Ремонт импульсного блока питания своими руками: Ремонт импульсных блоков питания: схемы, описание, неисправности

Содержание

Ремонт импульсного блока питания своими руками

В зависимости от причин и видов возникших поломок, могут потребоваться различные виды инструментов, обязательно необходимо иметь:

  • набор отверток с различными типами рабочих наконечников и размерами;
  • изоляционная лента;
  • пассатижи;
  • нож с острым лезвием;
  • паяльный аппарат, припой и флюс;
  • оплетка, предназначенная для удаления ненужного припоя;
  • тестер или мультиметр;
  • пинцет;
  • кусачки;

В наиболее сложных случаях, когда не удается установить точную причину неполадок, может понадобиться осциллограф.

Ремонт основных неисправностей

После осуществления диагностики, и выявления причин некорректной работы импульсного блока питания, можно приступать к его ремонту:

  1. Скопившуюся внутри блока питания пыль можно просто устранить при помощи обычного бытового пылесоса.
  2. Если причина была в неисправном предохранителе, то необходимо приобрести новую деталь, которая имеется во всех соответствующих в магазинах. После этого, осуществляется удаление старого элемента и пайка нового предохранителя. Если эта последовательность действий не помогла, и блок питания так и не заработал, то остается отдать его в мастерскую для диагностики при помощи профессиональных видов оборудования, либо просто приобрести новое устройство.
  3. Если проблема была в конденсаторах или диодах, то неисправность исправляется по такому же алгоритму: приобретаются новые детали и впаиваются в схему вместо старых элементов.
  4. Если проблема неисправности заключалась в дросселе, то его заменять необязательно, поскольку этот элемент можно починить по довольно легкой методике. Дроссель извлекается из блока питания, после чего его потребуется разобрать и начать сматывать обгоревший провод, при этом, важно внимательно считать сматываемые витки. Затем необходимо подобрать аналогичный провод с равным диаметром и намотать его вместо испорченного проводника, осуществляя такое же количество витков, которое было смотано. После осуществления этих действий, дроссель устанавливается обратно на свое место и, если все было сделано правильно, устройство должно функционировать.
  5. Термисторы ремонту не подлежат, их просто меняют на новые элементы, чаще всего это осуществляется вместе с предохранителями.
  6. Для профилактики, во время ремонта можно извлечь из устройства кулер и смазать машинным маслом, после чего установить его на место.
  7. Если на поверхности платы были обнаружены трещины, которые повредили соединение контактов, то их необходимо закрыть при помощи пайки. Таким же образом исправляется любое нарушение контактов в резисторе, индукторе или трансформаторе.

Устройство

структурная схема ИБП

Блоки питания подобного типа являются по своей сути разновидностью стабилизаторов напряжения, устройство которых выглядит следующим образом:

  1. Сетевой выпрямитель является одним из основных элементов, который необходим для сглаживания возникающих пульсаций. Также, он требуется для поддержания заряда фильтрующих конденсаторов во включенном режиме и непрекращающейся передаче электроэнергии в нагрузку, если напряжение в главной питающей сети упало ниже допустимых для работы параметров. В его конструкцию входят особые разновидности фильтров, позволяющие подавлять большинство возникающих помех.
  2. Преобразователь напряжения, основными составными частями которого являются конвертор и контроллер управляющего устройства.
  3. Конвертор также имеет сложную структуру, в которую входит трансформатор импульсного типа, инвертор, ряд выпрямителей и стабилизаторов, которые обеспечивают вторичную подпитку и снабжение нагрузки напряжением. Инвертор необходим для изменения формы постоянного выходного напряжения, которое после процесса преобразования становится переменным напряжением с прямоугольной формой. Наличие трансформатора, функционирующего на высоких частотах со значением выше 20 кГц, обусловлено необходимостью поддержания рабочего состояния инвертора в автогенераторном режиме, а также получения напряжения, которое используется для подпитки контроллера, нагрузочных цепей и ряда защитных схем.
  4. Контроллер выполняет функции по управлению транзисторным ключом, который входит в состав инвертора. Помимо этого, он стабилизирует параметры напряжения, подаваемого на нагрузку, и защищает устройство в целом от возможных перегрузок и нежелательных перегревов. Если в блоке питания имеется дополнительная функция, обеспечивающая дистанционное управление устройством, то за ее реализацию также отвечает контроллер.
  5. Контроллер блоков питания подобного типа состоит из целого ряда функциональных узлов, таких как источник, обеспечивающий его бесперебойным питанием; защитная система; модулятор длительности импульсов; логическая схема для обработки сигналов и формирователь особого вида напряжения, предназначенного для поступления на транзисторы, располагающие в конверторе.
  6. В большинстве современных моделей, присутствуют оптроны, используемые в качестве развязки. Они постепенно заменяют собой трансформаторные разновидности развязки, это происходит благодаря тому, что они занимают меньше свободного пространства и обладают возможностью передачи сигналов в гораздо более широком частотном спектре, но при этом требуют значительного количества промежуточных усилителей.

Основные неисправности и их диагностика

Иногда импульсные блоки питания ломаются и их неисправности могут носить самый разный характер, но существует ряд схожих случаев, на основе которых был составлен список наиболее часто встречающихся видов неисправностей:

  1. Нежелательное попадание внутрь устройства пыли, особенно строительной.
  2. Выход из строя предохранителя, чаще всего эта проблема вызывается другой неисправностью – выгоранием диодного моста.
  3. Отсутствие выходного напряжения при работоспособном и исправном предохранителе. Данная проблема может быть вызвана различными причинами, наиболее часто ими является поломка выпрямительного диода, либо перегорание фильтрационного дросселя в низковольтной области схемы.
  4. Выход из строя конденсаторов, чаще всего это случается по следующим причинам: потеря емкости, приводящая к плохому качеству фильтрации напряжения на выходе и повышению уровня рабочих шумов; чрезмерное увеличение параметров последовательного сопротивления; короткое замыкание внутри устройства или разрыв внутренних выводов.
  5. Нарушение соединений контактов, которое чаще всего вызывается трещинами в плате.

Если блок питания по каким-либо причинам вышел из строя, то перед самостоятельным проведением любых работ по устранению неполадок необходимо провести тщательную диагностику, чтобы выявить их причины.

В зависимости от разных ситуаций, эта процедура имеет свои особенности:

  1. Осмотреть блок питания в целом на наличие скопившейся в нем пыли, которая может быть причиной его некорректной работы.
  2. Проверить главную плату на наличие на ее поверхности трещин.
  3. Проведение визуального осмотра основной платы блока питания позволяет определить состояние предохранителей. Заметить поломку будет достаточно просто, этот элемент устройства вздуется или полностью разрушится в случае пробоя. Также рекомендуется сразу провести комплексную проверку силового моста, конденсатора фильтра и всех силовых ключей.
  4. Если предохранитель находится в исправном состоянии, то необходимо проверить дроссель и электролитные конденсаторы, неисправности также элементарно выявляются визуальным методом по возникшим деформациям либо вздутиям. Сложнее осуществляется диагностика диодного моста или отдельных диодов, их потребуется выпаять из схемы и отдельно проверить при помощи тестера или мультиметра.
  5. Проверка конденсатором также осуществляется визуальным методом, поскольку возникшие перегревы могли расплавить электролит и разрушить их корпусы, или при помощи специального прибора, предназначенного для измерения уровня их емкости, если внешних неисправностей выявлено не было.
  6. Провести осмотр термистора, который подвержен частым поломкам из-за скачков напряжения или перегревов. Если его поверхность стала черной, а сам он разрушается от легких прикосновений, значит, причина неполадок именно в нем.
  7. Проверить контакты всех оставшихся элементов (резистора, трансформатора, индуктора) на возможные нарушения соединения.

Советы

Дополнительно при осуществлении диагностики или ремонта импульсных блоков питания рекомендуется следовать следующим советам:

  1. Осуществление самостоятельного ремонта подобных устройств является довольно сложным процессом, который требует определенных навыков и знаний, даже если в наличии имеются подробные инструкции. Поэтому, если отсутствует уверенность в своих силах, лучше обратиться к квалифицированному мастеру, чтобы не нанести блоку питания еще более серьезные поломки.
  2. Перед началом осуществления любых действий с импульсным блоком питания, его необходимо отключить от электросети. При этом, нажатие соответствующей клавиши на самом устройстве не гарантирует полной безопасности во время ремонта, поэтому необходимо осуществить отключение силового шнура.
  3. После того, как блок питания был полностью обесточен, необходимо выждать около 10-15 минут перед началом каких-либо работ. Это время требуется для полной разрядки конденсаторов на плате.
  4. Если требуется проведение паяльных работ, то их необходимо осуществлять крайне осторожно, поскольку перегрев места пайки может вызвать отслоение дорожек, а также существует риск их замыкания припоем. Лучше всего, для этих целей подходят паяльные аппараты с параметром мощности, находящимся в диапазоне 40-50Вт.
  5. Сбор блока питания после окончания ремонта, допускается производить только после внимательного осмотра мест пайки, в частности, требуется проверка замыкание припоем между дорожками.
  6. Рекомендуется обеспечить импульсному блоку питания качественную вентиляцию и охлаждение, которые защитят его загрязнений и перегревов, что минимизирует возможные поломки. Также, не допускается перекрытие вентиляционных отверстий на устройстве.

Статья была полезна?

0,00 (оценок: 0)

Ремонт импульсного блока питания: определяем поломку

 

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.

Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.

Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;

Диодный мост

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Вольтметр

 

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

 

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.

Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.

При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

 

Ремонт импульсного блока питания своими руками

Ремонт импульсного блока питания своими руками

Сегодня встретить импульсные блоки питания можно практически в любой технике. Это современные преобразующие напряжения устройства, которые пришли на замену трансформаторным блокам питания.

Состоит импульсных блок питания из конденсаторов и микросхем, сетевого выпрямителя и задающего генератора. Преимущества таких блоков питания в их надежности исполнения, небольших габаритах и очень распространённой элементной базе.

Однако ничего не вечно, и со временем даже современный импульсный блок питания может выйти из строя. В статье elektriksam.ru приведены основные виды поломок импульсных блоков и возможность их ремонта своими руками.

Основные поломки импульсных блоков питания

Чтобы устранить любую неисправность, нужно добраться до платы импульсного блока. Также после разборки корпуса необходимо будет очистить всю пыль и загрязнения пылесосом, чтобы лучше видеть элементы устройства. В первую очередь импульсный блок питания нужно подвергнуть визуальному исследованию.

Здесь важно обратить внимание, нет ли вздутых конденсаторов на плате и подгоревших резисторов. Анализу на исправность подвергается в первую очередь и предохранитель импульсного блока питания. Если визуально его целостность проверить не удалось, то следует использовать мультиметр в режиме прозвонки.

Вздутые конденсаторы в блоке питания, а также пробитые диоды необходимо заменить на аналогичные, путём выпаивания. А вот дроссель, который часто выходит из строя, можно починить и своими руками.

Для этого нужно выпаять дроссель с платы импульсного блока питания, после чего заменить сгоревшую проводку на нем, предварительно подсчитав количество витков и их положение. Не подлежат ремонту в импульсном блоке питания термисторы. Их нужно просто заменить на подходящие.

Даже малейший ремонт импульсного блока питания сопровождается чисткой платы и визуальным осмотром. При выявлении мест с нарушенными контактами, в ход идёт паяльник. Контакты заново пропаиваются оловянным припоем с лужением. Отдельного внимания заслуживает обслуживание вентилятора, если он установлен в корпус импульсного блока питания.

Особенности ремонта блоков питания

Не стоит браться за ремонт импульсного блока питания, если нет минимальных навыков и знаний в этом. Гораздо проще будет обратиться за помощью к профессионалам, чем полностью спалить весь блок.

Никогда не следует пренебрегать собственной безопасностью. Прежде чем ремонтировать блок питания, обязательно отключите сетевой шнур из розетки.

Помните, что в конденсаторах все еще остаётся некоторое количество заряда. Для полной разрядки конденсатора следует выждать не менее 20 минут.

Для пайки элементов питания блока используйте только подходящий паяльник. Его мощность должна быть около 40 Вт, так как в противном случае, более мощное паяльное оборудование, способно привести к перегреву деталей и отслоения дорожек платы без возможности дальнейшего восстановления.

Отремонтированный блок питания собирается только после того, как тщательным образом будет исследована зона пайки на предмет замыкания контактов и дорожек. При выявлении таких случаев используйте флюс и паяльник, чтобы собрать и удалить весь лишний припой с платы.

как отремонтировать БП телевизора, компьютера

Компьютеры, современные телевизоры и некоторые другие приборы подключаются к электрической сети через импульсный блок питания.

И нередко причина их неработоспособности кроется в поломке именно этого компонента.

В ряде случаев может потребоваться ремонт импульсных блоков питания своими руками, и если пользователь владеет хотя бы основами радиолюбительства, справится с повреждением самостоятельно.

Основные неисправности

Импульсный БП отличается от обычного трансформатора с выпрямителем, наличием инвертора — схемы, увеличивающей частоту переменного тока с 50 Гц до десятков кГц. При такой частоте значительно уменьшаются размеры рабочего узла, потому импульсный блок компактнее и легче своего предшественника.

Состоит импульсный блок из таких компонентов:

  1. выпрямитель (диодный мост) с конденсатором для сглаживания пульсаций. Преобразует сетевой переменный ток в однонаправленный. Почти в половине случаев причина поломки кроется здесь — пробит диод либо раздулся конденсатор;
  2. инвертор. Состоит из быстро переключающихся ключевых транзисторов и управляющей ими микросхемы. Здесь выпрямленный постоянный ток снова превращается в переменный, но уже с частотой порядка 80 кГц. Ключевые транзисторы — слабое место. Примерно третья часть поломок обусловлена перегоранием одного из них;
  3. импульсный трансформатор. Преобразует высокое сетевое напряжение в низкое, необходимое для работы прибора;
  4. выпрямитель со сглаживающим фильтром. Также представляет собой диодный мост, но используются особые быстро открывающиеся диоды (из-за высокой частоты тока на входе). Преобразует высокочастотный переменный ток в постоянный и подает его на прибор. Работает при низком напряжении, потому выходит из строя значительно реже — примерно в 15% случаев.

Пульсации сглаживаются выходным фильтром, состоящим из дросселя и конденсатора. В редких случаях в катушке происходит межвитковое замыкание либо он перегорает.

Ремонтопригодны только БП дискретной сборки — у них каждую радиодеталь можно выпаять и проверить на работоспособность. В противоположность им существуют монолитные БП со схемой, залитой компаундом. Такие устройства не ремонтируют даже в мастерских, они подлежат замене.

Измерительные приборы и инструмент

В процессе ремонта понадобятся:

  • паяльник: предпочтительна модель с регулировкой мощности;
  • мультиметр;
  • осциллограф: существенно расширяет возможности мастера в поиске причин неисправности;
  • оловоотсос: инструмент, посредством которого удаляют расплав припоя;
  • отвертки;
  • кусачки;
  • пинцет;
  • лампа накаливания мощностью 100 – 150 Вт.

Применяются материалы:

  • припой;
  • флюс;
  • спирт или очищенный бензин для обезжиривания контактов.

Поиск неисправностей

Первым делом прозванивается сетевой шнур. И только потом, если он в порядке, разбирают электрический адаптер. Диагностику начинают с осмотра платы. Вышедшие из строя радиодетали зачастую распознаются по внешнему виду. Конденсаторы — вздуты либо вскрыты в верхней части, возможно вытекание жидкости из корпуса. Перегоревшие резисторы и диоды могут почернеть.

Также осматривают места пайки, особенно контакты первичной катушки импульсного трансформатора. Если визуально повреждение не обнаруживается, включают блок в сеть и последовательно проверяют наличие напряжения в разных частях схемы, двигаясь от предохранителя к низковольтному выпрямителю.

Сторона первого определяется по подходящему к ней сетевому шнуру, тогда как от второго идут соединительные провода к аппаратуре.

Токоведущие части включенного в сеть блока находятся под высоким напряжением. Работы ведут с предельной осторожностью, соблюдая правила техники безопасности. Если, например, после предохранителя напряжение обнаруживается, а после входного выпрямителя — нет, значит последний неисправен. Его диоды выпаивают и прозванивают мультиметром.

Найдя дефектный, не ограничиваются его заменой, а сначала проверяют все остальные. Если какой-то из них также поврежден, и его оставить без замены, то новая радиодеталь при включении БП может сгореть. Конденсатор удобно проверять при помощи специальной функции мультиметра (имеется не у всех). При ее отсутствии применяют другие способы.

Например, включают прибор в режиме измерения сопротивления, касаются щупами выводов конденсатора и засекают время до полной зарядки (показания на экране вырастут до «бесконечности»).

Затем сравнивают результат с аналогичным показателем зарядки заведомо исправного такого же конденсатора. Если в высоковольтной части БП напряжение имеется, но на выходе его нет — причину неисправности ищут в низковольтном выпрямителе или его LC-фильтре.

Конденсаторы и диоды проверяют по описанной схеме, а дроссель LC-фильтра прозванивают.

В некоторых мультиметрах имеется и функция определения параметров транзистора.

Ремонт стандартных устройств

Задача по восстановлению работоспособности БП телевизора или компьютера упрощается тем, что по своей схеме эти устройства однотипны. Отличия заключаются только в параметрах — номинале радиодеталей и выходной мощности. Соответственно, к таким БП применим один и тот же алгоритм поиска неисправностей и их устранения. Далее он подробно рассматривается.

Ремонт БП телевизора

Перед ремонтом телевизионного БП полезно обзавестись его схемой. Принцип работы у этих БП тот же, что и у любого другого. Но он производит несколько выходных напряжений, отчего процесс диагностики немного усложняется.

Схема импульсного источника питания телевизора

Еще одна трудность — наличие нескольких систем защиты при отклонениях Uвых. от нормы. Из-за них, симптомы многих поломок выглядят однообразно: БП вообще не подает признаков работоспособности.

Сегодня схему БП практически любого телевизора можно найти в интернете. На поломку блока питания указывает неработоспособность светодиода, обычно работающего в режиме ожидания. Если же он горит, причину ищут в другом.

В рамках диагностики проверяют следующие элементы:

  1. предохранитель. Если за ним напряжение отсутствует, деталь меняют;
  2. балластные сопротивления. Их обрыв — возможная причина неисправности;
  3. сглаживающие конденсаторы высоковольтного и низковольтного выпрямителей. Возможен пробой;
  4. дроссель LC-фильтра низковольтного выпрямителя. Возможны обрыв и межвитковое замыкание. Если данная модель БП встречается редко, и найти аналогичный дроссель в продаже не удается, его перематывают самостоятельно из провода того же сечения. Важно соблюсти правильное количество витков;
  5. диоды выпрямителей. Чаще выходят из строя полупроводники высоковольтного преобразователя, поскольку они работают под высоким напряжением. В отличие от перечисленных выше радиодеталей, диоды для диагностики приходится выпаивать.

Проверить на работоспособность микросхему инвертора в домашних условиях нельзя. О ее неисправности судят по косвенным признакам: если нормальное состояние всех прочих элементов подтверждено, а БП все равно не работает.

Если предохранитель цел, проверяют напряжение на выходе высоковольтного выпрямителя, интересуют параметры:

  • значение;
  • амплитуда пульсаций (определяется осциллографом).

Нормальное показатели — от 280 до 320 В. При низких значениях проверяют диоды. Высокая амплитуда пульсаций свидетельствует о неисправности сглаживающего конденсатора или обрыве выпрямителя.

Если напряжение в норме, проверяют характер неисправности, возможны два варианта:

  1. БП вообще не включается;
  2. пытается включиться, но отключается системой блокировки (реагирует на заниженное или повышенное выходное напряжение).

Снова применяют осциллограф. Его вход подсоединяют к выводу ключевого транзистора инвертора, подключенного к первичной обмотке трансформатора.

Заземляют прибор на «горячую землю» БП. Если при включении телевизора кнопкой питания на осциллографе появляется серия импульсов, это свидетельствует о попытках запуска. Значит, устройство блокируется одной из защит, например, от превышения анодного напряжения на кинескопе. Это помогает сузить круг поиска неисправности.

Если БП не пытается включиться, проверяют элементы инвертора. Например, замеряют напряжение на коллекторе ключевого транзистора. Оно должно быть таким же, что и на сглаживающем конденсаторе высоковольтного выпрямителя.

Отсутствие напряжения свидетельствует об обрыве первичной обмотки импульсного трансформатора. Заменив поврежденные радиодетали, продолжают проверку БП, включив вместо предохранителя лампочку накаливания мощностью 100 – 150 Вт.

При активации кнопки питания на телевизоре, лампочка ведет себя в соответствии с неисправностью адаптера:

  1. вспыхивает и сразу гаснет, диод режима ожидания светится, на экране виден растр. Требуется проверка напряжения строчной развертки. Если оно завышено, проверяют и при необходимости меняют конденсаторы и оптронные пары;
  2. зажглась и потухла, но светодиод не горит, и решетки на экране нет. Это свидетельствует о неработоспособности инвертора. Проверяют напряжение на сглаживающем конденсаторе высоковольтного выпрямителя. При заниженном значении, как уже говорилось, требуется проверка диодов и данного конденсатора;
  3. горит особенно ярко. В этом случае БП сразу отключают от сети и еще раз проверяют работоспособность всех элементов.

Ремонт БП компьютера

Признаки неисправности компьютерного БП:

  • ПК вообще не подает свойств работоспособности;
  • включается, но сразу после этого многократно перезапускается;
  • не вращается вентилятор в БП.

Сняв с блока крышку и очистив плату щеточкой от пыли, ее подвергают осмотру. При отсутствии внешних повреждений, проверяют на целостность предохранитель. Если перегорел, вместо него включают лампу мощностью 100 Вт и нажимают пусковую кнопку компьютера. Засветившаяся лампа свидетельствует о неисправности высоковольтного выпрямителя либо его сглаживающего конденсатора.

При исправном предохранителе проверяют:

  1. транзисторы инвертора;
  2. ШИМ-контроллер.

При поломке одного из этих элементов, экономически целесообразнее купить новый БП. Причиной постоянных попыток перезапуска чаще всего является отказ стабилизатора опорного напряжения.

Видео по теме

О диагностике и ремонте импульсного блока питания в видео:

В данной статье упомянуты лишь основные из возможных неисправностей электрических адаптеров. Полный перечень вместе с инструкцией по ремонту занял бы объем брошюры. Но в подавляющем большинстве, происходит именно одна из перечисленных поломок. Так что пользователь имеет хорошие шансы вернуть БП в работу без обращения в мастерскую.

Ремонт импульсных блоков питания своими руками

Неисправности современных импульсных блоков питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети – это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта – это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте – это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

Простой импульсный блок питания

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор.  В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Предохранитель импульсного блока питания

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 – 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно. Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски. Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут. Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 – 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Схема трансформатора безопасности

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.

Импульсный источник питания: как быстро отремонтировать прибор


Чтобы, отремонтировать импульсный источник питания, вначале выявляется неисправность, приведшая к поломке БП. В статье представлены практические советы как быстро восстановить работоспособность источника напряжения собственными руками.

Когда часть оборудования оказывается полностью мертвой, первое, на что следует обратить внимание, — это источник напряжения. Если для поиска неисправностей используется осциллограф, это должен быть портативный прибор с батарейным питанием, изолированный от земли. Причина в том, что велика вероятность существования внутреннего напряжения, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу.

Как быстро и правильно отремонтировать импульсный источник питания

Всем радиолюбителям хорошо известно, что импульсные источники питания созданы, как правило, для выпрямления переменное напряжение электросети в постоянное с последующим понижением его номинального значения. Поэтому, во включенном состоянии такое устройство всегда находится под высоким напряжением. Следовательно, установленные в блоке питания компоненты часто подвержены выходу из строя в силу разных причин.

В связи с этим, мы здесь подготовили для вас практические советы как грамотно и не затратно восстановить работоспособность сгоревшего импульсного источника питания в домашних условиях. Поделимся методом как быстро находить в устройстве неисправный компонент ставший причиной поломки оборудования.

Основы поиска и устранения неисправностей блоков питания

Импульсный источник питания может быть выполнен в различных конфигурациях, например: в виде печатной платы в составе устройства или отдельного модульного прибора. Тем не менее, его основная задача, как писалось выше, — выпрямление с одновременным уменьшением напряжения сети до необходимого значения. Такая потребность в использовании этого электрооборудования вызвана тем, что домашние электрические сети имеют стандартизированное напряжение 220 вольт.

Однако, не все устройства и инструменты используемые нами в быту могут работать на напряжении 220 вольт, то-есть для некоторых из них требуется значительно меньшее напряжение. Сейчас современная аппаратура использует импульсные источники напряжения, которые постепенно приходят на смену блокам изготовленным по схеме мостового выпрямителя с фильтром и мощного силового трансформатора.

Примечание! Вопреки бытующему мнению о высокой надежности ИИП, компоненты, установленные в импульсных блоках напряжения, частенько выходят из строя. Как говорят: «ничто не вечно…». Вот почему, пока будет существовать такое оборудование, всегда будет востребована необходимость в их ремонте.


Импульсный источник питания на печатной плате

В общем пойдем дальше. Для общего понятия разделим устройство на ключевые модули, которые имеются практически в любом импульсном источнике электропитания. Стандартный вариант импульсного блока питания относительно можно разграничить на три составные части по функциям.

  1. Узел широтно-импульсной модуляции (ШИМ-контроллер), на основе которого выполняется построение задающего генератора электрических колебаний, как правило с частотой примерно 35…65 кГц;
  2. Линейка мощных силовых ключей, функции которых могут осуществлять как биполярные так и полевые либо трехэлектродные IGBT транзисторы имеющие изолированный затвор; кроме того, эта часть схемы может состоять из дополнительных управляющих ключами элементов, собранных на транзисторах малой мощности;
  3. Импульсный трансформатор с одной или несколькими первичными и вторичными обмотками, а также выпрямительными диодами, конденсаторами для фильтрации выпрямленного напряжения, стабилизаторами в выходной цепи; в качестве магнитопровода как правило, применяется сердечник на основе феррита или альсифера;

Вот, в общем это и есть основные понятия, которые требуется для изготовления или ремонта импульсного источника питания. На представленном выше снимке основные узлы ИИП выделены цветом. Для лучшего наглядного восприятия, также эти узлы отмечены цветом и на принципиальной схеме. Ниже в качестве примера:


Принципиальная схема ИИП. Кстати, на этой схеме силовой узел выполнен со средней точкой.

Внимание! Начиная выполнять поиск неисправности в устройствах такого типа, не забывайте, что на электронных компонентах может сохранятся напряжение, поэтому, перед началом работы, обязательно разряжайте цепь высокого напряжения.

Неисправности современных импульсных блоков питания — возможные причины поломки

Проблемы, возникающие с блоками напряжения, когда они отказываются работать, в основном могут образоваться по следующим причинам:

  • броски напряжения в электрической сети. Именно такие броски напряжения с высокой амплитудой во многих случаях приводят к поломке устройства, которое не рассчитано на такие всплески;
  • работа источника питания с максимальной нагрузкой длительное время;
  • в схеме не предусмотрена защита. Некоторые изготовители такого типа оборудования, просто-напросто экономят на дополнительных компонентах, поэтому пренебрегают установкой защиты в приборе. Если в ремонтируемом вами блоке отсутствует защита, то лучшим вариантом будет добавить ее в схему;
  • невыполнение инструкции по эксплуатации изделия, приложенной изготовителем для определенной модели.

Кроме этого, частые поломки у преобразователей напряжения возникают из-за некачественных деталей устанавливаемых производителем. Так например сейчас, все российские рынки и не только российские, заполонили изделия сомнительного качества от китайских «товарищей». Поэтому, в такой ситуации, когда больше не из чего выбирать, остается надеяться на удачу, что попадется качественный прибор.

Во время проверки импульсного блока часто обнаруживаются следующие проблемы:

  • 40 процентов поломок происходят в цепи высокого напряжения. Так например: часто выходят из строя диодный мост или электролитический фильтрующий конденсатор в силовом тракте выпрямителя;
  • 30 процентов неисправностей образуются также в силовой части устройства из-за пробоя мощных ключей переключения MOSFET;
  • 15 процентов составляет токовый пробой переходов диодного моста в цепи вторичной обмотки выпрямителя;


Диодная мостовая сборка

Выше мы обозначили основные неисправности, которые могут возникнуть в процессе эксплуатации прибора, а вот другие поломки выявляются только с использованием более точных устройств диагностики и измерений. Чтобы выполнить корректный поиск причины, приведшей к неработоспособности оборудования, для этого используют осциллограф и как минимум — мультиметр. В следствие этого, если возникшая проблема не соответствует трем, обозначенным выше параграфам, то собственноручно отремонтировать импульсный источник питания будет несколько проблематично, не имея специальных приборов и опыта в электронике.

Исходя из этого, можно сделать определенный вывод: если ваш персональный компьютер или телевизор перестал подавать признаки жизни, сразу же начинайте искать причину начиная с БП. Другой вопрос в этой ситуации: если, все-же у вас не хватает знаний в ремонте такой сложном оборудовании как ИИП, тогда все-таки лучшим вариантом будет обратится к специалистам.

Метод выявления неисправного компонента

Примечание! Чтобы быстро отыскать неисправность, приведшей импульсный источник питания в нерабочее состояние, вам, как минимум, потребуется цифровой мультиметр.


Мультиметр

Для выявления проблемы, возникшей в устройстве, нужно выполнить последовательные шаги:

  • вскрываем источник питания;
  • вольтметром замеряем напряжение на электролитическом конденсаторе установленном в цепи выпрямителя;


Замер напряжение на электролите

Проверка конденсатора

  • в случае определения прибором напряжения 300v на конденсаторе, то это будет означать, что этот участок силовой цепи находится в полном порядке;
  • в схемах, использующих два малогабаритных конденсатора, напряжение определенное вольтметром в 150 вольт на каждом из них, соответствует исправности силового тракта;
  • если в этой точке нет напряжения, то в первую очередь необходимо проверить состояние выпрямительных диодов, цепь фильтрующего конденсатора и предохранитель;


Плавкий предохранитель в схеме импульсного блока напряжения

  • при обнаружении сгоревшего предохранителя, кроме его замены, также нужно прозвонить и другие компоненты схемы. Чтобы обнаружить причину, которая привела к выходу из строя предохранителя;
  • проблемные электролитические конденсаторы обнаружить довольно просто. Из них либо вытекает электролит, либо они становятся «беременными», поэтому они не подлежат ремонту — только замена;
  • в обязательном порядке проверяется вся цепь выпрямителя, включая диодный мост;


Диодный мост импульсного источника питания

  • сглаживающий конденсатор в цепи фильтра, может быть установлен в виде одиночной емкости или набора линейки, составленной из нескольких емкостей, включенных по схеме последовательного или параллельного соединения;
  • силовые транзисторные ключи, как правило, устанавливаются на теплоотводах.

Примечание! Приступая к ремонту, старайтесь сразу выявить все неисправные элементы устройства, и в последовательном порядке заменить их. Нельзя, заменяя одну деталь, оставлять в схеме сгоревшую деталь, а затем включать прибор для проверки. Такие действия могут привести к более тяжелым последствиям!

Специфика самостоятельного ремонта ИИП

Для выполнения диагностики и ремонта стандартных блоков питания импульсного типа, просто нужно придерживаться советов, которые мы предложили выше. А конструктивное исполнения такого оборудования, мало чем отличается друг от друга, хотя они могут быть от разных производителей.


Проверка электронных элементов печатной плате

Для качественного ремонта импульсного источника напряжения своими руками, нужно иметь в своем распоряжении соответствующие приборы и инструменты, а именно: хороший паяльник, припой, растворитель для смывки излишков флюса на плате и основные инструменты:

  • комплект разных отверток;
  • пинцет;
  • цифровой мультиметр;
  • обычная лампочка на 150 Вт /220 вольт. Хороший вариант для подключения ее как нагрузки.


Общий вид платы блока питания

Грамотно выполненная диагностика устройства, является гарантией успешного ремонта. Проблемы, связанные с выходом из строя какого либо элемента в высоковольтном тракте, найти не составит никакого труда. Их легко выявить, как при визуальном осмотре, так и с использованием мультиметра.


Процесс работы

После устранения выявленных неисправностей и замене всех сгоревших при этом деталей, импульсный источник питания, при включении начинает сразу работать без всякой предварительной настройки. Так, что если вы обладаете хотя бы первоначальными знаниями в электронике и имея хоть какой-то опыт в ремонте подобных устройств, то вы наверняка справитесь самостоятельно с восстановлением ИБП.

Как отремонтировать импульсный блок питания

Ремонт блока питания в домашних условиях: схемы и светы мастера

Слишком долго включается компьютер или при включении появляются посторонние звуки и запах горелого, иногда происходит самопроизвольное выключение ПК или блок питания компьютера не запускается – вполне возможно, эти признаки свидетельствуют о неисправности БП. Осталось только в этом удостовериться, заменив его на заведомо рабочий.

Если вы определили, что причиной всех бед вашего ПК является вышедший из строя блок питания, то у вас есть два варианта действий: купить новый БП или отремонтировать старый. Тех, кто решается на ремонт, сразу хочется предостеречь: в некоторых случаях его стоимость может превосходить цену нового блока питания, поэтому, прежде чем отдать БП в сервисный центр, хорошенько подумайте, есть ли смысл в этом?

Но для того чтобы выяснить судьбу вышедшего из строя БП, следует провести его диагностику, после чего станет понятным, что при некоторых неисправностях можно произвести ремонт своими руками, как говориться «на коленках». И быстрее получится и дешевле. Итак, решение принято, блок питания компьютера ремонтируем сами, тогда для этого необходимо, как любят повторять в армии, изучить мат. часть, а по-простому – заняться теоретической подготовкой.

Немного теории

На рисунке 1 показана структурная схема импульсного блока питания АТХ

Изначально, напряжение поступает на сетевой фильтр, который предназначен для сглаживания помех состоит из конденсаторов и дросселей. Проходя через выключатель, напряжение попадает на выпрямитель, состоящий из диодного моста и нескольких сглаживающих конденсаторов, ёмкостью около 400 мКф и рассчитанных на напряжение 400 В.

Теперь в цепи уже протекает постоянный ток, который попадает на высоковольтный транзисторный ключ, который переключается с определенной частотой, задаваемой схемой управления. После ключа, напряжение в цепи уже импульсное, но еще достаточно высокое. Теперь, его необходимо уменьшить до нужных нам отметок. За это отвечает трансформатор, со вторичных обмоток которого выходят напряжения в 5 и 12В как положительной, так и отрицательной полярности.

За выходными напряжениями следит плата управления, которая состоит из шим-контроллера и целого ряда компараторов, которые заменяет всего одна микросхема.

На рисунке 2 представлена структура микросхемы по управлению выходными напряжениями.

Кроме этого, существует еще источники напряжения: 5В – «дежурка» в блоке питания атх и 3.3 В, для питания процессора. Дежурное напряжение служит для запуска некоторых устройств в ПК, например модема, который для получения пакета из сети даст команду на «пробуждение» компьютера.

Основные причины выхода из строя БП

Основных причин, приведших к выходу из строя блок питания вашего ПК, на самом деле не так уж и много, поэтому рассмотрим каждую подробно.

  1. Перепады напряжения питающей сети. Тут все понятно: повышение напряжения выводит из строя элементы первичной цепи, который состоит из высоковольтных электролитических конденсаторов, и выпрямителя, если они установлены без достаточного запаса по току и напряжению.
  2. Некачественная сборка от неизвестного производителя. Все дело в том, что именитый производитель не жалеет деньги на детали для блока питания. Большинство дешевых аналогов используют запчасти из заводского брака, некалиброванные транзисторы, с большим разбросом параметров. Кроме того, хороший производитель всегда предусматривает в схеме защиту цепей, например, термистор в блоке питания компьютера, который отвечает именно за скачки тока при включении ПК. При превышении пределов по току, сопротивление термистора падает, при этом выгорает предохранитель, но, как правило, все остальные детали остаются невредимыми.
  3. Перегрузка БП мо мощности. Это достаточно частая причина поломки, когда максимальная мощность блока питания значительно меньше, чем совокупная мощность установленных в ПК устройств.
  4. Общая запыленность БП может привести к короткому замыканию между дорожками платы или другими деталями, так как пыль является неплохим проводником. Кроме того, пыль налипает на лопасти вентилятора и скорость его вращения значительно снижается. Что может привести к перегреву и без того, нагревающихся транзисторов, установленных на радиаторах.

Следует знать, что при повышении температуры, блок питания выдает значительно меньшую мощность, чем указано в паспорте, что может привести к его перегрузке и срабатыванию защиты.

 

Самостоятельный ремонт БП

Изначально говорилось о том, что некоторые поломки блока питания можно исправить в домашних условиях, не имея специальных знаний и аппаратуры. В любом случае, для ремонта вам понадобятся паяльник, мультиметр, отвертки, изолента и канцелярский нож.

Перед началом ремонтных работ, ПК следует обесточить и демонтировать БП из компьютера. После чего вывинтить болтики и снять крышку с блока питания.

Так выглядит расположение деталей на плате БП

Если вы не имеете понятия о напряжении, токе и использовании мультиметра, а также не имеете опыта в работе с высоким напряжением, то лучше всего, обратитесь за помощью к профессионалам.

  1. Если блок питания не запускается и отсутствует выходные напряжения, то следует проверить конденсаторы фильтра и исправность транзисторов в первичной цепи. Кроме того, если был скачек напряжения, то следует проверить термистор и предохранитель. Неисправные конденсаторы при такой поломке может раздуть и это видно невооруженным глазом. Термистор, как правило, обугливается, а предохранитель не звонится мультиметром.

    Транзисторы перед проверкой следует выпаивать, но для этого их необходимо снять с радиаторов. При замене конденсаторов важно соблюдать полярность.

  2. Если неисправность не обнаружена, то проверьте напряжение на конденсаторах выпрямителя. Оно должно составлять 310 В. Если его нет, то следует проверить все детали выпрямителя.
  3. Если не крутится вентилятор, то следует проверить его работоспособность. Если неисправность не выявлена, то проверьте наличие питания вентилятора. Отсутствие +12 В говорит об вышедшей из строя диодной сборке выпрямителя, проблемах с дросселем. Причиной отсутствия вращения вентилятора может быть выгоревший терморезистор в блоке питания компьютера. Проверять диоды, необходимо выпаивая из платы.

    Важно знать, что на радиаторах установлены не только транзисторы из первичной цепи, но и диоды Шоттки во «вторичке», которые находятся в выпрямителе.

  4. Если не происходило дополнительной установки оборудования, а внезапно БП стал выключаться от перегрузки, то следует отключить его от всех нагрузок, кроме одной, и произвести запуск практически в холостом режиме. Если это не помогает, то, проблема в силовом трансформаторе, который следует заменить.

И последнее: если ремонт БП выходит за рамки представленного материала в этой публикации, то лучше всего приобрести новый или доверить ремонтные работы специалистам. Если у вас возникли неразрешенные проблемы с работой ПК, то смело обращайтесь к специалистам нашей компании, мы всегда готовы взяться за любую сложную работу. Работаем как по городу Челябинску, так и по области.

Ремонт импульсных блоков питания

В этой статье Скотт Дорси рассказывает нам, как ремонтировать импульсные блоки питания. Как он объясняет, «существует множество книг и статей о том, как спроектировать импульсный источник питания, но не так много об их ремонте. Поскольку переключаемые источники питания становятся повсеместными в электронных устройствах сегодня, становится гораздо важнее понять, как они работают и, что не менее важно, как они терпят неудачу «. Эта статья изначально была опубликована в audioXpress, январь 2018 г.

Существует много книг и статей о том, как разработать импульсный источник питания, но не так много о том, как их починить. По мере того, как импульсные источники питания сегодня становятся повсеместным явлением в электронных устройствах, становится все более важным понимать, как они работают, и, что не менее важно, как они выходят из строя.

Вся суть переключателя заключается в том, что он выпрямляет линию питания переменного тока в постоянный ток, а затем прерывает постоянный ток генератором с переменной скважностью на очень высокой частоте, так что можно использовать крошечный понижающий трансформатор.Трансформаторам, работающим на высоких частотах, не нужны большие сердечники или много обмоток для получения большой мощности, поэтому их можно сделать крошечными и с небольшими затратами. Рабочий цикл генератора можно регулировать с помощью обратной связи, так что регулирование может выполняться без потери мощности в процессе. Таким образом, вы можете получить одновременно хорошее регулирование и хорошую эффективность.

В этой статье речь пойдет о расходных материалах обратного хода с линейным приводом. Существуют и другие преобразователи топологии, которые популярны, когда изоляция линий не требуется, но если посмотреть на то, что происходит между входом переменного тока и шинами постоянного тока на электронном оборудовании сегодня, это основная используемая топология, потому что она дает хорошие результаты. эффективность и изоляция линии.

Рисунок 1: Этот образец импульсного источника питания взят из таблицы данных UC2842 и использует общую микросхему контроллера ШИМ UC2842. (Оригинальная схема любезно предоставлена ​​Texas Instruments)
Как работают коммутаторы
На рис. 1 показан образец импульсного источника питания (любезно предоставлен Texas Instruments). Это взято из таблицы данных UC2842 и использует общую микросхему контроллера PWM UC2842. (Таблицу данных можно найти в разделе «Дополнительные материалы» на веб-сайте audioXpress, ссылку см. В «Файлы проекта».Обратите внимание, что эта типовая конструкция имеет полную изоляцию между первичной и вторичной сторонами цепи. Вы можете провести в своей голове линию через сердечник трансформатора и оптрон и разбить схему на две электрически изолированные половины. Это важный момент, и вы увидите это почти во всех источниках питания любого размера, поскольку изоляция от линии электропередачи является основной проблемой безопасности.

Электропитание переменного тока отключается от сети и выпрямляется через мостовой выпрямитель DBRIDGE.Выход заряжает большой конденсатор фильтра на первичной стороне CIN, который обеспечивает отфильтрованное (но почти без пульсаций) постоянное напряжение на первичную обмотку трансформатора NP, а также напряжение для запуска микросхемы широтно-импульсной модуляции (ШИМ). через резистор RSTART.

RSTART подает только небольшой ток для запуска устройства, поэтому, как только первый импульс проходит через полевой транзистор (FET), ток из третьей обмотки трансформатора используется для обеспечения питания для запуска генератора.В этом суть NA и DBIAS. Вы можете не увидеть эту третью обмотку, вы можете просто увидеть, что вся рабочая мощность потребляется через резистор сброса большей мощности вместо RSTART. Но использование третьей обмотки значительно повышает эффективность.

Когда генератор ШИМ работает, он посылает постоянные импульсы с выходного контакта. Это включает большой переключающий полевой транзистор QSW, который генерирует импульс тока, проходящего через трансформатор. Когда это происходит, ток индуцируется во вторичной обмотке трансформатора, выпрямляется и фильтруется с помощью DOUT и COUT, а ток течет по выходу.

Поскольку генератор ШИМ работает очень быстро, трансформатор и конденсатор фильтра на вторичной стороне могут быть очень маленькими. Хотя этот предел 2200 мкФ может показаться большим, если генератор работает на частоте 60 кГц, он в тысячу раз эффективнее того же значения на линии 60 Гц.

Рисунок 2: На этой схеме показан типичный небольшой импульсный источник питания, использующий микросхему 3845 PWM. Обратите внимание, что выход Vaux связан с входной землей. Оптоизолятор U2 состоит из двух частей.U3 является эталоном для сравнения линии 5 В.
Регулировка источника питания
Итак, как работает регулирование? Все остальное на вторичной обмотке приводит к включению светодиода в оптоизоляторе, когда выходное напряжение превышает 12 В. UC2842 обеспечивает небольшое количество регулируемых 5 В (сделанных с помощью внутреннего линейного регулятора), и это напряжение на VREF используется для запитать выходной каскад оптоизолятора. Он подает переменное напряжение на вход VFB, чтобы обеспечить обратную связь с UC2842 о том, что напряжение правильное, и немного снизить коэффициент заполнения выходного сигнала.

Оптоизолятор не должен быть очень линейным, чтобы рабочий цикл UC32842 оставался на грани, чтобы выходное напряжение всегда было идеальным. Вход ISENSE измеряет падение напряжения на RCS, то есть измеряет ток, потребляемый через этот переключающий полевой транзистор. UC2842 спроектирован так, что если оно превышает 1 В, он отключает схему ШИМ. Итак, это схема защиты по току.

Обычно мы видим резистор и конденсатор, RRT и CCT, подключенные к выводу RT / CT и обеспечивающие постоянную времени для генератора ШИМ.В этом случае мы также усиливаем линейный сигнал ШИМ с помощью транзистора и подаем его на вход ISENSE через CRAMP и IRAMP, чтобы схема была стабильной в течение очень длительных рабочих циклов. Это называется «компенсацией наклона», и способ ее выполнения кратко объясняется в таблице данных TI для микросхемы UC2842, но не в таблицах данных других производителей.

А что насчет другого транзистора с CSS и RSS? Это небольшая схема, которая сужает ширину импульса при первом включении устройства и немного замедляет запуск, чтобы было меньше ударов по компонентам.Теперь вы увидите другие варианты этой базовой схемы.

Вы увидите, что для обеспечения обратной связи используется дополнительная обмотка трансформатора вместо оптоизолятора. Вы увидите, что ИС с ШИМ подключается непосредственно к линии переменного тока, а не с обмоткой NA. Вы увидите несколько вторичных цепей и цепей лома. Но это базовая конструкция, которую вы увидите внутри любого переключателя, поэтому ваша задача — точно выяснить, какие изменения от этой базовой конструкции существуют в вашей схеме.

Рисунок 3: Вот еще один вариант конструкции небольшого импульсного источника питания.Этот коммутатор использует регулировку на шине 5 В, а шина 12 В регулируется только в том смысле, что она отслеживает шину 5 В. Четвертая обмотка питает микросхему ШИМ.
Как определить, что у вас есть
Плохая новость заключается в том, что в большинстве случаев у вас не будет документации для коммутатора. Хорошая новость заключается в том, что большую часть времени коммутатор будет очень близок к образцу схемы из таблицы данных микросхемы ШИМ (см. Рисунок 2). Не всегда и не для расходных материалов более высокого уровня, но в большинстве случаев получение таблицы данных микросхемы скажет вам 90% того, что происходит со схемой.

Похоже, что в подавляющем большинстве более качественных расходных материалов китайского производства используются контроллеры ШИМ серии C2842 / UC2843 / UC3842 / UC3843. Они производятся дюжиной разных компаний, включая Fairchild Semiconductor, ON Semiconductor, TI и STMicroelectronics, и у каждой из этих компаний есть немного разные таблицы данных с немного разными схемами образцов. Так что, если вы не видите схему, с которой столкнулись, в таблице данных, получите другую таблицу от другого производителя, и, вероятно, вы ее увидите (см. Рисунок 3).

Fairchild KA7552 обнаруживается в ряде устройств (см. Фото 2). Это был дизайн Samsung, который теперь продается Fairchild, поскольку они переняли производственные мощности и линейку продуктов Samsung. Он отдаленно похож на UC2842, но с другой распиновкой.

Иногда вы увидите ШИМ-контроллер TL594 от ON Semiconductor. Опять же, для этого есть пара других поставщиков, поэтому вам следует проверить несколько таблиц данных. Одна очень популярная ИС, которую вы найдете в устройствах с одним выходом с низким энергопотреблением, — это микросхемы серии TOP242, производимые Power Integrations.Это встроенные генераторы ШИМ на одной подложке с мощным полевым транзистором. Добавьте трансформатор, пару выпрямителей и оптоизолятор, и вы получите полный импульсный блок питания в коробке. Конечно, они часто выходят из строя, но их довольно легко диагностировать.

Однако эти микросхемы имеют десятки вариантов мощности и корпусов, поэтому вы не всегда можете держать их все под рукой. Аналогичное, но менее популярное устройство — MC33374. Многие менее дорогие продукты китайского производства будут использовать управляющую ИС AP3021, и этот чип производится и продается под десятками разных наименований десятками различных компаний в Китае.Документация по нему оставляет желать лучшего, но если вы когда-нибудь столкнетесь с загадочно выглядящим ШИМ-контроллером, где контакт № 6 не используется, скорее всего, это AP3021 или его копия. Таблицы данных на английском языке для этого продукта в лучшем случае скудны, но как только вы получите некоторое представление о распиновке и о том, как она работает, вы сможете понять, что происходит.

Фото 2: Fairchild KA7552 использовался в нескольких устройствах.
Столкновение с неожиданностью
Не каждый источник питания представляет собой отдельный импульсный источник питания в коробке.Иногда вы встретите системы с несколькими переключателями в одном корпусе, обеспечивающими несколько выходных напряжений, каждый из которых регулируется. Чаще встречается несколько напряжений на одном трансформаторе с одним выходным напряжением, используемым для контура управления, но для некоторых приложений требуется хорошее регулирование с сильно изменяющейся нагрузкой.

Иногда используется второй «всегда включенный» источник питания, который обеспечивает резервное напряжение, используемое для работы процессора, который управляет основным питанием. Это очень распространено для таких вещей, как видеомониторы и компьютеры.Часто этот источник питания находится на небольшой дочерней плате, поскольку он требует хорошей гальванической развязки от остальной электроники, но не требует большой мощности.

Если вы видите повсюду множество маленьких дискретных транзисторов, можно предположить, что они задействованы в системах автоматического отключения для отключения в случае высокого или низкого напряжения или тока в одном или нескольких местах. Поиск и устранение неисправностей в этих схемах без руководства может быть настоящим кошмаром, поскольку бывает сложно определить, при каком напряжении срабатывают отдельные части.

Время от времени для аудио или других приложений с низким уровнем шума вы будете видеть линейные регуляторы серии для небольшого дополнительного сглаживания, расположенные после источника питания. Поскольку они могут перегреться, они являются частым источником проблем, но их довольно легко диагностировать, поскольку вы можете видеть, как в них поступает и выходит напряжение.

Устранение проблемы
Если у вас есть документация на блок питания, половина работы сделана за вас. Если нет, то вы знаете основную блок-схему и можете вручную разрабатывать отдельные части внутри каждого блока.Получение таблицы данных для микросхемы PWM скажет вам очень многое, поскольку большинство схем PWM, а иногда и целые расходные материалы просто скопированы из таблиц данных производителей. Часто микросхема ШИМ имеет несколько источников. Например, общий ШИМ-контроллер 2842 можно приобрести как минимум у четырех разных производителей. У всех есть разные таблицы данных, и если вашей схемы нет в одной, она может быть в другой.

Если источник питания включается, но сразу ломаются, первое, что нужно сделать, это проверить или заменить все конденсаторы фильтра на вторичной обмотке трансформатора.Это может быть вызвано и другими вещами, такими как негерметичный выпрямитель на вторичной обмотке или неисправный резистор в цепи измерения тока, но они встречаются гораздо реже.

Иногда крышки бывают настолько негерметичными, что источник питания запускается без нагрузки, но не работает с какой-либо нагрузкой. Вы склонны винить нагрузку в том, что она потребляет слишком большой ток, но это не всегда нагрузка. Если сомневаетесь, замените колпачки, а затем снимите диагностику.

Во многих источниках питания используется «пусковой конденсатор» для подачи тока для их запуска.Это не показано в приведенном выше примере, но это довольно распространенная конфигурация. Если блок питания работал, был отключен, но не перезапускался вообще, замените конденсатор кикстарта. Если документации нет, скорее всего, это будет электролитический блок от 25 до 50 В очень небольшого значения (1 мкФ или 2 мкФ), расположенный рядом с микросхемой ШИМ.

Высоковольтный конденсатор (иногда два конденсатора) на первичном источнике питания, который напрямую фильтрует линию, в США редко выходит из строя.Однако в Европе, где линейное напряжение в два раза больше и где используются те же самые источники питания с несколькими входами, эти конденсаторы часто оказываются неисправными. Европейские поставщики, поведение которых меняется в зависимости от нагрузки, должны сначала проверить их.

Конденсаторы, расположенные рядом с радиаторами или под ними, имеют тенденцию очень быстро перегорать и являются частыми источниками отказов. Фактически, поскольку подавляющее большинство сбоев, с которыми вы сталкиваетесь, связаны с конденсаторами, очень удобно иметь эквивалентный тестер последовательного сопротивления (ESR) для проведения быстрых тестов в цепи.Тем не менее, я часто склонен просто заменять все электролиты сомнительных производителей, даже если они хорошо проходят испытания, просто потому, что мне нужен более длительный срок службы источника питания, чем предполагаемый расчетный срок службы.

Если проблема не в конденсаторе, очень распространенной неисправностью является силовой транзистор или полевой транзистор (см. QSW на рисунке 1). Обычно их можно легко найти по большим отверстиям в плате, где раньше находился полевой транзистор, по всем трем контактам полевого транзистора, имеющим непрерывность между ними, или по очевидным сбоям диодов или резисторов в цепи рядом с полевым транзистором.Если полевой транзистор не «протерт» (это означает, что все три контакта имеют целостность и звуковой сигнал на тестере целостности), возможно, стоит проверить его вне цепи.

Однако, если полевой транзистор «очищен», все, что управляет затвором этого полевого транзистора, вероятно, было разрушено в результате сбоя. Часто это микросхема ШИМ, и хорошо иметь общие микросхемы ШИМ в корзине запчастей.

Хорошее правило заключается в том, что в случае отказа переключающего транзистора или полевого транзистора следует заменить защитный диод на базе или затворе транзистора.Даже если он хорошо проверит, может и не быть. Также необходимо проверить демпфирующий диод DCLAMP. Полевые транзисторы выходят из строя по непонятной причине, но чаще всего они выходят из строя из-за перенапряжения (из-за плохих ограничивающих диодов) или перегрузки по току (из-за плохих и протекающих конденсаторов) или высоких температур (из-за плохих разработчиков).

Если эти простые вещи не решают вашу проблему, пора приступить к реальной диагностике. Достаньте измеритель и начните смотреть на контакты микросхемы ШИМ. Вы видите приемлемое входное напряжение на VCC? Вы видите опорное напряжение 5 В от VREF? Вы видите на ISENSE меньше вольт или больше? Осциллятор вообще колеблется? Убедитесь, что входы микросхемы ШИМ исправны, а затем и выходы микросхемы ШИМ.Если у вас есть форма волны на выходном контакте, но у вас нет выхода, обратите внимание на переключающий полевой транзистор или транзистор, демпфирующий диод вокруг него и так далее. Если осциллятор не колеблется, чего ему не хватает?

Точные значения будут варьироваться в зависимости от используемой микросхемы ШИМ, но таблица рекомендуемых рабочих условий в таблице данных микросхемы ШИМ сообщит вам, какими они должны быть.

Правила для конденсаторов
Правило 1: Большинство отказов импульсного источника питания происходит из-за плохих электролитических конденсаторов.Даже отказы полевого транзистора часто являются долгосрочными последствиями первоначальной проблемы с конденсатором.

Правило 2: Никто никогда не ошибся, заменив дешевые бытовые электролитические конденсаторы на промышленные 105C более высокого класса. Это может не решить сиюминутную проблему, но, вероятно, повысит надежность электроснабжения в долгосрочной перспективе. Так что не тратьте много времени на то, чтобы решить, неисправен ли конденсатор, просто замените его. Ваше время стоит больше, чем электролит.

Правило 3. Покупайте конденсаторы у законных поставщиков, таких как Digi-Key, Newark / element14, Allied / RS, Mouser и т. Д.На рынке много поддельных конденсаторов, которые не были поставлены производителем на банке.

Правило 4: Электролитические конденсаторы выходят из строя из-за возраста и плохой инженерной надежности, но когда другие типы конденсаторов выходят из строя, это происходит из-за чего-то другого.

Правило 5: Танталовые конденсаторы на самом деле являются электролитическими. Химический состав немного отличается от химического состава алюминиевых электролитических колпачков, но долговременная надежность и проблемы, связанные с температурой, такие же.Обратите внимание, что более распространенные танталы с «сухой пробкой» (эти типы, покрытые эпоксидной смолой) имеют тенденцию выходить из строя, и это может облегчить их идентификацию в случае отказа. К сожалению, это также означает, что отказ может привести к серьезному сопутствующему ущербу.

Перорация
Не бойтесь работать на оборудовании со встроенными коммутационными блоками. Чтобы разобраться в том, как они работают, и в наиболее распространенных режимах отказов может потребоваться много времени, но как только вы это сделаете, их, как правило, нетрудно исправить.

Если вы хотите научиться разрабатывать коммутационные блоки (а вам следует это сделать, потому что это тоже полезный навык), позвольте мне порекомендовать «Замечание по применению линейной технологии 25: Импульсные регуляторы для поэтов», написанное 30 лет назад великий Джим Уильямс. В то время переключение источников питания было причудливой новой вещью, с которой дизайнеры только начинали разбираться, а доступные ИС были гораздо более ограниченными и грубыми, поэтому описание Уильямса должно было быть подробным. Это прекрасный документ, доступный во многих местах в Интернете.B

Файлы проекта
Чтобы загрузить техническое описание Texas Instruments UC2842, посетите audioXpress-Supplementary-Material

Resource
Дж. Уильямс, «Примечание 25 по применению линейной технологии: переключение регуляторов для поэтов», сентябрь 1987 г.

Эта статья была первоначально опубликована в audioXpress, январь 2018 г.

Об авторе
Скотт Дорси имеет степень в области электротехники, во время которой он работал в сфере радиовещания и звукозаписи.Проработав несколько лет в крупной студии, он устроился на работу к подрядчику по защите. Это оставило ему время для записи живых концертов акустической музыки, а также для разработки и создания аудиоустройств для личного использования по контракту с несколькими производителями и импортерами аудио. Скотт регулярно пишет в нескольких аудиожурналах. Он публикует обзоры оборудования и проекты DIY с середины 1980-х годов. Он, вероятно, наиболее известен в аудио-сообществе своими модернизированными электронными конструкциями недорогих микрофонов Oktava, AKG и Feilo.

Как отремонтировать импульсный источник питания (SMPS)

В этом посте мы пытаемся диагностировать сгоревшую цепь SMPS и пытаемся устранить неисправности и отремонтировать цепь. Представленный блок представляет собой дешевую готовую схему ИИП китайского производства. Эта статья написана по просьбе г-на Кесавы.

Мой SMPS сгорел

Нижеприведенное приложение представляет собой SMPS 12 В, 1,3 А для зарядки сельскохозяйственного опрыскивателя. При полной зарядке загорится зеленый светодиод … Если заряд низкий, загорится красный светодиод…

Но теперь эта зарядка не работает … И я проверяю внутри, входной мостовой выпрямитель переменного тока IN4007 1 диод был поврежден … я заменил его новым диодом … Теперь новый диод также поврежден … .Пожалуйста, направьте меня, сэр…. …. Пожалуйста, помогите мне, сэр ….

Извините за плохой английский. Я не хороший, сэр …

Спасибо и С уважением N.Кесаварадж

Устранение неполадок

Привет, Кесава,

Скорее всего, это из-за сгоревшего МОП-транзистора, который можно увидеть на радиаторе. Вы можете попробовать заменить его новым, а также не забудьте заменить соседний резистор 10 Ом, который также выглядит так, как будто он сгорел.

С уважением.

Ремонт цепи SMPS

Ссылаясь на изображения выше, первичная сторона устройства, по-видимому, представляет собой популярный адаптер SMPS на 1 А 12 В, использующий схему переключения на основе МОП-транзистора, и включает в себя секцию зарядного устройства на базе операционного усилителя с автоматическим отключением на вторичной обмотке. раздел платы

Из первых двух изображений мы можем ясно видеть, что один из диодов полностью разлетелся и отвечает за отключение всей печатной платы.

Мостовой выпрямитель обычно можно увидеть в начале любой цепи SMPS и вводится в первую очередь для выпрямления сетевого переменного тока в двухполупериодный постоянный ток, который далее фильтруется с помощью конденсатора фильтра и подается на ступень МОП-транзистора / индуктора для предполагаемого обратная операция переключения первичной стороны.

Это переключение первичной стороны вызывает наведение эквивалентного пульсирующего постоянного тока низкого напряжения на вторичной стороне трансформатора, который затем сглаживается с помощью конденсатора фильтра большой емкости на вторичной стороне для получения окончательного понижающего выхода постоянного тока SMPS.

Из изображения видно, что вся конструкция основана на топологии переключения МОП-транзистора, индуктивности, в которой МОП-транзистор становится основным переключающим элементом в схеме.

Диоды в мостовом выпрямителе выглядят как обычные диоды 1N4007, которые способны выдерживать ток не более 1 А, поэтому, если это значение на 1 А превышает значение диодов, они могут вырваться и повредиться.

Диод мог сгореть из-за прохождения большого тока, что, в свою очередь, могло произойти из-за остановки работы индуктора mofet.Это означает, что МОП-транзистор мог перестать соприкасаться, вызывая короткое замыкание, позволяя всему переменному току проходить через компоненты внутри входной линии питания.

Как отремонтировать цепь SMPS.

Показанный сгоревший импульсный источник питания можно отремонтировать, выполнив следующие простые шаги.

1) Снимите МОП-транзистор с печатной платы и проверьте его с помощью мультиметра

2) Несомненно, вы обнаружите, что МОП-транзистор является неисправным компонентом, поэтому вы можете быстро заменить его, используя правильно подобранный МОП-транзистор

.

3) После замены mosfet не забудьте также заменить сгоревший выпрямительный диод, а в идеале заменить все 4 диода в мосте, чтобы убедиться, что в сети нет ослабленных диодов.

4) Вы также можете проверить, есть ли какие-либо другие детали, такие как резисторы или термисторы, которые могут выглядеть подозрительно, и заменить их новыми.

5) После замены всех сомнительных элементов пора включить SMPS для окончательной проверки.

Однако это должно быть сделано с последовательной защитной нагрузкой в ​​виде последовательной лампы накаливания, чтобы убедиться, что цепь не сгорает из-за какой-либо другой скрытой неисправности. Лампа на 25 ватт будет как раз хороша для защиты устройства от любых катастрофических обстоятельств.

6) Если при включении ИИП лампочка не светится, это, вероятно, означает, что все в порядке, и блок был успешно отремонтирован. Теперь вы можете свободно проверять выходное напряжение ИИП с помощью измерителя и убедиться, что он дает правильные показания.

7) Наконец, не снимая лампу, подключите соответствующую номинальную нагрузку постоянного тока и проверьте, правильно ли она работает.

8) Если кажется, что все работает нормально, вы можете удалить серийную лампу и повторить процесс тестирования, но обязательно включите небольшой предохранитель последовательно с входным источником питания.

9) Однако, если лампа горит ярким светом, это указывает на наличие серьезной проблемы в цепи SMPS и ее необходимо исследовать заново, это можно сделать, сначала выключив устройство, а затем проверив каждый компонент в нем. первичная сторона трафанформера.

10) Компоненты, требующие повторной проверки, будут в основном теми, которые подвержены высокому напряжению и току повреждения, например, небольшие BJT, диоды и резисторы с низким сопротивлением.

11) Компоненты, которые можно не проверять, — это те, которые имеют соответствующие характеристики и способны защитить себя от высокого напряжения и бросков тока.Сюда могут входить резисторы высокого номинала выше 50 кОм или резисторы с проволочной обмоткой низкого номинала выше 1 кОм.

Точно так же конденсаторы с номиналом выше 200 В можно не проверять, если только один из них не выглядит несколько поврежденным снаружи.

Испытание сгоревшего трансформатора индуктивности

Каждая цепь SMPS по существу будет включать небольшой ферритовый трансформатор, который эта часть также может стать причиной сгоревшей цепи SMPS, хотя вероятность повреждения трансформатора может быть слишком мала.

Это связано с тем, что проводам внутри катушки индуктивности может потребоваться некоторое время, чтобы сгореть, и прежде, чем это может произойти, другие более уязвимые части, такие как диоды и транзисторы, будут вынуждены взорваться, что предотвратит дальнейшее повреждение катушки индуктивности.

Таким образом, вы можете быть уверены, что трансформатор — это единственный элемент, который может быть самым безопасным и неповрежденным элементом в данной неисправной цепи SMPS.

Если в редких случаях произойдет возгорание индуктора, это будет отчетливо видно по пригоревшей изоляционной ленте, которая также может расплавиться и прилипнуть к обмотке.SMPS с сгоревшим трансформатором может быть практически непоправимым, потому что сгоревший трансформатор приведет к сгоранию большинства элементов вместе с выкорчеванными дорожками на печатной плате. Пора покупать новый SMPS.

Вторичная сторона обычно не требует какой-либо проверки, поскольку она изолирована от первичной и, как можно ожидать, будет в стороне от опасностей.

На этом мы завершаем статью, в которой объясняются советы по ремонту цепи SMPS. Если вы думаете, что я упустил некоторые важные моменты, или если у вас есть что-то важное, что нужно добавить в список, сообщите нам об этом в своих ценных комментариях.

Руководство по ремонту SMPS — Советы по ремонту импульсных источников питания | Терри Тровес

Приобретение надлежащего руководства по ремонту SMPS на самом деле очень важно для тех, кому не хватает опыта и ноу-хау для успешного ремонта неисправных импульсных источников питания.

Вы один из тех неопытных мастеров по ремонту, которые очень хотят как можно быстрее научиться ремонтировать блоки питания?

Хорошо, прямо сейчас загружаемая книга по ремонту SMPS, полная советов по ремонту и пошаговых картинок, определенно вам очень поможет.

Даже если у вас всего 1% таланта в ремонте импульсных источников питания, если вы готовы усердно работать и следовать соответствующему руководству, вы в конечном итоге будете очень хороши в этом.

Черт возьми, вы можете даже стать гением в этом!

И это неоспоримый факт.

Не верите? Что ж, сам мистер Гений, так сказал великий Альберт Эйнштейн!

Вот оно, прямиком от самого человека!

Кто вы такие, чтобы опровергнуть одного из самых умных людей, которые когда-либо жили?

Хорошо, хорошо, тупая шутка.Приношу свои извинения вам и мистеру Эйнштейну за то, что вложил слова в его уста.

Но если серьезно, без хорошо составленного справочного руководства все может стать очень неровным. Вы будете чувствовать себя так, как будто работаете в темноте.

Поиск и устранение неисправностей в источниках питания, очевидно, является сложной задачей, поэтому вы не можете просто выбрать подход, основанный на идее и надежде на лучшее.

Итак, где я могу найти руководство по ремонту SMPS?

Да, мне задавали этот вопрос (или в том же роде) много раз в прошлом, и, естественно, новички в ремонте электроники и техники.

Ответ на этот простой, но неотложный вопрос можно найти в по этой ссылке . Вы наконец-то найдете решение проблем, связанных с ремонтом вашего импульсного источника питания.

Почему эта книга для скачивания?

1) Он содержит исчерпывающую информацию об источниках питания ATX, компонентах SMPS, принципах работы, инструкции по ремонту и многое другое, плюс все они написаны чудесно подробным, но простым для понимания образом.

2) Со схемами и подробным обзором функций каждой области импульсного источника питания i.е. первичный и вторичный.

3) Это значительно устраняет необходимость в догадках при поиске неисправностей в источниках питания , потому что есть много интересной информации и подсказок, относящихся к каждой функции схемы, доступной в SMPS, напряжениях и даже критических сигналах.

4) Важнейшие протоколы безопасности описаны в книге вместе с 11 историями поиска и устранения неисправностей и ремонта. Истории болезни чрезвычайно информативны . Мне еще не удалось найти руководство по ремонту SMPS, которое предлагает такое довольно большое количество историй болезни.

5) Изоляция проблем, связанных с импульсным источником питания, может быть решена несколькими способами, и эта книга содержит инструкции, которые помогут вам в этом. Возможность изолировать источник сбоя / ошибки очень полезна, потому что позволяет вам точно определить проблему, не теряя слишком много времени .

6) Он научит вас правильному способу выполнения проверки напряжения импульсного источника питания. Пошаговый процесс, описанный в книге, прост для понимания .

7) Вот самое большое преимущество … эта книга по ремонту SMPS поставляется с индивидуальной поддержкой по электронной почте . Кто оказывает поддержку? Да ведь автор книги, конечно же, сама Джестин Йонг.

Jestine Yong Bsc UK

Этот парень очень хорошо разбирается в вопросах, связанных с ремонтом электроники и в довершение всего; он очень услужливый и очень быстрый, когда дело доходит до ответа по электронной почте.

Скачав его книгу, я прочитал ее от корки до корки, но все же столкнулся с парочкой проблем, которые просто не мог понять.Я написал Jestine по электронной почте и получил ответ в течение нескольких часов.

Его ответ был подробным и точным. Благодаря предложениям и советам Джестин я смогла решить эти проблемы за считанные минуты.

С тех пор мы несколько раз переписывались по электронной почте, и он часто отвечал в течение 24 часов.

В целом, я очень рад, что решил загрузить это руководство по ремонту SMPS, потому что поначалу я был немного скептически настроен.

Я подумал, что книга может быть не для новичков.

Что ж, я рад, что ошибся!

Также следует отметить, что Джестин — настоящая находка.

Под этим я подразумеваю, что он на самом деле настоящий профессиональный инженер-электронщик, а также инструктор. Эта фотография, которую вы видите выше, не является каким-то случайным ботаном (прости, Джестин!), Которого каждый может получить на веб-сайтах стоковых фотографий.

Как я уже сказал, он также инструктор и управляет собственным учебным центром в Малайзии, стране в Юго-Восточной Азии.

Его учебный центр называется Noahtech Electronics Training, и он обучил и обучил бесчисленное количество начинающих техников / ремонтников электроники.

Вот фотография, на которой он обучает своих учеников в классе.

Вот еще одна фотография, на которой он позирует со своими учениками. Джестин слева с новой прической.

Так что будьте уверены, если вы получите его проводника, то попадете в надежные руки.

Перейдите сюда , чтобы узнать больше об этой книге по ремонту импульсных блоков питания, предназначенной только для загрузки, от Jestine Yong.

Около года назад мне захотелось сходить с ума, потому что я не мог найти подходящего руководства по устранению неисправностей импульсного источника питания.

Инструкции, которые я обнаружил на различных веб-сайтах, были слишком запутанными, и их было трудно понять.

Излишне говорить, что я был крайне разочарован и разочарован, потому что мне действительно хотелось узнать, как как можно быстрее устранять неисправности импульсного источника питания.

Но я не бросил поиски!

В конце концов мое терпение было вознаграждено в виде руководства по ремонту SMPS, составленного очень опытным инженером-электронщиком.

Инженера зовут Джестин, и теперь он в значительной степени мой наставник по всем вопросам, связанным с поиском и устранением неисправностей импульсного источника питания.

Если вас интересует подробное руководство по ремонту ИИП, обязательно ознакомьтесь с его предложением.

Он доступен для загрузки и наполнен большим количеством изображений и диаграмм, которые помогут вам лучше понять вещи.

Что мне больше всего нравится в руководстве по ремонту SMPS от Jestine, так это то, что к нему прилагается индивидуальная поддержка по электронной почте.

Эта функция очень полезна, особенно для кого-то вроде меня, который в то время был новичком в том, как устранять неисправности импульсного источника питания.

Вот почему я считал Джестина своим личным наставником, потому что он несколько раз держал меня за руку, когда я консультировался с ним по электронной почте.

Я вспомнил, прочитав его руководство в прошлом году и применив некоторую информацию к действию, у меня возникло несколько вопросов относительно термистора с отрицательным температурным коэффициентом для импульсного источника питания, над которым я работал, и он быстро предоставил мне ответы на эти вопросы. все мои вопросы.

Это очень информативное руководство с первоклассной поддержкой, поэтому я без колебаний порекомендую его всем, кто ищет комплексные руководства по поиску и устранению неисправностей в импульсном блоке питания.

В любом случае, вот некоторая полезная информация об SMPS…

Количество основных цепей в импульсном источнике питания

Типичный импульсный источник питания содержит всего 11 основных цепей:

мостовая схема, обнаружение ошибок, цепь обратной связи, вход Схема защиты и фильтрации электромагнитных помех, схема генератора, схема коррекции коэффициента мощности, схема защиты, схема выборки, цепь вторичного выходного напряжения, цепь ожидания и, наконец, цепь постоянного тока запуска и работы.

Обратите внимание, что если одна из вышеперечисленных цепей перестанет работать, весь SMPS столкнется с рядом проблем.

Индикатор варистора

Варистор является одним из основных компонентов импульсного источника питания и предназначен для защиты электронного устройства от повреждения переходными напряжениями, генерируемыми молнией.

По сути, этот компонент помогает минимизировать электрические повреждения, тем самым делая электронику намного более надежной.

Так как же узнать, что варистор не работает должным образом?

Что ж, ключ кроется в верхней части варистора.Проблемный варистор обычно имеет темную верхнюю часть, которая открывается.

Вы можете легко проверить это с помощью аналогового измерителя с настройкой X 10 кОм и проверить, есть ли какие-либо показания.

Если да, это означает, что варистор не работает как обычно.

Чтобы получить полную информацию о том, как устранить неполадки импульсного источника питания, вам действительно следует ознакомиться с , этим руководством .

Получите соответствующее руководство по поиску и устранению неисправностей SMPS, и вы будете ремонтировать блоки питания, как ветеран, в кратчайшие сроки!

Каждый раз, когда технический специалист-новичок спрашивает меня, как починить блок питания через Skype, я всегда рекомендую этому человеку приобрести руководство хорошего качества.

Это то, что окупится во много-много раз. Знания — это сила, люди.

Если вы планируете зарабатывать на жизнь этим видом деятельности, вам следует собрать как можно больше справочных материалов по поиску и устранению неисправностей электроники и ремонту.

Вы знаете, пару лет назад я ничего не знал о ремонте неисправных блоков питания. В то время я был начинающим техником.

Конечно, я не знал, как починить блок питания, поэтому сразу же зашел в Интернет и загрузил это довольно подробное руководство по ремонту блока питания.

В нем были все учебные пособия, информация и скриншоты, которые дали мне действительно большое преимущество.

Я предполагаю, что вам также может понадобиться фору, потому что давайте посмотрим правде в глаза, устранение неполадок и ремонт импульсных источников питания не так прост, как ABC.

Вот несколько советов и подсказок о том, как отремонтировать импульсный источник питания…

1) Знание компонентов

Убедитесь, что вы ознакомились с компонентами, которые имеются в источнике питания.

Когда вы, например, ремонтируете блок питания компьютера, вы должны быть знакомы с такими компонентами, как силовые транзисторы, силовая ИС и силовой полевой транзистор.

Помимо вышеупомянутых компонентов, источник питания, как правило, также содержит следующие компоненты: импульсный трансформатор

, конденсатор фильтра, оптоизолятор IC, мостовой выпрямитель, вторичные выходные диоды, главный предохранитель, конденсаторы вторичного фильтра, и т. д.

2) Схема защиты

Я подумал, что должен просто упомянуть, что импульсный источник питания хорошо сохраняется благодаря так называемой схеме защиты.

Как следует из названия, цель этой схемы — защитить компоненты, расположенные в блоке питания.

Когда происходит что-то нежелательное, эта схема отключает определенную часть в блоке питания или может даже отключить все это.

Всего существует четыре широко используемых схемы защиты:

i) OCP или защита от перегрузки по току
ii) SP или защита от перенапряжения
iii) SDP или защита от теплового отключения
iv) OVP или защита от перенапряжения

3) закорочены Компоненты на первичной стороне

Обнаружение закороченных компонентов на первичной стороне источника питания может оказаться серьезным препятствием.

Но если вы его найдете, не останавливайтесь на достигнутом. Попробуйте также проверить резисторы.

Кто знает, может быть обрыв цепи, поэтому ее обязательно нужно заменить.

После того, как вы заменили поврежденные компоненты, внимательно посмотрите, можете ли вы найти какие-либо потрескавшиеся паяные соединения, и убедитесь, что вы их исправили.

Соберите все вместе и проведите тест, чтобы определить, работает ли блок питания.

В идеале вы можете протестировать его, используя технику лампочки, которую вы можете просмотреть на странице 154 руководства по ремонту источника питания.

Пособие прекрасно подходит как справочник по ремонту компьютерных блоков питания; Источники питания ЖК- и ЭЛТ-мониторов, ЖК-телевизоры, DVD-плееры и многие другие электронные устройства, содержащие импульсный источник питания.

Теперь вы можете быстро и легко приступить к делу и узнать, как исправить импульсный источник питания, как давний профессионал.

Давай, ознакомьтесь с этим руководством по ремонту SMPS . Я на сто процентов уверен, что вы будете этому рады.

Замена рабочих компонентов в импульсном блоке питания

Главная> Гостевой пост> Замена рабочих компонентов в импульсном блоке питания Джестин Йонг, 23 марта 2020 г.

Пришел ЖК-телевизор OLAN 22 ″ с жалобой на отсутствие питания.После снятия крышки я увидел четыре печатных платы:

  1. Плата инвертора
  2. Плата блока питания
  3. Основная плата
  4. Порт USB, который используется совместно с входной платой переменного тока

Первое, что нужно проверить, это, очевидно, главный предохранитель, и он был разомкнут. При визуальном осмотре я увидел, что основной конденсатор фильтра уже вздулся, как видно на фото ниже:

При проверке силового полевого транзистора на плате было обнаружено, что он закорочен.Я приступил к проверке других компонентов на первичной стороне питания и обнаружил, что резистор измерения тока тоже был обрывом.

В качестве меры предосторожности заменил еще три рабочих компонента т.е. Оптоизолятор IC, TL431 IC и конденсатор фильтра. Причина, по которой я заменил рабочие компоненты, заключается в том, что по опыту эти компоненты хотя и хороши во время тестирования, но позже могут испортиться. Почему бы не заменить его, чем беспокоиться, что он вернется позже для ремонта? Повторный звонок клиента всегда будет некоммерческим ремонтом.После замены компонентов и включения ЖК-телевизор ожил.

Заключение. Вам нужно много навыков тестирования компонентов, чтобы понимать характеристики электронных компонентов. Некоторые из них вы можете проверить на борту, некоторые вам нужно протестировать вне платы, а некоторые будут иметь тенденцию к выходу из строя при полной нагрузке. Если вы хотите хорошо проверять электронные компоненты, я могу порекомендовать Jestine’s Ebook . Он использует свои методы для точной проверки многих электронных компонентов с помощью нескольких различных измерителей.

Эту статью подготовил для вас Суранга Бандара, владелец мастерской по ремонту электроники в Анурадапуре, Шри-Ланка.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется. Пожалуйста, оставьте это в комментариях. Если у вас есть статьи по ремонту электроники, которыми вы хотите поделиться с нами, свяжитесь с нами ЗДЕСЬ .

P.S- Если вам понравилась эта статья, щелкните здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: Вы можете проверить его предыдущий пост по ссылкам ниже:

https://jestineyong.com/still-have-hope-in-a-faulty-switch-mode-power-supply/

Нравится (86) Не нравится (1)

Понимание и ремонт блока питания от аналогового компьютера 1969 года

Недавно мы начали восстанавливать аналоговый компьютер vintage1.В отличие от цифрового компьютера, который представляет числа с дискретными двоичными значениями, аналоговый компьютер выполняет вычисления с использованием физических, непрерывно изменяемых значений например, напряжения. Поскольку точность результатов зависит от точности этих напряжений, прецизионный источник питания имеет решающее значение для аналогового компьютера. В этом сообщении блога обсуждается, как работает блок питания этого компьютера, и как мы решили проблему с ним. Это второй пост в серии; первый пост обсудили прецизионные операционные усилители в компьютере.

Аналоговый компьютер Model 240 от Simulators Inc. представлял собой «прецизионный аналоговый компьютер общего назначения» для настольных компьютеров, содержащий до 24 операционных усилителей. (У этого 20 операционных усилителей.)

Аналоговые компьютеры были популярны для быстрых научных вычислений, особенно для дифференциальных уравнений, но практически вымерли в 1970-х годах как цифровые компьютеры. стал мощнее. Обычно их программировали путем подключения кабелей к коммутационной панели, в результате чего образовывалась путаница проводов, напоминающая спагетти.На фото выше красочная патч-панель находится посередине. Над коммутационной панелью 18 потенциометров устанавливают уровни напряжения для ввода различных параметров. Патч-панель меньшего размера для цифровой логики находится в правом верхнем углу.

Блок питания

В компьютере используются два опорных напряжения: +10 В и -10 В, которые блок питания должен генерировать с высокой точностью. (Старые ламповые аналоговые компьютеры обычно использовали опорные напряжения +/- 100 В.) Блок питания также обеспечивает регулируемое напряжение +/- 15 В для питания операционных усилителей, питания различных реле в компьютере и питания ламп.

Блок питания в нижней части аналогового компьютера. Секция трансформатора / выпрямителя находится слева, а каркас платы регулятора — справа. Жгуты проводов в верхней части блока питания соединяют его с остальной частью компьютера.

На фото выше показан блок питания в нижней части задней части аналогового компьютера. Блок питания сложнее, чем я ожидал. Секция слева преобразует линейное напряжение переменного тока в низковольтный переменный и постоянный ток. Эти выходы идут в отсек для карт справа, на котором есть 8 печатных плат, регулирующих напряжения.Сложные жгуты проводов над источником питания обеспечивают питание пяти аналоговых вычислительных модулей над источником питания. а также остальной компьютер.

Для старого компьютера важно убедиться, что блок питания работает правильно, так как если он генерирует неправильный напряжения, результаты могут быть катастрофическими. Итак, мы действуем методично, сначала проверяя компоненты в блоке питания, а затем тестируя выходы блока питания при отключении. от остальной части компьютера и, наконец, включение всего компьютера.

Блок трансформатора / выпрямителя

Мы начали с того, что сняли блок питания с компьютера и отсоединили две половинки. Левая половина блока питания (ниже) выдает четыре нерегулируемых выхода постоянного тока и один низковольтный выход переменного тока. Он содержит два больших силовых трансформатора, четыре больших конденсатора фильтра, выпрямители шпилек (вверху сзади), диоды меньшего размера (спереди справа) и предохранители. Это большой и очень тяжелый модуль из-за трансформаторов. Меньший трансформатор питает лампы и реле, а больший трансформатор питает источники +15 и -15 В, а также генератор.Предположительно, использование отдельных трансформаторов предотвращает влияние шума и колебаний ламп и реле на источники прецизионного эталона.

Эта секция источника питания снижает сетевое напряжение переменного тока до низкого напряжения постоянного и переменного тока.

Одна проблема со старыми блоками питания заключается в том, что электролитические конденсаторы могут со временем высохнуть и выйти из строя. (Эти конденсаторы представляют собой большие цилиндры наверху.) Мы измерили емкость и сопротивление больших конденсаторов (используя старинный измеритель LCR HP LCR от Марка), и они прошли проверку.Мы также проверили входное сопротивление блока питания, чтобы убедиться в отсутствии явных коротких замыканий; все казалось нормально.

Мы вынули все карты из каркаса, осторожно подключили блок питания и … вообще ничего не произошло. По какой-то причине на блок питания не поступало переменное напряжение. Взрыватель был очевидным подозреваемым, но все в порядке. Карл спросил про выключатель питания на панели управления, и мы разобрались. что выключатель был подключен к источнику питания через розетку с надписью «CP» (ниже).Мы добавили перемычку, включили источник питания и на этот раз нашли ожидаемые напряжения постоянного тока от модуля.

На боковой стороне блока питания расположены три розетки переменного тока с поворотным замком, обозначенные «FAN», «DVM-LOGIC» и «CP» (панель управления). На разъем «DVM-LOGIC» подается 5-вольтовый источник питания цифровой логики, который нам еще предстоит отремонтировать.

Регулятор карт

Далее мы по отдельности протестировали различные платы блока питания. Блок питания имеет четыре платы регуляторов, генерирующих «напряжение лампы», «+15», «-15» и «напряжение реле».Плата регулятора предназначена для снятия нерегулируемого постоянного напряжения с модуля трансформатора и снижения его до желаемого выходного напряжения.

Мы подключили платы регуляторов, используя настольный источник питания в качестве входа, чтобы убедиться, что они работают правильно. Мы настроили потенциометр на регуляторе +15 В, чтобы получить ровно 15 В. Стабилизатор -15 В казался темпераментным, и когда мы его настраивали, напряжение скакало. Я подозревал грязный потенциометр, но он успокоился до стабильного результата (рассказчик: это предзнаменование).Мы не знаем, какими должны быть напряжения лампы и реле, и они не критичны, поэтому мы оставили эти платы без изменений.

Одна из плат регулятора напряжения. К радиатору прикреплен большой силовой транзистор.

На фото выше изображена одна из плат регулятора; вы можете подумать, что в нем много компонентов, предназначенных только для регулирования напряжения. Первая микросхема регулятора напряжения была создана в 1966 году, поэтому в этом компьютере вместо нее используется линейный регулятор, построенный из отдельных компонентов.Большой металлический транзистор на радиаторе — это сердце регулятора напряжения; он действует как переменный резистор для контролировать выход. Остальные компоненты подают управляющий сигнал на этот транзистор для получения желаемого выходного сигнала. Стабилитрон (желтые и зеленые полосы справа) действует как источник опорного напряжения, и выходной сигнал сравнивается с этим опорным сигналом. Транзистор меньшего размера генерирует управление сигнал для силовых транзисторов. В правом нижнем углу многооборотный потенциометр используется для регулировки выходного напряжения.Чем больше конденсаторы (металлические цилиндры) фильтруют напряжение, а конденсаторы меньшего размера обеспечивают стабильность. Большинство источников питания всего через несколько лет заменит все эти компоненты (кроме конденсаторов фильтра) на микросхему регулятора напряжения.

Генератор прерывателя

Прецизионные операционные усилители аналогового компьютера используют схему прерывателя для улучшения характеристик постоянного тока, а прерыватель требует импульсов 400 Гц. Эти импульсы генерируются платой генератора в источнике питания (почему-то называемой затвором).Мы включили плату отдельно, чтобы проверить ее, и обнаружили, что он выдавал 370 Гц, что казалось достаточно близким.

Плата затвора обеспечивает колебания 400 Гц для управления прерывателями операционного усилителя.

Схема этой карты несколько необычна, и это совсем не то, что я ожидал от карты с осциллятором. На левой стороне расположены три больших конденсатора и три диода, питаемые от низковольтного переменного тока. от трансформатора. Немного поразмыслив над этим, я решил, что это двухполупериодный удвоитель напряжения, производящий постоянный ток при вдвое большем напряжении, чем на входе переменного тока.Я предполагаю, что импульсы прерывателя должны быть более высокого напряжения, чем питание компьютера +15 В, поэтому они использовали этот удвоитель напряжения для получить достаточное колебание напряжения.

Сам генератор (правая сторона платы) использует один транзистор NPN в качестве генератора, а другой транзистор NPN в качестве буфера. Мне потребовалось время, чтобы понять, как работает однотранзисторный генератор. Оказывается, это генератор сдвига фазы; три белых конденсатора посередине доски сместите сигнал на 180 °; инвертирование вызывает колебания.

Операционные усилители

Расчеты в аналоговом компьютере относятся к эталонным напряжениям +10 В и -10 В, поэтому эти напряжения должны быть очень точными. Карты регулятора выдают довольно стабильные напряжения, но недостаточно хорошие. (Во время тестирования плат регуляторов я заметил, что выходное напряжение заметно сдвигается при изменении входного напряжения.) Для достижения этой точности опорные напряжения генерируются схемами операционного усилителя, построенными из двух плат операционных усилителей и сетевой карты обратной связи.

Карта операционного усилителя. Эта карта имеет единственный вход справа. В нем используется микросхема операционного усилителя с круглым металлическим корпусом, но схема прерывателя улучшает характеристики.

Как ни странно, платы операционных усилителей, используемые в блоке питания, точно такие же, как и прецизионные операционные усилители, используемые в аналоговый компьютер сам. Еще в 1969 году интегральные схемы операционного усилителя не были достаточно точными для аналогового компьютера, поэтому разработчики этого аналогового компьютера объединил микросхему операционного усилителя со схемой прерывателя и многими другими деталями, чтобы создать высокопроизводительную операционную карту.Карты ОУ подробно описал в первом посте, поэтому я не буду здесь вдаваться в подробности.

Сетевая карта

Сетевая карта выполняет две работы. Во-первых, в нем есть прецизионные резисторы для создания цепей обратной связи для операционных усилителей питания. Во-вторых, он имеет два силовых транзистора (круглые металлические компоненты ниже), которые буферизуют опорные напряжения от операционного усилителя для использования остальной частью компьютера.

Сетевая карта. Два разъема слева подключены к входам операционного усилителя.

Одна из проблем аналогового компьютера заключается в том, что точность результатов зависит от точности компонентов. Другими словами, если опорное напряжение 10 В отключено на 1%, ваши ответы будут неверными на 1%. В результате аналоговым компьютерам требуются дорогие высокоточные резисторы. (Напротив, напряжения в цифровом компьютере могут сильно дрейфовать, если можно различить 0 и 1. Это одна из причин почему цифровые компьютеры заменили аналоговые.) Типичные резисторы имеют допуск 20%, что означает, что сопротивление может отличаться на 20% от указанного значения.Более дорогие резисторы имеют допуск 10%, 5% или даже 1%. Но резисторы на этой плате имеют допуск 0,01%! (Эти резисторы представляют собой розовые цилиндры.) Два больших резистора слева представляют собой силовые резисторы «Brown Devil» на 15 Ом. Они защищают выходы напряжения на случай, если кто-то подключает не тот провод к патч-панели и замыкает выход, что было бы легко сделать.

Сетевая карта получает регулировочное напряжение от панели управления, а также имеет справа многооборотные потенциометры для регулировки (как и платы регуляторов).Зеленые разъемы используются для подключения сетевой карты к платам операционного усилителя. (Операционные усилители имеют отдельный разъем для входа, чтобы уменьшить электрические помехи.)

Включение и устранение проблемы

Наконец, мы поместили все платы блока питания обратно в шкаф, снова вставили блок питания в компьютер и включили шасси. (но не аналоговые компьютерные модули). Загорелись некоторые световые индикаторы на панели управления, и на измерителе показалось напряжение +15 В.Однако источник -15 В не подавал никакого напряжения, и на передней панели горели индикаторы перегрузки операционного усилителя, а опорных напряжений от операционных усилителей не было. Плохое питание -15 В выглядело как первое, что нужно исследовать, так как без это, платы операционного усилителя не будут работать.

Я извлек из каркаса для плат работающий регулятор +15 и неисправный регулятор -15 и проверил их на стенде. Удобно, что обе платы идентичны, поэтому я мог легко сравнить сигналы на двух платах.(В современных схемах обычно используются специальные регуляторы для выходов с отрицательным напряжением, но в этом источнике питания использовался один и тот же регулятор для обоих.) Выходной транзистор на плохой плате не получал никакого управляющего сигнала на своей базе, поэтому он не производил никакого выходного сигнала. Отслеживая сигналы, я обнаружил, что транзистор, генерирующий этот сигнал, не получает напряжения. Этот транзистор питался напрямую от разъема, так почему же на транзистор не поступало напряжение?

Плата регулятора вышла из строя из-за ослабленных винтов (красные стрелки).Схема была запитана через толстую нижнюю дорожку печатной платы, а затем ток проходил через радиатор от нижнего винта к верхнему.

Я изучил печатную плату и заметил, что между транзистором и разъемом нет следа на печатной плате! Вместо этого часть пути прохождения тока была от до радиатора. Радиатор был прикручен к печатной плате, образуя соединение между двумя красными стрелками выше. После того, как я закрутил все винты, плата заработала нормально.

Аналоговый компьютер со снятой коммутационной панелью и боковыми сторонами, показывающими внутреннюю схему. Блок питания находится в нижней части спины. Один модуль был удален и помещен перед компьютером.

Мы вставили платы обратно, включили шасси, и на этот раз все напряжения оказались правильными. Индикаторы перегрузки операционного усилителя оставались выключенными; сигнальная лампа загорелась раньше, потому что операционные усилители не могли работать при отсутствии одного напряжения. Следующим шагом является включение модулей аналоговой схемы и их проверка.Нам также необходимо отремонтировать отдельный 5-вольтовый источник питания, используемый цифровой логикой, поскольку мы обнаружили неисправные конденсаторы, которые необходимо заменить. Итак, это задачи для следующих занятий.

Следуйте за мной в Twitter @kenshirriff, чтобы быть в курсе будущих статей. Еще у меня есть RSS-канал.

Примечания и ссылки

Изучите базовые знания для ремонта ПК с блоком питания —

Ремонт блока питания ПК 101

Хотите узнать о Ремонт блока питания ПК? Страстные компьютерные фанаты и даже обычные пользователи редко думают о блоках питания своих систем, потому что большую часть времени, если все идет гладко, и компьютеры загружаются и включаются, никому нет дела до этих коробок в устройствах.

Часто возникает путаница в отношении важности этих источников питания, поскольку в большинстве случаев они не влияют на поведение компьютеров в качестве других подгрупп, таких как материнская плата, видеокарты, жесткий диск и т. Д. на.

Но дело в том, что при мощном блоке питания, превышающем 600 Вт, с уровнем энергоэффективности выше диапазона 80, 85%, покупка нового может быть настоящей проблемой.

Ремонт поставки, таким образом, жизненно важен для сокращения бюджета, особенно если устройство является качественным, обеспечивающим питание серьезного энтузиаста или выше системы.

Что касается проблем, которые могут возникнуть с питанием, некоторые из них встречаются чаще: кабели могут разорваться, их рукава могут быть разрезаны или закорочены.

Лучшие источники питания предлагают защиту от скачков напряжения, перенапряжения и других бедствий, но они тоже могут пострадать, когда происходит фактический более сильный, чем обычно, разряд.

Однако в большинстве случаев ремонт питания требуется, когда внезапно ПК не запускается и другие компоненты не неисправны.

В этих случаях в источниках питания может быть взорван конденсатор, разорвана какая-либо проводка и многое другое.

Современные и качественные источники питания представляют собой очень сложные электрические и электронные устройства, часто содержащие микросхемы, которые гарантируют подачу чистого тока ко многим компонентам при необходимости подачи питания.

Но, как правило, наиболее требовательными компонентами являются графические адаптеры высокого класса, а также материнская плата.

Чтобы защитить компьютер или другие электрические устройства от неожиданного закрытия или защитить их от скачков напряжения, ИБП (источник бесперебойного питания) используется в качестве электрического буфера.

Ремонт ИБП часто связан либо с фактическим ремонтом этих устройств, но также с задачами технического обслуживания, такими как замена разряженных батарейных блоков внутри них, замена предохранителей или других компонентов.

Что нужно знать о блоке питания ПК?

Знание отдельных компонентов блока питания вашего ноутбука, а также того, что каждый из них делает, в конечном итоге сэкономит вам много душевных страданий и денег в долгосрочной перспективе.

Многие люди воспринимают источник питания как должное до тех пор, пока их компьютер не начинает отключаться в неурочное время без всякой причины.

Вооружитесь базовыми знаниями о каждой детали, и это поможет вам диагностировать простые проблемы, которые могут возникнуть.

Первое, что вам нужно учитывать, когда вы смотрите на свой блок питания, — это удлинитель, который вы подключаете к стене.

Это поможет регулировать мощность, потребляемую вашим компьютером, и предотвратить потенциально фатальные скачки мощности.

Многие люди думают, что они могут пропустить этот компонент блока питания своих ноутбуков, но как только они теряют ценное электронное устройство из-за скачка напряжения, они часто никогда не останутся без него.

Следующая вещь на очереди — адаптер переменного тока. Это еще один момент, который помогает регулировать количество энергии, подаваемой на ваш компьютер.

Он также преобразует переменный ток из сетевой розетки в постоянный, который ваш компьютер будет использовать для питания ноутбука, а также для зарядки аккумулятора.

После того, как питание поступает на портативный компьютер через гнездовой адаптер, точка, в которой заканчивается шнур питания и начинается переносной компьютер, питание направляется на плату питания компьютера.

Это аппаратное обеспечение выполняет две функции: одну для подачи питания на материнскую плату; и два для подачи питания на аккумулятор для зарядки.

Еще одним часто упускаемым из виду аппаратным обеспечением, которое является частью блока питания вашего ноутбука, является вентилятор охлаждения компьютера. Вентилятор охлаждения гарантирует, что ваш компьютер не перегреется.

Из-за проблем с перегревом компьютер периодически отключается. Процессор для вашего компьютера обычно является элементом, который выделяет больше всего тепла в вашем компьютере, поэтому, если вы когда-нибудь решите приобрести более мощный процессор.

Очень важно проверить и убедиться, что вентилятор охлаждения компьютера, установленный в вашем ноутбуке, достаточно силен, чтобы должным образом охлаждать ваш ноутбук.

Другие проблемы, с которыми люди обычно сталкиваются с вентилятором, заключаются в том, что воздухозаборник забивается волосами и грязью или воздухозаборник забивается до такой степени, что вентилятор становится неэффективным.

Это может вызвать несколько различных ситуаций, которые могут привести к внезапному выключению компьютера.

Научитесь диагностировать проблемы ПК с блоком питания

Блок питания преобразует обычный домашний ток в низкое постоянное напряжение, используемое компьютером.Когда этот компонент выходит из строя, с вашим компьютером просто не происходит никакой активности.

Не забудьте сначала выполнить простое устранение неисправностей. Осмотрите источник питания на предмет повреждений. Дважды проверьте все соединения.

Умение проверять блок питания и заменять его при необходимости может спасти жизнь, если вы компьютерный фанат или работаете с надежным ПК.

Не считайте само собой разумеющимся простое удовольствие от включения компьютера, и все работает отлично.

Недавно мы включили один из наших компьютеров, и примерно через час он просто перезагрузился.И это продолжалось примерно 10 раз в день, пока мы не выяснили, что причиной является источник питания.

На что обратить внимание, когда ваш источник питания выходит из строя или просто умирает, вы следующие.

ОТСУТСТВИЕ ПИТАНИЯ КОМПЬЮТЕРА

Здесь вы должны сначала проверить сетевую розетку на наличие питания, подключив другое устройство, например радио или лампу, чтобы убедиться в наличии питания.

Если компьютер подключен через сетевой фильтр, проверьте и его.

Если в розетке есть питание, проверьте кабель питания, идущий к ПК, чтобы убедиться, что напряжение переменного тока поступает на системный блок.

Сделайте это с помощью мультиметра.

Если есть питание, вам придется открыть ПК и проверить, есть ли питание от источника питания к материнской плате.

При использовании мультиметра для проверки напряжения убедитесь, что у вас есть хорошее заземление для черного провода мультиметра.

ПРОБЛЕМЫ ПЕРЕЗАГРУЗКИ

Одна из основных проблем, с которыми вы можете столкнуться при неисправном блоке питания, заключается в том, что он может перезагрузить компьютер без какого-либо предупреждения.

Вся информация потеряна, и кажется, что это происходит в самый неподходящий момент.

Ошибки загрузки при первом запуске компьютера — еще один индикатор того, что этот компонент мигает.

ПРОБЛЕМЫ РАСПРЕДЕЛЕНИЯ ПИТАНИЯ

Когда источник питания начинает выходить из строя, вы можете получить питание на одном устройстве, а не на другом. Например, жесткий диск может получать питание, но в дисководе CDROM вообще ничего нет.

Руки, использующие вольтметр

Еще одна головная боль, которая может вызвать перезагрузку, — это прерывистое питание дисков или самой материнской платы.

Выполните следующие действия, чтобы проверить блок питания, если у вас возникнут некоторые из вышеперечисленных проблем.

ПРОВЕРКА ИСТОЧНИКА ПИТАНИЯ

Если розетка и шнур питания в порядке, убедитесь, что соединение на материнской плате надежно.

Тогда вам, возможно, придется столкнуться с тем, что сам блок питания плохой. Если у вас есть мультиметр, вы можете проверить выход блока питания перед покупкой нового. Просто выполните следующие действия.

Выключите ПК, но не отключайте его, откройте системный блок.Установите мультиметр на считывание значений постоянного напряжения в следующем диапазоне, превышающем 12 вольт.

Найдите разъем питания, аналогичный жесткому диску или разъему для дисковода компакт-дисков, который не используется, и включите компьютер.

Вы также можете отсоединить разъем привода и использовать его. Включите компьютер и вставьте ЧЕРНЫЙ датчик в разъем питания на одном из ЧЕРНЫХ проводов.

Коснитесь КРАСНЫМ щупом к ЖЕЛТОМУ проводу на разъеме питания.

Показание мультиметра должно быть +12 вольт. Теперь прикоснитесь КРАСНЫМ щупом к КРАСНОМУ проводу, и показание должно быть +5 вольт.

Если показания отсутствуют или отличаются, вам необходимо заменить блок питания. Если показания верны, вам следует проверить разъемы P8 или P9 на материнской плате.

Эти разъемы могут также называться P4 и P5. Чтобы проверить эти разъемы, выполните следующие действия…

Вставьте ЧЕРНЫЙ датчик в P8 на одном из ЧЕРНЫХ проводов. Вставьте КРАСНЫЙ датчик в разъем P8 на КРАСНОМ проводе. Показание мультиметра должно быть +5 вольт.

Проверьте питание, идущее на соединения материнской платы, вставив КРАСНЫЙ датчик в P8 на ЖЕЛТОМ проводе, и вы должны получить +12 вольт.

Оставьте ЧЕРНЫЙ провод касаться черного провода на разъеме P8. Проверьте СИНИЙ провод, и показание должно быть -12 вольт.

Теперь переместите ЧЕРНЫЙ датчик к ЧЕРНОМ проводу на разъеме P9. Проверьте БЕЛЫЙ провод, вставив КРАСНЫЙ датчик, и показание должно быть -5 вольт.

Проверьте КРАСНЫЕ провода на разъеме P9, и вы должны получить +5 вольт на каждом красном проводе. Вы не получите ровно 5 или 12 вольт, но показания будут очень близкими, например, 5,02 вольт.

Если источник питания отключен на пару вольт в любом направлении, например, когда КРАСНЫЙ провод должен показывать -5 вольт, но он показывает -8 вольт, или если нет показаний, замените источник питания.

ПРЕДУПРЕЖДЕНИЕ

НЕ извлекайте блок питания из корпуса системного блока при выполнении этих тестов.

НЕ выполняйте эти тесты, если вы чувствуете себя некомфортно. Обязательно удалите все электростатические накопления с одежды и тела, ПРЕЖДЕ, чем прикасаться к каким-либо частям внутри системного блока.

НИКОГДА не открывайте корпус блока питания по какой-либо причине, так как может присутствовать высокое напряжение.

Как отремонтировать блок питания ПК

Ваш компьютер не получает питание напрямую от розетки, а вместо этого ему нужен блок питания для преобразования обычного электричества в более низкую мощность. Если блок питания на вашем ПК перестает работать, компьютер либо не включается, либо автоматически отключается. Хотя первым делом вы можете отнести компьютер к техническому специалисту, но вместо этого вы можете самостоятельно устранить неполадки и отремонтировать блок питания дома.

Отсоедините кабель питания вашего ПК и все остальные шнуры, подключенные к задней части корпуса.Положите корпус компьютера на бок.

Удалите два винта на задней стороне корпуса, если в ПК используются винты корпуса. Если винты корпуса отсутствуют, возьмитесь за металлическую защелку в верхней части корпуса. Поднимите защелку, чтобы разблокировать боковую панель корпуса компьютера.

Нажмите на панель и снимите ее с корпуса. Выкрутите винты, удерживающие блок питания на месте в верхнем левом углу материнской платы. Отсоедините кабели, идущие от блока питания к материнской плате.

Проверьте, не исходит ли от блока питания запах гари. Немедленно выбросите блок питания, если почувствуете запах гари; его нужно будет полностью заменить.

Посмотрите, не забит ли вентилятор блока питания пылью. Опрыскайте вентилятор сжатым воздухом, чтобы удалить мусор. Подключите блок питания к материнской плате. Соберите компьютер и посмотрите, сохраняется ли проблема.

Если проблема не исчезнет, ​​снова отключите блок питания от компьютера.Проверьте номер модели сбоку источника питания. Посетите веб-сайт производителя, чтобы узнать, можно ли приобрести вентилятор на замену.

Выверните винты в верхней части блока питания и снимите верхнюю половину металлического кожуха. Выкрутите винты, которыми вентилятор крепится к корпусу блока питания. Вытащите вентилятор и установите его в новый блок.

Соберите блок питания и снова соберите компьютер. Проверьте, сохраняется ли проблема. Если проблема не исчезнет, ​​приобретите новый блок питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *