (4830)
        • Резисторы SMD 2512 (450)
        • Резисторы SMD мощности (18)
        • Резисторы SMD 0402 (552)
        • Резисторы SMD minimelf 0204 (212)
        • Резисторы SMD 0603 (1037)
        • Резисторы SMD 0805 (1388)
        • Резисторы SMD 1206 (1039)
        • Резисторы SMD 2010 (64)
        • Резисторы SMD melf 0207 (70)
      • Нагревательные резисторы (52)
      • Резисторы предохранительные (15)
      • Audio Resistors,Audio Resistors (143)
    • Генераторы ВН (7)
    • Audio Components (25)
      • Audio Crossovers (10)
      • Динамики (15)
  • Полупроводники и аксессуары (33331)
    • Программаторы и стирающие устройства (177)
      • Программаторы (173)
      • Стирающие устройства UV (4)
    • Модули связи (945)
      • Модули Wiznet (63)
      • Другие коммуникационные модули (56)
      • Модули FTDI (93)
      • Модули Bluetooth (77)
      • Модули связи RF AUREL (110)
      • Модули связи RF (230)
      • Модули GSM/GPS/GPRS/HSPA/EDGE/LTE (144)
      • Модули RFID (16)
      • Антенны (156)
        • Антенны GPS (30)
        • Антенны RF (69)
        • Антенны GSM (26)
        • Антенны WiFi и Bluetooth (31)
    • Системы Embedded (378)
      • Аксессуары к системам embedded (14)
      • Интеллигентные дисплеи (260)
      • Одноплатные компьютеры (76)
    • Мосты выпрямительные (1059)
      • Мосты трехфазные (237)
        • Трехфазные мосты диодные (224)
        • Трехфазные мосты управляемые (13)
      • Мосты однофазные (822)
        • Однофазные мосты диодные (806)
          • Однофазные мосты диодные SMD/THT (176)
          • Однофазные мосты диодные круглые (29)
          • Однофазные мосты диодные квадратные (352)
          • Однофазные мосты диодные плоские (208)
          • Однофазные мосты диодные — остальные (41)
        • Однофазные мосты управляемые (16)
    • Транзисторы (5661)
      • Транзисторы биполярные (1040)
        • Транзисторы биполярные одинарные (788)
          • Транзисторы NPN THT (163)
          • Транзисторы PNP THT (128)
          • Транзисторы PNP SMD (191)
          • Транзисторы NPN SMD (306)
        • Транзисторы Дарлингтона (241)
          • Транзисторы Дарлингтона NPN THT (109)
          • Транзисторы Дарлингтона PNP THT (67)
          • Транзисторы Дарлингтона NPN SMD (42)
          • Транзисторы Дарлингтона PNP SMD (23)
        • Комплементарные пары транзисторов (11)
      • Транзисторы униполярные (4097)
        • Транзисторы с каналом типа N (3210)
          • Транзисторы с каналом N THT (1352)
          • Транзисторы с каналом N SMD (1858)
        • Транзисторы с каналом типа P (546)
          • Транзисторы с каналом P SMD (453)
          • Транзисторы с каналом P THT (93)
        • Транзисторы многоканальные (332)
        • Транзисторные модули MOSFET (9)
      • Транзисторы и модули IGBT (522)
        • Модули IGBT (206)
        • Транзисторы IGBT (316)
          • Транзисторы IGBT THT (253)
          • Транзисторы IGBT SMD (63)
      • Транзисторы однопереходные (2)
    • Оснащение для полупроводников (693)
      • Подставки PLCC (29)
      • Модули Пельтье (6)
      • Радиаторы — оснащение (131)
      • Радиаторы (415)
      • Подставки тестовые (32)
      • Подставки точные (59)
      • Подставки DIP стандартные (21)
    • Диоды (5090)
      • Предохранительные диоды (2407)
        • Диоды предохранительные THT (1277)
          • Диоды transil THT однонаправленные (645)
          • Диоды transil THT двунаправленные (632)
        • Предохранительные диоды — сборки (70)
        • Диоды предохранительные SMD (1060)
          • Диоды transil SMD двунаправленные (511)
          • Диоды transil SMD однонаправленные (549)
      • Диоды Шотки (546)
        • Диоды Шотки THT (209)
        • Диоды Шотки SMD (337)
      • Специальные диоды (2)
      • Универсальные диоды (1042)
        • Универсальные диоды THT (339)
        • Универсальные диоды SMD (437)
        • Диоды остальные (114)
        • Резьбовые универсальные диоды (152)
      • Стабилитроны (1012)
        • Стабилитроны THT (523)
        • Стабилитроны SMD (489)
      • Диодные модули (81)
    • Тиристоры (598)
      • Тиристоры одиночные (178)
        • Тиристоры THT (64)
        • Тиристоры остальные (9)
        • Тиристоры винтовые (металлические) (45)
        • Тиристоры таблеточные (60)
      • Модули тиристорные (420)
        • Модули диодно-тиристорные (128)
        • Модули тиристорные (292)
    • Интегральные схемы (16821)
      • Интегральные логические схемы (2547)
        • Программируемые схемы (302)
          • Программируемые интеграль. схемы ALTERA (184)
          • Программируемые интеграль. схемы XILINX (39)
          • Программируемые интеграль. схемы LATTICE (78)
          • Программируемые схемы прочие (1)
        • Логические схемы семейства CMOS (495)
        • Логические цепи семейства TTL (1200)
        • Мультивибраторы (10)
        • Прочие логические схемы (4)
        • Логические конверторы (5)
        • Сдвигающие регистры (23)
        • Счетчики/делители (44)
        • Защелки (16)
        • Декодеры, мультиплексоры, переключатели (55)
        • Буферы, передатчики, контроллеры (70)
        • Ворота, инверторы (261)
        • Триггеры (56)
        • Компараторы (6)
      • Микроконтроллеры (2482)
        • Микроконтроллеры Atmel (342)
          • Микроконтроллеры Atmel AVR SMD (182)
          • Микроконтроллеры Atmel ARM (56)
          • Микроконтроллеры Atmel 8051 SMD (46)
          • Микроконтроллеры Atmel 8051 THT (15)
          • Микроконтроллеры Atmel AVR THT (43)
        • Микроконтроллеры ST (213)
        • Микроконтроллеры Microchip (1471)
          • Микроконтроллеры Microchip 16-bit (283)
          • Микроконтроллеры Microchip 8-bit (1039)
          • Микроконтроллеры Microchip 32-bit (149)
        • Микроконтроллеры остальные (282)
        • Микроконтроллеры NXP (133)
          • Микроконтроллеры NXP ARM (83)
          • Микроконтроллеры NXP 8051 (50)
        • Микроконтроллеры FREESCALE (31)
        • Микроконтроллеры DSP (10)
      • Аналоговые и смешанные схемы (3993)
        • Интерфейсы — интегральные схемы (810)
          • Интегральные схемы — интерфейсы осталь. (150)
          • Интеграль. схемы — интерф. RS232/422/485 (352)
          • Интегральные схемы — интерфейс USB (103)
          • Интегральные схемы — интерфейс ETHERNET (121)
          • Интегральные схемы — интерфейс CAN (45)
          • Интегральные схемы — интерфейс I2C (39)
        • Потенциометры цифровые (115)
        • Преобразователи температуры (153)
        • Операционные усилители (1297)
          • Операционные усилители THT (403)
          • Операционные усилители SMD (894)
        • Драйверы двигательные и ШИМ (249)
        • Драйверы — интегральные схемы (487)
        • Компараторы (192)
          • Компараторы THT (49)
          • Компараторы SMD (143)
        • Светодиодные драйверы (234)
        • Преобразователи U/I, U/f, U/U (41)
        • Драйверы MOSFET/IGBT (258)
        • Фильтры — интегральные схемы (39)
        • Выключатели — интегральные схемы (118)
      • Память — интегральные схемы (2096)
        • Запомин. уст-ва FLASH — интеграль. схемы (534)
          • Запоминающие уст-ва FLASH последователь. (397)
          • Запоминающие уст-ва FLASH параллельные (137)
        • Запомин. уст-ва EEPROM — интегр. схемы (837)
          • Запоминающ. уст-ва EEPROM последователь. (830)
          • Запоминающие уст-ва EEPROM параллельные (7)
        • Запомин. уст-ва EPROM — интеграль. схемы (42)
        • Запомин. уст-ва SRAM — интеграль. схемы (605)
          • Запоминающие уст-ва SRAM параллельные (587)
          • Запоминающие уст-ва SRAM последователь. (18)
        • Запомин. уст-ва DRAM — интеграль. схемы (25)
        • Запомин. уст-ва остальн. — интегр. схемы (39)
        • Запомин. уст-ва FRAM — интеграль. схемы (14)
      • Интегральные схемы RTV — аудио (94)
      • Интегральные гибридные схемы (12)
      • Интегральные схемы другие (159)
      • Интегральные периферийные схемы (1139)
        • Мультиплексоры и переключатели аналог. (185)
        • Преобразователи D/A — интегральные схемы (204)
        • Преобразователи A/D — интегральные схемы (285)
        • Схемы watchdog и reset (188)
        • Схемы RTC (109)
        • Контрольные схемы (168)
      • Регуляторы напряжения — интеграль. схемы (4299)
        • Источники напряжения отнесения — схемы (159)
        • Линейные стабилизаторы — интегр. схемы (1489)
          • Стабилизаторы напряжения нерегулир. LDO (843)
          • Стабилизаторы напряжения нерегулируемые (404)
          • Стабилизаторы напряжения регулир. LDO (139)
          • Стабилизаторы напряжения регулируемые (103)
        • Импульсные регуляторы — интеграль. схемы (2581)
          • Регуляторы напряжения — схема DC-DC (2544)
          • Регуляторы напряжения — схема ШИМ (37)
        • Контроллеры батарей и аккумулят. — схемы (70)
    • Симисторы (125)
    • Динисторы (8)
    • Комплекты пусковые (1776)
      • Наборы пусковые для систем Xilinx (16)
      • Наборы пусковые Arduino (137)
      • Наборы пусковые для систем Atmel (117)
      • Наборы пусковые для систем NXP (65)
      • Наборы пусковые для систем Microchip (339)
      • Наборы пусковые для систем STM (45)
      • Наборы пусковые остальные (858)
      • Компиляторы (31)
      • Аксессуары к стартерным комплектам (166)
      • Наборы пусковые для систем TI (2)
  • Оптоэлектроника, индикаторы, освещение (12767)
    • Аксессуары для светодиодов (254)
      • Оптоволокно для светодиодов (3)
      • Профили для светодиодов (227)
      • Блоки питания для светодиодов (24)
    • Фотоэлементы (243)
      • Фотодиоды (82)
      • Фототранзисторы (53)
      • Фоторезисторы (83)
      • Интегрированные инфракрасные приемники (25)
    • Модули фотоэлектрические (36)
    • Элементы лазерные (61)
      • Диоды лазерные (13)
      • Модули лазерные (48)
    • Светодиоды (6824)
      • Инфракрасные приемно-передающие элементы (93)
      • Светодиоды мощности (1200)
        • Светодиоды мощности 3Вт (167)
        • Светодиоды мощности остальные (278)
        • Светодиоды мощности 1Вт (171)
        • Светодиоды мощности 5Вт (212)
        • Светодиоды мощности цветные (11)
          • Светодиоды мощности цветные — Emitter (11)
        • Светодиоды мощности белые (361)
          • Светодиоды мощности белые — COB (350)
          • Светодиоды мощности белые — Emitter (11)
      • Аксессуары для светодиодов (2228)
        • Радиаторы для светодиодов LED (190)
        • Линзы (266)
        • Охладительные модули (40)
        • Держатели для светодиодов (57)
        • Остальные (248)
        • Оптоволокно для светодиодов (141)
        • Профили для светодиодов (17)
        • Блоки питания для светодиодов (941)
        • Патроны (70)
        • Дистанционные элементы для светодиодов (258)
      • Светодиоды SMD (1209)
        • Светодиоды SMD яркие (374)
        • Светодиоды SMD остальные (54)
        • Светодиоды SMD 0603 (44)
        • Светодиоды SMD 0805 (41)
        • Светодиоды SMD 1206 (65)
        • Светодиоды SMD 0402 (14)
        • Светодиоды SMD цветные (475)
        • Светодиоды SMD белые (142)
      • Светодиоды THT (1631)
        • Светодиоды THT 20мм (17)
        • Светодиоды THT остальные (79)
        • Подсветка (55)
        • Светодиоды THT прямоугольные (119)
        • Светодиоды THT 5мм (567)
        • Светодиоды THT 10мм (98)
        • Светодиоды THT овальные (106)
        • Светодиоды THT 3мм (368)
        • Светодиоды THT superflux (61)
        • Светодиоды THT 8мм (122)
        • Светодиоды THT 1,8мм (39)
      • Инфракрасные светодиоды (78)
      • Светодиодные контрольные лампочки (131)
      • Светодиодные индикаторы PCB (167)
      • Светодиоды УФ (7)
      • Диоды LED — ‘plants growth’ (20)
      • Специальные диоды LED – для спецэффектов (60)
    • Оптроны (1200)
      • Оптотиристоры выводные (47)
      • Оптроны остальные (55)
        • Оптроны остальные THT (40)
        • Оптроны остальные SMD (15)
      • Оптотиристор SMD (21)
      • Оптроны транзисторный выход (884)
        • Оптроны транзисторный выход выводные (493)
        • Оптроны транзисторный выход SMD (391)
      • Оптроны логический выход (165)
        • Оптроны логический выход SMD (102)
        • Оптроны логический выход THT (63)
      • Оптотриаки THT (12)
      • Оптотриаки SMD (16)
    • Дисплеи (2455)
      • Дисплеи OLED (78)
        • Дисплеи ОСИД буквенно-цифровые (36)
        • Дисплеи ОСИД графические (42)
      • Дисплеи ЖКД (376)
        • Дисплеи ЖКД графические (127)
        • Дисплеи ЖКД буквенно-цифровые (227)
        • Дисплеи ЖКД цифровые (22)
      • Дисплеи TFT (257)
      • Цифровые сегментные индикаторы (899)
        • Дисплеи семисегментные четырехразрядные (70)
        • Дисплеи семисегментные трехразрядные (50)
        • Дисплеи семисегментные остальные (55)
        • Дисплеи двухразрядные семисегментные (165)
        • Дисплеи семисегментные одноразрядные (454)
        • Сегментные матрицы (105)
      • Дисплеи LED (225)
        • Дисплеи LED четверные (25)
        • Дисплеи LED тройные (20)
        • Дисплеи LED двойные (29)
        • Дисплеи LED одинарные (109)
        • Дисплеи LED остальные (10)
        • Дисплеи LED матрицы (32)
      • Дисплеи E-ink (9)
      • Дисплеи VFD (24)
      • Дисплеи OLED (73)
        • Дисплеи OLED буквенно-цифровые (38)
        • Дисплеи OLED графические (35)
      • Аксессуары к дисплеям (85)
      • Дисплеи LCD (429)
        • Дисплеи LCD цифровые (75)
        • Дисплеи LCD графические (166)
        • Дисплеи LCD буквенно-цифровые (188)
    • Фонарики (70)
    • Источники света (1624)
      • Источники света — светодиодные линейки (83)
      • Миниатюрные источники света (457)
      • Источники света — светильники (25)
      • Источники света — освещение (371)
      • Источники света — светодиодные ленты (520)
      • Источники света — светодиодные модули (168)
  • Оборудование для мастерских (12898)
    • Aнтистатика (374)
      • Губки ESD (3)
      • Коробки, шкафчики ESD (10)
      • Антистатика — другие (49)
      • Личная защита ESD (174)
        • Манжеты на руку ESD (20)
        • Маты ESD (33)
          • Маты напольные ESD (4)
          • Маты настольные ESD (16)
          • Наборы для рабочего места ESD (13)
        • Аксессуары ESD (20)
        • Личная защита ESD — остальные (19)
        • Пояски на обувь ESD (12)
        • Одежда ESD (67)
        • Контроль ESD (3)
      • Пакеты и пленки ESD (138)
    • Инструменты (3850)
      • Измерительные инструменты (33)
      • Инструменты для осмотра (142)
        • Контрольные инструменты остальные (36)
        • Настольные светильники увеличительные (26)
        • Увеличительные стекла (52)
        • Микроскопы (21)
        • Настольные лупы с подсветкой (7)
      • Наборы, чемоданчики, сумки с инструмент. (101)
        • Наборы инструментов (43)
        • Сумки и чемоданчики для инструментов (58)
      • Наконечники для отверток (184)
      • Пинцеты (185)
        • Пинцеты универсальные (62)
        • Пинцеты ESD (52)
        • Пинцеты прецизионные (71)
      • Пистолеты для склеивания, установки горячего воздуха (71)
        • Пистолеты для клея и термоплавкие клеи (41)
        • Палильные машины и аксессуары (30)
      • Щипцы, ножницы, ножи (616)
        • Клещи-кусачки для резки (232)
        • Клещи-кусачки специализированные (82)
        • Ножницы, маленькие ножницы, ножи (132)
        • Изолированные клещи-кусачки (57)
        • Клещи-кусачки плоские и полукруглые (85)
        • Клещи-кусачки универсальные (28)
      • Зажим. устр-ва для након., соед. и хом. (540)
        • Зажимные уст-ва для высокоч. соединений (29)
        • Зажимные устройства для штепселей RJ (35)
        • Зажимные устройства остальные (241)
        • Зажимные уст-ва кабельных наконечников (235)
      • Электроинструменты и аксессуары (550)
        • Электроинструменты — запчасти и аксесс. (457)
        • Шуроповерты и дрели (71)
        • Электроинструменты остальные (22)
      • Инструменты общего применения (238)
        • Напильники, скребки (16)
        • Молотки и тиски (28)
        • Пилы и полотнища (19)
        • Инструменты общего применения остальные (175)
      • Отвертки, настроечные устройства (559)
        • Отвертки и наборы (430)
        • Настроечные устройства (21)
        • Изолированные отвертки и наборы (108)
      • Ключи, наборы ключей (323)
        • Шестигранные и звездообразные ключи (65)
        • Ключи остальные (83)
        • Рожковые и накидные ключи (137)
        • Наборы ключей (38)
      • Инструменты для снятия изоляции (149)
        • Универсальные инструменты для проводов (4)
        • Устройства для снятия изоляции (145)
      • Сверла (116)
        • Сверла прочие (33)
        • Сверла по бетону (18)
        • Сверла по дереву (1)
        • Сверла по металлу (64)
      • Развёртки (2)
      • Плашки и метчики (25)
      • Абразивные материалы (16)
        • Микроабразивные материалы (16)
    • Паяльное и сварочное оборудование (3126)
      • Оборудование паяльное остальное (5)
      • Ленты выпаивающие (43)
      • Паяльники и горелки газовые (27)
      • Вытяжки паяльных испарений (16)
      • Тигли и паяльные ванны (26)
      • Паяльные устройства и осветители (82)
        • Паяльные устройства остальные (50)
        • Устройства для освещения (9)
        • Ультразвуковые мойки (23)
      • Дозаторы и аксессуары (368)
        • Иглы и сопла (104)
        • Дозаторы — фломастеры и бутылки (49)
        • Дозирующие артикулы остальные (90)
        • Шприцы и картриджи (112)
        • Дозаторы (13)
      • Инструменты для паяльных работ (84)
        • Инструменты для паяльных работ остальные (27)
        • Захваты для интегральных схем (12)
        • Устройства для формирования выводов (6)
        • Отсасывающие устройства при пайке (39)
      • Химические препараты для паяльных работ (59)
      • Припои паяльные (308)
        • Припои остальные (19)
        • Припои — проволоки (258)
        • Припои — пасты (31)
      • Флюсы (58)
      • Паяльники нагревательные и трансформат. (74)
      • Аксессуары для паяльных станций (354)
        • Паяльные аксессуары остальные (18)
        • Паяльные станции — запчасти (243)
        • Губки и салфетки для наконечн. паяльника (42)
        • Подставки и подаватели олова (51)
      • Наконечники и сопла паяльные (1471)
        • Сопла горячего воздуха (208)
        • Сопла для распайки (79)
        • Наконечники для паяльников (1184)
      • Паяльные и выпаивающие станции (118)
        • Станции распайки (23)
        • Станции горячего воздуха (19)
        • Станции пайки и распайки (13)
        • Паяльные станции (63)
      • Сварочное оборудование (33)
        • Маски и защитная одежда (9)
        • Запасные части и аксессуары (8)
          • Наконечники и втулки (2)
          • Сварочные зажимы и провода (6)
        • Инверторные сварочные аппараты (11)
        • Сварочные материалы (1)
          • Сварочная химия (1)
        • Плазменные резаки (4)
    • Химические препараты (836)
      • Ленты (307)
        • Ленты электроизоляционные (160)
          • Ленты изоляционные (55)
          • Ленты самовулканизирующиеся (3)
          • Ленты экранирующие и заземляющие (6)
        • Ленты Al и Cu (18)
        • Ленты остальные (110)
        • Ленты крепежные (14)
        • Ленты теплопроводящие (5)
      • Пасты термопроводящие (54)
      • Клеи (77)
      • Препараты чистящие и консервирующие (139)
      • Защитные и экранирующие оболочки (42)
      • Салфетки и чистящие материалы (21)
      • Препараты смазочные (88)
      • Массы заливочные (38)
      • Химические препараты остальные (16)
      • Маркеры, фломастеры, краски (54)
    • Измерительная аппаратура (2259)
      • Аппаратура медицинская (1)
        • Медицинская аппаратура Biomedical (1)
      • Мультиметры аналоговые (5)
      • Устройства лабораторные — другие (41)
      • Тестеры компьютерных и телефонных сетей (26)
      • Блоки питания лабораторные (160)
        • Блоки питания одноканальные (73)
        • Блоки питания программируемые (34)
        • Блоки питания многоканальные (53)
      • Измерители панельные (97)
        • Измерители панельные цифровые (71)
        • Измерители панельные — аксессуары (11)
        • Измерители панельные аналоговые (15)
      • Измерители для автомастерских (47)
        • Эндоскопы — бороскопы (45)
        • Мультиметры автомобильные (1)
        • Измерители автомобильные — остальные (1)
      • Устройства лабораторные (260)
        • Генераторы и измерители частоты (67)
        • Милиомметр (8)
        • Анализаторы спектра (9)
        • Аксессуары для калибраторов (95)
        • Калибраторы (58)
        • Мосты RLC (17)

Схема устройств на фотодиоде » Паятель. Ру


Фотодиоды применяются в различных устройствах автоматики, в системах дистанционного управления. Возьмем, например, фотодиод ФД320 (такие фотодиоды можно купить в магазинах, торгующих деталями для телевизоров). Как и любой диод его можно проверить при помощи мультиметра, — можно определить его анод и катод. Но, заметьте, как будут меняться показания мультиметра, если перемещать фотодиод, подключенный к мультиметру из света в тень и обратно, или посветить на его линзу (или светочувствительную поверхность) лампой.


В большинстве схем, в том числе, и в схемах дистанционного управления фотодиоды включают в обратном направлении, — катодом к плюсу, а анодом к минусу. Это называется фоторезисторным включением. В темноте обратное сопротивление фотодиода очень велико, а при освещении оно уменьшается Это можно использовать для управления чем-то в зависимости от силы света.

На рисунке 1 показана схема очень простого фотореле. Фотодиод VD1 вместе с переменным резистором R1 образует делитель напряжения. Причем, сопротивление фотодиода уменьшается пропорционально силе света. Значит, напряжение на базе транзистора VT1 будет расти, если на фотодиод посветить, например, карманным фонариком.

В определенный момент транзистор VT1 откроется, а за ним откроется и VT2. А это приведет к подаче тока на обмотку реле К1, — контакты реле переключатся. Если источник света выключить (или накрыть чем-то фотодиод), напряжение на базе VT1 упадет, и транзисторы закроются, а реле выключится.

Резистор R1 переменный, чтобы с его помощью можно было регулировать чувствительность фотореле например, так чтобы фотореле не реагировало на обычный комнатный свет, но уверенного переключалось, если на фотодиод посветить фонариком или лазерной указкой.

Таким фотореле можно пользоваться и как простой системой дистанционного управления, а карманный фонарик или лазерная указка будут играть роль пульта управления

Рис.2
В схеме очень немного деталей. На рисунке 2 схематически показан внешний вид и расположение выводов фотодиода ФД320, транзисторов КТ3102, КТ814, и электромагнитного реле типа WJ118-1C.

Фотодиод ФД320 с пластмассовой линзой — корпусом. Вместо него можно использовать другой фотодиод, например, ФД263 или ФД320 без линзы. В любом случае, перед монтажом желательно проверить, где анод, а где катод фотодиода при помощи мультиметра (как проверяют обычные диоды), а так же убедиться в его реакции на свет.

Реле то же может быть другим, но желательно чтобы его обмотка имела сопротивление не ниже 200 Оm и была рассчитана напряжение 10-15V. На рисунке 2 реле показано, как бы, повернутым выводами к вам, так же изображен и транзистор КТ3102Е, а фотодиод повернут к вам линзой.

Собрав схему (рис. 1) поверните ручку переменного резистора R1 так, чтобы было максимальное сопротивление (вниз, по схеме) Расположите схемку так. чтобы на фотодиод не попадал прямой свет из окна или от настольной лампы Собирая схему не перепутайте полярность подключения фотодиода. Подключите питание (не перепутайте полярность). Реле не должно щелкнуть. Если щелкнуло, поверните ручку R1 так. чтобы реле выключилось

А теперь, вооружившись карманным фонариком или лазерной указкой, переходите к экспериментам. При освещении линзы фотодиода (или светочувствительной поверхности) реле должно включаться.

Рис.3
На рисунке 3 показана схема дистанционного выключателя, которым можно управлять с помощью карманного фонарика или лазерной указки. Здесь два фотодиода.

Чтобы включить реле нужно посветить на VD2, а чтобы выключить — на VD1. Чувствительность включающего и выключающего фотодиодов можно настроить подстроенными резисторами R2 и R1.

На микросхеме D1 (К561ЛА7) сделан RS-триггер, от состояния которого зависит включено реле или выключено. Если посветить на VD2, его сопротивление уменьшится, а напряжение на входах D1.2 увеличится до уровня логической единицы. На выходе D1.2 появится ноль, и триггер на элементах D1.3-D1.4 переключится в такое состояние, когда на выходе D1.4 логическая единица. Эта единица откроет ключ на VT1, а он подаст ток на обмотку реле. После выключения света триггер останется в таком положении, и реле будет включено.

Чтобы выключить реле нужно посветить на VD1. Это изменит состояние триггера и на выходе D1 3 будет ноль. Ключ на VT1 закроется, а реле выключится. В таком состоянии схема останется и после выключения источника света.

Таким образом, — нужно включить реле, светите на VD2, нужно выключить, — на VD1. Практически все детали расположены на печатной плате из фольгированного стеклотекстолита дорожки только с одной стороны.

Расстояние между фотодиодами около 5 см, этого достаточно для управления с помощью небольшого карманного фонарика или лазерной указки.

Настройка

Налаживание, если все детали исправны и нет ошибок в монтаже, сводится только к установке чувствительности фотодиодов подстроечными резисторами R1 и R2.

Работая с выключателем нужно его располагать так, чтобы на линзы или рабочие поверхности фотодиодов не попадал прямой свет из окна или от настольной лампы.

При управлении фонариком дальность будет около 2-3 метров, а если пользоваться лазерной указкой, ночью, и настроить фотодиоды на максимальную чувствительность, можно получить дальность в 20-30 метров. Днем такую дальность получить невозможно, — влияет солнечный свет и приходится устанавливать чувствительность ниже.

Реле и фотодиоды, — такие же, как в схеме на рисунке 1. Микросхему К561ЛА7 можно заменить на К1561ЛА7, К176ЛА7. Расположение выводов КТ815 такое же. как у КТ814.

Фотодатчики и их применение — Статьи об энергетике


Электронные схемы с применением фотодатчиков нашли широкое применение как в схемах радиолюбителей, так и в промышленной электронике. Простейший фотодатчик состоит из фотоприемника (фотодиод, фототранзистор) и источника излучения (чаще всего инфракрасного).

Схемы фотодатчика на основе источника и приемника называют фотопрерывателями. Принцип действия основан на прерывании сигнала поступающего от источника к фотоприемнику. Простейшей схемой с применением такого датчика является схема цифрового энкодера.

Типы фотодатчиков

1. Фоторезистор
Фоторезистор представляет собой фотодатчик, изменяющий величину своего омического сопротивления под воздействием излучения. Фоторезисторы характеризуются малым быстродействием, поэтому их применение ограничено в современной электронике.

2. Фотодиод
Фотодиод – полупроводниковый прибор, способный проводить электрический ток только в одном направлении. Регулирование величины обратного тока в цепи регулируется изменением интенсивности падающего света. Кроме того фотодиод может выступать как источник фотоэдс.

3. Фототранзистор
Фототранзистор может быть выполнен в двух исполнениях: с тремя выводами (как обычный транзистор) и с двумя выводами (коллектор, эмиттер). Дополнительный вывод базы фототранзистора позволяет использовать его в качестве полностью управляемого полупроводникового элемента. Фототранзисторы с двумя выводами могут управляться только световым излучением.
Проверку работоспособности фототранзистора можно провести мультиметром. При изменении светового излучения происходит изменение сопротивления коллектор-эмиттер от максимального при минимальном излучении, до минимального – при максимальной интенсивности.

Спектр света

Практически все фотодатчики настраиваются на определенный спектр излучения. Поэтому при выборе фотоприемника следует учесть, какой из источников света является оптимальным для данного фотодатчика.

Сопряжение фотодатчика с микроконтроллером

Широкое применение микроконтроллеров привело к необходимости использования фотодатчиков в качестве чувствительных элементов. Фотодатчики подключаются на дискретные входы микроконтроллера по следующим схемам:

Стоит отметить, что для полупроводниковых элементов перед подключением необходимо определить их полярность.

Измерение освещенности

Фототранзисторы и фотодиоды реагируют на достаточно узкий спектр светового излучения. Основная функция таких элементов – работа в ключевом режиме. В связи с этим создание измерителей освещенности на этой элементной базе достаточно затруднительно.
Выходом в такой ситуации может послужить применение микросхемы TSL230R, позволяющей преобразовать уровень освещенности в частоту. Управление микросхемой осуществляется внешними сигналами, с помощью которых можно изменять чувствительность фотодиода. Частота выходного сигнала может достигать 1МГц.
Схема подключения микросхемы TSL230R к микроконтроллеру приведена ниже.


Как работает и подключается датчик света с фотореле для сумеречного выключателя

С наступлением осени начинает сокращаться световой день.

Людям приходиться раньше включать электрическое освещение, расходовать на него больше электроэнергии.

Сейчас любой домашний мастер может экономить денежные средства за оплату электричества, обеспечив его оптимальное потребление для осветительных приборов, расположенных в помещениях или на открытом воздухе.

Сделать это можно за счет их включения только с наступлением сумерек и отключения при рассвете. Причем работать они могут полностью в автоматическом режиме.

Для этих целей служит датчик света, который используется в фотореле, управляющим работой освещения.


Такую общую конструкцию, заключенную в единый корпус, принято называть сумеречным выключателем.


Принцип работы фотореле

Для автоматического управления светильниками по величине освещенности рабочего места и фактору «День-ночь» используется специальный светочувствительный датчик. Он меняет свои электрические характеристики в зависимости от интенсивности падающего на него света.


Для корректировки уровня срабатывания имеется регулятор. После него сигнал от чувствительного элемента усиливается до необходимой величины и подается на обмотку реле электромеханической или статической конструкции.

Таким способом, в зависимости от дневного или ночного освещения, датчик света управляет подачей напряжения на обмотку реле. А последнее — подключает или отключает через свой контакт фазу питания сети на светильник.

Как работает чувствительный элемент фотодатчика

Для контроля величины светового потока используются различные электронные компоненты, входящие в состав:

  • фоторезисторов;
  • фотодиодов;
  • фототранзисторов;
  • фототиристоов;
  • фотосимисторов.
Как работает датчик света на фоторезисторе

Полупроводниковый слой, облучаемый электромагнитными волнами оптического спектра, изменяет свое электрическое сопротивление.


К нему прикладывается источник стабилизированного напряжения, под действием которого в замкнутой цепи начинает протекать ток, вычисляемый по закону Ома. Его величина зависит от характера изменения сопротивления полупроводникового слоя датчика света.

При увеличении светового потока электрический ток возрастает, а при уменьшении — снижается. Остается только определить граничные состояния, при которых необходимо включать источник освещения в рабочее состояние или отключать его.

Как работает датчик света на фотодиоде

Светочувствительный элемент этого типа преобразует энергию электромагнитных колебаний видимого спектра в электрический ток.

Его величина тоже зависит от силы облучения, что позволяет устанавливать границы срабатывания фотореле.


Датчики света на фотодиодах могут подключаться для работы в схемах с:

  1. питанием от внешнего, дополнительного источника напряжения;
  2. или обходиться без его использования.
Как работает датчик света на фототранзисторе

Принципы работы, используемые для двух предыдущих случаев, здесь тоже соблюдаются. Фототранзисторы, работают так же, как и их биполярные или полевые аналоги. На их характеристики влияет интенсивность облучения световым потоком.


Определив эту закономерность, выставляют границы рабочих уставок для конечной схемы фотореле. Таким же образом создаются датчики света на фототиристорах и фотосимисторах.

Как работает электрическая схема датчика света на фотореле

В качестве примера рассмотрим самое простейшее устройство со светочувствительным элементом на основе фоторезистора PR1, обладающего сопротивлением в несколько мегаом при полной темноте.


Под действием потока света оно снизится до нескольких килоом. Этой величины достаточно для открытия первого транзистора VT1, когда через него станет протекать коллекторный ток, открывающий второй каскад на транзисторе VT2.

В это плечо включена обмотка обыкновенного электромагнитного реле К1. Она перекинет собственный якорь во второе положение и переключит свой контакт К1.1, который управляет работой светильника.

При отключении реле от схемы его обмотка формирует ЭДС самоиндукции. Для его ограничения установлен диод VD1. Подстрочный резистор R1 используется в качестве регулятора уставки срабатывания датчика света. В некоторых случаях от него вообще можно отказаться.

За счет использования двух последовательно работающих транзисторов чувствительность такой схемы достигается очень большой величины, когда слабый сигнал света, падающий на поверхность фоторезистора, осуществляет переключение выходного реле и управление светильником в автоматическом режиме.

Такая схема является довольно универсальной. Она позволяет применять различные марки транзисторов, электромагнитных реле и устанавливать для них различное напряжение. Чем его величина будет больше, тем высшей чувствительностью обладает датчик света.

Заводские модули фотореле для сумеречных выключателей имеют более сложную структуру схемы, более мощный выходной контакт, но в основе своей работы они повторяют эти же принципы.

В самодельных конструкциях для автоматического управления светом хорошо зарекомендовала себя схема, описанная в статье здесь. Ее несложно повторить своими руками тем, кто умеет и любит работать с паяльником.

Как подключить датчик света с фотореле к светильнику и выполнить монтаж

Использование цветовой разметки проводов

Электрическая схема подключения сумеречного выключателя собирается на основе распределительной коробки, в которую приходят кабелем три провода от электрощитка:

  1. фазы;
  2. нуля;
  3. заземляющего проводника.


На самом фотореле выполнен вывод тоже трех проводов. Обычно они имеют расцветку:

  • коричневый, подключаемый на фазу питания сети;
  • красный, подающий через встроенный контакт фазный потенциал на светильник при его включении с наступлением сумерек;
  • синий, соединяемый с рабочим нулем схемы.


На фотографии сумеречного выключателя показаны эти провода и регулятор освещенности. При вращении его рукоятки устанавливается порог срабатывания датчика света.

Особенности монтажа

Обычная длина проводов, выступающих из корпуса фотореле, не превышает двадцати сантиметров. Поэтому его приято монтировать в непосредственной близости около распределительной коробки, а сам светильник:

  1. выносят на некоторое расстояние;
  2. или размещают рядом, как показано на фотографии.

При втором способе монтажа схемы необходимо учитывать, чтобы свет от включенной лампы источника не попадал на поле обзора датчика света. Иначе будет происходить ложное срабатывание. Для его исключения дополнительно применяют таймер и датчики движения.


Их контакты включают в последовательную цепочку между красным проводом, выходящим из фотореле и цоколем лампы светильника. Работа датчика движения и таймера подчиняется запрограммированным алгоритмам логической схемы сумеречного выключателя.

Подключение нескольких светильников к одному фотореле

Выходные контакты конечного датчика света обладают определенной коммутационной способностью. Их величина указывается в технической документации и на корпусе сумеречного выключателя в амперах. При необходимости управлять светом от нескольких источников необходимо внимательно посчитать нагрузку, создаваемую ими всеми в комплексе.

Если мощность контактов позволяет, то светильники подключает параллельной цепочкой, как показано на фотографии ниже.


Иногда может возникнуть ситуация, когда нагрузка схемы превышает допустимую мощность контактов сумеречного выключателя.

В этом случае допустимо использовать то же самое фотореле, но к его контактам подключить промежуточный элемент — обмотку магнитного пускателя, обладающей меньшей нагрузкой.

Мощные контакты этого коммутационного аппарата будут надежно переключать цепочку из многих светильников или один мощный прожектор, как показано на схеме ниже.


Подбирать магнитный пускатель придется по типу катушки управления и мощности контактной группы.

Важные технические характеристики датчика света

Фотореле выбирают по:

  • чувствительности фотодатчика;
  • типу и величине напряжения питания;
  • мощности коммутируемых контактов;
  • рабочей среде сумеречного выключателя.
Чувствительность фотодатчика

Под этим термином понимают отношение вырабатываемого внутри фотоэлемента тока в микроамперах к величине падающего на него потока света в люменах. Для более точного анализа приборов чувствительность классифицируют по:

  1. частоте, связанной с определенным видом колебаний — спектральный метод;
  2. диапазону падающих световых волн — интегральная чувствительность.
Напряжение питания сумеречного выключателя

На форму и величину сигнала обращают особое внимание при работе с моделями датчиков света, выпущенных за рубежом, где стандарты электроснабжения могут отличаться от тех, которые используются у нас.

Рабочая среда

Для управления светом уличных светильников создаются сумеречные выключатели с фотореле герметичной конструкции, способной противостоять действию атмосферных осадков и пыли. Их отличает повышенный класс защиты корпуса по IP.

Они же обладают увеличенным диапазоном рабочих температур. Когда наступает низкая морозная погода, то может возникнуть необходимость обогрева их контактов или временного отключения.

Для работы сумеречного выключателя внутри обогреваемых помещений этого делать не требуется.

Изложенный в статье материал позволяет лучше понять видеоролик владельца Инженерные сети «Подключение фотореле».

Если у вас остались вопросы, то можете задать их в комментариях. Сейчас наступил удобный момент для того, чтобы поделиться этим материалом с друзьями в соц сетях.

Полезные товары

Простой контроллер освещения / Хабр

Как ни странно, на разработку этого устройства меня толкнули лень и дискомфорт. Каждый раз загоняя автомобиль в гараж, в темное время суток, постоянно приходилось искать заветную клавишу выключения света, что бы ориентироваться при выходе. В итоге начал обдумывать методы устранения данной проблемы. Первое что пришло на ум, готовый датчик движения, что применяется для уличного освещения. Но не захотел я легкого пути, решил изготовить самостоятельно. Начал прокручивать в голове различные решения на подобии измерителя поля на полевом транзисторе и антенне, ИК приемо-передатчиками в воротный проем и в итоге тернистый путь привел меня к широко известному PIR-датчику HC-SR50.

Стоит не дорого, свой стабилизатор питания (можно подавать от 5 до 20В), регулировка чувствительности радиуса обнаружения (от 3х до 7 метров), угол обнаружения (120-140, зависит от конкретной линзы и типа датчика), регулировка времени отпускания, а так же два режима работы:

1. Одиночный захват — в этом режиме при срабатывании датчика несколько раз подряд на его выходе остается высокий логический уровень.
2. Импульсный захват — в этом режиме на выходе при каждом срабатывании датчика появляется отдельный импульс.

Снабдив такой датчик источником постоянного тока и небольшой платой с транзисторным ключом, парой резисторов, диодом и реле, получаем готовое устройство, которое сможет включать и отключать нашу нагрузку, когда в поле датчика будет находиться объект.


Поразмыслив дальше, все-таки решил я применить простой микроконтроллер Attiny13 и связать все в один взаимосвязанный пучок: клавишный выключатель, PIR-датчик и еще добавил датчик уровня освещенности (о нем речь пойдет ниже).

Логика работы устройства:

  • Приоритет включения всегда у клавишного выключателя, не зависимо от уровня освещенности и нахождения объекта в поле PIR-датчика.
  • По истечении примерно 5 часов, при включенном клавишном выключателе, свет автоматически отключится. Иногда домочадцы, а порой и я сам забываю выключить свет.
  • Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице темно (тут на помощь приходит фото датчик), свет включается, и горит пока объект не выйдет из поля PIR-датчика.
  • Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице темно, свет включается, и горит, если объект выйдет из поля PIR датчика, освещение продолжает работать в промежутке времени, заданным регулировочным потенциометром на PIR- датчике от 5 секунд до 300 секунд.
  • Если клавишный выключатель выключен, объект находится в поле PIR-датчика и на улице светло, свет не включится, пока уровень освещенности не упадет до заданного порога или не включится клавишный выключатель.

Далее была разработана схема электрическая принципиальная, содержащая недорогие и доступные компоненты:

Для питания схемы используется трансформатор с двумя выходными обмотками по 9В (ТПГ-2), первая обмотка служит для питания микропроцессорной части устройства и выносного датчика уровня освещенности. Вторая обмотка для питания PIR-датчика и обмотки реле. Для 12В использован однополупериодный выпрямитель и интегральный стабилизатор напряжения, в данном случае такая схема думаю оправдана т.к в PIR-датчике присутствует свой стабилизатор напряжения. Транзистор Q3 служит для согласования уровней между PIR-датчиком и микроконтроллером, выход PIR — датчика LVTTL c максимальным порогом 3,3В. Транзистор Q2 служит для индикации состояния, транзистор Q1 управляет обмоткой силового реле к которому подключена наша лампа освещения. Переменный резистор необходим для регулировки чувствительности датчика освещения. Цепочка R2, D3, D6, C2 необходима для захвата напряжения сети от клавишного выключателя. Дребезг пульсаций обрабатывается программно.

Для разработки датчика освещения я использовал импортный фототранзистор из своих старых залежей, не знаю даже маркировки, но думаю подойдет например такой BPW96C. Так как устройство находится далеко от улицы или какого-либо проема, просто припаять фототранзистор на плату в моем случае не получится, а тянуть линию порядка 10 метров до фототранзистора я не рискнул, в связи с чем сделал повторитель на Rail-to-Rail операционном усилителе. Но тут натолкнулся на проблемы с калибровкой, в общем сигнал фототранзистора был очень мал для нормальной работы, и я переделал повторитель на не инвертирующий усилитель с коэффициентом усиления 2:

Если вы будете повторять конструкцию и фототранзистор будет выдавать подходящий уровень, вместо резистора R2 установите перемычку 1206 с 0 значением, а резистор R4 исключите из схемы. Фототранзистор у меня был NPN, подключил пину J1-1 коллектор, к пину J1-2 эмиттер.

Собрав датчик уровня освещенности я залил плату компаундом Виксинт ПК-68 и усадил в термоусадочную трубку, оставив на поверхности только шляпку фототранзистора с окошком.

Печатные платы контроллера:



датчика уровня освещенности:

Фото готового устройства на этапе отладки:
Схема соединений всех устройств:
Дополнительно была разработана вторая версия печатной платы для корпуса типа D3MG с установкой на DIN-рейку и разъемом для программирования микроконтроллера AVRISP (в первой версии я для программирования подпаивал провода с разъемом к плате). Микропрограмма микроконтроллера написана на языке С в среде Atmel Studio.

Исходный код, две версии печатных плат и схем электрических принципиальных с перечнями комплектующих (использовался САПР Dip Trace 3.0.0.1), а также файл симуляции для Proteus 8 вы можете найти в репозитории — LightController.

PS: перед установкой, плату контроллера и PIR-датчика на всякий случай вскрыл двумя слоями цапон-лака. Устройство подключается к сети через автоматический выключатель (номинал зависит от потребления ламп), в моем случае автомат подключен через автоматический выключатель номиналом 2 А.

Лазерная связь своими руками » Изобретения и самоделки

Лазерная система связи своими руками.

Коммуникация с применением лазера не ново. В этой системе лазерной связи в качестве несущей используется лазерный луч, который модулируется передаваемым сигналом. На стороне приемника желаемый сигнал отделен от несущей. Беспроводная лазерная связь (через лазерный диод) используется для передачи информации от одного конца к другому в ее прямой видимости.

В этой схеме электрический сигнал передается из одного места в другое по лазерному лучу. Если вы изменяете некоторые параметры передаваемого сигнала (например, амплитуду и частоту), полученный сигнал изменяется соответственно.

Товары для изобретателей. 🔥Перейти в магазин Ссылка.

Лазерная система связи. Схема

Вся схема может быть разделена на две части: передатчик и приемник.

Схема передатчика построена вокруг таймера 555 (IC1). IC1 подключен как нестабильный мультивибратор, генерирующий серию импульсов на своем выводе 3, который служит входом модуляции для лазерного диода. Установите частоту этой последовательности импульсов около 1 кГц, используя предустановки VR1 и VR2.

Схема передатчика с лазером.

Распределение потенциалов между резисторами R2, R3 и предварительно установленным VR3 используется для уменьшения пиковой амплитуды последовательности импульсов. Схема возбуждения для лазерного диода построена вокруг IC LM356 (IC2), транзистора T1 и нескольких дискретных компонентов.

Цепь передатчика питается от двух батарей 9В, которые обеспечивают + 9В, -9В и заземление. Эти напряжения поступают на схему передатчика через DPST-переключатель S1.

Схема приемника.

Схема приемника (показанная выше) построена вокруг IC3, IC4 и нескольких отдельных компонентов. Этап усиления построен вокруг IC LM356 (IC3) со значением усиления (R6 + R7) / R6.  Выход IC3 управляет динамиком через устройство эмиттер-повторитель, сконфигурированное вокруг транзистора T3. Буферная ступень с единичным усилением, построенная вокруг IC4, облегчает просмотр принятого сигнала на осциллографе, если это необходимо.

Схема приемника также питается от двух 9В батарей, которые обеспечивают + 9В, -9В и заземление. Эти напряжения поступают в схему приемника через DPST-переключатель S2.

Схема работы

Работа схемы проста. Совместите передатчик и приемник так, чтобы лазерное излучение попадало прямо на фототранзистор. Динамик, подключенный между излучателем T3 и звуковыми сигналами заземления, указывает на наличие связи с лазером. Вы можете изменить высоту звукового сигнала, изменив частоту передаваемого сигнала через предустановки VR1 и VR2 в передатчике.

Сборка и тестирование

Соберите цепи передатчика и приемника на отдельных печатных платах общего назначения. Теперь отрегулируйте пресеты VR1 и VR2, чтобы получить импульсный сигнал с частотой приблизительно 1 кГц на выводе 3 IC1.  Отрегулируйте предустановку VR3, чтобы гарантировать, что требуемый ток протекает через лазерный диод во время передачи.

electronicsforu.com

Лазерная связь – реальность или только идея?

Когда лазеры были впервые изобретены, их называли решением всех проблем. Все думали, что они такие же крутые, как конденсат Бозе-Эйнштейна, но никто не знал, что делать с этими устройствами, которые могли бы создать сильно сфокусированный луч света.

Сегодня лазеры стали одной из самых важных в мире технологий, используемых в отраслях: от информационных технологий до телекоммуникаций, медицины, бытовой электроники, правоохранительных органов, военной техники, развлечений и производства.

С самых ранних дней лазерного развития исследователи поняли, что свет может опережать радио с точки зрения скорости и плотности информации. Это дошло и до физики. Световые волны упаковываются гораздо сильнее, чем звуковые волны, и они передают больше информации в секунду и с более сильным сигналом. Лазерная связь была бы подобна пуле, летящей к радиоприемнику.

В некотором смысле, лазеры уже давно используются в коммуникациях. Мы каждый день передаем информацию через лазер, будь то чтение CD и DVD-дисков, сканирование штрих-кодов или использование волоконно-оптической магистрали телефона или интернет-услуг. Теперь на горизонте находится более прямой подход, обеспечивающий высокую пропускную способность на огромных расстояниях, через воздух или другую среду, с небольшой потерей данных.

Криптографы и эксперты в области безопасности обращаются к лазерам как к быстродействующей, почти мгновенной системе доставки. Производители компьютеров, приближаясь к пределам того, что достижимо с помощью меди и кремния, также исследуют возможность использования лазеров. Когда скорость — это все, а свет указывает на ограничение скорости Вселенной, лазеры должны быть ответом – если технология будет практичной.

Целью коммуникационных технологий является передача информации быстро, полностью и точно. Исторически сложилось так, что междугородняя связь умножила эти трудности. Передача сигнала – барабаном, костром, дымом, флагом или светом – сначала обязательно требуется перевод в простой код. Телеграфные кабели и код Морзе сделали сложную передачу возможной, но дорогостоящей.

Для современной электронной связи требуется устройство отправки, которое может кодировать любые данные в передаваемую форму и приемник, который может различать сообщение (сигнал) и его окружение (шум). Теория передачи информации, математическая модель, обеспечили основу, которая в конечном итоге решила эту проблему и сделала такие технологии, как мобильный телефон, Интернет и модем.

В принципе, системы лазерной связи напоминают модемы, которые мы использовали в наших домах с момента появления Интернета. Модем означает модуляцию-демодуляцию, процесс, в котором цифровая информация преобразуется в аналоговый для передачи, а затем обратно. Ранние акустические модемы использовали звуковые волны для передачи по телефонным линиям. Оптические модемы переходят от звука к высокочастотной части спектра света.

Это не совсем новая концепция. Аудиовизуальные устройства с оптическим звуком, такие как многие проигрыватели DVD, используют модемное устройство, называемое модулем передачи, для преобразования цифровых сигналов в светодиодные или лазерные источники света, которые затем перемещаются по волоконно-оптическому кабелю к компоненту назначения, например, к теле- или аудиоприемнику. Там модуль приема света преобразует свет обратно в цифровой электрический сигнал, подходящий для динамиков или наушников.

Лазерная связь может стать граалем при освоении космоса, но гораздо более земные занятия определят ее судьбу, как коммерческую технологию. Лазеры могли бы передавать данные быстрее; скорость света через воздух почти такая же, как в вакууме. В сфере безопасности лазеры и другие оптические системы связи обеспечивают большую защищенность связи – и средства для их прослушивания естественно. Квантовая криптография использует свойство квантовой физики, а именно то, что третья сторона не может обнаружить квантовое состояние ключа фотонного шифрования без его изменения и, следовательно, обнаружить. Осенью 2008 года исследователи в Вене начали экспериментировать с квантовым Интернетом, частично основанным на этом принципе. К сожалению, лазеры также использовались для перехвата и обмана таких сигналов не квантовым способом, тем самым обходя обнаружение. Квантовые шифровальные компании работают над решением этой проблемы.

Фактически, основные недостатки лазерной связи в атмосфере связаны с вмешательством дождя, тумана или загрязнителей, но, учитывая преимущества технологии, эти проблемы вряд ли остановят продвижение технологии вперед. Итак, буквально или образно, небо — это не предел для технологий лазерных коммуникаций.

Лазерная связь – еще один отличный пример того, как мы будем жить в будущем.

Источник

Что такое фототранзистор? — Работа, преимущества и применение

Определение: Фототранзисторы похожи на обычный транзистор, за исключением того факта, что в случае фототранзистора клемма базы отсутствует. Фототранзисторы преобразуют падающий свет в фототок. Вместо обеспечения тока базы для запуска транзистора световые лучи используются для освещения области базы.

Базовая клемма изготовлена ​​из материала, который показывает чувствительность к свету.Символ схемы фототранзистора аналогичен условному обозначению обычного транзистора, но вывод базы может быть опущен. Две стрелки, указывающие на фототранзистор, указывают на то, что фототранзистор срабатывает падающим на него светом.

Условное обозначение фототранзистора показано на схеме ниже.

Конструкция фототранзистора

Фототранзисторы производятся так же, как и обычные транзисторы, с той лишь разницей, что площадь базы и коллектора у фототранзисторов довольно велика по сравнению с обычным транзистором.Это связано с тем, что чем больше света падает на фототранзистор, тем больший ток он генерирует.

Коллектор и базовая область сформированы методами ионной имплантации и диффузии. Транзистор, который использовался ранее, был изготовлен из полупроводникового материала, такого как германий и кремний, и полученная структура становится однородным материалом, состоящим из кремния или германия.

Напротив, в настоящее время фототранзисторы состоят из материалов группы III и группы V, таких как GaAs (арсенид галлия), таким образом, что галлий и арсенид используются по обе стороны от транзистора.Полученная структура приобретает неоднородный характер. Этот тип структуры широко используется, поскольку эффективность преобразования увеличивается в несколько раз по сравнению с эффективностью преобразования однородного транзистора.

Работа фототранзистора

Выходной сигнал фототранзистора снимается с вывода эмиттера, и световые лучи проходят через базовую область. Величина фототока, создаваемого фототранзистором, зависит от силы света, падающего на транзистор.

Это может быть три терминала или два терминала, мы можем опустить базу согласно нашим требованиям. Фототранзистор может работать в трех областях: область отсечки, активная область и область насыщения. Область отсечки и область насыщения могут использоваться для работы транзистора в качестве переключателя.

Активная область используется для генерации тока. Ток, генерируемый фототранзистором, зависит от нескольких факторов, помимо силы света, например,

.
  1. Коэффициент усиления постоянного тока транзистора: Чем выше коэффициент усиления постоянного тока транзистора, тем выше будет сила генерируемого фототока.
  2. Постоянная времени: Время отклика транзистора также влияет на эффективность фототранзистора по генерации фототока.
  3. Светочувствительность: Светочувствительность можно определить по соотношению между фотоэлектрическим током и падающим световым потоком.
  4. Площадь перехода коллектор-база: Площадь перехода коллектор-база имеет решающее значение для генерации фототока. Чем выше площадь перехода коллектор-база, тем выше будет величина фототока, создаваемого фототранзистором.
  5. Длина волны падающего света: Длина волны света, падающего на фототранзистор, определяет величину генерируемого фототока. Чем выше длина волны, тем ниже будет частота.

Выходные характеристики фототранзистора

Выходные характеристики фототранзистора можно понять с помощью схемы ниже. Он показывает изменение тока коллектора в зависимости от изменения напряжения эмиттер-коллектор.

Преимущества фототранзистора

  1. Более высокая эффективность по сравнению с фотодиодом: КПД фототранзистора выше, чем у фотодиода. Это связано с тем, что коэффициент усиления по току в случае фототранзистора больше, чем у фотодиода, таким образом, даже если количество света, падающего на оба, одинаково, фототранзистор будет генерировать больше фототока, чем фотодиод.
  2. Более быстрый отклик: Время отклика фототранзистора больше, чем у фотодиода, это дает преимущество использования фототранзистора в нашей схеме.
  3. Меньше шумовых помех: Основным недостатком фотодиодов, особенно лавинных фотодиодов, является то, что они не защищены от шумовых помех. Напротив, фототранзисторы невосприимчивы к шумовым помехам.
  4. Экономичность: Фототранзистор дешевле, чем другие светочувствительные устройства, поэтому использовать фототранзисторы в светочувствительных устройствах экономично.
  5. Менее сложный: Конструкция фототранзисторов проста и менее сложна по сравнению с LDR и фотодиодами.

Недостатки фототранзисторов

  1. Влияние электромагнитной энергии: Эффективность фототранзисторов снижается, когда электромагнитное поле вмешивается в рабочую зону. Это приводит к низкой эффективности преобразования фототранзисторов.
  2. Плохая работа на высокой частоте: Из-за большой площади области коллектор-база увеличивается емкость. Из-за этого он не может эффективно преобразовывать свет в фототок в более высоких частотных диапазонах.
  3. Электрические шипы: Чаще возникают в фототранзисторах, чем в фотодиодах.

Применение фототранзисторов

  1. Системы подсчета: Фототранзисторы обычно используются в системах подсчета. Поскольку это устройство работает с помощью падающего света, его очень легко использовать в вычислительной системе, так как нам не нужно беспокоиться об источнике питания.
  2. Обнаружение энкодера и обнаружение объекта: Фототранзисторы могут использоваться для обнаружения объекта или для кодирования.
  3. Принтеры и пульты оптического управления: Благодаря высокой эффективности преобразования света в ток он обычно используется в оптических устройствах, таких как пульты дистанционного управления, принтеры и т. Д.
  4. Детектор света: Самым важным применением фототранзистора является его использование в качестве детектора света. Это потому, что он может обнаруживать даже небольшое количество света, потому что он очень эффективен.
  5. Индикация уровня и реле: Фототранзисторы также используются для индикации уровня в различных системах.Они также играют жизненно важную роль в реле и перфокартах.

Фототранзисторы — важнейшее устройство оптоэлектроники, оно также используется в оптических волокнах. Из-за ряда преимуществ перед фотодиодами он более предпочтителен перед фотодиодами.

Фототранзистор | Hackaday

[Foone] несколько недель назад увидел твит, в котором утверждалось, что цифровые тесты на беременность являются подделкой. Обычные, дешевые тесты включают абсорбирующую полоску, проходящую по всей длине пластика, с одним концом, открытым для сбора мочи.Через несколько мучительных минут небольшое пластиковое окошко посередине покажет одну линию, две линии или знак плюс или минус в зависимости от присутствия человеческого хорионического гонадотропина (ХГЧ) в моче.

Как оказалось, по крайней мере два цифровых теста — это одно и то же, но с большим количеством шагов. Вместо окна они включают схему, которая интерпретирует строки и выводит результат на небольшой экран на простом английском языке. Он даже может сказать вам, что вы делаете что-то неправильно, мигая маленьким значком RTFM.

Разборка

[Foone] показывает монетную ячейку CR1616, 8-битный микроконтроллер и небольшую фототранзисторную установку, которая светит светодиодами на полосе и считывает входящий свет. К сожалению, micro — это версия ПЗУ с маской, поэтому [Foone] не может перепрограммировать ее для запуска Doom.

Автор оригинального твита, вероятно, не единственный, кто считает, что цифровые тесты должны быть более точными. Мы думаем, что утверждение о точности больше связано с удалением из уравнения измученной и / или некомпетентной человеческой переменной.Если тест интерпретирует результаты за вас, то нет никакой ошибки в результатах, что технически является более высокой степенью точности. Но если вы сомневаетесь, сделайте анализ у врача.

Был некоторая дискуссия о том, что все эти тесты связаны с электронными отходами — стыдно производить микроконтроллер только для того, чтобы пописать на него и выбросить. Конечно, вы можете взглянуть на это с другой стороны, но в отличие от многих электронных отходов, это инструменты. К сожалению, это представление отрасли о более высокой точности, но чего нам ожидать? Это просто проверка на наличие гормона в моче.Интерпретация результатов зависит от зрителя. Мы, вероятно, должны быть удивлены, что они снизили стоимость до двух за 7 долларов.

Многие люди предпочитают немного подождать, чтобы начать распространение новостей. С помощью теста на беременность с поддержкой Bluetooth каждый может узнать это вместе.

Спасибо за подсказку, [Джей]!

Графеновый «фототранзистор», перспективный для оптических технологий

Графеновый полевой транзистор, или GFET, разработанный в Университете Пердью, может предоставить высокопроизводительные фотодетекторы для различных потенциальных приложений.Предоставлено: изображение Университета Пердью / Эрин Истерлинг.

Исследователи решили проблему, препятствующую разработке высокочувствительных оптических устройств, изготовленных из материала, называемого графеном, — прогресс, который может принести приложения от обработки изображений и дисплеев к датчикам и высокоскоростной связи.

Графен представляет собой чрезвычайно тонкий слой углерода, который является многообещающим для оптоэлектроники, и исследователи пытаются разработать фотодетекторы на основе графена, устройства, которые имеют решающее значение для многих технологий.Однако типичные фотодетекторы из графена имеют лишь небольшую область, чувствительную к свету, что ограничивает их производительность.

Теперь исследователи решили проблему, объединив графен со сравнительно более крупной подложкой из карбида кремния, создав графеновые полевые транзисторы или GFET, которые могут активироваться светом, — сказал Йонг Чен, профессор физики и астрономии Университета Пердью. электротехника и компьютерная инженерия, а также директор квантового центра Purdue.

Высокопроизводительные фотодетекторы могут быть полезны для приложений, включая высокоскоростную связь и сверхчувствительные камеры для астрофизики, а также для сенсорных приложений и носимой электроники. Массивы транзисторов на основе графена могут обеспечить отображение и отображение изображений с высоким разрешением.

«В большинстве камер вам нужно много пикселей, — сказал Игорь Йованович, профессор ядерной инженерии и радиологических наук в Мичиганском университете. «Однако наш подход может сделать возможной очень чувствительную камеру с относительно небольшим количеством пикселей, но все же с высоким разрешением.«

Новые открытия подробно описаны в исследовательской статье, опубликованной на этой неделе в журнале Nature Nanotechnology . Работа была выполнена исследователями Purdue, Мичиганского университета и Университета штата Пенсильвания.

«В типичных фотодетекторах на основе графена, продемонстрированных до сих пор, фотоотклик исходит только из определенных мест рядом с графеном на площади, намного меньшей, чем размер устройства», — сказал Йованович. «Однако для многих приложений оптоэлектронных устройств желательно получить фотоотклик и позиционную чувствительность на гораздо большей площади. «

Новые данные показывают, что устройство реагирует на свет, даже когда карбид кремния освещается на расстоянии от графена. Производительность может быть увеличена до 10 раз в зависимости от того, какая часть материала освещается. Новый фототранзистор также «чувствителен к положению», что означает, что он может определять место, откуда исходит свет, что важно для приложений обработки изображений и для детекторов.

«Это первый раз, когда кто-либо продемонстрировал использование небольшого кусочка графена на большой пластине из карбида кремния для достижения нелокального фотодетектирования, так что свет не должен попадать на сам графен», — сказал Чен.«Здесь свет может падать на гораздо большую площадь, почти миллиметр, чего раньше не делали».

Между обратной стороной карбида кремния и графеном прикладывается напряжение, создавая электрическое поле в карбиде кремния. Входящий свет создает «фотоносители» в карбиде кремния.

«Полупроводник обеспечивает среду, которая взаимодействует со светом», — сказал Йованович. «Когда входит свет, часть устройства становится проводящей, и это изменяет электрическое поле, действующее на графен.«

Это изменение электрического поля также изменяет проводимость самого графена, что обнаруживается. Такой подход получил название фото-детектирования с полевым эффектом.

Карбид кремния «нелегированный», в отличие от обычных полупроводников в кремниевых транзисторах. Отсутствие легирования делает материал изолятором, если он не подвергается воздействию света, который временно заставляет его стать частично проводящим, изменяя электрическое поле на графене.

«Это новинка в этой работе», — сказал Чен.

Исследование связано с разработкой новых датчиков на основе графена, предназначенных для обнаружения радиации, и финансировалось совместным грантом Национального научного фонда и Министерства внутренней безопасности США, а также другим грантом Агентства по уменьшению угрозы обороны.

«Эта статья посвящена датчику для обнаружения фотонов, но принципы такие же и для других типов излучения», — сказал Чен. «Мы используем чувствительный графеновый транзистор для обнаружения измененного электрического поля, вызванного фотонами, в данном случае светом, взаимодействующими с подложкой из карбида кремния.«

Детекторы света могут использоваться в устройствах, называемых сцинтилляторами, которые используются для обнаружения излучения. Ионизирующее излучение создает короткие вспышки света, которые в сцинтилляторах обнаруживаются устройствами, называемыми фотоумножителями, технологиями примерно столетней давности.

«Таким образом, существует большой интерес к разработке передовых устройств на основе полупроводников, которые могут выполнять ту же функцию», — сказал Йованович.

Автор статьи — бывший научный сотрудник Purdue Биддут К.Саркер; бывший аспирант штата Пенсильвания Эдвард Казалас; Аспирант Purdue Тинг-Фунг Чунг; бывший аспирант Purdue Исаак Чилдрес; Йованович; и Чен.

Исследователи также объяснили свои выводы с помощью вычислительной модели. Транзисторы были изготовлены в Центре нанотехнологий Бирка в парке открытий Пердью.

Будущие исследования будут включать в себя работу по изучению таких приложений, как сцинтилляторы, технологии построения изображений для астрофизики и датчики для излучения высоких энергий.


Исследователи разгладили морщины графена
Предоставлено Университет Пердью

Ссылка : Графеновый «фототранзистор», перспективный для оптических технологий (2017, 12 апреля) получено 21 декабря 2020 с https: // физ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *