Почему литий-ионные аккумуляторы могут возгораться. Как предотвратить возгорание литий-ионных батарей. Какие меры безопасности необходимо соблюдать при использовании литий-ионных аккумуляторов. Как правильно эксплуатировать литий-ионные батареи, чтобы избежать их возгорания.
Особенности и преимущества литий-ионных аккумуляторов
Литий-ионные аккумуляторы получили широкое распространение благодаря ряду важных преимуществ:
- Высокая удельная энергоемкость — до 150 Вт·ч/кг
- Низкий саморазряд — 5-10% в месяц
- Отсутствие эффекта памяти
- Широкий диапазон рабочих температур
- Большое количество циклов заряда-разряда — до 1000 и более
Эти характеристики сделали литий-ионные батареи оптимальным выбором для портативной электроники, электротранспорта и систем накопления энергии. Однако у этой технологии есть и обратная сторона — риск возгорания при нарушении правил эксплуатации.
Основные причины возгорания литий-ионных аккумуляторов
1. Перегрев аккумулятора
Перегрев является одной из наиболее распространенных причин возгорания литий-ионных батарей. При повышении температуры выше 60-70°C внутри аккумулятора начинаются необратимые процессы:

- Разложение электролита с выделением горючих газов
- Нарушение целостности сепаратора между электродами
- Короткое замыкание между анодом и катодом
Это приводит к дальнейшему росту температуры и в итоге может вызвать воспламенение и взрыв аккумулятора. Перегрев может быть вызван как внешними факторами (высокая температура окружающей среды), так и внутренними (большие токи заряда/разряда, внутреннее короткое замыкание).
2. Механические повреждения
Нарушение целостности корпуса аккумулятора в результате ударов, проколов или сдавливания может привести к внутреннему короткому замыканию и последующему возгоранию. Особенно опасны повреждения литий-полимерных аккумуляторов с мягким корпусом.
3. Перезаряд аккумулятора
Превышение максимально допустимого напряжения заряда (обычно 4.2-4.35 В на ячейку) приводит к следующим негативным последствиям:- Разложение электролита с выделением газов
- Осаждение металлического лития на аноде
- Увеличение внутреннего сопротивления
- Нагрев аккумулятора
В совокупности эти факторы создают условия для теплового разгона и возгорания батареи. Поэтому крайне важно использовать зарядные устройства с защитой от перезаряда.

4. Глубокий разряд
Разряд литий-ионного аккумулятора ниже минимально допустимого напряжения (обычно 2.5-3.0 В на ячейку) может привести к необратимым изменениям:
- Разложение электролита
- Коррозия токосъемников
- Осаждение меди на аноде
При последующем заряде такой аккумулятор может нагреваться и воспламеняться. Для предотвращения глубокого разряда необходимо использовать устройства с защитой от переразряда.
5. Использование некачественных компонентов
Применение в производстве аккумуляторов низкокачественных материалов и нарушение технологии изготовления повышают риск внутренних коротких замыканий и других дефектов. Это может привести к возгоранию даже при соблюдении всех правил эксплуатации.
Как предотвратить возгорание литий-ионных аккумуляторов
Для обеспечения безопасной эксплуатации литий-ионных батарей необходимо соблюдать следующие меры:
- Использовать только качественные аккумуляторы от проверенных производителей
- Не допускать механических повреждений корпуса батареи
- Избегать воздействия высоких температур (выше 60°C)
- Применять зарядные устройства с защитой от перезаряда
- Не допускать глубокого разряда аккумулятора
- Использовать батарейные системы с электронной защитой (BMS)
Соблюдение этих простых правил позволит значительно снизить риск возгорания литий-ионных аккумуляторов и обеспечить их безопасную эксплуатацию.

Перспективы повышения безопасности литий-ионных батарей
Ученые и инженеры продолжают работу над повышением безопасности литий-ионных аккумуляторов. Основные направления исследований включают:
- Разработку новых электролитов с пониженной горючестью
- Создание сепараторов с функцией самозатухания
- Применение огнестойких добавок в электролит
- Использование твердых электролитов
- Совершенствование систем управления батареями (BMS)
Внедрение этих технологий позволит сделать литий-ионные аккумуляторы еще более безопасными и надежными, что особенно важно для их применения в электротранспорте и стационарных системах накопления энергии.
Графеновый аккумулятор — особенности эксплуатации магний-графеновых АКБ
Алмаз, графит, древесный уголь – это все углерод в различных трехмерных кристаллических решетках. Но нас интересует новый вид кристаллов, двухмерный, плоский. Он назван графеном и имеет выдающиеся свойства. Расщепить кристаллы на молекулярном уровне удалось совсем недавно, в 2004 году. Огромный поверхностный заряд материала обусловлен плоской структурой. Для использования в электротехнике важны и другие свойства – отличная тепло- электропроводность, увеличение допустимой мощности микроэлектронных схем. При толщине поверхности 91*10 -12м или 91 пикометра, на ней удерживается вес в 4 кг. Для аккумулятора важно, что тонкий слой графена принимает заряд мгновенно, и аккумулятор емкостью 55 А/ч заряжается за 8 минут.
Содержание
- 1 Устройство графенового аккумулятора
- 2 Графеновый аккумулятор для электромобиля
- 3 Графеновый аккумулятор для квадрокоптера
- 4 Графеновый аккумулятор своими руками
- 5 Видео
Устройство графенового аккумулятора
Расщепленный кристалл стремится снова стать объемным. Ученым удается сдерживать двухмерную структуру и заставить работать в виде гальванического элемента. Стабильность зависит от подобранной электронной пары. Устройством аккумулятор напоминает литий-ионные, но вместо графитового слоя внедрен графеновый.
Ученые прогнозируют, будущее за графеновыми аккумуляторами. Их плюсы неоспоримы, а минусы минимальны. Но создать устойчивые компоненты, закрепить двухмерность углерода не просто.
Зарубежные научные корпорации пошли по пути создания графеновых накопителей энергии с электролитом в виде LiCoO2. Идут разработки, уже имеется опытное производство аккумуляторов с 2015 года. Первой стала испанская компания Graphenano. На зарядку графенового аккумулятора требуется всего 8 минут. При этом заявлено, что емкость литий-графеновых аккумуляторов в 10 раз больше, чем литий-ионных.
Российские исследователи заменили анод оксидом магния. Композиция дешевле, меньше нагревается аккумулятор и уменьшается опасность возгорания. Ученые прогнозируют емкость новых, магниево-графеновых аккумуляторов, больше литиевых в 2,5 раза.
Не остались в стороне разработчики в области IT-технологий. Графеновые аккумуляторы входят в производство. Уже в 2018 году эксперты из компании Elecjet выпустят портативный заряжающий аккумулятор USB-C на графеновой основе. Зарядить телефоны iPhone 5,6,7 можно будет за 5-10 минут.
В январе 2018 года компания Samsung обещала поставить в торговые сети новый смартфон Galaxy S9 с настоящей графеновой батареей. При емкости в 3000мА/ч заряжаться телефон будет 15 минут. Компания получила патент на графеновый аккумулятор для смартфонов и будет единственным мировым поставщиком.
Графеновый аккумулятор для электромобиля
Разработки аккумуляторов для автомобилей с графеном перспективны. Новости о производстве скупы. Компании всего мира стремятся создать собственные разработки. Поэтому информация о графеновых аккумуляторах засекречена.
В основном разработки ученых направлены на создание крупных аккумуляторов для транспорта. Автомобильный пробег на одной зарядке модели Tesla Mobil S составляет 800-1000 км, скорость зарядки 10-12 минут. Транспорт экологически чистый. С развитием производства графеновых аккумуляторов неизбежно строительство сети зарядных станций.
Производство графеновых аккумуляторов перспективно. Именно такого емкого и быстро заряжающегося источника энергии не хватает для развития электромобилей. Важно и то, что весит новый аккумулятор в 2 раза меньше литий-ионных батарей. Его механические свойства идеально вписываются в условия эксплуатации машин. Графен в 200 раз прочнее стали, эластичный. Первые опытные образцы уже проходят испытания.
В России лидером в разработке магний графеновых аккумуляторов является предприятие «Конгран» (конденсатор графеновый Академии наук), резидент центра Сколково. Ведутся работы по подбору и созданию устойчивой композиции двухмерного графена, стремящегося к объемной структуре.
Графеновый аккумулятор для квадрокоптера
Любой летательный аппарат эффективности полета и его дальности обязан бортовой АКБ. При выборе источника энергии важны емкость, токоотдача, вес и габариты. До появления графеновых аккумуляторов непревзойденными качествами обладали литий-полимерные. Но они склонны к возгоранию при перезаряде и нагревании. Этих недостатков лишены магний графеновые аккумуляторы. Купить некоторые из образцов уже возможно.
Лучшим считается аккумулятор в жестком корпусе Turnigy Graphene 5000 mAh 2S2P. Новая батарея поддерживает высокую выходную мощность, под нагрузкой остается холодной. При этом батарея обеспечивает разряд 90С постоянно и 130С кратковременно. Вес конструкции с проводами и разъемами 291 грамм. Заряжается быстро с потреблением тока до 15 С, от LiPo зарядки.
Есть и другие аккумуляторы, разработанные на основе графеновых составляющих от разработчика Graphene. К ним относится:
- модель FlyMod от компании ONBO Power;
- Dinogy Ultra Graphene 02 4S 80C – вторая доработанная модель;
- Thunder Power Adrenaline – лучшие модели для продолжительных полетов.
Графеновый аккумулятор своими руками
Уже понятно, создать двухмерную структуру графена и закрепить его свойства – задача не из простых. Ученые всего мира работают над проблемой. Сделать в кустарных условиях графеновый аккумулятор невозможно.
Но усвоив, что слой углерода должен быть микроскопически тонким, мастера получают такой разными способами. Они истирют графит в тонкодисперсный порошок, производят химическую обработку, наносят его на подложку из алюминия. Предлагаем ознакомиться с одним из способов получения нужного состава.
Потребентся металлический сосуд с герметичной закрывающейся крышкой, с мешалкой. Миксер работает от асинхронного двигателя без перерыва 2 суток. В емкости смешивается в пену графитовый порошок с жидкостью Ферри. В полученной пене во взвешенном состоянии находятся микроскопические частицы графита. Высушить пену, собрать пыль, растворить ее в лаке для обработки алюминия – вот и готов «графен». Теперь состав нужно нанести на подложку из алюминия и строить магний-графеновый аккумулятор своими руками.
Есть способы сбора угольной пыли на липкую ленту, выжигание лучом лазера с получением чешуйчатого материала, растворение графита в смеси азотной и серной кислот. Высохший осадок выжигают в установке, получая легкие хлопья. Считают этот вид сажи графеном и работают с ним.
Видео
Предлагаем посмотреть видео и оценить один из способов получения гибкого графенового аккумулятора своими руками.
https://youtu.be/adMcRudVS-w
Графеновый аккумулятор
Графеновый аккумулятор и его применение
Стремительное развитие электромобилей заставило ученых и инженеров заняться разработкой и созданием новейших АКБ. Последним достижением является графеновый аккумулятор, превосходящий своими характеристиками литиевые батареи.
Содержание
- 1 Что это за новый материал графен
- 2 Как устроен графитовый аккумулятор
- 3 Как движется разработка современных графеновых аккумуляторов
- 4 Перспективы графена
- 5 Заключение
- 6 Видео на тему графеновых аккумуляторов
Что это за новый материал графен
Кристалл углеводорода, атомы которого располагаются в единой плоскости, получил название «графен». Толщина такого тонкого листа углерода, не имеющего цвета, не превышает один атом. Этот материал отличается повышенной прочностью и высокой энергоемкостью.
Российский ученый А.Гейм, совместно с К. Новоселовым, смогли искусственным путем получить графен на подложке оксида кремния. Этот материал представляет собой углеродную пленку, толщина которой в 1000 000 раз тоньше, чем обыкновенный лист бумаги.
Сегодня во многих странах, исследователи, занимаются созданием технологического процесса по изготовлению этого передового материала. Начало его изготовления станет первым революционным шагом в современной электронике. Появится возможность на его основе создать новые типы устройств:
- Полупроводниковые приборы.
- Мониторы.
- Графеновые аккумуляторы.
Как устроен графитовый аккумулятор
Принцип работы графеновых аккумуляторов ничем не отличается от классических свинцовых аккумуляторов. В них также протекают электрохимические процессы. Конечно, реакция, проходящая внутри батареи, отличается от процесса, в основе которого лежит кислотный электролит.
Устройство такого аккумулятора напоминает литиевые полимерные аккумуляторы. Сегодня для изготовления графен полимерных аккумуляторов, разработан ряд технологических процессов.
В одном в качестве катода используются чередующиеся пластины графена, совместно с кремнием. Роль анода играет кобальтат лития. Другая технология основана на замене кобальтата лития на дешевый оксид магния. Стоимость графенового АКБ с магнием намного дешевле, чем аналогичная стоимость аккумулятора с литием. Создать такой аккумулятор своими руками невозможно. Слишком сложная технология изготовления, не рассчитанная на бытовые условия. К преимуществам таких АКБ относятся:
- Малый вес.
- Компактные размеры.
- Высокая проводимость.
- Длительный срок эксплуатации.
- Повышенная износостойкость.
- Отвечает требованиям экологии.
- Емкость — 1кВт/ч.
- Возможность настройки нужных параметров.
- Невысокая стоимость графена.
- Трехмерные кристаллы углерода постоянно встречаются в природе.
К сожалению, кроме большого числа положительных качеств, этот материал отличается рядом серьезных недостатков. Исследования показали, что графеновые батареи обладают плотностью, которая не годится для аккумуляторов мобильных гаджетов. Изделие получается слишком большим. Сегодня ученые пытаются создать прибор с меньшими размерами, но пока еще не удалось получить рабочий образец.
Магний графеновый аккумулятор заинтересовал передовые компании, выпускающие автомобили. Установленный на электромобиль, аппарат увеличил пробег машины до 1000 км. Причем для зарядки такой батареи потребуется около 10 минут. На АЗС нужно будет установить специальные зарядные станции.
Современные электромобили отличаются от легковых машин небольшим пробегом. Заряда батареи хватает на небольшой пробег. Графеновые батареи легко решают эту проблему, пробег увеличивается до 1000 км. Такие аккумуляторы сделают электромобили более популярными и востребованными.
Для изготовления графеновых батарей используется литий. В природе литий встречается не слишком часто, его запасы не способны удовлетворить мировое автомобилестроение. Сегодня инженеры разрабатывают приборы, в которых магний встанет на замену лития.
Посмотрите интересное видео про самодельный графеновый аккумулятор.
Как движется разработка современных графеновых аккумуляторов
Если говорить о промышленных масштабах, то разработкой этого материала занимается испанская фирма Graphenano. Ее инженерам удалось создать графеновую батарею, стоимость которой на 70% ниже, чем у других производителей. Тестирования нового аккумулятора показало увеличение пробега электромобиля до 1000 км. Его полная зарядка происходит в течение 7 минут. Вес такой батареи намного меньше массы литий-ионного аналога, имеющего похожие характеристики.
В 2015 году фирма Graphenano создала в Испании большое предприятие, занимающееся производством графеновых аккумуляторов. В открытии участвовали инженеры фирмы Grabat Energy, а также ученые Кордовского университета. Мощности завода позволяют выпускать 80 миллионов ячеек в год. Выпуск новых графен-полимерных аккумуляторов ожидался в начале 2017 года. Однако, изделия выпущенного на этом предприятии, пока еще никто не видел.
Руководство Graphenano утверждает, что новые графеновые батареи для электромобилей, будут пожаробезопасными, полностью защищенными от возникновения короткого замыкания. Специальный полимерный материал, который необходим для создания прибора, разработали немецкие ученые из института TUV, совместно с учеными из испанского университета Декра.
Немецкие концерны уже начали сегодня тестировать на собственных автомобилях продукцию Graphenano.
США также занимались созданием таких изделий. Основная работа касалась увеличения емкости батареи, достижения быстрой зарядки. Принцип действия таких АКБ аналогичен литиевым изделиям. Емкость батареи зависимости от числа ионов, находящихся в кристаллической решетке анода (катода).
Активность движения таких ионов оказывает серьезное влияние на быстроту зарядки. Для достижения большей ёмкости, ученые установили между слоями графена специальные кремниевые кластеры. Чтобы скорость заряда стала намного быстрее, в пластинах материала были сделаны отверстия, величиной 15–20 нанометров. Они способствовали ускорению движения ионов лития
Ученые австралийского университета Monash, при разработке графеновой батареи, стремились достичь стабильного состояния аккумулятора. Дело в том, что это материал постоянно стремится превратиться в обыкновенный графит. Если это происходит, уникальные характеристики полностью исчезают. Австралийским учёным удалось решить эту проблему. Они превратили графеновые пластины в водянистый гель. По их мнению, если аккумулятор будет состоять из такого геля, батарея будет заряжаться в течение нескольких секунд.
Ученые университета Monash, решили поместить этот материал в гелиевый раствор. В результате, пластины перестали слипаться, стало поддерживаться стабильное состояние вещества. Такие изменения позволили использовать материал и для создания других конструкций. Для получения гелия применялось два компонента:
- Вода.
- Углерод.
Производство гелиевого раствора не требует больших финансовых затрат. Аккумулятор на таком растворе отличается сильным электрическим зарядом, который на порядок превосходит аналогичные показатели литий-ионных АКБ. Такие передовые разработки обещают коммерческий успех, однако серийных образцов до сих пор нет.
В России разработка графеновых аккумуляторов связана с использованием магния, который должен заменить литий. Российские ученые считают приоритетным направлением применение графеновых изделий в автомобилестроении, ветряной или солнечной энергетике.
Разработкой новейших аккумуляторов для электромобилей в России, занимается компания «Конгран». Инженеры пытаются создать прибор, мощность которого будет намного превышать все имеющиеся, современные аналоги. Причем стоимость таких устройств будет гораздо дешевле.
Российские ученые предложили устанавливать катод, сделанный из гипероксидированного графена. Анод должен состоять полностью из чистого магния. Все аккумуляторы работают по одному принципу. В них происходит реакция окисления вещества и его дальнейшее восстановление.
Для проведения такой реакции полностью подходит магний. Он стоит намного меньше лития. Это вещество не имеет недостатков, характерных для лития. К примеру, на воздухе литий начинает мощную реакцию с водой, он очень сложен для утилизации. Магниевый анод придает такой батареи большую энергетическую емкость. Технологический процесс добычи магния аналогичен получению алюминия. Довольно часто магний находят в глине.
Перспективы графена
Массовая эксплуатация изделий из такого материала приведет к созданию новых отраслей промышленности, откроет огромные перспективы для научных разработок. Такие изделия можно будет использовать на производстве, а также для хозяйственных целей. Крупное производство такого энергоносителя, позволит создать:
- Производственные линии, изготавливающие этот новый материал.
- Новые электромобили.
- Специальные электрозаправки.
- Открытие электростанций.
- Компактные ЭВМ.
- Улучшить экологическую составляющую автотранспорта.
Заключение
Сегодня можно смело утверждать, что за графеновыми аккумуляторами стоит большое будущее. Это наиболее перспективное направление, которым занимаются крупные мировые державы. Очень скоро мир увидит серийные образцы таких АКБ. Характеристики этих новейших систем позволят электромобилям серьезно потеснить автомобили, оборудованные ДВС.
В мегаполисах улучшится экология, воздух станет чище, исчезнут вредные выхлопы, уменьшится использование углеводородов. Автомобилестроение получит новый толчок, ведь придется поменять всю технологию изготовления автотранспорта, станут намного эффективнее солнечные электростанции.
В ближайшем будущем, ученые смогут создать устройства, основой которого будет графен. Эти системы будут отличаться маленькими габаритами, огромным запасом энергии, для установки в гаджеты и мобильные телефоны.
Видео на тему графеновых аккумуляторов
Алюминиево-воздушная батарея: наука о химии и электричестве
Используйте алюминиевую фольгу, соленую воду и активированный уголь, чтобы сконструировать простую батарею, достаточно сильную, чтобы питать небольшой мотор или свет.
Объект:
Химия
Объединение материи
Физика
Электричество и магнетизм
Энергия
Ключевые слова:
Аккумулятор
Соль
Aluminum Foil
Аккумуляторная энергия
Aluminum foil
Аккумулятивная энергия
Aluminum Foil
Аккумулятор
0003
video
electron
NGSS and EP&Cs:
LS
LS1
PS
PS1
PS3
ETS
ETS1
CCCs
Cause and Effect
Системы и модели систем
Энергия и материя
Демонстрация видео
Инструменты и материалы
- Алюминиевая фольга
- Ножницы
- Активированный уголь (продается в магазинах для аквариумистов)
- Ложка
- Бумажные полотенца
- Соль
- Маленькая чашка
- Вода
- Два электрических провода с зажимами на концах
- Небольшое электрическое устройство (например, двигатель постоянного тока с батарейным питанием или праздничный свет)
- Изоляционная лента
Сборка
- Отрежьте кусок алюминиевой фольги размером примерно 6 х 6 дюймов (15 х 15 см).
- Приготовьте насыщенный соляной раствор: растворяйте соль в небольшой чашке с водой, пока немного соли не останется на дне чашки.
- Сложите бумажное полотенце вчетверо, смочите его раствором, затем положите полотенце на фольгу.
- Добавьте ложку активированного угля с горкой поверх бумажного полотенца, затем аккуратно раздавите уголь на мелкие кусочки тыльной стороной ложки. Налейте немного раствора соленой воды на древесный уголь, пока он полностью не станет влажным. Убедитесь, что уголь не касается фольги напрямую; у вас должно быть три отдельных слоя, как бутерброд. Это ваша алюминиево-воздушная камера.
- Подготовьте электрическое устройство к использованию. Если вы используете двигатель постоянного тока, прикрепите небольшой кусочек ленты к концу вала двигателя, чтобы он служил «флажком», чтобы вы могли легко видеть, когда двигатель движется. Если вы используете праздничный свет, зачистите концы проводов, чтобы можно было присоединить провода.
Действия и уведомления
Прикрепите один конец каждого электрического провода к каждой клемме электрического устройства. Прикрепите другой конец одного из проводов к алюминиевой фольге. Плотно прижмите последний зажим к куче древесного угля, а затем посмотрите, что произойдет.
Если кажется, что батарея не работает через несколько секунд, вам может потребоваться уменьшить ее внутреннее сопротивление. Попробуйте увеличить площадь контакта между клипсой и углем, сложив всю батарею поверх клипсы, как тако, и сильно надавив на нее. Удостоверьтесь, что клип остается погруженным в древесный уголь. Если вы используете двигатель, вы также можете попробовать запустить его, кратковременно повернув флажок.
Что происходит?
Батареи преобразуют химическую энергию в электрическую. У них есть два электрода, называемые катодом и анодом, где происходят химические реакции, которые либо используют, либо производят электроны.
Для выработки электроэнергии в этой батарее используется окисление алюминия на аноде, при котором высвобождаются электроны, и восстановление кислорода на катоде, при котором используются электроны. Движение электронов по внешней цепи генерирует электрический ток, который можно использовать для питания простых устройств. Схема батареи и уравнения для половинной и общей реакций приведены ниже:
Уравнения для половинной и полной реакций:
анод: Al(s) + 3OH − (водн.) → Al(OH) 3 (s) + 3e −
катод: O 2 (г) + 2H 2 O(ж) + 4e — → 4OH — (водн.)
всего: 4Al(т) + 3O 2 (г) + 6H
Алюминиевая фольга обеспечивает доступный запас алюминия. Активированный уголь, который в основном состоит из углерода, может проводить электричество и не вступает в реакцию. Он обеспечивает высокопористую поверхность, которая подвергается воздействию кислорода воздуха. Один грамм активированного угля может иметь большую внутреннюю поверхность, чем вся баскетбольная площадка! Эта поверхность обеспечивает большое количество мест, с которыми кислород может связываться и участвовать в катодной реакции.
Эта большая площадь реакции позволяет простой алюминиево-воздушной батарее генерировать 1 вольт (1 В) и 100 миллиампер (100 мА). Этой мощности достаточно для работы небольшого электрического устройства, а также безопасный и простой способ сделать мощную батарею дома или в школе.
Дальше
Первая современная электрическая батарея состояла из ряда гальванических элементов, называемых гальваническим столбом. Чтобы сделать гальваническую сваю, повторите шаги сборки 1–4, чтобы построить дополнительные алюминиево-воздушные ячейки. Сложите два или три алюминиево-воздушных элемента друг на друга, чтобы посмотреть, сможете ли вы сделать более мощную батарею. Прикрепите один провод к нижнему куску фольги, а другой поместите в верхнюю кучу угля. Плотно прижмите стопку, чтобы уменьшить внутреннее сопротивление батареи, но убедитесь, что кусочки фольги не касаются друг друга. Если фольга из одной ячейки соприкасается с фольгой из ячейки над ней, электроны будут миновать бумажное полотенце и активированный уголь и двигаться прямо во второй кусок фольги, который имеет меньшее сопротивление, чем слой угля. Это эффективно закорачивает нижнюю ячейку, которая больше не влияет на общую выходную мощность.
Вы можете качественно сравнить мощность, посмотрев на мощность электрического устройства, или количественно, проведя измерения на мультиметре. Используйте мультиметр для измерения напряжения и тока, генерируемого вашей батареей. Какие изменения в конструкции батареи приводят к увеличению напряжения или тока?
Рассчитайте выходную мощность вашей батареи, рассчитав произведение ее напряжения и тока. Попробуйте запитать другие устройства, требующие более высокого напряжения или тока, такие как цепочка светодиодов (убедитесь, что они подключены в правильной ориентации), пьезозуммер или более мощный свет.
Советы по обучению
Небольшие электрические устройства доступны в магазинах электроники. Убедитесь, что выбранное электрическое устройство производит заметные изменения при подключении к источнику питания с напряжением в один вольт.
Эта активность демонстрирует реакции окисления и восстановления — неотъемлемые части химии аккумуляторов. Использование атмосферного кислорода в качестве окислителя распространяется на другие окислительно-восстановительные реакции, происходящие при коррозии, метаболизме и горении. Кроме того, участие кислорода в качестве реагента в алюминиево-воздушной батарее может быть использовано для введения представлений о топливных элементах и альтернативных источниках энергии.
Ресурсы
Это упражнение основано на демонстрации учителей семинара Галилео в Японии.
Сопутствующие закуски
Ручной аккумулятор
Используйте свою кожу и различные металлы, чтобы создать аккумулятор.
Пенни Бэттери
Зажгите светодиод на пять центов.
Кондуктометр
Сделайте измеритель проводимости и пусть ваши электролиты сияют.
Эта работа находится под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Атрибуция: Учительский институт Exploratorium
5 основных причин возгорания литий-ионных аккумуляторов — ION Energy
Безопасность литий-ионных аккумуляторов
Важность безопасности аккумуляторов
Литий-ионные аккумуляторы были разработаны в 1970-х годах и впервые выпущены на рынок компанией Sony в 1991 для портативного видеомагнитофона компании. Сегодня все, что вы видите, питается от аккумуляторов, от смартфонов до электромобилей и даже Международной космической станции, что делает повышение безопасности аккумуляторов еще более важным.
В 2008 году Tesla представила Roadster, став первой автомобильной компанией, выпустившей на рынок электромобиль с батарейным питанием. Ожидается, что к 2025 году мировой рынок литий-ионных (Li-ion) аккумуляторов достигнет 100,4 млрд долларов США, более 50% которых будет использоваться для автомобильного рынка.
Почему такое увлечение литий-ионными?
Литий-ионные батареи популярны из-за того, какую мощность они могут выдавать при заданном размере и весе. Типичная литий-ионная батарея хранит 150 ватт-часов электроэнергии в 1 килограмме батареи по сравнению с NiMH аккумуляторной батареей (100 ватт-часов на кг) или свинцово-кислотной батареей (25 ватт-часов на кг). Для хранения в свинцово-кислотной батарее того же количества энергии, которое может выдержать 1-килограммовая литий-ионная батарея, требуется 6 кг.
Однако литий-ионные аккумуляторы чрезвычайно чувствительны к высоким температурам и легко воспламеняются. Эти аккумуляторные блоки изнашиваются намного быстрее, чем обычно, из-за нагревания. Если литий-ионный аккумулятор выйдет из строя, он воспламенится и может нанести значительный ущерб. Это требует немедленных мер и рекомендаций по безопасности аккумуляторов.
В последнее время было несколько случаев возгорания литий-ионных аккумуляторов. 8 января 2019 года в результате самовозгорания литий-ионной батареи на судне COSCO Pacific в Аравийском море вспыхнул пожар. В апреле прошлого года на объекте APS в Аризоне взорвалась батарея мощностью 2 МВт, ранив четырех пожарных.
Ханс-Отто Шервен, глава пожарной службы Вестфолда, сказал, что перезаряжаемые литиевые батареи могут вызывать «пожары, которые трудно потушить, а батареи излучают огонь, который быстро распространяется». По мере распространения электромобилей количество таких инцидентов будет увеличиваться.
Прежде чем анализировать, почему загораются литий-ионные аккумуляторы, давайте разберемся, как они работают.
Блок литий-ионных аккумуляторов состоит из литий-ионных элементов, объединенных в модули, датчиков температуры, ответвлений напряжения и бортового компьютера (система управления батареями) для управления отдельными элементами. Как и любой другой элемент, литий-ионный элемент имеет положительный электрод (катод), отрицательный электрод (анод) и химическое вещество, называемое электролитом между ними. В то время как анод обычно изготавливается из графита (углерода), для катода используются различные литиевые материалы – оксид лития-кобальта (LCO), литий-никель-марганец-кобальт (или NMC) и т. д.
Когда на элемент подается зарядный ток , ионы лития перемещаются от катода к аноду через электролит. Электроны также текут, но выбирают более длинный путь вне цепи. Во время разряда происходит противоположное движение, в результате чего электроны включают приложение, к которому подключена ячейка.
Когда все ионы переместятся обратно к катоду, элемент полностью разряжен и нуждается в зарядке.
Литий-ионные элементы разработаны с учетом следующих мер безопасности аккумуляторов:
A. Вентиляционные отверстия, чувствительные к давлению
чувствительное вентиляционное отверстие. Если существует риск того, что аккумулятор сильно нагреется и взорвется из-за избыточного давления (нарастание давления при 3000 кПа), это вентиляционное отверстие сбросит избыточное давление и предотвратит возгорание других элементов в аккумуляторном блоке.
B. Сепаратор служит предохранителем
В большинстве литий-ионных элементов используется сепаратор, изготовленный из материала, известного как полиолефин, который обладает хорошей химической стабильностью, отличными механическими свойствами и доступен по цене. Он служит предохранителем при нагреве элемента. При чрезмерном нагреве, когда температура ядра достигает 130°C (266°F), сепаратор плавится, что останавливает перенос ионов. Это действие немедленно отключает ячейку.
Если бы это положение не было обеспечено, существовала бы вероятность того, что тепло в неисправной ячейке приведет к порогу теплового разгона и выбросу пламени.
C. Положительный температурный коэффициент (PTC)
Этот переключатель предотвращает перегрев батареи, защищая ее от скачков тока.
Литий-ионные элементы, как и все химические элементы, подвержены саморазряду. Саморазряд означает, что батареи теряют накопленный заряд без подключения электродов или внешней цепи. Это происходит за счет химических реакций внутри клетки. Саморазряд клеток увеличивается с возрастом, цикличностью и повышенной температурой.
Повышенный саморазряд может привести к повышению температуры, что, если его не контролировать, может привести к термическому разгону , также известному как «выброс пламени». Небольшое короткое замыкание не приведет к термической полосе, поскольку энергия разряда очень мала и выделяется мало тепла.
Если, однако, из-за некоторого повреждения элемента в него проникнут примеси, может возникнуть сильное короткое замыкание, и между положительной и отрицательной пластинами будет протекать значительный ток. Происходит внезапное повышение температуры, и энергия, запасенная в батарее, высвобождается в течение миллисекунд. Аккумуляторы состоят из тысяч ячеек, упакованных вместе.
Во время теплового разгона тепло, выделяемое вышедшей из строя ячейкой, может перемещаться к следующей ячейке, что также приводит к ее термической нестабильности. Эта цепная реакция может привести к уничтожению всей стаи за несколько коротких секунд.
Теперь, когда мы знаем, почему литий-ионные батареи загораются, давайте рассмотрим, как это может произойти:
A. Производственные дефекты
Производственные дефекты могут вызвать просачивание металлических частиц (примесей). в литий-ионный элемент в процессе производства. Производители аккумуляторов должны обеспечить строго контролируемые чистые помещения для производства аккумуляторов.
Другим дефектом может быть утончение сепараторов, которое может оказаться вредным при фактическом использовании. Перед продажей клетки должны пройти строгий контроль качества и проверку.
B. Недостатки конструкции
Автомобильные компании хотят, чтобы их автомобили были гладкими и тонкими, обеспечивая при этом максимальный запас хода и производительность. Эти требования подталкивают производителей аккумуляторных батарей к разработке компактных конструкций, упаковывая элементы большой емкости в корпус меньшего размера, что портит хорошо сложенную в остальном батарею.
Нарушение конструкции может привести к повреждению электродов или сепаратора. Любой из них может привести к короткому замыканию. Кроме того, отсутствие надлежащей системы охлаждения или вентиляции может привести к повышению температуры батареи по мере нагрева горючего электролита.
Если не контролировать, это может привести к цепной реакции отказов элементов, что приведет к еще большему нагреву батареи и выходу ее из-под контроля.
C. Неправильное или неправильное использование
Внешние факторы, такие как хранение батареи в непосредственной близости от источника тепла или рядом с огнем, могут привести к ее взрыву. Преднамеренное или случайное проникновение внутрь аккумуляторной батареи может привести к короткому замыканию и возгоранию батареи. Поэтому самовольная разборка аккумуляторной батареи в электромобилях приводит к аннулированию гарантии.
Пользователям рекомендуется проверять и ремонтировать батареи только в авторизованных сервисных центрах автопроизводителя. Даже зарядка высоким напряжением или чрезмерная разрядка аккумулятора могут повредить его.
D. Проблемы с зарядным устройством
Использование зарядных устройств с плохой изоляцией может привести к повреждению аккумулятора. Если зарядное устройство закорачивает или выделяет тепло рядом с аккумулятором, оно может нанести достаточный ущерб, чтобы вызвать отказ.
Несмотря на то, что литий-ионные аккумуляторы имеют встроенную защиту от перезарядки, использование неофициальных зарядных устройств может привести к повреждению аккумулятора в долгосрочной перспективе.
E. Компоненты низкого качества
Помимо производственных дефектов, использование некачественных компонентов является одной из самых частых причин выхода из строя аккумуляторов. Растущая конкуренция снижает цены на аккумуляторы, заставляя производителей аккумуляторов экономить там, где они не должны. Экономя на низкокачественной электронике, такой как система управления батареями, увеличивается риск выхода из строя батареи.
Система управления батареями имеет решающее значение для безопасности и производительности батареи. Он защищает аккумулятор от работы за пределами его безопасной рабочей зоны. Поскольку батареи являются ценным компонентом электромобиля или системы хранения энергии, важно инвестировать в интеллектуальную систему управления батареями, которая может немедленно обнаруживать отказы элементов и предотвращать взрыв батареи.
Что делать, если загорелся аккумулятор?
Если вы заметили, что литий-ионный аккумулятор перегревается, попробуйте убрать устройство от легковоспламеняющихся материалов и отключить электропитание. Если вы находитесь в электромобиле, вам следует немедленно эвакуироваться и никогда не пытаться самостоятельно тушить возгорание литиевой батареи. Ваше здоровье и безопасность гораздо важнее, вместо этого позвоните в службу экстренной помощи.
В случае пожара необходимо использовать стандартные сухие химические огнетушители ABC или BC, поскольку они считаются классом пожара B. Распространенным заблуждением является то, что литий-ионные батареи содержат любой настоящий металлический литий. Они этого не делают, и поэтому вы не должны использовать огнетушитель класса D.
Также существуют новые и улучшенные методы тушения литиевого огня. Водная вермикулитовая дисперсия (AVD) представляет собой средство пожаротушения, которое распыляет химически расслоенный вермикулит в виде тумана. Тем не менее, более крупные литий-ионные пожары, такие как электромобили или ESS, могут нуждаться в выгорании. Использование воды с медным материалом эффективно, но дорого.
Специалисты по безопасности аккумуляторов не рекомендуют использовать воду даже для тушения крупных литий-ионных пожаров. Подобные пожары могут гореть в течение нескольких дней, и важно изолировать их от легковоспламеняющихся материалов и предотвратить их распространение.
Обеспечение безопасности аккумуляторов
Производители аккумуляторов должны применять бескомпромиссный подход к безопасности аккумуляторов. Литий-ионные аккумуляторы можно сделать более безопасными, сделав их «умными». Встраивая в батареи интеллектуальный слой, мы можем не только диагностировать, но и прогнозировать ненормальное использование или работу батареи. Это поможет нам принять своевременные меры, предотвратить повреждение системы и обеспечить сохранность батареи.
Чтобы узнать больше о безопасности литий-ионных аккумуляторов, напишите нам на [email protected]
Электрические 2-х и 3-х колесные транспортные средства, такие как скутеры и рикши, имеют сложные сценарии использования, которые требуют более разумного управления их батареями. Автомобильные системы управления батареями ION Energy были разработаны с учетом требований электрических двух- и трехколесных транспортных средств следующего поколения.