Как работает катушка Тесла. Из каких элементов она состоит. Какие бывают виды катушек Тесла. Как собрать простую катушку Тесла своими руками. На что обратить внимание при сборке.
Принцип работы катушки Тесла
Катушка Тесла представляет собой резонансный трансформатор, способный создавать высокое напряжение высокой частоты. Основные элементы катушки Тесла:
- Первичная обмотка (несколько витков толстого провода)
- Вторичная обмотка (тысячи витков тонкого провода)
- Конденсатор
- Разрядник
- Терминал (тороид на вершине вторичной обмотки)
Как работает катушка Тесла? При подаче напряжения на первичную обмотку в ней возникают колебания, которые индуцируют ток во вторичной обмотке. За счет резонанса во вторичном контуре напряжение многократно увеличивается, достигая миллионов вольт. Это приводит к образованию эффектных электрических разрядов — стримеров.
Виды катушек Тесла
Существует несколько основных видов катушек Тесла:

- Классическая (искровая) — с разрядником
- Ламповая — на электронных лампах
- Твердотельная — на полупроводниках
- DRSSTC — двухрезонансная твердотельная
Чем они отличаются? Классическая катушка проста, но неэкономична. Ламповая работает стабильно, дает толстые стримеры. Твердотельная компактна и эффективна. DRSSTC самая мощная и управляемая.
Как собрать простую катушку Тесла своими руками
Для сборки простой катушки Тесла понадобятся:
- Пластиковая труба диаметром 5-7 см и длиной 20-30 см
- Медный провод 0.1-0.3 мм для вторичной обмотки
- Медный провод 1-2 мм для первичной обмотки
- Высоковольтный конденсатор
- Разрядник
- Терминал из алюминиевой фольги
Пошаговая инструкция:
- Намотайте на трубу вторичную обмотку (1000-1500 витков тонкого провода)
- Сделайте первичную обмотку из 5-10 витков толстого провода
- Соберите разрядник из двух электродов
- Подключите конденсатор параллельно разряднику
- Установите терминал на вершину вторичной обмотки
- Соедините все элементы по схеме
На что обратить внимание при сборке катушки Тесла
При самостоятельной сборке катушки Тесла важно учитывать следующие моменты:

- Тщательно изолируйте все высоковольтные соединения
- Обеспечьте хорошее заземление
- Соблюдайте меры электробезопасности
- Настройте резонансную частоту первичного и вторичного контуров
- Не превышайте безопасную мощность элементов
Катушка Тесла — интересное устройство для экспериментов с высоким напряжением. Однако будьте осторожны при работе с ней и соблюдайте все меры предосторожности!
Применение катушек Тесла
Где используются катушки Тесла сегодня? Основные области применения:
- Тестирование изоляции электрооборудования
- Создание световых эффектов для шоу
- Беспроводная передача энергии на небольшие расстояния
- Демонстрационные и учебные эксперименты по физике
Хотя катушка Тесла была изобретена более 100 лет назад, она до сих пор находит применение в науке и технике. Это уникальное устройство продолжает удивлять и восхищать людей своими эффектными разрядами.
Теория резонанса в катушке Тесла
Важнейший принцип работы катушки Тесла — электрический резонанс. Как он возникает?

Первичный и вторичный контуры катушки настраиваются на одну резонансную частоту. При этом:
- Энергия колеблется между электрическим полем конденсатора и магнитным полем катушки
- Амплитуда колебаний во вторичном контуре многократно усиливается
- Напряжение на вторичной обмотке возрастает в сотни и тысячи раз
Резонансная частота контура зависит от индуктивности катушки и емкости конденсатора. Для настройки резонанса подбирают оптимальные параметры этих элементов.
Меры безопасности при работе с катушкой Тесла
Катушка Тесла — источник высокого напряжения, поэтому при работе с ней необходимо соблюдать следующие меры безопасности:
- Не прикасаться к работающей катушке и ее элементам
- Обеспечить надежное заземление устройства
- Работать в сухом помещении
- Держаться на расстоянии минимум 1-2 метра от катушки
- Не включать катушку рядом с электронными приборами
- Использовать защитные очки
- Не превышать безопасное время работы (обычно 1-2 минуты)
При соблюдении этих правил эксперименты с катушкой Тесла будут безопасными и увлекательными. Помните, что высокое напряжение требует осторожного обращения!

Делаем простой тесла генератор , катушка Теслы своими руками
Сегодня я собираюсь показать вам, как я построить простую катушку Тесла! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме . Если мы будем игнорировать мистическую составляющую вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.
Схема данного устройства очень простая — показана на рисунке .
Для создания нам нужны следующие компоненты :
— источник питания, 9-21V , это может быть любой блок питания
— маленький радиатор
— транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами
— переменный резистор 50kohm
— 180Ohm резистор
— катушка с проводом 0,1-0,3, я использовал 0.19mm,, около 200 метров.
Для намотки нужен каркас , это может быть любой диэлектический материал — цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина .
Начнем с самой сложной части — вторичной обмотки. Он имеет 500-1500 мотков катушки , мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой — для ускорения процесса можно это делать шуруповертом .Так же желательно вспрыснуть уже намотаную катушку лаком .
Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию и намотайте ее на 10 витков провода.
Вся схема собрана на макетной плате. Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора . Подключение первичных и вторичных обмоток тоже не легкий процесс , т.к изоляция последних имеет специальное покрытие , которое должно быть зачищено перед пайкой .
Таким образом, мы сделали катушку Теслы . Перед тем, как включить питание в первый раз, поместите переменный резистор в среднем положении и поставите лампочку вблизи катушки, и тогда вы сможете увидеть эффект беспроводной передачи энергии . Включите питание, и медленно поворачивайте переменный резистор. Это довольно слабая катушка, но каким-либо образом бытдьте осторожны и не размещайте рядом электронные устройства: такие как сотовые телефоны, компьютеры и т.д. с рабочей зоной катушки .
Спасибо за внимание
Так же не забываем о экономии при покупке товаров на Алиєкспресс с помощью кэшбэка
Для веб администраторов и владельцев пабликов главная страница ePN
Для пользователей покупающих на Алиэкспресс с быстрым выводом % главная страница ePN Cashback
Удобный плагин кэшбеэка браузерный плагин ePN Cashback
Катушка Тесла своими руками в домашних условиях: схема и размеры
Никола Тесла – гений, опередивший свою эпоху. Среди многочисленных изобретений выделяется катушка Тесла. Устройство нашло применение в разных сферах, а в этой статье рассмотрим, как сделать катушку Тесла своими руками в домашних условиях с фото-примерами, разберемся пошагово с размерами и схемой приспособления.
Описание устройства
Изделие представляет собой резонансный трансформатор, вырабатывающий повышенное напряжение высокой частоты. Учитывая информацию из записей ученого, он трудился над технологией, позволяющей передавать электроэнергию без проводов. Теоретически пара таких мощных катушек, расположенных на удалении 2 км друг от друга, способна передавать электрическую энергию. Чтобы это происходило, они должны работать на одинаковой частоте.
Кроме этого, есть догадки, что подобные катушки могли бы стать вечным двигателем. Если внедрить подобную технологию в известные на сегодняшний день любого типа станции (гидро-, тепло- и т.д.), вырабатывающие электричество, то они стали бы просто ненужными. Однако вопрос, почему никто не продолжает развивать эту технологию, остается загадкой.
Конструкция и принцип работы катушки Тесла
- источник питания;
- первичная обмотка;
- вторичная обмотка.
Сегодня многие домашние мастера пытаются самостоятельно соорудить такую катушку, но из-за непонимания принципа работы и особенностей устройства, у них ничего не получается.
При подаче переменного напряжения на первичную обмотку, вокруг нее образуется магнитное поле, которое способствует перетеканию энергии во вторичную. Вторичка вместе с собственной паразитной емкостью представляет собой колебательный контур, в котором накапливается переданная энергия. В течение определенного временного промежутка часть энергии хранится в контуре.
Читайте также: Качер Бровина своими руками
Как сделать катушку Тесла
Вариации катушек Тесла могут быть разными. Однако в целях ознакомления с работой устройства, рассмотрим изготовление изделия небольших размеров.
Для конструирования понадобится следующий перечень:
- провод ПЭВ диаметром 0,25 и 1,2 мм;
- транзистор 2N2222A;
- сопротивление 22 кОм;
- «Крона» и разъем для нее;
- паяльник и припой;
- кусочек фанеры;
- пластиковая трубка;
- теннисный шарик;
- изолента;
- наждачка;
- ножовка;
- кусачки;
- клеевой пистолет.
Пошаговая инструкция
Рассмотрим поэтапно то, как собрать катушку:
- Подготавливаем пластиковую трубку сечением минимум 2 см.
- Отмечаем, а после отрезаем нужную длину трубки. Параметр должен быть в пределах 9-20 см.
- Обрабатываем торцы трубки наждачкой, убирая заусенцы.
- С обоих концов трубки сверлим отверстия, чтобы в них можно было продеть провод катушки.
- Запускаем в одно из отверстий край провода.
- Закрепляем проволоку клеевым пистолетом изнутри трубки.
- Производим намотку катушки виток к витку. Количество витков определяется диаметром трубки и провода и может варьироваться от 300 до 1000. Так, с проводом 0,08 мм потребуется около 300 витков.
- После завершения намотки, обрезаем провод, оставляя конец длиной 10 см.
- Продеваем проволоку в отверстие и закрепляем его клеем.
- Для фиксации катушки к основанию наносим клей на один из торцов и закрепляем деталь. В качестве основы можно использовать кусок фанеры.
- К основанию приклеиваем также транзистор, сопротивление и выключатель.
- Для изготовления второй катушки используем более толстый провод, который наматываем поверх первой катушки в количестве трех витков.
- Соединяем все элементы согласно с приведенной схемой.
- Батарейку фиксируем аналогичным способом — на клей.
- Для изготовления излучателя теннисный шарик обматываем фольгой.
- Присоединяем второй конец катушки (верхний) к шарику и фиксируем провод изолентой. Сам шарик закрепляем к трубке на клей.
- Готовое устройство имеет вид, как на фото.
Миниатюрная катушка
Катушку Тесла можно выполнить довольно маленьких размеров, которые позволяют поместить ее в кармане. В приведенной схеме введен преобразователь напряжения, позволяющий получить с 12 В 10 тыс. вольт.
Для сборки можно использовать такие элементы:
- диод 5ГЕ200АФ;
- конденсаторы 2200 пФ*5кВ;
- провод ПВ 2,5 мм;
- провод ПЭВ 0,01 мм;
- полимерная трубка сечением 15 мм.
Читайте также: Катушка для удлинителя своими руками
Первичная обмотка имеет 6 витков с диаметром наружного витка 60 мм. Вторичка изготавливается плотной намоткой и имеет 980 витков. После завершения сборки необходимо провести регулировку устройства. Для правильной работы его нужно ввести в резонанс. Как правило, действия сводятся к регулировке зазора разрядника. Процедуру проводят до тех пор, пока появится наилучшая длина дуги.
Как проверить катушку
Для проверки работоспособности катушки Теслы включаем питание и подносим к устройству люминесцентную лампочку – она должна светиться. Это подтверждает наличие электромагнитного поля в катушке. Если устройство не функционирует, необходимо поменять местами выводы первой обмотки, после чего проверить транзистор – возможно, он пробит.
При тестовом включении катушки нужно контролировать нагрев транзистора. Иногда требуется установка радиатора охлаждения и даже компьютерного вентилятора, которые предотвратят перегрев и выход из строя транзистора.
Катушка Тесла большой мощности
Трансформатор Теслы большой мощности отличается большими размерами и напряжением. Рассмотрим подробнее, как самостоятельно собрать искровой трансформатор согласно приведенной схеме. При подключении питания заряжается конденсатор С1. Когда последний максимально заряжен, происходит пробой между двумя проводниками – разрядник. После пробоя возникает цепь, состоящая из емкости и катушки, называемая LC-контуром. Благодаря контуру, создаются ВЧ колебания, а во вторичной цепи образуется резонанс и высокое напряжение.
Чтобы собрать катушку Тесла большой мощности, можно просто доработать рассмотренную выше конструкцию:
- Использовать основу для намотки катушек большего диаметра, а также более толстые провода, как правило, в 2,5 раза.
- Добавить элемент в виде тороида.
- Использовать переменный источник питания, который способен выдавать 3-5 кВ.
- Видоизменить входную часть по схеме.
- Сделать надежное заземление для устройства.
Читайте также: Ветрогенератор своими руками
Меры безопасности
Занимаясь любыми работами, связанными с электричеством, не следует забывать о технике безопасности. Поэтому прежде чем включить катушку Тесла, нужно учесть и принять некоторые меры, которые сведут к минимуму риск быть пораженным электрическим током. Сначала проверяют изоляцию обмоток изделия: никаких видимых повреждений быть не должно. Напряжение и ток в катушке создаются довольно высокие (в зависимости от мощности) и могут быть порядка 700 В и 15 А, что опасно для жизни человека. В дополнение ко всему, трансформатор перед запуском следует располагать вдали от электроприборов: высока вероятность того, что они могут выйти из строя.
Разобравшись, как сделать катушку Тесла своими руками в домашних условиях, повторить подобную конструкцию по схеме и размерам с пошаговой инструкцией сможет каждый желающий. Изделие позволит не только получить новые знания в области электричества, но и попробовать свои силы в конструировании устройства гениального ученого.
как своими руками собрать трансформатор, принцип работы
Работа кинескопных телевизоров, люминесцентных и энергосберегающих лампочек, дистанционная зарядка аккумуляторов обеспечивается специальным устройством — трансформатором (катушкой) Тесла. Для создания эффектных световых зарядов фиолетового цвета, напоминающих молнию, также применяется катушка Тесла. Схема на 220 В позволяет понять устройство этого прибора и при необходимости сделать его своими руками.
Механизм работы
Катушка Тесла представляет собой электроаппарат, способный в несколько раз увеличивать напряжение и токовую частоту. Во время её работы образуется магнитное поле, которое может влиять на электротехнику и состояние человека. Попадающие в воздух разряды способствуют выделению озона. Конструкция трансформатора состоит из следующих элементов:
- Первичной катушки. Имеет в среднем 5−7 витков провода с диаметром сечения не меньше 6 мм².
- Вторичной катушки. Состоит из 70−100 витков диэлектрика с диаметром не более 0,3 мм.
- Конденсатора.
- Разрядника.
- Излучателя искрового свечения.
Трансформатор, созданный и запатентованный Николой Тесла в 1896 году, не имеет ферросплавов, которые в других аналогичных приборах используются для сердечников. Мощность катушки ограничивается электрической прочностью воздуха и не зависит от мощности источника напряжения.
При попадании напряжения на первичный контур на нём генерируются высокочастотные колебания. Благодаря им на вторичной катушке возникают резонансные колебания, результатом которых является электрический ток, характеризующийся большим напряжением и высокой частотой. Прохождение этого тока через воздух приводит к возникновению стримера — фиолетового разряда, напоминающего молнию.
Колебания контуров, возникающие в процессе работы катушки Тесла, могут быть сгенерированы разными способами. Чаще всего это происходит с помощью разрядника, лампы или транзистора. Наиболее мощными являются устройства, в которых используются генераторы двойного резонанса.
Исходные материалы
Человеку, обладающему основными знаниями в области физики и электрики, собрать трансформатор Тесла своими руками не составит труда. Необходимо лишь приготовить набор основных деталей:
- Источник питания с напряжением порядка 9−12 Вольт. Роль такого источника в самодельном устройстве может выполнять аккумулятор автомобиля, батарея для ноутбука либо понижающий трансформатор с диодным мостом для генерации постоянного тока.
- Первичный контур. Состоит из двух резисторов с номинальным сопротивлением 50 и 75 кОм, транзистора VT1 D13007 или аналогичного прибора, имеющего n-p-n cтpyктypу.
Обязательным элементом первичной катушки является охлаждающий радиатор, размер которого напрямую влияет на эффективность охлаждения оборудования. В качестве обмотки может быть использована трубка из меди или провод диаметром 5−10 мм.
Для вторичной обмотки рекомендуется использовать кабель с сечением от 0,1 до 0,3 мм², намотанный на диэлектрическую трубку из поливинилхлорида. Оптимальной считается длина трубки 25−40 см и диаметр порядка 3−5 см.
Вторичная катушка требует обязательной изоляции в виде обработки краской, лаком или другим диэлектриком. Дополнительной деталью этого контура является последовательно подключённый терминал. Его использование целесообразно только при мощных разрядах, при небольших стримерах достаточно вывести конец обмотки вверх на 0,5−5 см.
Схема подключения
Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов:
- Установить источник питания с чётким соблюдением соответствия контактов.
- Прикрепить радиатор к транзистору.
- Собрать электрическую схему, используя фанеру, деревянную коробку или кусок пластика в качестве диэлектрической подложки.
- Изолировать катушку от схемы пластиной диэлектрика, имеющей отверстия для подключения проводов.
- Установить первичную обмотку, исключив её падение и соприкосновение с другой обмоткой. В центре предусмотреть отверстие для вторичной катушки, обеспечив расстояние между ними не менее 1 см.
- Закрепить вторичную обмотку, осуществить необходимые соединения, руководствуясь схемой.
Сборка более мощного трансформатора происходит по аналогичной схеме. Чтобы добиться большой мощности, потребуется:
- Увеличить размеры катушек и сечения обмоток в 1,1−2,5 раза.
- Установить источник переменного тока с напряжением 3−5 кВт.
- Добавить терминал в виде тороида.
- Обеспечить хорошее заземление.
Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров.
Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует:
- Установить переменный резистор в среднюю позицию.
- Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя.
Первый запуск прибора должен осуществляться при отслеживании температуры. При сильном нагревании требуется подключить дополнительное охлаждение.
Применение трансформатора
Катушка может создавать разные виды зарядов. Чаще всего при её работе возникает заряд в форме дуги.
Свечение воздушных ионов в электрическом поле с повышенным напряжением называют коронным разрядом. Он представляет собой голубоватое излучение, образующееся вокруг деталей катушки, имеющих значительную кривизну поверхности.
Искровой разряд или спарк проходит от терминала трансформатора до поверхности земли либо до заземлённого предмета в виде пучка быстро меняющих форму и гаснущих ярких полос.
Стример выглядит как тонкий слабо светящийся световой канал, имеющий множество разветвлений и состоящий из свободных электронов и ионизированных частиц газа, не уходящих в землю, а протекающих по воздуху.
Создание разного рода электроразрядов при помощи катушки Тесла происходит при большом увеличении тока и энергии, вызывающем треск. Расширение каналов некоторых разрядов провоцирует увеличение давления и образование ударной волны. Совокупность ударных волн по звуку напоминает треск искр при горении пламени.
Эффект от трансформатора такого рода ранее использовали в медицине для лечения заболеваний. Высокочастотный ток, протекая по коже человека, давал оздоровительный и тонизирующий эффект. Он оказывался полезным только при условии невысокой мощности. При возрастании мощности до больших значений получался обратный результат, негативно влияющий на организм.
С помощью такого электроприбора разжигают газоразрядные лампы и обнаруживают течь в вакуумном пространстве. Также его успешно применяют в военной сфере с целью быстрого уничтожения электрооборудования на кораблях, танках или в зданиях. Мощный импульс, генерируемый катушкой за очень короткий период, выводит из строя микросхемы, транзисторы и прочие аппараты, находящиеся в радиусе десятков метров. Процесс уничтожения техники происходит бесшумно.
Самой зрелищной сферой применения являются показательные световые шоу. Все эффекты создаются благодаря формированию мощных воздушных зарядов, длина которых измеряется несколькими метрами. Это свойство позволяет широко применять трансформатор при съёмках фильмов и создании компьютерных игр.
При разработке этого устройства Никола Тесла планировал использовать его для передачи энергии в глобальном масштабе. Идея учёного базировалась на применении двух сильных трансформаторов, располагающихся на разных концах Земли и функционирующих с равной резонансной частотой.
В случае успешного использования такой системы энергопередачи необходимость в электростанциях, медных кабелях и поставщиках электричества полностью бы отпала. Каждый житель планеты смог бы использовать электроэнергию в любом месте абсолютно безвозмездно. Однако в силу экономической нерентабельности замысел знаменитого физика до сих пор не был (и вряд ли когда-то будет) реализован.
Мини катушка Тесла своими руками | Лучшие самоделки своими руками
Трансформатор Теслы известен многим людям, с помощью него делают разные интересные эффекты и эксперименты с высоким напряжением, делают поющие катушки, зажигают люминесцентные лампы, заставляют волосы распушиваться и голова становится похожа на одуванчик. Но сделать такой трансформатор не всем под силу, он обычно большой и громоздкий и насчитывает много витков медного провода. Но вполне можно сделать самим мини катушку Тесла, то есть мини версию катушки Теслы, она совсем крохотная но способна на многое, например, зажечь люминесцентную лампу.
Мини катушка Тесла своими руками
Детали:
- Намоточный провод в лаковой изоляции 0,2 мм;
- Кусок провода в пластиковой изоляции;
- Пластиковая трубка 1 см;
- Транзистор 2N2222A – http://ali.pub/4se18u;
- Резистор 10 кОм;
- Батарейка типа «Крона».
Мини катушка Тесла своими руками
Как сделать катушку Тесла своими руками, инструкция:
Берём кусок пластиковой трубки диаметром около 1 см и наматываем на этот каркас проводом в лаковой изоляции толщиной 0,2 мм (AWG 32) 200 витков.
Мини катушка Тесла своими руками
Мини катушка Тесла своими руками
Делаем некий стенд, чтобы катушка могла стоять на столе вертикально, для этого приклеиваем катушку Теслы к пластиковой крышке.
Мини катушка Тесла своими руками
Намотаем поверх катушки ещё 5 витков провода в толстой пластиковой или резиновой изоляции у основания катушки.
Мини катушка Тесла своими руками
Припаиваем к выводам первичной и вторичной катушек транзистор 2222А, вывод первичной обмотки к базе транзистора, а вывод вторичной к коллектору.
Мини катушка Тесла своими руками
Далее в схему добавляем резистор на 10 кОм, один вывод припаиваем ко второму выводу вторичной обмотки трансформатора Тесла, а второй к коллектору транзистора. Также припаиваем выводы для питания к источнику питания на 9В, я подпаял напрямую к батарейке крона.
Мини катушка Тесла своими руками
Мини катушка Тесла своими руками
Катушка Тесла сделанная своими руками готова, как Вы можете видеть, она способна на некотором расстоянии от неё зажечь люминесцентную лампу и готова к дальнейшим экспериментам.
Мини катушка Тесла своими руками
Мини катушка Тесла своими руками
Частота работы катушки тесла. Небольшая катушка тесла своими руками
Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.
Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.
Принцип катушки Тесла
Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.
Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.
Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.
Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.
Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.
Вторая катушка и C s образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.
Главные свойства катушки Тесла:
- Частота второго контура.
- Коэффициент обеих катушек.
- Добротность.
Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.
Подобие с качелями
Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.
Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.
Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.
Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же .
Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.
Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.
Главные катушки Тесла
Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.
- Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
- Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
- Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
- Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.
Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).
Главные элементы катушки Тесла
В разных конструкциях основные черты и детали общие.
- Тороид – имеет 3 опции.Первая – снижение резонанса.
Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
Тороиды можно изготовить из гофры и других материалов. - Вторичная катушка – базовая составляющая Тесла.
Длина в пять раз больше диаметра мотки.
Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства. - Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
- Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
Эти обмотки изготавливают в виде цилиндра, конуса.
- Заземление – это важная составляющая часть.
Стримеры бьют в заземление, замыкают ток.
Будет недостаточное заземление, то стримеры будут ударять в катушку.
Катушки подключены к питанию через землю.
Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».
Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.
Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.
Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.
Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.
Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.
Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.
Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.
Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.
Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.
Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.
Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.
Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.
Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.
- Два провода скрепляются, оголенные концы были повернуты в сторону.
- Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
- Подключается питание катушке Тесла своими руками.
- Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
- Заземление второй катушки.
Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.
Безопасность
Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мехах защиты.
Расчет катушки Тесла
Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.
Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).
Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.
Бифилярная катушка Тесла
Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.
Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.
Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.
Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.
Устройство и работаЭлементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и .
Тороид выполняет несколько функций:
- Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами. плохо функционируют на повышенных частотах.
- Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
- Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.
Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.
Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5: 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.
Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.
Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм. Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный. Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.
Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.
Катушка Тесла должна иметь заземление . Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.
Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.
В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.
При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.
Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.
Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.
РазновидностиСо времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.
SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник. У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей. Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.
VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.
SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного . Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.
DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.
Виды эффектов от катушки Тесла- Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
- Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
- Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
- Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.
Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.
Малоизвестные эффекты катушки ТеслаНекоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.
Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.
В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.
Применение- Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
- Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
- Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
- Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.
Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.
Катушка Тесла на будущееВ настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.
Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.
Никола Тесла, является катушка или резонансный трансформатор, способный выдавать высокое напряжение с высокой частотой. Для того, чтобы представлять работу этого устройства, необходимо знать принцип работы катушки Тесла.
Трансформатор Тесла: принцип действия
Принцип работы данного устройства сравним с действием обычных качелей. При режиме принудительного раскачивания, максимальная амплитуда находится в пропорции к прилагаемым усилиям. Если же раскачивание производится в свободном режиме, происходит еще больший рост максимальной амплитуды.
В катушке качелями является вторичный контур колебаний, а прилагаемое усилие осуществляет генератор. Они срабатывают в строго обозначенное время.
Конструкция катушки Тесла
В самом простом трансформаторе имеется две катушки — первичная и вторичная. Кроме того, в конструкцию входит разрядник, конденсатор и терминал. В конечном итоге образуются два контура колебаний, связанных между собой. Это является основным отличием катушки Тесла от обычного трансформатора.
Для того, чтобы катушка работала полноценно, оба контура колебания настраиваются на одинаковую частоту резонанса. Настройка производится путем подстройки первичного контура под вторичный, изменяя емкость конденсатора и количество витков. В результате, на выходе катушки образуется максимальное напряжение.
Для работы трансформатора Тесла используется импульсный режим. На первом этапе величина заряда конденсатора должна сравняться с напряжением, вызывающим пробой разрядника. На втором этапе колебания высокой частоты генерируются в первичном контуре. Параллельно включается разрядник, замыкающий трансформатор и убирающий его из общего контура. В противном случае, в первичном контуре могут произойти потери, которые могут повлиять на качество его работы. В нормальной схеме, разрядник, как правило, устанавливается параллельно с источником питания.
Таким образом, значение напряжения на выходе катушки Тесла может составлять несколько миллионов вольт. С помощью такого напряжения, в , достигающие значительной длины. Их внешний вид буквально завораживает, и во многих случаях трансформатор применяется в качестве декоративного изделия.
Принцип действия катушки Тесла помогает найти практическое применение этому устройству. Как правило, ему отводится познавательная и эстетическая роль. Это связано с определенными трудностями в управлении прибором и передаче полученной на расстояние.
Каждый человек, вероятнее всего, слышал о том, что такое трансформатор Тесла, который также зачастую называется катушкой Тесла. Эту катушку можно увидеть во многих фильмах, компьютерных играх и телевизионных передачах. Однако мало слышать о том, что существует нечто подобное. Если вас спросят, что именно делает трансформатор Тесла, сможете ли вы дать на этот вопрос ответ? Скорее всего, нет, а если и сможете, то вряд ли вы сумеете рассказать достаточно подробностей. Именно поэтому и существует данная статья. С ее помощью вы сможете узнать все о трансформаторе Тесла, о том, как он устроен, для чего используется, как функционирует и так далее. Естественно, если вы учились по физической специализации, то для вас эти данные не будут новостью, однако большинство людей все же не в курсе деталей, касающихся катушки Тесла. А ведь это очень интересные данные, которые позволят вам расширить кругозор. Как легко можно догадаться, изобретателем этого устройства стал великий ученый Никола Тесла, который запатентовал свое изобретение в 1896 году, описав его как устройство, предназначенное для производства электрических токов высокой частоты. По сути, именно этим катушка Тесла и является, и об этом вы, вероятнее всего, уже знали. Поэтому стоит взглянуть на более интересные и менее известные данные.
В чем суть?
Для начала необходимо объяснить суть работы катушки Тесла. Она может выглядеть по-разному, однако многие люди отмечают, что, так или иначе, она смотрится очень эффектно даже в режиме спокойствия. Что уж говорить о том, когда она приводится в действие, и вокруг нее образуются видимые разряды электричества. Но как именно это происходит? Трансформатор Тесла работает за счет резонансных электромагнитных волн, образующихся в двух обмотках катушки, первичной и вторичной. Первичная обмотка представляет собой часть искрового колебательного центра. Что касается вторичной, то ее роль исполняет уже прямая катушка провода. Когда частота колебаний первичного и вторичного контура совпадает, между концами катушки появляется высокое переменное напряжение, которое вы можете увидеть невооруженным взглядом. Если вам не очень понятно то, как работает трансформатор Тесла, то для примера можно взять обычные качели. С их помощью объяснить работу будет гораздо проще. Если вы раскачиваете качели с помощью принудительных колебаний, то амплитуда будет пропорциональна вашему усилию. Если же вы решите раскачивать качели в режиме свободных колебаний, каждый раз подталкивая качели в необходимый момент, то амплитуда возрастет в несколько раз. То же самое происходит и с катушкой Тесла: при резонансе колебаний двух обмоток возникает гораздо более сильный ток.
Конструкция трансформатора
Второй момент, который необходимо принять во внимание, когда рассматривается трансформатор Тесла, — схема. Как именно устроена катушка? На самом деле устройство этого трансформатора может быть самым разнообразным, поэтому сейчас вы узнаете о том, как устроена его простейшая версия, которую вы затем можете совершенствовать так, как вам будет этого хотеться. Итак, простейший трансформатор Тесла состоит из нескольких элементов, а именно из входного трансформатора, катушки индуктивности, включающей в себя первичную и вторичную обмотку, а также из разрядника, конденсатора и терминала. Собственно говоря, ток начинает свое движение от входного трансформатора, являющегося источником питания, откуда через разрядник и конденсатор попадает на катушку индуктивности, а оттуда передается на терминал уже в умноженном размере. Причем терминал зачастую выбирается таким, чтобы он лучше всего мог передать подобное напряжение, например, он может быть в форме шара или диска. Как вы понимаете, это самый простой трансформатор Тесла — схема является подтверждением этого. В катушке Тесла может быть больше элементов. Там может присутствовать, например, тороид, который не описан в этой схеме, так как он не является ключевым элементом. Что касается основных элементов, то они все были указаны.
Функционирование
Итак, теперь вы знаете, как устроен трансформатор Тесла. Принцип работы его вам также понятен в целом, но можно и углубиться в детали. Как именно он функционирует? Оказывается, он работает в импульсном режиме. Что это означает? Это значит, что сначала происходит заряд конденсатора до того момента, когда совершится пробой разрядника, и электричество пройдет на катушку индуктивности. Тогда начинается вторая фаза, в ходе которой генерируются высокочастотные колебания. Обратите внимание, что разрядник должен располагаться параллельно источнику питания, благодаря чему он замыкает цепь, когда на катушку поступает ток, тем самым исключая источник питания из цепи. Зачем это нужно? Если остается частью цепи, это может значительно снижать напряжение на выходе из трансформатора. Естественно, результат все равно будет, однако он при этом окажется далеко не самым впечатляющим. Вот так функционирует трансформатор Тесла. Принцип работы вам теперь полностью понятен, однако все еще остаются некоторые детали, которые могут вас заинтересовать.
Заряд для трансформатора
Как вы уже могли заметить, если вы планируете создать мощный трансформатор Тесла, то для этого потребуется учесть абсолютно все детали, так как любые отклонения от нормы будут приводить к тому, что выходное напряжение будет недостаточно высоким, из-за чего эффект будет менее впечатляющим. И особое внимание необходимо уделить стартовому заряду, то есть подбору источника питания. Именно в данном случае нужно подобрать правильный конденсатор, чтобы выходное напряжение было идеальным, а конденсатор себя не «закорачивал». Существует даже трансформатор Тесла с самозапиткой, так что разнообразию конструкций нет пределов. Так что вам стоит помнить, что в данном случае рассматривается самая простая конструкция катушки Тесла.
Генерация
Ну и последнее, на что стоит взглянуть более детально — это непосредственно сам процесс генерации высокочастотного тока. Итак, питание трансформатора Тесла происходит за счет выбранного источника питания, который передает заряд в конденсатор, где он накапливается до того момента, как происходит пробой, в результате которого конденсатор через разрядник разряжается на первичную катушку. Так как напряжение разрядника резко снижается, цепь замыкается, и, как уже было сказано выше, источник питания исключается из цепи. В это время на первичной катушке возникают высокочастотные колебания, которые затем передаются на вторичную катушку, из-за чего колебания становятся резонансными, и на терминале возникает ток высокого напряжения. Вот так работает самый простой трансформатор Тесла, однако существует большое количество самых разнообразных его модификаций.
Модификации
Для начала вам стоит узнать о том, что классический вариант катушки Тесла, который был описан выше, обозначается следующим образом — SGTC. Последние две буквы расшифровываются как Tesla Coil, что переводится непосредственно как «катушка Тесла». Эти две буквы будут присутствовать в каждом из сокращений, а меняются только первые две. В данном случае SG обозначает Spark Gap, то есть эта катушка Тесла работает на искровом промежутке, создаваемом разрядником. Однако далеко не всегда дела обстоят именно так, поэтому необходимо рассмотреть различные варианты, такие как трансформатор Тесла на транзисторах или на полупроводниках. Первая модификация, на которую можно обратить внимание — это RSGTC, то есть катушка, которая работает на роторном искровом промежутке. В данном случае для питания используется электродвигатель, который вращает диск с электродами. Есть также VTTC, которая известна как ламповая катушка Тесла, работающая за счет электронных ламп. Этот вариант не требует высокого напряжения, а также отличается тишиной работы. Следующий вариант — это SSTC, то есть катушка Тесла, которая работает за счет генератора, основанного на полупроводниках. Эта модификация является одной из самых интересных в плане эффектности, так как с помощью силовых ключей вы можете изменять форму разряда. Модификацией этой версии катушки Тесла является DRSSTC. В данном случае используется двойной резонанс, что дает гораздо более внушительные размеры разряда. Отдельно стоит взглянуть на QCW DRSSTC — эта катушка Тесла характеризуется «плавной накачкой», то есть плавным, а не резким нарастанием всех параметров. В каждом из этих случаев расчет трансформатора Тесла будет отличаться, точно так же, как и его конструкций и, соответственно, его схема.
Использование катушки Тесла
Но как же может быть использована энергия трансформатора Тесла? Этот вопрос задает себе каждый человек, который впервые видит работу этого устройства. Собственно говоря, любование невероятными разрядами, которые имеют огромные размеры и выглядят очень впечатляюще, и является одним из самых главных и популярных способов использования. Этот трансформатор позволяет устроить настоящее шоу, которое способно очаровать любого человека, ведь это не магия, а чистейшая наука. Так что смело можно сказать, что одна из главных ролей трансформатора Тесла является декорация и развлечение. Однако оказывается, что существуют и другие способы использования этой технологии. Например, изначально катушки Тесла использовались для радиоуправления, беспроводной передачи данные и для передачи энергии. Естественно, со временем появлялись более эффективные способы выполнения каждой из этих функций, поэтому постепенно использование катушки Тесла становилось все менее и менее актуальным. Также стоит отметить, что ее использовали в медицине. Дело в том, что высокочастотный разряд, когда его пропускали по коже, не оказывал негативного влияния на внутренние органы человека, но при этом тонизировал кожу человека. В современном мире катушка Тесла уже фактически не используется с практической точки зрения из-за трудностей поддержания постоянной ее работы. Иногда она используется для поджига газоразрядных ламп или же в вакуумных системах, где трансформатор помогает найти течи. Таким образом, применение трансформатора Тесла в современном мире все же в большинстве случаев является декоративным, развлекательным и познавательным.
Эффекты
Вы уже представляете себе устройство трансформатора Тесла, потому на эту тему нет смысла говорить что-то еще. Однако это не значит, что сама по себе тема катушки Тесла исчерпала себя. Например, можно взглянуть на то, какие именно разряды создаются в результате ее деятельности. Оказывается, они не являются случайными: всего выделяют четыре основных вида. Во-первых, вы можете увидеть стримеры, которые представляют собой тусклые разветвленные каналы, которые уходят от терминала в воздух. По сути, они представляют собой визуализацию ионизации воздуха. Во-вторых, вы можете заметить спарки — это искровые разряды, которые уходят с терминала прямо в землю. Отличить их можно за счет того, что они очень сильно выделяются внешне — это пучок ярких искровых каналов. В-третьих, существует коронный разряд — так называется свечение ионов непосредственно в поле высокого напряжения. Ну и, наконец, имеется еще и дуговой разряд, который возникает, если к трансформатору поднести какой-либо заземленный предмет. Этот прием используют многие, когда катушка Тесла применяется для развлекательных мероприятий.
Влияние на здоровье
Выше было указано, что после изобретения катушки Тесла ее использовали в медицинских целях, однако многие источники сообщают, что трансформатор Тесла является смертельно опасным. Кто же прав, а кто обманывает? В большинстве случаев высокое напряжение является для человека смертельным, так как оно ведет к образованию ожогов, а также к остановке сердца. Однако некоторые типы трансформаторов Тесла обладают так называемым скин-эффектом, который позволяет электричеству воздействовать лишь на поверхность предмета, а в данном случае — на кожу человека. Как уже было сказано выше, это тонизирует кожу и омолаживает ее. Опять же, медицинских подтверждений этого факта нет, однако об этом очень много писали в свое время.
Катушка Тесла как часть культуры
Даже если вы не увлекаетесь наукой, все равно, вероятнее всего, уже видели катушку Тесла, так как она используется в самых разнообразных сферах развлечений. В первую очередь ее можно увидеть во многих фильмах, которые выходили на экраны кинотеатров в самые разные годы. Одним из самых известных фильмов, в которых очень важную роль отыграл трансформатор Тесла, стала экранизация одноименного романа «Престиж». Также очень часто катушку Тесла можно встретить в компьютерных играх, где она чаще всего выступает в роли мощного оружия. Более того, вы можете встретить трансформаторы Тесла даже в музыкальном искусстве. Оказывается, вы можете изменять звучание электрического разряда, увеличивая и уменьшая частоту тока. И некоторые исполнители и музыкальные группы используют это, чтобы записывать музыку. А тот, кто не хочет все усложнять, прибегает к помощи катушки Тесла, чтобы создать реалистичные звуки разрядов молний, как это сделала, например, известная певица Бьорк. Таким образом, в современном мире трансформаторы Тесла используются очень широко, однако нельзя сказать, что они применяются по назначению. Свое время в качестве функционального устройства катушка Тесла уже отжила, и она, по сути, должна была кануть в Лету, как и большинство старых устройств. Однако благодаря визуальным эффектам, которые она создает, катушка Тесла смогла дожить до сегодняшнего дня, и ее продолжают использовать постоянно, пусть и в качестве предмета развлечения. Стоит также отметить, что она используется и в обучающих целях, так как именно на ней можно наглядно продемонстрировать начинающим физикам, как выглядит электрический разряд, как он себя ведет и так далее. Проще говоря, трансформатор Тесла — это устройство, которое просуществовало сто лет и не потеряло своей актуальности даже в двадцать первом веке, который всем известен своим невероятным прогрессом в области высоких технологий.
В 1997 году я заинтересовался катушкой Тесла и решил построить свою. К сожалению, я потерял интерес к ней, прежде чем я смог её запустить. Через несколько лет я нашел свою старую катушку, немного пересчитал её и продолжил строительство. И снова я забросил ее. В 2007 году друг показал мне свою катушку, напомнив мне о моих незавершенных проектах. Я опять нашел свою старую катушку, пересчитал все и в этот раз завершил проект.
Катушка Тесла — это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.
Высоковольтный трансформатор используется для зарядки конденсатора.
Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.
Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.
Этапы строительства
Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.
Вот основные шаги, с которых следует начать:
- Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
- Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
- Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
- Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
- Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
- Соедините все компоненты, настройте катушку, и все готово!
Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!
Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь — пока.
Детали
Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.
Вторичная обмотка
Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя
Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.
Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1
При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.
Металлическая сфера или тороид
Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.
Первичная обмотка
Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С — емкость конденсаторов, F-резонансная частота вторичной обмотки.
Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.
Конденсаторы
Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом
Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)
Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.
Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.
Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.
Разрядник
Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.
Карманный трансформатор Тесла своими руками
Карманный трансформатор Тесла своими руками
В этой статье я расскажу о собранном мной устройстве-трансформаторе Тесла и об интересных эффектах, которые в нём наблюдались в процессе его работы.
Сразу хочу расставить точки над «и», данное устройство работает с высокими напряжениями, поэтому соблюдение элементарных правил техники безопасности ОБЯЗАТЕЛЬНО! Несоблюдение правил ведет к серьёзным травмам, помните это! Еще хочу отметить, что основную опасность в этом устройстве представляет ИСКРОВИК (разрядник), который в ходе своей работы является источником излучений широкого спектра в том числе и рентгеновского, помните об этом!
Начнём. Расскажу кратко о конструкции «моего» трансформатора Тесла, в простонародье «катушка тесла». Это устройство выполнено на простой элементной базе, доступной каждому желающему, Блок схема устройства приведена ниже.
Как видите я не стал изобретать велосипед и решил придерживаться классической схемы трансформатора Тесла, единственное что добавлено в классическую схему -это электронный преобразователь напряжения -роль которого повысить напряжение с 12 Вольт до 10 тысяч вольт! Кстати данный преобразователь напряжения может собрать и домохозяйка. В высоковольтной части схемы применяются следующие элементы: Диод VD является высоковольтным марки 5ГЕ200АФ- он имеет высокое сопротивление-это очень важно! Конденсаторы С1 и С2 имеют номинал 2200пФ каждый рассчитан на напряжение 5 кВ в итоге мы получаем суммарную ёмкость 1100пФ и напряжение накапливаемое 10 кВ, что очень для нас хорошо! Хочу заметить что емкость подбирается опытным путём, от неё зависит время длительности импульса в первичной катушки, ну и конечно от самой катушки. Время импульса должно быть меньше времени жизни электронных пар в проводнике первичной катушки трансформатора «Тесла», иначе мы будем иметь низкий эффект и энергия импульса будет тратится на нагрев катушки- что нам не нужно! Ниже показана собранная конструкция устройства.
Особого внимания заслуживает конструкция разрядника «искровика» , большинство современных схем трансформатора тесла имеют особую конструкцию искровика с приводом электродвигателя, где частота разрядов регулируется скоростью вращения, но я решил не придерживаться этой тенденции, так как там есть много отрицательных моментов. Я пошел по классической схеме разрядника. Технический рисунок разрядника приведён ниже.
Дешевый и практичный вариант не шумит и не светится, объясню почему. Данный разрядник выполнен из пластин меди толщиной 2-3 мм размерами 30х30 мм (для выполнения роли радиатора, так как дуга является источником тепла) с резьбой под болты в каждой пластине. Для устранения раскручивания болта при разряде и осуществления хорошего контакта необходимо применить пружину между болтом и пластиной. Для гашения шума при разряде сделаем специальную камеру, где будет происходить горение дуги, у меня камера сделана из куска трубы полиэтиленовой водопроводной (которая не содержит армировку) кусок трубы зажимается плотно межу двумя пластинами и желательно использовать герметизацию, например у меня специальный двусторонний скотч для утепления. Регулировка зазора выполняется вкручиванием и выкручиванием болта, позже объясню для чего.
Первичная катушка устройства. Первичная катушка устройства выполнена и медного провода типа ПВ 2,5мм.кв и тут возникает вопрос: «Для чего такой толстый провод?» Объясняю. Трансформатор Тесла это особое устройств, можно сказать аномальное, которое не относится по типу к обычных трансформаторам, где совсем другие законы. У обычного силового трансформатора важным значением в его работе является самоиндукция (противо ЭДС) которая компенсирует часть тока, при нагрузке обычного силового трансформатора противо ЭДС понижается и соответственно повышается ток, если мы уберем противо ЭДС с обычных трансформаторов, то они вспыхнут как свечки. А в трансформаторе Тесла всё наоборот- самоиндукция-наш враг! Поэтому что бы бороться с этим недугом — мы применяем толстый провод у которого маленькая индуктивность, а соответственно маленькая самоиндукция. Нам нужен мощный электромагнитный импульс и мы его получаем применяя данный тип катушки. Первичная катушка выполнена в виде спирали Архимеда в одной плоскости в количестве 6 витков, максимальный диаметр большого витка в моей конструкции 60 мм.
Вторичная катушка устройства- обычная катушка намотанная на полимерной водопроводной трубе (без армировки) диаметром 15 мм. Намотка катушки осуществляется эмаль проводом 0.01мм.кв виток в витку, в моём устройстве количество витков составляет 980 шт. Намотка вторичной катушки требует терпения и выдержки, у меня на это ушло около 4х часов.
Итак, устройство собрано! Теперь немного о регулировки устройства, устройство представляет собой два LC контура — первичный и вторичный! Для правильной работы устройства -необходимо ввести систему в резонанс, а именно в резонанс контуры LC. Фактически система вводится в резонанс автоматически, из-за широкого спектра частот электрической дуги, некоторые из которых совпадают с импедансом системы, так что нам остаётся сделать так, что бы оптимизировать дугу и выровнять частоты по мощности в ней- делается это очень просто — регулируем зазор разрядника. Регулировку разрядника нужно производить до появления наилучших результатов в виде длинны дуги. Изображение работающего устройства расположено ниже.
Итак устройство собрали и запустили- теперь оно у нас работает! Теперь мы можем производить свои наблюдения и изучать их. Хочу сразу предупредить: хоть токи высокой частоты являются безвредными для организма человека (в плане трансформатора Тесла), но световые эффекты вызванные ими могут влиять на роговицу глаза и вы рискуете получить ожог роговицы, так как спектр излучаемого света смещен в сторону ультрафиолетового излучения. Еще одна опасность, которая подстерегает при использовании трансформатора Тесла — это переизбыток озона в крови, которая может повлечь за собой головные боли, так как при работе устройство производятся большие порции этого газа, помните это!
Приступим к наблюдению за работающей катушкой Тесла. Наблюдения лучше всего производить в полной темноте, так вы более всего ощутите красоту всех эффектов которые просто поразят необычностью и таинственностью. Я производил наблюдения в полной темноте, ночью и часами мог любоваться свечением, которое производило устройство, за что и поплатился на следующее утро: у меня болели глаза как после ожога от электросварки, но это мелочи, как говориться: «наука требует жертв». Как только я в первый раз включил устройство я заметил красивое явление- это светящийся фиолетовый шар который находился посередине катушки, в процессе регулировки искрового промежутка я заметил что шар смещается в верх или в низ в зависимости от длинны промежутка, единственное на данный момент моё объяснение явление импеданса во вторичной катушке, что и вызывает данный эффект. Шар состоял из множества фиолетовых микро дуг, который выходили из одной области катушки и входили в другую, образовывая при этом сферу. Так как вторичная катушка устройства не заземлена , то наблюдался интересный эффект- фиолетовые свечения по обоим концам катушки. Я решил проверить как себя ведёт устройство при замкнутой вторичной катушке и заметил еще одну интересную вещь: усиление свечения и увеличение дуги происходящей от катушки во время прикосновения к ней — эффект усиления на лицо. Повторение эксперимента Теслы, в котором светятся газоразрядные лампы в поле трансформатора. При вводе обычной энергосберегающей газоразрядной лампы в поле трансформатора -она начинает светится, яркость свечение составляет примерно 45% от полной её мощности это примерно 8 Вт, при этом потребляемая мощность всей системы составляет 6 Вт. Для заметки: вокруг работающего устройства возникает высокочастотное электрическое поле которое имеет потенциал примерно 4кВ/см.кв. Так же наблюдается интересный эффект:так называемый щеточный разряд, светящийся фиолетовый разряд в виде густой щётки с частыми иглами размером до 20мм, напоминающие пушистый хвост животного. Этот эффект вызван высокочастотными колебаниями молекул газа в поле проводника, в процессе высокочастотных колебаний происходит разрушение молекул газа и образование озона, а остаточная энергия проявляется в виде свечения в ультрафиолетовом диапазоне. Наиболее яркое проявлением эффекта щетки возникает при использовании колбы с инертным газом, в моём случае использовал колбу от газоразрядной лампы ДНАТ, в которой содержится Натрий (Na) в газообразном состоянии, при этом возникает яркий эффект щетки, который похож на горение фитиля только при очень частых образованиях искр, данный эффект очень красив.
Результаты проведённой работы: Работа устройства сопровождается различными интересными и красивыми эффектами, которые в свою очередь заслуживают более тчательного изучения, известно что устройство генерирует электрическое поле высокой частоты, что является причиной образования большого количества озона, как побочный продукт ультрафиолетовое свечение. Особая конфигурация устройства даёт повод задуматься о принципах его работы, есть только догадки и теории о работе данного устройства, но объективной информации так и не было выдвинуто, так же как и не было досконального изучения данного устройства. В настоящий момент трансформатор Тесла собирается энтузиастами и используется лишь для развлечения по большей части, хотя устройство по моему мнению является ключем для понимания фундаментальной основы вселенной, которую знал и понимал Тесла. Использование трансформатора Тесла для развлечения — это все равно что забивать гвозди микроскопом… Сверх единичный эффект устройства..? возможно…, но у меня пока нет нужного оборудования для определения данного факта.
Автор статьи: Черепанов В.Г.
Катушка Тесла своими руками: простая инструкция по изготовлению от специалиста! | Стройка/Ремонт (своими руками)
Яндекс.КартинкиЯндекс.Картинки
Нельзя сказать, что изготовление катушки Тесла своими руками – простая задача. Необходимо знать ее устройство, принцип действия. Подбор материалов также важен, как и правильность расчетов. Однако, даже не имея образования инженера-электротехника, собрать прибор можно, если действовать согласно инструкции, приведенной ниже. Перед началом работ ознакомьтесь с теоретической частью, чтобы понимать, что и зачем вы делаете. В остальном процедура не составит труда.
Описание прибора
В большинстве случаев КТ (катушку Николя Тесла) описывают сложно. На самом деле она является обычным резонансным трансформатором. При эксплуатации вырабатывается электрический ток высокой частоты. Сейчас инженеры, которые трудятся на оборонный комплекс, создали устройство, обладающее мощностью в 1 Тгц. И теперь многим интересно, как и зачем появилась катушка Тесла, если ученый трудился над созданием беспроводной передачей сигнала, к которому мы все привыкли в современной жизни.
Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.
Принцип работы
Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.
Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.
Устройство катушки
Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:
- Первичная обмотка крепится внизу. Заземление обязательно. Также нужно предусмотреть разъемы для крепления проводов от источника питания.
- Вторичная обмотка. Изготавливают из медной проволоки, покрытой эмалью. Примерное количество витков – 800. Важно, чтобы обмотка не расплеталась.
- Тороид. Задача данного элемента – снизить рабочие показатели резонансной частоты. Цель – увеличить характеристики рабочего поля.
- Изолятор. Его еще называют защитным кольцом. Это разомкнутый медный контур, устанавливаемый для случаев, когда длина вторичной обмотки меньше чем у стримера.
- Заземление. Здесь дело не только в безопасности. Отсутствие «земли» приводит к тому, что заряды уходят в воздух, а не образуют замкнутые кольца.
Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.
Расчет катушки
Тем, кто собирает трансформатор Тесла своими руками в домашних условиях, рассчитывать ничего не придется. Ниже в описании будут приведены все рекомендации с учетом параметров каждого из элементов. Но если работы ведутся в промышленных условиях, инженеры тщательно просчитывать множество параметров. Главное, что нужно знать – главное правильно рассчитать число витков обмоток. Есть взаимосвязь между количеством оборотов первичное и вторичной катушки.
Невозможно создать рабочее устройство, не зная индуктивности каждой из них и емкости контуров. Также просчитывается рабочая частота трансформатора и емкость конденсатора. Для любознательных читателей есть возможность сделать это своим умом. Формула и схема есть на сайте. А ниже приведена пошаговая инструкция с указанием конкретных параметров, и достаточно просто следовать алгоритму действий. Но перед этим подготовьте все необходимое с теми же характеристиками, которые указаны в описании процесса сборки.
Самостоятельное изготовление катушки Тесла по схеме
При монтаже трансформатора Тесла схема реализуется следующим образом:
- Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
- Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
- Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
- Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
- Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
- Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.
На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.
Подбор материалов и деталей
Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.
Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:
- Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
- Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
- Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.
Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.
Сборка катушки Николя Тесла по инструкции
Важно придерживаться инструкции по сборке катушки Тесла.
Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.
Яндекс.Картинки Если у вас труба 20 мм, то её длинна должна быть 8-10 см. Расчёт идёт по пропорциям 4-5:1Яндекс.Картинки Если у вас труба 20 мм, то её длинна должна быть 8-10 см. Расчёт идёт по пропорциям 4-5:1
Яндекс.Картинки Отмечаем длину трубыЯндекс.Картинки Отмечаем длину трубы
Яндекс.Картинки Делаем ровный распилЯндекс.Картинки Делаем ровный распил
Яндекс.Картинки Края нужно обработать наждачной бумагой, чтобы они стали гладкими.Яндекс.Картинки Края нужно обработать наждачной бумагой, чтобы они стали гладкими.
Яндекс.Картинки С двух сторон трубы делаем отверстияЯндекс.Картинки С двух сторон трубы делаем отверстия
Яндекс.Картинки Просовываем поволоку в отверстиеЯндекс.Картинки Просовываем поволоку в отверстие
Яндекс.Картинки Фиксируем проволоку клеевым пистолетомЯндекс.Картинки Фиксируем проволоку клеевым пистолетом
Яндекс.Картинки должна быть плотной и без перехлёстовЯндекс.Картинки должна быть плотной и без перехлёстов
Яндекс.Картинки Проденьте проволоку в отверстие и отрежьте лишнееЯндекс.Картинки Проденьте проволоку в отверстие и отрежьте лишнее
Яндекс.Картинки Зафиксируйте клеем оба конца намоткиЯндекс.Картинки Зафиксируйте клеем оба конца намотки
Яндекс.Картинки Нанесите клей на трубуЯндекс.Картинки Нанесите клей на трубу
Яндекс.Картинки Приклейте трубку к деревяшкеЯндекс.Картинки Приклейте трубку к деревяшке
Яндекс.Картинки Приклеиваем к нашей деревяшке транзисторЯндекс.Картинки Приклеиваем к нашей деревяшке транзистор
Яндекс.Картинки Делаем катушку L1Яндекс.Картинки Делаем катушку L1
Яндекс.Картинки Надеваем L1 на L2Яндекс.Картинки Надеваем L1 на L2
Яндекс.Картинки Соединяем все элементы по схемеЯндекс.Картинки Соединяем все элементы по схеме
Яндекс.Картинки Делаем шарик из фольгиЯндекс.Картинки Делаем шарик из фольги
Яндекс.Картинки Соединяем фольгу с медным проводом L2 кактушкиЯндекс.Картинки Соединяем фольгу с медным проводом L2 кактушки
Яндекс.Картинки Проверяем все узлы и готовимся к первому пускуЯндекс.Картинки Проверяем все узлы и готовимся к первому пуску
Яндекс.Картинки Горящая лампа говорит о том что всё сделано правильноЯндекс.Картинки Горящая лампа говорит о том что всё сделано правильно
Включение, проверка и регулировка
Первое, что необходимо сделать – убрать подальше все электроприборы, включая мобильник, камеру, часы и т.д. Работающая катушка Тесла может вывести их из строя. Первый запуск делайте согласно следующей пошаговой инструкции:
- Выставьте переменный резистор, предусмотренный схемой, в среднее положение.
- Смотрите, чтобы не появлялись стримеры. Если этого не произошло, поднесите к прибору лампочку (обычную с нитью накала или люминесцентную).
- Свечение является показателем, что устройство работает, и все получилось.
- Если лампочка не зажглась, поменяйте полярность подсоединения первичного контура.
- Меняйте положение резистора, чтобы выбрать оптимальный режим яркости.
- Проверяйте транзистор на перегрев. При необходимости включите охладитель.
Если ни одна из мер не привела к желаемому результату, ищите проблему в конструкции. Возможно, придется изменить диаметр тороида. Но прежде всего проверьте целостность контуров. Лучше делать это при помощи тестера (ампермента, вольтметра и т.д.).
Меры безопасности и полезное видео
КТ в состоянии вывести из строя даже выключенные бытовые приборы, находящиеся в разиусе активного электромагнитного поля. Нужно не просто выключить их, а унести подальше. Имеет смысл перед первым пускам обесточить помещение, если испытания проводятся на столе, где есть розетка. Личная безопасность – главное требование. Когда приходит время проверять наличие стримеров, держитесь подальше. Сила тока в активной вторичной обмотке может достигать 700 Ампер, тогда как для человека смертельно уже 15А.
Источник: https://vodatyt.ru/moimi-rukami/katushku-tesla.html
Вам была полезна эта статья? Ставьте палец вверх! Подпишитесь на мой канал и давайте общаться в комментариях!
С уважением, Пётр Андреевич.
Крошечная катушка Тесла — DIY
Со временем я заметил, что так много любителей электроники спрашивают, как построить небольшую катушку Тесла с частями, лежащими вокруг. Я видел различные предлагаемые методы, включая полевые МОП-транзисторы, специализированные микросхемы контроллеров и т. Д. Однако я обнаружил, что самый простой способ — лучший. Следующая крошечная схема катушки Тесла требует нескольких компонентов и требует лишь средних навыков, чтобы построить ее с нуля. Данная схема, по сути, представляет собой небольшой возбудитель-убийцу — простую твердотельную альтернативу катушке Тесла.
Во-первых, обратите внимание на то, что есть горстка любителей, которые уже попробовали эту идею и не смогли добиться хороших результатов только из-за нескольких тонких ошибок, которые обычно происходят. В этой статье своими руками вы узнаете, как избежать подобных ошибок. А теперь давайте окунемся в мир катушек Тесла с недорогой схемой!
Вам понадобится:- Транзистор BD 243C (или транзистор D882-Y)
- ТО-220 радиатор
- 1 мкФ (105) керамический конденсатор
- 10K ¼-Вт резистор угольный
- 3-миллиметровый стандартный синий или красный светодиод (Vf = 1.6 В)
- Труба из ПВХ 5 ‘x ¾ дюйма
- 30-SWG Магнитопровод (медный эмалированный провод)
- Монтажный провод 8 мм (с однопроводным 21-SWG)
- Угольный резистор 1 кОм и стандартный красный светодиод 3 мм (для индикации питания — опция)
- Тефлоновая лента, верёвочный картон, клеи, винты и гайки и т. Д.
Для начала вам нужно намотать две катушки — вторичную и первичную. Помните, что вам нужно быть точным и аккуратным; в противном случае катушки не будут работать должным образом.Во-первых, это конструкция вторичной катушки (L2). Для L2 просто возьмите 5-дюймовый ПВХ и выровняйте магнитный провод примерно на дюйма снизу, пока не достигнете примерно дюйма сверху. Обязательно наматывайте провод плотно, прямо и без зазоров / нахлёстков. Как только вы дойдете до вершины, оставьте пару дюймов дополнительного провода, отрежьте и зачистите оба конца, чтобы сделать электрические контакты чистыми.
Электронных компонентов всего несколько, так что построить схему на куске вероборды довольно просто.Просто следуйте принципиальной схеме, чтобы построить электронику, и подключите ее точку, помеченную как «L2», к нижнему концу вторичной катушки (L2), как показано на принципиальной схеме. Сделать первичную обмотку (L1) очень просто. Для L1 просто намотайте пять витков соединительного провода вокруг вторичной катушки и подключите его концы к клеммам L1-1 и L1-2 схемы. Поскольку диаметр L2 составляет дюйма, хорошо наматывать L1 диаметром около 1 дюйма.
Затем дважды проверьте все соединения, держите вторичную катушку в вертикальном положении, осторожно включите цепь от адаптера постоянного тока 12 В / 1 А и медленно переместите первичную катушку от нижней части вторичной катушки (L2) к верху. .Закрепите первичную катушку (L1) в месте, где вы получаете максимальное свечение от синего / красного светодиода. Если светодиод никогда не светится, просто поменяйте местами соединения первичной катушки и повторите попытку, пока не получите положительный ответ. Наконец, отметьте это точное положение (зону наилучшего восприятия) и навсегда приклейте туда первичную катушку, предварительно намотав достаточное количество тефлоновой ленты между L1 и L2. Теперь вы можете запустить систему и наблюдать, как люминесцентные лампы и неоновые лампы загораются, как по волшебству, когда-то помещенные в непосредственной близости от вторичной катушки.Чтобы избежать перегрева, запускайте катушку Тесла только на короткое время (не более 15 секунд или меньше).
РезонансОдним из очень важных и утомительных шагов в этом проекте является намотка вторичной катушки. Необязательно быть очень точным с поворотами, но он должен иметь как минимум 250–300 поворотов. Убедитесь, что вы плотно наматываете магнитный провод, без зазоров и перекрытий. Если этот шаг пропустить, ваша лень сделает катушку бесполезной.К счастью, такая крайняя осторожность не требуется для первичной обмотки. См. Следующую фотографию — мой быстрый прототип плавно работает с «незакрепленной» трехвитковой первичной обмоткой!
По общему признанию, чрезвычайная простота электроники имеет свою темную сторону. Здесь частота отказов транзистора драйвера очень высока, и если поднять напряжение питания, он, скорее всего, внезапно сломается. Схема возбудителя убойного сигнала также вызывает сильный нагрев в транзисторе драйвера, потому что транзистор проводит большую часть своего времени в активном режиме, а не в режиме насыщения.Обратите внимание на следующие шаги, которые вы можете предпринять, чтобы значительно продлить срок службы вашего водителя:
- Используйте мощный радиатор для транзистора драйвера.
- Замените светодиод на диод Шоттки, например 1N5817.
- Попробуйте использовать подходящую верхнюю нагрузку (см. Следующую фотографию) для вторичной катушки, чтобы уменьшить резонансную частоту и улучшить общие характеристики. Это может быть предмет в форме диска или шара. Я попробовал установить 3-дюймовую стальную шайбу.
Честно говоря, я не гуру катушек Тесла, но я был очень доволен конечным результатом, хотя он был еще не совсем готов.Катушки (L2 и L1) пришлось настроить для обеспечения оптимальной производительности. Помимо этого, хотя я и получил первые результаты, мне еще предстоит многое улучшить. Я планирую построить очень компактную катушку Тесла, которую при необходимости будет легко разместить для демонстрации. Следите за обновлениями от меня. И, наконец, попробуйте этот проект и дайте мне знать, каковы ваши результаты, разместив фотографии, комментарии и предложения в разделе комментариев ниже!
Предупреждение. Это высоковольтная цепь, поэтому убедитесь, что вы всегда знаете, что делаете.Результирующее напряжение не является смертельным, но всегда помните, что нельзя прикасаться к катушке, когда на нее подается питание!
oneTeslaTS DIY музыкальный набор катушек Тесла
детали
Стреляйте двухфутовой молнией и воспроизводите музыку, используя высокое напряжение. Используйте силу электричества, чтобы удивлять и вдохновлять.
Благодаря своей прочной конструкции и топологии DRSSTC, сочетающей впечатляющие характеристики с музыкальными возможностями, oneTeslaTS поражает зрителей и побеждает на научных выставках.Его огромные искры и мощная музыка создают ошеломляющее зрелище, от которого бросаются в глаза.
Когда комплект будет успешно завершен, он сможет произвести более 20 дюймов искр от вторичной обмотки высотой менее 7 дюймов. Прерыватель (его музыкальный контроллер) может подключаться к MIDI-входу или напрямую считывать MIDI-файлы с SD-карты.
Первичная катушка с травлением на печатной плате, вторичная обмотка с машинной обмоткой, полированный спиральный тороид и шасси печатной платы — это высокоточные компоненты, которые делают oneTeslaTS прочным и надежным.Каждый комплект TeslaTS идеально настроен прямо из коробки, и, если ваша плата драйвера собрана правильно, вы можете быть уверены, что ваша катушка работает идеально.
В комплект входит все необходимое для создания катушки Тесла DRSSTC. Вам понадобится паяльник, ручные инструменты, мультиметр и лак, наносимый краской или спреем.
Если вы задавались вопросом, как построить катушку Тесла, но не знали, с чего начать, создание комплекта предоставит вам руководство и конструкцию, которая, как вы знаете, будет работать при правильной сборке.Наш форум поддержки предоставит помощь, если у вас возникнут проблемы, а запасные части находятся всего в одном клике.
Портативный контроллер, входящий в комплект поставки oneTeslaTS, обеспечивает прямое воспроизведение с карт Micro SD / SDHC. Новый интерфейс с меню и ЖК-экран позволяют просматривать файлы и выбирать режим, а также настраивать фиксированный режим до 1 Гц. Конечно, имеется также MIDI-вход через стандартный MIDI-разъем для взаимодействия с живыми инструментами или другими MIDI-устройствами.
Тип катушки: твердотельный с двойным резонансом (DRSSTC)
Напряжение шины: номинальное 340 В
Инвертор питания: 2x FGA60N65SMD
Конфигурация инвертора: полумост
Вторичный: 2,5×7 дюймов, магнитный провод 38,5AWG
Первичный: спиральный первичный элемент, интегрированный в плату
Потребляемая мощность: 200 Вт номинальная
Входы: Micro SD карта, MIDI через разъем DIN5
Обратите внимание: Батареи не включены по умолчанию, но их можно добавить в корзину, если вы являетесь пользователем U.S. заказчик (заказы на аккумуляторы будут отменены из международных заказов, поскольку мы не можем отправить их за пределы США).
Шнуры питания имеют вилки США. Если вы являетесь международным клиентом, вам необходимо приобрести собственный адаптер.
Катушка Тесла с малым искровым промежутком
Долгое время меня просили сделать катушку Тесла и показать, как сделать это, и поэтому я сделал то, что ниже. Это маленький, чтобы больше у людей будет шанс сделать один, и это тип искрового разрядника катушки Тесла, так как это самый простой в изготовлении тип.Этот спроектирован и настроен так, чтобы быть резонансным.
Ниже на этой странице есть несколько видеороликов о том, как это работает, и о том, как сделать это. Обратите внимание, что я сделал несколько вариаций, некоторые из которых вы можете увидеть на двух фотографиях ниже, которые подробно описаны ниже. вниз, включая спиральную первичную обмотку а также Конденсаторы своими руками / самодельные.
Эта катушка Тесла состоит из двух цепей: первичной цепи и вторичный контур (см. фото ниже). Первичный контур имеет 4 нФ конденсаторов 20 кВ, разрядник из двух шляпок гвоздей, и катушка из 7 витков изолированного провода 12AWG.Вторичный контур имеет около 750 витков изолированного эмалью провода 26AWG (также известного как магнитный провод) и покрытый алюминиевой фольгой шар сверху, называемый верхней загрузкой.
Он был разработан с использованием популярный калькулятор JavaTC и настроен так, чтобы первичная цепь находится на той же резонансной частоте, что и вторичный контур.
Источник питания, который питает его, выдает высокое напряжение постоянного тока и мой самодельный, я звоню Куб с двухтранзисторной схемой обратноходового трансформатора и встроенный диод.
Видео — Катушка Тесла с малым искровым промежутком
Это видео дает обзор вышеуказанной катушки Тесла с малым искровым промежутком. а затем показывает несколько потрясающе выглядящих демонстраций.
Как сделать катушку Тесла — Катушка Тесла с малым искровым промежутком
В этом видео шаг за шагом показано, как спроектировать, изготовить и настроить этот маленький искровой разрядник катушки Тесла. Ниже также приведена схема, которая поможет вам в дальнейшем.
Часто задаваемый вопрос: на каком напряжении должно подаваться высокое напряжение? источник питания быть способным? Сложно сказать, так как напряжение действительно ограничен размером искрового промежутка и геометрией электроды, используемые по обе стороны от искрового промежутка.Очень грубо, я бы По оценкам, напряжение было около 12 кВ. В моем случае я использовал свой Блок питания куба, способный к 20 кВ и относительно высокий Текущий. Сильный ток необходим для того, чтобы иметь возможность производить искры с довольно высокой частотой. Например, я сначала попробовал источник питания взят от электрическая мухобойка. Он смог произвести достаточно напряжение для создания искр, но только раз в секунду или около того.
Обратите внимание, что на схеме упоминается источник питания постоянного тока высокого напряжения. Этот потому что я не тестировал с AC. Для переменного тока дроссель обычно добавлен на одной из линий, выходящих из источника питания.
Первичные обмотки
Эта катушка Тесла была сделана таким образом, чтобы можно было легко попробовать разные первичные катушки в дополнение к той, что на фотографиях выше, как показано здесь.
Конденсаторы катушки Тесла своими руками / самодельные
Первые несколько версий вышеупомянутой катушки Тесла использовались серийно. конденсаторы, но я хотел показать, как сделать самодельные. Я впервые сделал некоторые используют 3 бутылки содовой, но они занимают много места Космос.Итак, я сделал плоская пластина конденсатора с использованием прозрачных пленок из фотокопировального магазина, который вы можете видеть ниже в виде горизонтальная доска в основании катушки Тесла.
Комплект катушекТесла | Катушки Тесла на продажу
Описание
Сделайте свою поющую катушку Тесла!
В ArcAttack мы годами экспериментируем с управлением нашими катушками Тесла с помощью музыки. Мы вложили в Thundermouse все, что узнали.Благодаря этим знаниям это самый продвинутый комплект, доступный на сегодняшний день. Наш комплект катушек Тесла своими руками позволит любому создать потрясающий дисплей с молнией, как в ArcAttack.
Thundermouse предлагает расширенные функции, ограничивая при этом конструкцию всеми сквозными компонентами. По этой причине его легко собрать. Эта простота достигается с помощью отладочной платы Cypress Psoc5. Также мы используем уникальный метод формирования огибающей первичного тока. Благодаря этому «Громовая мышь» может плавно перемещаться во многих режимах работы современной катушки Тесла.
Thundermouse реализует свои возможности с помощью одного USB-устройства с функцией plug and play. Он работает под Linux, Mac OSX и Windows. Подключите его, и Thundermouse соединится как виртуальный MIDI и последовательный порт. Таким образом, это устройство обеспечивает полный двусторонний контроль параметров мощности и производительности. Наше устройство работает напрямую с популярными музыкальными программами. К ним относятся Ableton Live, Apple Garage Band, Microsoft XPSynth и SonarX3 Studio.
Особенности включают:
- Простота сборки
- Управление до восьми Thundermice с помощью одного интерфейса USB
- Волоконно-оптический интерфейс
- Кроссплатформенное ПО
- Формирование первичного тока
- Расширенная поддержка MIDI
- Гнездо 1/4 ″ для электрогитары / аналоговый вход
- Возможность модернизации
- Полностью акриловое шасси для обеспечения устойчивости к высоким напряжениям
Техническое описание
Хотите построить катушку Тесла? В нашем электронном комплекте есть все необходимое, кроме двух важных вещей — Weld-on 4 и Weld-on 16.Выбор 110 В или 220 В осуществляется простой перемычкой (в комплект входит только шнур питания для США). После сборки подключите его и начните учиться пользоваться Thundermouse.
- Длина искры:> 3 ‘(в зависимости от режима)
- Макс. Первичный ток: 250
- Макс.импульс MIDI: 1000us +
- Максимальный однократный импульс: 20 мс +
- Первичный L: 15uh
- MMC: 0,033 мкФ, 4000 В
- Настройка: верхний полюс
- Рабочая частота: ~ 400 кГц
- Вторичный: обмотка 6 дюймов, диаметр 4 дюйма, 32AWG, 638 витков
- Вторичный резонанс: 21mh, 1.79pf, 335 кГц
- Сцепление: .308
- Вход В: 110 или 220
- Напряжение шины: 330 В
- Вт:> 1500
Интерфейс катушки Тесла USB
лет живых выступлений дали нам уникальную возможность разработать наиболее эффективные методы управления музыкой катушки Тесла. В нашем интерфейсе все это в одном флаконе, и его легко собрать. Это композитное USB-устройство распознает как общий интерфейс MIDI, так и последовательный порт. Четвертьдюймовый разъем обеспечивает аналоговое управление с помощью электрогитары или синтезатора.
USB MIDI функции:
- Гирляндное соединение до 4 Thundermice с одним устройством
- Постоянное обновление Программное обеспечение для ПК
- позволяет телеметрию напряжения и температуры, конфигурации в реальном времени
- ¼ дюймов для гитарных / аудиосигналов
- Недорогой оптоволоконный интерфейс
Драйвер катушки Тесла
Катушечный драйвер Thundermouse Tesla — самый мощный, но самый простой в сборке драйвер из имеющихся.Используя инновационную схему ограничения высокоскоростного тока, наш драйвер обеспечивает точное управление огибающей первичного тока при сохранении нулевого тока переключения и низких коммутационных потерь. Преимущества этого диапазона от минимизации требований к оборудованию, максимального отношения длины искры к длине вторичной обмотки, плавного перехода между режимами работы, не говоря уже о открытии возможностей для управления тоном и тембром при использовании в музыкальных целях.
Особенности:
- Инновационная система ограничения тока
- Полностью сквозная конструкция для облегчения сборки или ремонта Микросхемы драйвера затвора
- IXDN630 позволяют управлять затвором 24 В, 14 А
- Двойные выходы управления затвором для передовых технологий управления мостом H
- Может использоваться в других проектах катушек своими руками.
- Напряжение на шине, напряжение затвора и обратная связь по температуре радиатора
- Предназначен для работы с USB-интерфейсом Thundermouse
- Постоянное обновление
Н-образный мост
В музыкальной катушке Тесла Thundermouse используется полный мост из IGBT FGH60N60SMD. При правильном управлении эти устройства оказались очень надежными в приложениях с катушками Тесла. Этот компактный модуль можно настроить с помощью перемычек для работы со стандартами питания 110 или 220 В.
Характеристики:
- Вход 110 или 220 В
- Реле заряда и хода
- 2200 мкФ емкость шины
- Шина В до 350 В постоянного тока
- Обратная связь по напряжению шины
- Вариак не требуется
MMC
Используя конденсаторы 942C20S33K-F, эта MMC неплохо работает для такого небольшого и простого в сборке корпуса. И не бойтесь, мы оставили достаточно места в шасси для обновлений для тех, кто хочет поэкспериментировать с большой длиной искры.
Характеристики:
Первичная обмотка
Тороидальные первичные обмотки превосходно обеспечивают высокое сцепление и снижают риск перекрытия. Это улучшение связано с их свойствами формирования поля. Первоначальная рекомендуемая установка оставляет несколько дополнительных ходов для обновлений или экспериментов по настройке. Медная трубка открывает возможности для модернизации системы охлаждения.
Характеристики:
- Медная трубка 3/16
- Высокотемпературная акриловая рама
- 15 мкг индуктивность
- конструкция для низкого напряжения
Вторичная обмотка
Каждая вторичная обмотка изготавливается на станке в соответствии с точными спецификациями для обеспечения повторяемости конструкции.638 витков проволоки 32awg наматывают на 4-дюймовую акриловую форму, затем покрывают однородной эпоксидной смолой и оставляют сушиться.
Характеристики:
- Длина намотки 6 ″
- 32awg магнитный провод
- 21mh индуктивность
- Емкость обмотки 2 пФ
- 335 кГц собственная резонансная частота
Пополнение
Кольцевые тороидыизвестны своей простотой сборки, а также хорошим эстетическим выбором. В сочетании с акриловой рамкой он обеспечивает как обтекаемый вид, так и отличные высоковольтные характеристики.
Характеристики:
- Общая емкость 9 пФ
- Наибольший диаметр 8 ″
- Малый диаметр 2 ″
- 8 колец гибкой алюминиевой трубки 3/16
- Простота сборки
Часто задаваемые вопросы о комплекте катушки Тесла
Могу ли я использовать драйвер Thundermouse в другой конструкции катушки?
Да, можно. Все настройки настраиваются для разных частот и режимов работы.
Нужен ли мне USB-контроллер для каждой Thundermouse?
Один USB-контроллер может управлять до 8 Thundermice.Хотя потенциально меньше, если MIDI содержит высокие значения высоты тона и управляющих данных. Вы просто подключаете драйверы последовательно, чтобы создать кольцевую сеть.
Является ли ваше USB-устройство «прерывателем»?
Ранее в этом столетии мы отказались от традиционных прерывателей. Контроллер — это просто составное USB-устройство, предназначенное для двусторонней связи с катушкой Тесла. «Прерыватель» расположен на плате драйвера и интегрируется с логикой драйвера.
Является ли Thundermouse катушкой QCW или DRSSTC?
Оба.Thundermouse использует инновационный, но простой в использовании интерфейс формирования огибающей первичного тока. Используя высокоскоростные алгоритмы, мы можем создавать динамические формы первичного тока. Интерфейс управления похож на ADSR. Все настройки можно изменить в реальном времени с помощью MIDI.
DIY Миниатюрная катушка Тесла — RMCybernetics
Питание от постоянного тока с плазменным выходом
Целью этой конструкции было получение максимально возможного напряжения (или самой длинной дуги) от одного автономного устройства.
Катушка работает от 12 В или 24 В батарей SLA. Пара автомобильных катушек зажигания используется для обеспечения около 20 кВ для зарядки конденсаторной батареи. Катушки зажигания возбуждаются прямоугольной волной переменной частоты от микросхемы синхронизации 555 и четырех больших транзисторов (2N3055).
Входное напряжение | 12-24 В постоянного тока | |
Потребляемая мощность | 250 Вт макс. | |
Макс.длина дуги | 25 см | |
Выходное напряжение (приблизительное) | 250 кВ | |
Первичный трансформатор | Две параллельные катушки зажигания автомобиля — 20кВ | |
Конденсатор | MMC 20 кВ | |
Искровой разрядник | Трубы 5 x 6 мм, переменная | |
Первичные витки | 850 | |
Вторичные витки | 850 | |
Дополнительная высота | 40 см | |
Дополнительная ширина | 5 см | |
Пополнение | Сфера 10см | |
Особенности | Терминал плазменного / пламенного разряда с питанием от батареи Полностью переносной Переменная муфта Basic Power Management |
Труба, идущая от отверстия в верхней части сферы до внутренней части вторичной катушки, используется для подачи газа для образования плазменного электрода.
Используя газ бутан и воздух, голубое пламя можно использовать в качестве интересного разрядного вывода. Выбросы нагретого CO 2 образуют канал низкого давления, по которому электричество проводится легче, чем воздух. Это создает большой плазменный столб над пламенем. При определенных скоростях разряда искрового промежутка плазменный столб может быть похож на стабильное образование двойной спирали. Небольшие количества других газов, таких как неон или гелий, могут быть смешаны с бутаном для получения немного других цветов и эффектов.Приведенная ниже таблица должна помочь вам найти некоторые компоненты, необходимые для этого проекта.
Больше фотографий плазмы
Конденсаторная батарея — Конденсатор, используемый в этом проекте, был сделан путем объединения большого количества конденсаторов меньшего номинала. При последовательном подключении конденсаторов меньшего размера общее напряжение, которое они выдерживают, увеличивается. Для получения большей емкости (емкости) конденсаторы можно подключать параллельно. Этот тип конденсаторной батареи известен как MMC (Multi Mini Capacitors).В следующей версии этого проекта будут использоваться специально разработанные конденсаторы большой емкости для импульсного разряда. Эти конденсаторы могут быть более эффективными, чем MMC, но они могут быть дорогими и их трудно найти.
Первичный трансформатор — Для этой конструкции используются катушки зажигания (индукционные катушки), полученные со склада металлолома. Старые катушки зажигания представляют собой очень дешевый способ создания высокого напряжения для зарядки конденсатора. Повышение напряжения в катушке зажигания не определяется соотношением витков, как в обычных трансформаторах.Вторичное напряжение зависит от скорости изменения тока в первичной катушке. Старые катушки зажигания, например, со свалки, могут не работать так же хорошо, как новые. Со временем изоляционное масло внутри корпуса становится менее эффективным и может привести к возникновению внутренней дуги. Это может повредить транзисторы и схему управления, сделав их бесполезными
Схема управления — Схема управления основана на простом генераторе, обеспечиваемом микросхемой таймера NE555. Прямоугольные импульсы отправляются на набор из четырех силовых транзисторов 2N3055, установленных на большом радиаторе.Эти транзисторы могут довольно быстро переключать большую мощность, но они могут быть чувствительны к скачкам напряжения, вызванным обратной связью в цепи или неисправными катушками зажигания. Схема драйвера катушки зажигания, показанная ниже, показывает, как сигнал от микросхемы 555 предварительно усиливается, чтобы можно было эффективно управлять большой решеткой транзисторов. Использование транзисторов 2N3055 таким образом не идеально, но это то, что у нас было в наличии на тот момент для проекта. Современные транзисторы IGBT намного более эффективны и менее подвержены отказу от скачков напряжения.
Выходной сигнал катушек зажигания выпрямляется (преобразуется в постоянный ток с помощью диодов), так что он может заряжать батарею конденсаторов C1, показанную ниже.
Катушки — Первичная катушка просто сделана из 2-миллиметрового эмалированного медного провода, намотанного на пластиковую подставку. Всего имеется шесть витков, но при настройке соединение выполняется примерно на 4,5 витка. Вторичная обмотка намотана из эмалированной медной проволоки диаметром 0,4 мм на пластиковую дренажную трубу.
Безопасность — К конденсатору прикреплен переключатель короткого замыкания, который приводится в действие длинной пластиковой ручкой.Это используется, чтобы убедиться, что конденсатор полностью разряжен и не может перезарядиться при выполнении каких-либо ручных регулировок. Также имеется переключатель для отключения питания от катушек зажигания, который активируется с помощью изолирующего натяжного шнура.
Особенности. — Этот проект имеет несколько дополнительных функций по сравнению с обычной катушкой Тесла. Сфера с верхней загрузкой имеет небольшое отверстие для выхода газа. Пластиковая труба диаметром 5 мм проходит по внутренней стороне вторичной катушки и выходит из пластикового основания.
Фотографии плазмы и дуги
Это позволяет подавать газ по трубопроводу, не мешая нормальной работе катушки Тесла.
Будущие разработки — Этот проект в настоящее время модернизируется. Новый дизайн направлен на достижение более высокой пропускной способности. При параллельном использовании большего количества катушек зажигания можно увеличить размер искрового промежутка или ускорить его зажигание. Новые катушки зажигания будут использоваться вместо бывших в употреблении катушек для повышения стабильности.Новый дизайн также включает функции контроля напряжения и мощности. Он также имеет аккуратную металлическую отделку и несколько выходов, поэтому его можно использовать в качестве многоцелевого портативного источника питания высокого напряжения
Щелкните здесь, чтобы увидеть новый проект
Как сделать катушку Тесла, построить твердотельную катушку Тесла / цепь возбудителя-убийцы
Как сделать катушку Тесла, построить твердотельную катушку Тесла, также называемую цепью возбудителя-убийцы
Как сделать катушку Тесла (урду) Как сделать катушку Тесла Как сделать катушку Тесла .Простая твердотельная катушка Тесла, также называемая цепью возбудителя-убийцы (возбудитель-убийца — это трансформатор с воздушным сердечником, который повышает напряжение постоянного тока от очень низкого до очень высокого напряжения переменного тока). строить под присмотром родителей или учителя.
Что такое катушка Тесла? Катушка Тесла — это электрическая резонансная трансформаторная схема, изобретенная Николой Тесла около 1891 года. Она используется для выработки высокого напряжения с низким током и высокой частотой переменного тока.Тесла экспериментировал с множеством различных конфигураций, состоящих из двух, а иногда и трех связанных резонансных электрических цепей. Подробнее.
Что такое катушка Тесла? Slayer Exciter — это трансформатор с воздушным сердечником, повышающий очень низкое постоянное напряжение до очень высокого переменного напряжения)
В этом посте мы приводим только список и схему, построение этого проекта можно изучить с помощью видеоурока
Материал
- Транзистор 2n2222
- светодиод
- медный провод сечением от 26 до 30
- Труба ПВХ
- соединительные провода
- Хлебная доска
- аккумулятор 9В
(Примечание: нажмите на скрытые субтитры, чтобы увидеть субтитры на английском языке)
<
Предупреждение: возбудитель Slayer создает электромагнитное поле, которое может отрицательно повлиять на электронное оборудование
Обновлено видео:
(Примечание: щелкните скрытые субтитры, чтобы увидеть субтитры на английском языке)
Руководство по проектированию, строительству и эксплуатации катушек Тесла
Введение
Добро пожаловать в руководство по проектированию, изготовлению и эксплуатации катушек Тесла.Я надеюсь, что это руководство послужит исчерпывающим пошаговым справочником с простыми инструкциями. Следуя этому руководству, вы можете построить катушку Тесла, способную генерировать более 4-дюймовые дуги молнии.
Проект
Руководство начнется с базового введения в катушки Тесла, как они работают и как правильно их спроектировать. Этот раздел в основном содержит утомительные уравнения и формулы, используемые в процессе проектирования. К счастью, использование программного обеспечения, такого как программа проектирования катушек TeslaMap Tesla, может быстро и легко выполнить все необходимые расчеты за вас.Если вы решите использовать программу, вы можете пропустить раздел дизайна и использовать ее в качестве справочника. Этот раздел, вероятно, станет более понятным после прочтения раздела «Конструкция», в котором детали катушки Тесла описаны более подробно.
Строительство
Этот раздел проведет вас через процесс создания катушки Тесла. Я покажу вам все необходимые детали и дам советы, которые помогут избежать ошибок.
Операция
Наконец, я объясню, как настроить и отрегулировать вашу катушку Тесла для безопасной работы и максимальной эффективности.Я предложу несколько советов по устранению неполадок, которые помогут вам решить те мелкие проблемы, которые часто возникают.
Это руководство предназначено для всех, у кого есть базовый или продвинутый опыт работы с электроникой, у кого есть свободное время и есть желание создать собственное освещение. Полезно иметь некоторый практический опыт работы с электроникой, но это не обязательно. В этом руководстве рассматриваются только традиционные катушки Тесла, но не твердотельные катушки Тесла или увеличительные катушки Тесла. Тем не менее, все типы катушек Тесла имеют много общих частей и принципов работы, поэтому это руководство по-прежнему может использоваться в качестве справочного материала для других типов катушек Тесла.Я стараюсь заверить, что вся информация в этом руководстве верна, но исследования постоянно создают новые методы, а старые идеи улучшаются или отбрасываются. Пожалуйста, дайте мне знать, если у вас есть исправление или предложение, отправив мне электронное письмо по адресу: [email protected], и я свяжусь с вами, как только смогу.
Это руководство было написано для использования вместе с программой TeslaMap. Программа TeslaMap — это самый быстрый и простой способ сконструировать катушку Тесла. Несколько образцов конструкции катушек Тесла включены в программу TeslaMap.TeslaMap идеально подходит для быстрого и простого создания работающей конструкции катушки Тесла, однако это не программа моделирования катушки Тесла. Чуть более точная программа под названием JAVATC, написанная Бартом Андерсоном, может предоставить более подробные параметры катушки Тесла, хотя ее использование может быть более сложным и трудоемким.
В руководстве я использую этот тип области для потенциально опасной информации. Пожалуйста, обратите особое внимание на эту информацию.
В руководстве я использую этот тип области для информации, которая может помочь вам избежать типичных ошибок.
Если у вас есть какие-либо вопросы или предложения, напишите мне по адресу: kevin@teslacoildesign.