Импульсные блоки питания своими руками – -3

Содержание

Импульсные источники питания | Электрознайка. Домашний Электромастер.

Здравствуйте уважаемые коллеги!!

     Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь  расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».

     Для ИБП по схеме двухтактного полумостового генератора,  напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой.
Смотреть схему ИБП здесь.

     Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания  для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора.   

Магнитопровод с зазором используется только в однотактных  ИБП.

     Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки.  Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример. 

        Первый пример.
Выберем из таблицы ферритовых сердечников №17,  Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.
Окно Sо = 150 мм.кв. Расчетная  мощность 200 ватт.
Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.

     Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25.  Примем 182 витка.
     При выборе толщины провода для обмоток, я исходил из таблицы «Диаметр провода — ток».
В своем трансформаторе я применил, в первичной обмотке, провод  диаметром 0,43 мм. (провод   большим диаметром  не  умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв.  Допустимый ток  (смотреть в таблице) I = 0,29 A.
Мощность первичной обмотки будет: Р = V x I = 145 х 0,29 = 42 ватта.
     Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт.    Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков.  Диаметр провода 0,3 — 0,4 мм.
Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения.       Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 (смотреть по схеме).
     Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора:  I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;
     Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм.  Его площадь сечения  S = 0,28 мм.кв.
Допустимый ток каждой из двух полуобмоток  I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А.
Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.
     Возьмем по 38 витков в каждой полуобмотке.
Мощность на выходе трансформатора:  Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.

     Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.  

     Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.

                Второй пример.
    Теперь поэкспериментируем. Сложим два одинаковых сердечника №17,  Ш 7,5 х 7,5 . 

     При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.
Площадь окна останется та же «Sо» = 150 мм.кв.     Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.
Отсюда, количество витков в первичной обмотке трансформатора будет:
w1 = n х 145 = 0,63 х 145 = 91,35.    Примем 92 витка.

     В обмотке обратной связи w3, для  6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.
     Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт.
Количество витков вторичных полуобмоток, каждая по 30 вольт:     w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19  витков.
Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв.,  ток 0,56 А.
     С этим проводом мощность первичной обмотки будет:    Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.

Вторичную обмотку я мотал проводом диаметром 0,9 мм. Сечением  0,636 мм.кв. на ток 1,36 ампера.  Для двух полуобмоток  ток во вторичной  обмотке равен 2,72 ампера.
Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт.
Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.

     Провод  для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.
     Общий вывод из этих расчетов таков:
- при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк»  в два раза при той же площади окна «Sо».
     - число витков в обмотках (в сравнении с первым вариантом) изменяется.
     - первичная обмотка w1   с 182 витков уменьшается до 92 витка;
     - вторичная обмотка w2  с 38 витков уменьшается до 19 витков.

     Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.

     Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.

     Нужно иметь в виду, что трансформаторы,  по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт.  ИБП вполне хорошо и стабильно держат напряжение.

     Сравните внешний вид трансформаторов: пример-1, c одним сердечником  и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.

Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.
     Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему ИБП смотрите здесь.
Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:

     - емкости сетевого электролитического конденсатора С1,
     - емкостей С4 и С5,
     - падения мощности в проводах обмоток и в самом ферритовом сердечнике;
     - падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.
Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.
Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где  k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.

Порядок сборки ферритового  Ш — трансформатора.

            Используется готовый или собирается — изготавливается новый каркас под размеры сердечника.
Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.
     Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную.
      На каркас сначала  мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д.  На начало и конец провода надевается  тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился.

      Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи  w3. Обмотка  w3 имеет  мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки.  Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания.
     Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет.  Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора.
     Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается.  Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой.
     Собранный ферритовый трансформатор, для крепости,  стягивается по торцу скотчем. Нужно проследить, чтобы  торцы половинок сердечника совпали без зазора и сдвига.

domasniyelektromaster.ru

Ремонт импульсных блоков питания своими руками

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем

разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания



Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения

, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания



Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

  1. Несмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

  • Если нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
  • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

  • Если полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
  • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
  • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

instrument.guru

Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.

Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.

На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры - структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)
Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.

Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Константин (riswel)

Россия, г. Калининград

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

datagor.ru

Блок питания своими руками.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт - повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;

  • Максимальный ток нагрузки (Imax) – 0,5 A;

  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;

  • Защита от перегрузки по току;

  • Защита от появления на выходе повышенного напряжения;

  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор.

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов.

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Детали и электронные компоненты.

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.


Силовые трансформаторы ТС-10-3М1 и ТП114-163М

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.


Самовосстанавливающийся предохранитель FRX050-90F

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Микросхема DA1   MC34063
Диодный мост VDS1 (VD1-VD4) 1-2 ампер, 600 вольт D3SBA10, RS207, DB107 и аналоги

Электролитические конденсаторы

C8, C9, C12 330 мкФ * 16 вольт К50-35 или аналоги
C3 2200 мкФ * 35 вольт
Конденсаторы C1, C2, C4, C5, C10, C11, C13 0,22 мкФ КМ-5, К10-17 и аналогичные
C6 0,1 мкФ
C7 470 пФ
Резисторы R1 0,2 Ом (1 Вт) МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3 560 Ом (0,125 Вт)
R4 3,6 кОм (0,125 Вт)
R5 8,2 кОм (0,125 Вт)
Резистор переменный R2 1,5 кОм СП3-9, СП4-1, ППБ-1А и аналогичные
Диод Шоттки VD2   1N5819
Стабилитрон VD3 11 вольт 1N5348
Дроссель L1, L2 300 мкГн  
Дроссель L3   самодельный
Предохранитель плавкий FU2 0,16 ампер  
Самовосстанавливающийся предохранитель FU1 0,5 ампер (на напряжение >30-40 вольт) MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторный HL1 любой 3 вольтовый  

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. - внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD - дроссель).


SMD-дроссель

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.


Дроссель с радиальными выводами

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 - 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения.

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы.

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

В общем, выбрать есть из чего.

Налаживание и проверка блока питания.

Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» - взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.

Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!

P.S.

Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.

Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Простой импульсный блок питания своими руками

Простой импульсный блок питания своими руками

Всем привет! Как то захотел я собрать усилитель на TDA7294. И друг продал за копейки корпус. Такой черный, красивый, а в нем когда то жил спутниковый ресивер 95-х годов. И как на зло ТС-180 не помещался, не хватило по высоте буквально 5 мм. Начал смотреть в сторону тороидального трансформатора. Но увидел цену, и как то сразу перехотелось. И тут же в глаз пал компьютерный БП, думал перемотать, но снова же куча регулировок, защит по току, брррр. Начал гуглить схемы импульсных блоков питания, большая плата, куча деталей, лень вообще что то делать стало. Но случайно на форуме нашел тему о переделке электронных трансформаторах Ташибра. Почитал так, вроде ничего сложного.

 

 

На следующий день поехал хоз-маг и купил пару подопытных. Один такой стоит 40 грн.

Тот что сверху  BUKO.
Снизу копия Ташибры, только имя сменилось.
Между собой они немного различаются. У ташибры например 5 витков у вторичной обмотке, а у BUKO 8 витков. У последнего еще немного плата побольше, с дырками под установку доп. деталей.
Но доработка обоих блоков идентична!
Во время доработок нужно быть предельно осторожным, т.к. на транзисторах присутствует сетевое напряжение.
И если вы случайно закоротите выход, и транзисторы сделают новогодний салют я не виноват, все вы делаете на свой страх и риск!


Рассмотрим схему:

Все блоки от 50 до 150 ватт идентичны, отличаются только только мощностью деталей.
В чем состоит доработка?
1) Необходимо добавить электролит после сетевого диодного моста. Чем больше - тем лучше. Я поставил 100 мкф на 400 вольт.
2) Необходимо поменять обратную связь по току на связь по напряжению. Зачем? А затем что бп запускается только с нагрузкой, а без нагрузки он не запуститься.
3) Перемотать трансформатор (при необходимости).
4) Установить на выходе диодный мост (например КД213, импортные шоттки приветствуются) и конденсатор.

В синему кружку катушка обратной связи по току. Необходимо выпаять ее 1 конец, и на плате ее замкнуть. Сделали КЗ на плате? Значить идем дальше!
Потом берем кусок витой пары на силовой трансформатор мотаем 2 витка и на трансформатор связи мотаем 3 витка. На концы припаиваем к резистору 2.4-2.7 ом 5-10W. Подключаем лампочку на выход и ОБЯЗАТЕЛЬНО лампочку на 150 ватт в разрыв сетевого провода. Включаем - лампочка не засветилась, убираем ее, снова включаем и видим что лампочка на выходе светиться. А если не засветилась то нужно провод в трансформатор звязи завести с другой стороны. Посветила лампочка теперь выключаем. НО перед тем как что то делать обязательно разрядите сетевой конденсатор резистором на 470 ом!!
Я собирал БП для стерео УНЧ на TDA7294. Соответственно мне нужно перемотать его на напряжение 2Х30 вольт.
На трансформаторе 5 витков. 12V/5вит.=2,8 вит/вольт.
30V/2,8V=11витков. Тоесть нам надо намотать 2 катушки по 11 витков.
Выпаиваем трансформатор из платы, снимаем 2 витка из транса, и соответственно сматываем вторичную обмотку. Потом я намотал катушки обычным многожильным проводом. Сразу одну катушку, потом вторую. И соединяем начала обмоток или концы и получаем средний отвод.
То есть таким образом мы можем намотать катушку на необходимое напряжение!
Частота блока питания с ОС по напряжению 30 кгц.
Потом я собрал диодный мост из КД213, поставил электролиты и обязательно надо керамику!!!
Как соединять катушки, и какие возможные вариации можно посмотреть на схеме из соседней статьи.

Запомните - при замыканию выхода бп горит! Я сам спалил один раз. Сгорели, диоды, транзисторы и резисторы в базе! Заменил их и бп благополучно начал работать!Ну и теперь пару фотографий готового БП для УНЧ.

Красным обозначено место закорачивания ОС по току.Вот еще есть вариация для шуруповерта. Трансформатор тут я не перематывал. Просто его поднял вертикально, и сбоку прилепил диодный мост. Все это дело установил у коробку из аккумулятора. И сзади поставил кнопку для выключения.

Резистор припаян на плату в свободный пятачок. Желательно применять резисторы на 10W т.к. он греется во время работы!

Таким образом мы получаем отличный ИБП за копейки, который можно применить куда угодно!!!

radiostroi.ru

Экономичный двухполярный импульсный блок питания своими руками

Данный самодельный двухполярный импульсный блок питания можно применить для питания различных радиоэлектронных устройств, в частности 15 ваттного усилителя звука на TDA2030.

Технические параметры импульсного блока питания:

  • мощность —  180 Вт
  • напряжение на выходе — 2 x 25 вольт
  • ток  нагрузки — 3,5 А.

Описание работы импульсного блока питания

  В первую очередь происходит выпрямление переменного напряжения электросети диодным мостом VD1, пульсация которого сглаживается емкостями C1-C4. Для уменьшения тока заряда, протекающего через эти конденсаторы в момент включения импульсного блока  питания, в схему добавлено сопротивление R1.

Далее выпрямленное напряжение идет на полумостовой инвертор (преобразователь напряжения), собранный на транзисторах VT1-VT2. Нагрузкой данного преобразователя служит I обмотка трансформатора T1, он же также служит гальванической развязкой с электросетью. Емкости C3, С4 играют роль ВЧ фильтра. Частота преобразования происходит на частоте 27 кГц.

Напряжение, полученное с третьей обмотки трансформатора T1 идет на первичную обмотку T2, посредством данной обратной связи обеспечивается автоколебательный режим функционирования преобразователя. Для уменьшения напряжения на первичной обмотке добавлено сопротивление R4. Данным сопротивлением в какой-то мере определяется частота работы преобразователя.

Для выполнения стабильного пуска импульсного блока питания и его надежного функционирования собран модуль пуска — генератор на биполярном транзисторе VT3, который работает в лавинном режиме.

В момент подачи питания сквозь сопротивление R6 происходит заряд емкости С9. В случае если на нем напряжение поднимается до 50-70 В, транзистор VT3 мгновенно отпирается и данный конденсатор разряжается. Появившийся в результате разряда импульс тока отпирает VT2 и запускает преобразователь импульсного блока питания.

Каждый транзисторы VT1 и VT2 необходимо разместить на радиаторе с площадью 55 см. Тоже самое нужно проделать и с диодами VD2-VD5.

Параметры трансформаторов импульсного блока питания

Т1 : Два кольца марки М2000НМ, К31х18,5х7

  • I – 82 вит., ПЭВ-2 диаметр 0,5 мм.
  • II – 32 вит. с отводом посередине, ПЭВ-2 диаметр 1 мм.
  • III – 2 вит., ПЭВ-2 диаметр 0,3 мм.

Т2 : Кольцо марки М2000НМ, К10х6х5

  • I – 10 вит., ПЭВ-2 диаметр 0,3 мм.
  • II – 6 вит., ПЭВ-2 диаметр 0,3 мм.
  • III – 6 вит., ПЭВ-2 диаметр 0,3 мм.

Для стабильного запуска III обмотка Т1 должна быть намотана на месте, не занятом обмоткой II. Обмотки необходимо надежно изолировать друг от друга стеклотканью или любым другим подходящим изоляционным материалом. Диоды КД213А можно заменить на КД213Б. Транзисторы КТ812А возможно поменять на КТ809А, КТ704В, КТ812Б, КТ704А. Конденсаторы C1, C2 на напряжение не менее 160В.

Исправно построенный импульсный блок питания как правило в настройке не нуждается, но в определенных случаях возможно будет подобрать транзистор VT3. Для контроля его работоспособности на некоторое время отсоединяют контакт эмиттера и подключают его к минусовому контакту сетевого выпрямителя.

При исправном транзисторе при помощи осциллографа на емкости С9 можно наблюдать пилообразный электросигнал амплитудой около 20…50 В и частотой несколько герц. Если этого нет, транзистор следует заменить. Смотрите так же схему простого самодельного лабораторного блока питания.

www.joyta.ru

Импульсный блок питания - схема, устройство, принцип работы, фото, видео-инструкция как сделать импульсный блок питания своими руками

Импульсные блоки питания на 12В сегодня все чаще применяются в быту. С их помощью заряжаются различные виды аккумуляторных батарей, реализуются некоторые виды освещения, даже бесперебойное электрическое питания для компьютерных и других сетей. Конечно, самый простой способ обзавестись необходимым импульсным блоком питания – это купить его в магазине. К примеру, импульсный блок питания на tl494.

Внутреннее устройство импульсного блока питания на 12в

Но нас интересует возможность собрать этот прибор своими руками. Итак, импульсный блок питания – схема, детализация и рекомендации по его сборке.

Если рассматривать структурную схему, то состоит она из четырех элементов:

  • Сетевой выпрямитель.
  • Высокочастотный преобразователь.
  • Выпрямитель напряжения.
  • Система управления.

Структура блока питания показана на нижнем рисунке.

Структура блока питания

Итак, какие функции выполняет каждый из этих элементов. Сетевой выпрямитель преобразует переменный ток в постоянный. То есть, происходит сглаживание пульсации напряжения. Высокочастотный преобразователь, наоборот, преобразует постоянное напряжение в переменное. При этом форма импульсов становится, во-первых, прямоугольной, во-вторых, с необходимой амплитудой.

Выпрямитель напряжения частично сглаживает напряжение. Кстати, в некоторых блоках питания этот элемент отсутствует, электрический ток поступает сразу на сглаживающий фильтр, который своим выходом соединяется с нагрузкой. На схеме показано, что система управления связана и с высокочастотным преобразователем, и с выпрямителем напряжения. Все дело в том, что управление ВЧП происходит за счет обратной связи с выпрямителем.

Эта структурная схема простого импульсного блока питания на 12В, кстати, имеет большое количество критиков, которые уверяют, что коэффициент полезного ее действия достаточно мал. В принципе, так оно и есть, но если правильно подойти к подбору всех элементов, если правильно провести расчеты, то импульсные блоки питания этого типа будут обладать КПД не ниже 90%. А это уже кое-что, да и значит.

Схема миниатюрный блок питания

Принципиальные схемы

Итак, в основе сборки импульсного блока питания лежит не только принципиальная схема, а точнее, ее обоснованный выбор, но и выбор ее основных элементов. В принципе, в данном случае необходимо точно подобрать два элемента:

  • Высокочастотный преобразователь.
  • Выпрямитель напряжения.

О них и пойдет речь.

Высокочастотный преобразователь

По сути, это длинное название можно заменить коротким – инвертор. Он бывает одно- или двухтактным, в котором используется импульсный трансформатор. Вот несколько схем этого элемента:

Схема высокочастотного преобразователя

Самая простая схема, в которой установлен только трансформатор, однотактная (первая позиция). Именно простота создает некоторые недостатки:

  • Необходима установка трансформатора большого размера, потому что этот прибор действует по частной петле гистерезиса.
  • Чтобы мощность тока на выходе была большой, надо увеличить его импульсную амплитуду.

Поэтому данная схема чаще всего применяется в блоках питания для маломощных приборов, где влияние этих недостатков не будет сказываться на работе самого прибора.

Вторая позиция – это схема двухтактная, которая носит название пушпульная. Здесь нет недостатков однотактной, но и у нее есть свои минусы: повышенные требования к максимальному значению напряжения ключей и более сложная конструкция самого трансформатора.

Схема блока питания компьютера

Третья позиция – двухтактная полумостовая. По сути, это предыдущая модель только с упрощенным трансформатором. Именно этот критерий стал основой импульсных источников питания, которые используются для электрических приборов мощностью не больше 3 кВт.

Четвертая позиция – мостовой импульсный блок питания. В нем увеличено количество силовых ключей в два раза, что дает возможность увеличить мощность. А этой выгодно и с технической точки зрения, и с экономической.

Выбор трансформатора

Импульсный блок питания, а точнее сказать, его мощность, будет зависеть от выбранного вида трансформаторного сердечника. Для источников питания до 1 кВт устанавливается трансформатор с ферритовым сердечником.

Внимание! Необходимо помнить, что в трансформаторах с ферритовым сердечником происходят большие потери напряжения, если его частота будет приближаться к 100 Гц.

Выпрямитель напряжения

Существует три основные схемы выпрямления напряжения номиналом 220 вольт.

  • Однополупериодная.
  • Двухполупериодная.
  • Нулевая или, как и предыдущая, только со средней точкой.

Первая схема самая простая, в которой используется минимальное количество полупроводниковых элементов. Единственный ее минус – это высокая пульсация напряжения на выходе. Хотя можно было бы добавить и небольшой коэффициент выпрямления (0,45), поэтому, используя эту схему, придется устанавливать мощный фильтр.

Нулевая является обладателем высокого коэффициента выпрямления – 0,9. Правда, при этом необходимо увеличить число диодов выпрямления практически в два раза. Недостаток – наличие сетевого трансформатора. То есть, его габаритные размеры мало связаны с понятием малогабаритных приборов, тем более, когда это касается импульсного блока питания.

Третья позиция – это одно и то же, что и вторая, только без трансформатора. Его заменяет емкостной фильтр, который имеет свой недостаток – это высокий импульс выходного тока. Правда, данный недостаток не критичен.

Принцип работы импульсного блока питания

Заключение по теме

Как видите, принципиальная схема для импульсных блоков питания имеет несколько разновидностей. Но чтобы каждая из них работала корректно, необходимо правильно подобрать ее составляющие. Конечно, все это не так просто как может показаться на первый взгляд, но если принять во внимание наши рекомендации, то можно самостоятельно собрать небольшой мощности блок, к примеру, для освещения помещений LED-лампами.

onlineelektrik.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о