Зарядка для никель кадмиевых аккумуляторов своими руками. Как сделать зарядное устройство для NiCd и NiMH аккумуляторов своими руками

Как собрать зарядное устройство для никель-кадмиевых и никель-металлгидридных аккумуляторов в домашних условиях. Какие схемы и компоненты использовать для зарядки NiCd и NiMH батарей. Как правильно заряжать аккумуляторы этих типов.

Содержание

Принцип работы зарядного устройства для NiCd и NiMH аккумуляторов

Зарядное устройство для никель-кадмиевых (NiCd) и никель-металлгидридных (NiMH) аккумуляторов должно обеспечивать следующие основные функции:

  • Подача стабильного зарядного тока
  • Контроль напряжения и температуры аккумулятора
  • Автоматическое отключение при достижении полного заряда
  • Переход в режим поддерживающего заряда

Правильный алгоритм заряда позволяет максимально зарядить аккумулятор и продлить срок его службы. Рассмотрим основные схемы и компоненты для создания зарядного устройства своими руками.

Простая схема зарядного устройства на микросхеме MAX713

Одна из самых простых схем зарядного устройства для NiCd и NiMH аккумуляторов строится на специализированной микросхеме MAX713 от Maxim Integrated. Эта микросхема позволяет:

  • Заряжать от 1 до 16 аккумуляторов
  • Регулировать зарядный ток от С/3 до 4С
  • Автоматически переключаться с быстрого на медленный заряд
  • Отключать заряд по таймеру или температурному датчику

Типовая схема зарядного устройства на MAX713 выглядит следующим образом:

Схема зарядного устройства на MAX713

Основные компоненты схемы:

  • MAX713 — микросхема управления зарядом
  • Q1 — силовой ключ (MOSFET или биполярный транзистор)
  • R6 — токоизмерительный резистор
  • R1, R2 — резисторы для задания входного напряжения
  • HL1, HL2 — светодиоды индикации

Зарядное устройство на микроконтроллере

Более продвинутый вариант — зарядное устройство на микроконтроллере. Это позволяет реализовать более сложные алгоритмы заряда и дополнительные функции. Пример схемы на микроконтроллере ATtiny13:

Схема зарядного устройства на микроконтроллере

Ключевые особенности такой схемы:

  • Контроль напряжения, тока и температуры аккумулятора
  • Предварительный разряд аккумулятора
  • Точный контроль времени заряда
  • Сохранение настроек при отключении питания
  • Гибкая настройка параметров заряда

Как правильно заряжать NiCd и NiMH аккумуляторы

При разработке зарядного устройства важно учитывать следующие рекомендации по заряду NiCd и NiMH аккумуляторов:

  • Стандартный зарядный ток — 0.1C в течение 14-16 часов
  • Быстрый заряд — до 1С с контролем температуры
  • Напряжение окончания заряда — 1.45-1.5В на элемент
  • Определение полного заряда по падению напряжения (-dV)
  • Переход на поддерживающий заряд током 0.05C

Соблюдение этих правил позволит максимально зарядить аккумулятор и продлить срок его службы.

Выбор компонентов для самодельного зарядного устройства

При сборке зарядного устройства своими руками следует обратить внимание на следующие ключевые компоненты:

  • Силовой ключ — MOSFET или биполярный транзистор с низким сопротивлением
  • Микроконтроллер или специализированная микросхема управления зарядом
  • Датчик тока — шунт или микросхема измерения тока
  • Источник опорного напряжения для точных измерений
  • Температурный датчик (термистор) для контроля нагрева

Правильный выбор и расчет этих компонентов обеспечит эффективную и безопасную работу зарядного устройства.

Программирование микроконтроллера для зарядного устройства

При использовании микроконтроллера необходимо разработать программу, реализующую алгоритм заряда. Основные функции, которые должна выполнять программа:

  • Измерение напряжения и тока аккумулятора
  • Контроль температуры
  • Управление силовым ключом
  • Определение окончания заряда
  • Переход в режим поддерживающего заряда
  • Индикация состояния заряда

Для программирования можно использовать языки C или ассемблер. Важно обеспечить точное измерение параметров и стабильную работу.

Меры безопасности при сборке и эксплуатации зарядного устройства

При самостоятельном изготовлении зарядного устройства следует соблюдать следующие меры предосторожности:

  • Использовать качественные компоненты с запасом по мощности
  • Обеспечить надежную изоляцию силовых цепей
  • Установить защиту от короткого замыкания и перегрева
  • Контролировать температуру аккумулятора при заряде
  • Не превышать максимально допустимый зарядный ток
  • Проводить испытания с соблюдением мер безопасности

Правильно собранное зарядное устройство обеспечит эффективный и безопасный заряд NiCd и NiMH аккумуляторов в домашних условиях.


Самодельное зарядное устройство для аккумуляторной дрели на NiCd батареях

В этой статье описываются пошаговые инструкции по созданию зарядного устройства для аккумуляторной батареи NiCd (ni-cad).

** Предупреждение **
С помощью описанного метода можно заряжать только никель-кадмиевые батареи. Тип батарей обычно пишется на батарейных блоках. Новые дрели и шуруповерты используют другие типы батарей (Li-Ion, NiMh), которые будут взрываться, если использовать ниже описанный способ зарядного устройства. Если нет уверенности, то лучше не пытайтесь использовать данную инструкцию. Неправильная конструкция или расчет компонентов, также могут привести к воспламенению или взрыву батареи.


Необходимые материалы и инструменты:

Материалы:

— деревянный брусок;
— доска, толщиной 20 – 25 мм. или фанера 10 мм.;
— саморезы 32 или 41 мм.;
— медная проволока, диаметром 6 мм.;
— диод;
— светодиод;
— несколько резисторов;
— выходной трансформатор;

Инструменты:

— шуруповерт или отвертка;
— настольная пила;
— электролобзик;
— вольтметр;
— сверло 3и 4 мм. ;
— паяльник, припой, флюс;


Шаг первый: Изготовление брусков

Отрежьте два деревянных бруска, толщиной и размером с выступающую часть аккумуляторного блока. Бруски будут удерживать аккумуляторный блок на месте.


Блоки должны быть одинаковой толщины. На одном бруске сделайте v-образную канавку, чтобы в неё поместилась закругленная часть батарейного блока. На втором бруске, с помощью настольной пилы, сделайте два паза. Данные пазы могут отличаться по форме. Все зависит от формы аккумуляторного блока. С помощью небольшого куска дерева скрепите два бруска с помощью саморезов. После этого проверьте плотность подгонки деревянных деталей.

Шаг второй: Изготовление второй части держателя батареи

Из тонкой доски вырежьте деталь для второй стороны. Чем тоньше, тем лучше. Можно использовать фанеру. Для удобства дальнейшей работы, с помощью электролобзика, вырежьте фигурный рисунок. С помощью данного выреза будет понятно, где именно будут располагаться клеммы питания на аккумуляторном блоке.



Шаг третий: Установка медных контактов в держатель батареи

Для медных контактов мастер использовал одножильный медный кабель, диаметром 6 мм. Для контакта проволоки и клемм аккумуляторного блока были просверлены два отверстия. Одно отверстие для положительной клеммы и одно для отрицательной клеммы аккумулятора.
Затем необходимо снять изоляцию с проводов. После чего, зачищенную часть согнуть в U-образную форму, чтобы проволока торчала. Вставить проволоку в отверстия. Провода должны касаться клемм на аккумуляторе. Для проверки работоспособности необходимо использовать вольтметр.


Шаг четвертый: Сборка держателя батареи

Держатель батареи должен плотно подходить к батарейному блоку. Контакты должны касаться обеих клемм аккумуляторного блока.

Шаг пятый: Пайка электрической цепи


Диод, светодиод и несколько резисторов необходимы для того, чтобы аккумулятор заряжался с безопасной скоростью.

Мастер данной самоделки стремится к хорошей и медленной скорости зарядки в 1/16 С (емкость делится на 16). Поскольку у него выходной трансформатор переменного тока, то пришлось удвоить его до 1/8. Предпочтительней использовать 1/16 С для зарядных устройств постоянного тока, иначе могут разрушиться или загореться батареи.


Производительность 1,6 ампер-часа / 8 = 0,2А.
Номинальное напряжение полностью заряженного никель-кадмиевого элемента составляет 1,2 В. Так что в 12V аккумуляторе от шуруповерта, содержится 10 пальчиковых аккумуляторов. (12 В / 1,2 = 10 аккумуляторов).

Напряжение полностью разряженного никель-кадмиевого элемента составляет 0,8 В. 10 аккумуляторов * 0,8 В на 1 акк. = 8 В.
Зарядное устройство на 20 В — батарея на 8 В = разница в 12 В.
Уровень заряда 12 В / 0,2 А = 60 Ом.
12 В * 0,2 А = 2,4 Вт тепла, которое будет выделяться.

2,4 Вт / 2 (из-за трансформатора переменного тока) = 1,6 Вт.

Мастер использовал набор из 6 резисторов, чтобы приблизиться к расчетным 60 Ом. Это дало около 3,0 Вт рассеиваемой мощности при использовании резисторов 0,5 Вт. Поскольку используется зарядное устройство переменного тока, мощности 3,0 Вт более чем достаточно, поскольку резисторы отдыхают во время отрицательного полупериода переменного тока. В действительности они выдают только 1.6 Вт.

Для зарядного устройства постоянного тока на 20 В требуемая скорость зарядки составила бы 1/16 = 0,1 А и 120 Ом. 12 В * 0,1 А = 1,2 Вт. Шесть резисторов 0,5 Вт, вероятно, тоже подойдут для этого, но значения будут другими (120 Ом вместо 60).
*Обязательно делайте свои расчеты – это только пример.*

Светодиод индикации заряда должен получить около 0,02 А макс.
(Прямое падение напряжения 12В — 1,7В) = 10,3В. 10,3 В / 0,02 А = 515 Ом. Резистор 680 Ом будет в самый раз. Светодиод, чтобы не умер резистор.

Шаг шестой: Проверка зарядной цепи

Мастер смастерил крышку для закрытия электроники. Обрезал доску (можно фанеру) до размера, равного боковым сторонам держателя батареи. Протянул шнур от трансформатора через доску и подпаял к электрической цепи.
Также просверлил отверстие для светодиода. При включении вилки в розетку, светодиод должен загореться.

Шаг седьмой: Сокрытие электроники

Убедившись, что все работает, пришло время закрыть электронику. Отрежьте две прокладочные планки, чтобы крышка не сломала электронику. Автор использовал тонкий кусок древесноволокнистой плиты. Просверлите одновременно отверстия в доске (или фанере) и проставках.

Шаг восьмой: Финал

Закрутите последние саморезы и попробуйте зарядить аккумулятор.
Мастер также прикрутил деревянный брусок к стене, на котором закрепил зарядное устройство. Теперь оба аккумулятора будут готовы к работе тогда, когда они будут нужны.


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Зарядное устройство для NiMh/NiCd аккумуляторов на LM393


Несложное компактное зарядное устройство для NiMH и NiCd аккумуляторов с дополнительными полезными функциями, такими как автоматическое отключение и контроль температуры.
USB порт есть почти во всех современных компьютерах и ноутбуках. Сила тока отдаваемым USB 2.0 может быть более 500 миллиампер, при напряжении 5 Вольт, то есть минимум 2,5 Ватт, а USB третьего поколения еще больше. Использование такого источника энергии очень удобно, так как многие зарядки для смартфонов/планшетов также идут с разъёмом юсб, да и компьютер часто находиться под рукой. Сегодня мы сделаем зарядку для пальчиковых (AA) и мизинчиков (AAA) NiMH/NiCd аккумуляторных батарей от USB порта. Промышленные ЗУ для аккумуляторов от USB можно пересчитать по пальцам и обычно они заряжают маленьких током, что значительно увеличивает время подзарядки. К тому же собрав простенькую схемку мы получаем прекрасное зарядное устройство со световой индикацией и температурных датчиком стоимость которого весьма мала 1-2$.

Наше зарядное устройство подзаряжает сразу два NiCd/NiMH аккумулятора током более 470 mA, что делает зарядку очень быстрой. Перезаряжаемые батареи могут нагреваться, что несомненно негативно будет влиять на них, уменьшится ёмкость, пиковая отдаваемая сила тока, время нормальной эксплуатации. Чтобы такого не было в схеме реализовано автоматические прекращение подачи энергии, как только температура аккумуляторов будет 33 и более градусов по Цельсию. За эту полезную функцию отвечает NTC термистор с сопротивлением 10 кОм, при нагреве его сопротивление уменьшается. Он вместе с постоянным резистором R4 образует делитель напряжения. Термистор обязательно должен быть в тесном контакте с аккумуляторами, чтобы хорошо воспринимать изменение температуры.

Главной деталью схемы является сдвоенный компаратор-микросхема LM393.

Аналоги, которыми можно заменить LM393: 1040СА1, 1401CA3, AN1393, AN6916.


При заряде транзистор греется, его нужно обязательно ставить на радиатор. Вместо TIP32 возможно взять почти любой PNP структуры со схожей мощностью, я использовал КТ838А. Полным отечественным аналогом является транзистор КТ816, он имеет иную цоколевку и корпус.

USB кабель можно отрезать от старой мышки/клавиатуры или купить. А возможно вообще штекер юсб припаять прямо на плату.

Если при подаче питания светодиод горит, но схема ничего не заряжает то нужно увеличить сопротивление токоограничительного резистора R6. Для проверки нормальной работы схемы между землей и третьим выводом микросхемы (Vref) должно быть около 2,37 Вольт, а на втором контакте (Vtmp) LM393 1,6-1,85 Вольт.

Заряжать желательно два одинаковых аккумулятора, чтобы их ёмкость была примерно равна. А то получиться так, что один уже зарядился полностью, а второй только на половину.

Зарядный ток можно самостоятельно выставить, изменяя сопротивление резистора R1. Формула расчета: R1 = 1,6 * нужный ток.

К примеру, я хочу, чтобы мои аккумуляторы заряжались током 200 mA, подставляем:

R1 = 1,6 * 200 = 320 Ом



Это значит, что, установив переменный/подстрочный резистор мы можем добавить такую необычную функцию для зарядных устройств как самостоятельный выбор зарядного тока. Если, к примеру, аккумулятор нуждается в заряде током не более 0,1C то выкрутив резистор мы с легкостью выставим нужно нам значение. Это очень актуально для вот таких миниатюрных промышленных аккумуляторов, у которых ёмкость крайне мала и обусловлена их размерами.

При нагреве аккумуляторов зарядка будет отключаться. Это может увеличить время заряда, поэтому рекомендую ставить охлаждение в виде небольшого вентилятора.

Если у вас NiCd аккумуляторы, то их перед зарядкой нужно разрядить до 1 Вольта, то есть чтобы было использовано 99% ёмкости. Иначе будет чувствоваться негативный эффект памяти.

Когда банки будут полностью заряжены зарядный ток упадет примерно до 10 мА. Этот ток предотвратит естественный саморазряд никель-металлогидридных/камдиевых аккумуляторов. У первых наблюдается 100% разряд за год, а у второго типа примерно 10%.


Печатная плата для зарядного устройства существует в нескольких версиях, в одной из них USB гнездо удобно расположено прям на плате, то бишь возможно эксплуатировать USB шнур типа папа-папа.

[/center]
Скачать платы в формате .lay можно тут platy-usb. rar [16.92 Kb] (скачиваний: 676)
Корпус был куплен готовый NM5, и на него приклеен отсек для батареек. В середину корпуса легко влезла плата usb зарядного и небольшой радиатор транзистора. Красный индикаторный светодиод D1 и термодатчик RT1 выведены наружу.


Это зарядное устройство очень удобное, практичное и не занимает много места. Оно сможет очень быстро зарядить ваши аккумуляторные батареи. Если использовать не юсб порт, а зарядку для телефона/планшета то зарядный ток можно значительно повысить, к примеру использование импульсного БП для подзарядки смартфона привело к повышению силы тока до 0,72 Ампер, а значит и уменьшению время полного заряда. Таким образом мы используем порт Universal Side Bus не для передачи данных, а как альтернативный источник питания. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное — быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет — подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С — емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему «утекает» всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит — и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С — емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
«It»s okey», говорят они — вы можете заряжать наши аккумуляторы гораздо большим током - главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит - ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания — HL1 и индикация быстрого заряда — HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N — количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор — входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(Uin — Ubatt)*Icharge,
    где:
    Uin — максимальное входное напряжение,
    Ubatt — напряжение заряжаемых аккумуляторов — суммарное, разумеется,
    Icharge — зарядный ток.
  5. Посчитать сопротивление R1. R1=(Vin-5)/5 — сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.
  8. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

1

V +

V+

2

Не подсоединять

V+

3

REF

V+

4

BATT-

V+

5

V+

Не подсоединять

6

Не подсоединять

Не подсоединять

7

REF

Не подсоединять

8

BATT —

Не подсоединять

9

V+

REF

10

Не подсоединять

REF

11

REF

REF

12

BATT-

REF

13

V+

BATT-

14

Не подсоединять

BATT —

15

REF

BATT-

16

BATT-

BATT-

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

22

Выключено

V +

Не подсоединять

22

Включено

V +

REF

33

Выключено

V +

V+

33

Включено

V +

BATT-

45

Выключено

Не подсоединять

Не подсоединять

45

Включено

Не подсоединять

REF

66

Выключено

Не подсоединять

V+

66

Включено

Не подсоединять

BATT-

90

Выключено

REF

Не подсоединять

90

Включено

REF

REF

132

Выключено

REF

V+

132

Включено

REF

BATT-

180

Выключено

BATT —

Не подсоединять

180

Включено

BATT-

REF

264

Выключено

BATT —

V+

264

Включено

BATT —

BATT-

См. так же: Хождение под мухой или две недели с MAX713.


Как вам эта статья?

Заработало ли это устройство у вас?

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов на микроконтроллере.

РадиоКот >Лаборатория >Цифровые устройства >

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов на микроконтроллере.

Мне всегда хотелось иметь автоматическое зарядное устройство (ЗУ), которое работает так, как надо мне, а не так, как считают нужным китайские маркетологи.
Мои требования такие:
1. Перед началом заряда аккумулятор разряжается до напряжения 1 вольт на элемент, после чего автоматически включается на заряд.
2. Заряд осуществляется стабильным током 0,1C в течение 15 часов. Кстати, это не только моё требование. Именно такой режим заряда рекомендуют изготовители аккумуляторов. По истечении 15 часов аккумулятор автоматически отключается от ЗУ.
3. При отключении электроэнергии или уменьшении напряжения в сети до уровня, при котором нормальная работа зарядного устройства невозможна, зарядное устройство выключается, а прошедшее время заряда запоминается. При возобновлении подачи электроэнергии перезапуск таймера не происходит, а заряд продолжается дальше с того значения времени и до тех пор, пока не пройдут заданные 15 часов.
4. Простота работы с устройством. Чтобы им спокойно могли пользоваться домохозяйки. Никаких дисплеев и кнопок управления. Установил аккумуляторы и забыл. И то, что забыл — не страшно. Ничего аккумуляторам не сделается.
Готовые устройства или схемы меня не устраивали по ряду причин. Пришлось действовать по старому доброму принципу «сделай сам». Для начала был разработан универсальный контроллер для подобных зарядных устройств.
На всякий случай отмазка: Аффтар не является профессиональным программистом или электронщиком (по крайней мере, в настоящее время). Так что если Вы повторите эту разработку, и у Вас дом сгорит, то это Ваши проблемы. Аффтар за это ответственности не несёт. (Гениально, я считаю. Здесь и далее, прим. Кота.)

Для управления ЗУ используется микроконтроллер ATtiny13 семейства AVR фирмы Atmel. Вывод 6 контроллера (AIN1) является входом аналогового компаратора, с помощью которого контролируется состояние источника питания. Вывод 7 (ADC1) это вход АЦП, с помощью которого измеряется напряжение на батарее аккумуляторов. Высокий уровень на выходе 2 (PB3) включает зарядник. Высокий уровень на выходе 5 (PB0) включает цепь разряда аккумулятора. Вывод 3 (PB4) служит для индикации окончания заряда аккумулятора.
В качестве тактового генератора используется внутренний RC генератор микроконтроллера. Разъём XP1 предназначен для внутрисхемного программирования микроконтроллера непосредственно в этом устройстве. Если в дальнейшем перепрограммирование не планируется, то этот разъём можно не устанавливать.
Порог срабатывания аналогового компаратора задаётся делителем напряжения на резисторах R1, R2. Напряжение питания считается нормальным, если напряжение на входе 6 микроконтроллера больше 1,2 вольта.
Напряжение батареи подаётся на вход АЦП микроконтроллера через делитель напряжения на резисторах R4, R5. Чтобы напряжение на батарее измерялось правильно, коэффициент деления этого делителя должен быть 1,86 на элемент. Соотношение резисторов должно быть таким: R5/R4 = 1,86*N — 1, где N — количество элементов в аккумуляторной батарее. Например, для случая двух элементов:
R5/R4 = 1,86*2 — 1 = 2,72. Если R4 = 100 КОм, то R5 = 100*2,72 = 272 КОм.
При аварийном отключении питания, микроконтроллер некоторое время питается от конденсатора C8. Ёмкость этого конденсатора должна быть достаточной для того, чтобы микроконтроллер успел сохранить своё состояние в энергонезависимой памяти. Диод VD1 не даёт конденсатору C8 разряжаться через микросхему DA1.
Конденсаторы C1, C5, C6 защищают входы микроконтроллера от импульсных помех.

Алгоритм работы следующий. После подачи питания на микроконтроллер, происходит частичная инициализация внутренних устройств микроконтроллера (порт ввода/вывода, таймер, АЦП, компаратор и т.п.). Затем проверяется, в норме ли напряжение питания. Если напряжение в норме, то завершается инициализация и считывается значение статуса из энергонезависимой памяти (EEPROM), чтобы узнать, чем занимался контроллер в прошлой жизни до отключения питания.
Далее, проверяется, установлена ли аккумуляторная батарея в зарядное устройство. Для этого измеряется напряжение на аккумуляторной батарее. Если оно больше, чем 0,5 вольта на элемент, то считается, что батарея установлена.
Если в момент включения питания батарея находилась в зарядном устройстве, то работа продолжится в соответствии с тем состоянием, которое было записано в энергонезависимую память. Если раньше шёл разряд, то продолжится разряд, а затем начнётся заряд. Если шёл заряд, то продолжится заряд, пока не пройдёт 15 часов, после чего зарядник будет выключен. Если на момент отключения питания заряд успел завершиться, то зарядник не включается, а будет светиться зелёный светодиод, сигнализирующий об окончании зарядки.
Если же в момент включения питания батарея не была установлена, то считается, что будет начат новый цикл разряд/заряд. Программа зацикливается и ждёт, когда будет установлена батарея. Как только батарея будет установлена, будет включена цепь разряда аккумулятора. При этом начинает светиться жёлтый светодиод. Разряд будет продолжаться до тех пор, пока напряжение на аккумуляторе не уменьшится до 1 вольта на элемент. После этого разрядная цепь отключается и включается зарядник. Жёлтый светодиод гаснет и начинает светиться красный. Зелёный светодиод начинает вспыхивать с частотой 1 Гц. По продолжительности свечения зелёного светодиода и паузе между вспышками можно приблизительно оценить время, которое прошло с начала зарядки, и, соответственно, заряд, который успел набрать аккумулятор. Чем больше время свечения по отношению к паузе, тем больше времени прошло. Например, если время, в течение которого зеленый светодиод светится, равно времени в течение которого зеленый светодиод погашен, то, значит, прошло 7,5 часа, и аккумулятор зарядился наполовину.
Если во время заряда аккумуляторы были извлечены из зарядного устройства до окончания процесса заряда, то из-за работающего зарядника, напряжение на контактах держателя резко возрастёт. По этому признаку микроконтроллер узнаёт, что аккумуляторы были извлечены, и выключает режим заряда. После установки аккумуляторов в держатель будет начат новый цикл разряд/заряд.
Заряд продолжается в течение 15 часов. После 15 часов зарядник выключается, красный светодиод гаснет, а зелёный начинает светиться непрерывно, что означает окончание цикла заряда. В этом состоянии контроллер будет оставаться неограниченно долго, пока аккумулятор не будет удалён из зарядного устройства.
Если в течение цикла разряд/заряд, на любом из этапов, произойдёт отключение электроэнергии, то цикл приостанавливается, и состояние контроллера сохраняется в энергонезависимой памяти. После возобновления подачи электроэнергии цикл продолжается дальше с того этапа, на котором был остановлен. За состоянием питающего напряжения следит аналоговый компаратор — вход 6 микроконтроллера. Если напряжение на входе аналогового компаратора становится меньше 1,1 вольта, то происходит прерывание выполняемой программы, выходы контроллера переключаются на низкий уровень, состояние контроллера записывается в энергонезависимую память, и контроллер переходит в спящий режим.
Управляющая программа написана на языке C для среды разработки CodeVisionAVR. Над текстом программы смеяться не надо. Аффтар не является профессиональным программистом, и как раз с этой программы начинал учиться программировать микроконтроллеры AVR.

При программировании необходимо установить фьюзы (поставить «галки»): CKSEL0, SUT0, CKDIV8, BODLEVEL1. Остальные фьюзы должны быть сброшены.
Я пользовался программатором STK 200/300 и программой, встроенной в среду разработки CodeVisionAVR. Можно пользоваться любым программатором, который понимает ATtiny13.
Будьте осторожны. В некоторых программах, в частности в UniProf, всё с точностью до наоборот — «галки» соответствуют НЕ установленным фьюзам. Лучше, прежде, чем начать программирование, сначала фьюзы считать и посмотреть, как они стоят. С завода ATtiny13 приходят с установленными CKSEL0, SUT0, CKDIV8. Надо добавить к ним BODLEVEL1. (Интересно, какой вредитель придумал, что установленному фьюзу соответствует «0», а не установленному — «1»?)
Короче, будьте аккуратны при программировании фьюзов.

Макет собран на универсальной плате. Микроконтроллер установлен в панельку. Соединения выполнены проводом МГТФ. Печатная плата не разрабатывалась. Конденсаторы C1 — C6 — керамические. C7, C8 — любые оксидные. Ёмкость конденсатора C8 должна быть не меньше, чем указано на схеме.

Пример использования контроллера — зарядное устройство для цифрового фотоаппарата.

На основе контроллера, описанного выше, было сделано зарядное устройство для цифрового фотоаппарата.

Оно предназначено для заряда двух Ni-MH аккумуляторов размером AA и ёмкостью 2500 мАч.
Собственно зарядник представляет собой стабилизатор тока на микросхеме LM317T (DA2). Ток заряда определяется резистором R16 и рассчитывается по формуле: I = 1,25/R16.
Для включения/выключения зарядника используется каскад на транзисторах VT2, VT3. Когда на выходе 2 микроконтроллера DD1 низкий уровень, транзистор VT2 закрыт, а транзистор VT3 открыт и соединят вход ADJ микросхемы DA2 с общим проводом. При этом напряжение на выходе микросхемы DA2 уменьшается до 1,25 вольта. Если на выходе 2 микроконтроллера DD1 появляется высокий уровень, то транзистор VT2 открывается, а транзистор VT3 закрывается, и микросхема DA2 начинает работать как стабилизатор тока. Диод VD7 не даёт аккумуляторам разряжаться при выключенном стабилизаторе тока. Диод VD6 и резистор R17 создают небольшой сдвиг уровня выходного напряжения, чтобы уменьшить выходное напряжение микросхемы DA2 в выключенном состоянии.
Для разряда аккумуляторов, к ним подключается резистор R12 с помощью ключа на транзисторе VT1.
Диодный мостик VD1 — VD4 на входе зарядного устройства защищает от неправильного подключения источника питания.
В качестве источника питания используется готовый нестабилизированный сетевой адаптер БПН 12-03 с выходным напряжением 12 вольт и током нагрузки 300 мА.
Внешний вид и конструкция готового устройства показаны на рисунках ниже:

Зарядное устройство собрано в готовом пластмассовом корпусе G026, к которому свеху крепится держатель аккумуляторов. В качестве держателя используется готовый батарейный отсек для двух элементов АА. Микросхема LM317 (DA2) и транзистор VT1 установлены на алюминиевую пластину по размерам корпуса через изолирующие прокладки из слюды. Транзистор VT1 можно на радиатор не ставить, т.к. рассеиваемая им мощность не превышает 0,7 ватта. Резистор R12 составлен из двух резисторов по 1 Ом, 1 ватт.
Печатная плата не разрабатывалась. Устройство собрано на универсальной плате. Микроконтроллер установлен в панельку.

Если устройство собрано без ошибок и микроконтроллер запрограммирован правильно, то наладка не требуется. Но, во-первых, где Вы видели устройство без ошибок? А во-вторых, всё равно хотелось бы убедиться, что всё работает так, как надо.
Первое включение делают без микросхемы микроконтроллера. Спалить её всегда успеете. Подключите источник питания с напряжением 8 — 12 вольт. Должен засветиться синий светодиод HL2. Убедитесь, что напряжение на выходе микросхемы DA1 составляет 5 вольт. На панельке для микроконтроллера соедините перемычкой вывод 8 поочерёдно с выводами 2, 3, 5. Соответственно, поочерёдно должны светиться светодиоды HL4, HL1, HL3. Установите резистор сопротивлением 100 КОм между выводами 4 и 8 на панельке микроконтроллера. Подключите к тем же выводам вольтметр с входным сопротивлением не меньше 1 МОм. Китайский цифровой мультиметр вполне подойдёт. Отключите источник питания, и засеките время, за которое напряжение на этом резисторе уменьшится с 4,5 вольт до 2 вольт. Если это время превышает 20 секунд, то значит, конденсатор C8 имеет достаточную ёмкость, и микроконтроллеру будет чем питаться при внезапном отключении электроэнергии.
При отключённом питании, соедините перемычкой на несколько секунд выводы 4 и 8 на панельке микроконтроллера, чтобы конденсатор C8 разрядился. Установите микроконтроллер в панельку.
Для дальнейшей проверки, необходимо собрать небольшую тестовую схему, и подключить её к контроллеру, как показано на нижеследующем рисунке:

Резисторы R101 — R104 должны иметь одинаковый номинал и могут быть от 4,7 до 10 Ком.
Установите движок резистора R102 в нижнее по схеме положение, что соответствует нулю вольт на входе 7 микроконтроллера. Движок резистора R104 установите в верхнее по схеме положение, что соответствует максимальному напряжению на входе 6 (Power Good) микроконтроллера. Подключите вольтметр к выводу 7 микроконтроллера. Включите питание. Должен засветиться синий светодиод HL2. В этом состоянии микроконтроллер должен ожидать, когда к нему подключат аккумуляторы.
Постепенно перемещая движок резистора R102, увеличивайте напряжение на входе 7 микроконтроллера. При напряжении 0,25 — 0,30 вольт должен засветиться красный светодиод HL4, а зелёный HL1 должен начать вспыхивать с интервалом в 1 секунду. Это говорит о том, что микроконтроллер обнаружил подключённый аккумулятор и включил режим заряда.
Подключите вольтметр к выводу 6 (Power Good) микроконтроллера. Постепенно перемещая движок резистора R104, уменьшайте напряжение на входе 6 микроконтроллера. При напряжении около 1,1 вольт, красный HL4 и зелёный HL1 светодиоды должны погаснуть. Это говорит о том, что микроконтроллер обнаружил снижение напряжения питания ниже допустимого уровня, все выключил и заснул. Постепенно увеличивайте напряжение на входе 6 микроконтроллера. При напряжении около 1,2 вольт, должен снова включиться режим заряда, но не сразу, а с задержкой в 1 — 5 секунд. Установите напряжение на входе 6 микроконтроллера на максимум.
Подключите вольтметр к выводу 7 микроконтроллера. Резистором R102 продолжайте увеличивать напряжение на входе 7 микроконтроллера. При напряжении 0,95 — 1,0 вольт, красный HL4 и зелёный HL1 светодиоды должны погаснуть. В этом состоянии микроконтроллер считает, что аккумуляторы были извлечены из зарядного устройства во время зарядки.
Снова установите движок резистора R102 в нижнее по схеме положение, что соответствует нулю вольт на входе 7 микроконтроллера. Подключите вольтметр к точке соединения резистора R106 и кнопки SB1. Нажмите и не отпускайте кнопку SB1. Резистором R102 установите напряжение равным 0,6 — 0,8 вольта. Отпустите кнопку. Через 1 — 2 секунды должен засветиться жёлтый светодиод HL3. Это состояние говорит о том, что микроконтроллер обнаружил, что подключённые к нему аккумуляторы не разряжены и включил режим разряда.
Установите движок резистора R104 в нижнее по схеме положение, что соответствует нулю вольт на входе 6 (Power Good) микроконтроллера. Жёлтый светодиод HL3 должен погаснуть. Это говорит о том, что микроконтроллер обнаружил снижение напряжения питания ниже допустимого уровня, и выключил режим разряда. Снова установите напряжение на входе 6 микроконтроллера на максимум. Через 1 — 5 секунд должен засветиться жёлтый светодиод HL3, что говорит о том, что возобновился режим разряда.
Подключите вольтметр к выводу 7 микроконтроллера. Резистором R102 начинайте уменьшать напряжение на входе 7 микроконтроллера. При напряжении около 0,5 вольт, жёлтый светодиод HL3 должен погаснуть, должен засветиться красный светодиод HL4, а зелёный HL1 должен начать вспыхивать с интервалом в 1 секунду. Это говорит о том, что микроконтроллер решил, что разрядил аккумуляторы до 1 вольта на элемент и включил режим заряда.
Выключите питание и отключите тестовую схему от зарядного устройства. Дальнейшую проверку удобно проводить на аккумуляторах, предварительно разряженных до напряжения 1 вольт на элемент, чтобы долго не ждать, пока они разрядятся.
Подключите амперметр, включённый на соответствующий предел измерений, чтобы можно измерить ток около 1А, последовательно с аккумуляторной батареей. Подключите источник питания (должен засветиться синий светодиод HL2) и установите аккумулятор в держатель. Убедитесь, что ток разряда имеет величину приблизительно 1А, а ток заряда равен 250 мА и не изменяется при изменении напряжения питания. Убедитесь, что переключение из режима разряда в режим заряда происходит при напряжении на аккумуляторной батарее равном 2 вольта (1 вольт на элемент). Это напряжение, при необходимости, можно изменить, подбирая резистор R5.
Проверьте, как устройство реагирует на отключение питания. После отключения и включения питания, устройство должно сохранять предыдущее состояние (разряд, заряд, заряд окончен), а таймер времени заряда не должен перезапускаться.

Подключаем источник питания. Должен засветиться синий светодиод. Устанавливаем аккумуляторы в держатель. Должен засветиться жёлтый светодиод или красный. Ждем не меньше 15 часов, пока красный светодиод погаснет, а зелёный перестанет мигать и будет светиться постоянно. Всё. Аккумуляторы заряжены.
Для начала нового цикла разряд/заряд, не выключая источника питания (синий светодиод должен светиться), необходимо вытащить аккумуляторы из держателя и установить следующую пару.
Если после установки аккумуляторов в держатель, не светится ни жёлтый ни красный, то может быть следующее:
1. Недостаточно напряжение в сети.
2. Аккумуляторы установлены неправильно.
3. Аккумуляторы сильно разряжены (до напряжения, меньшего, чем 0,5 вольта на элемент).
Свечение жёлтого светодиода говорит о том, что идет разряд. После разряда аккумуляторов до напряжения 1 вольт на элемент, режим разряда выключается и жёлтый светодиод гаснет. После этого включается режим заряда и начинает светиться красный светодиод. Зелёный светодиод начнёт вспыхивать с периодом в 1 секунду. По соотношению длительности свечения и паузы можно приблизительно оценить время, прошедшее с начала заряда. Через 15 часов заряд прекращается. Красный светодиод гаснет, а зелёный начинает светиться непрерывно, что говорит об окончании зарядки. Если аккумуляторная батарея разряжена до напряжения, меньшего, чем 1 вольт на элемент, то режим заряда включится сразу. Если батарея разряжена сильнее, чем 0,5 вольта на элемент или установлена в неправильной полярности, то ничего не включится и никакие индикаторы (кроме синего) светиться не будут.

Файлы:
Прошивка МК с исходником.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Как использовать зарядку от телефона +5В для NiCd и NiMH аккумуляторов

Принципиальная схема приставки к сетевому адаптеру мобильного телефона, что позволяет заряжать NiCd и NiMH аккумуляторы. Стоимость «сухих батареек» сейчас уже достаточно высока, и вполне сравнима со стоимостью аккумуляторов. Но аккумуляторы можно заряжать.

В большинстве устройств, питающихся от «сухих элементов» напряжением 1,5V (или батарей из них) можно использовать «аккумуляторные элементы» соответствующего типоразмера, номинальным напряжением 1,2V.

Это никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккумуляторы, которые предусматривают многократную перезарядку при помощи зарядного устройства.

При правильной эксплуатации число циклов перезарядки для NiCd аккумуляторов — 500…1000, а для NiMH — несколько тысяч. Нормой считается заряд аккумулятора током равным 0,05-0,1 от номинальной емкости в течение 12 часов.

Конечно можно заряжать и большим током, но это может привести к сокращению ресурса аккумулятора или даже его повреждения.

В продаже не часто встречаются зарядные устройства для таких аккумуляторов, но очень много недорогих универсальных зарядных устройств для сотовых телефонов, с выходным напряжением 5V.

Здесь описывается несложная схема приставки к такому зарядному устройству чтобы с его помощью можно было заряжать никель-кадмиевые (NiCd) и никель-металл-гидридные (NiMH) аккумуляторы емкостью 600 m/Vh, 1500 mA/h и 2500 m/Vh (или промежуточные по значению).

Принципиальная схема

Схема показана на рисунке в тексте. Напряжение 5V поступает от стандартного универсального зарядного устройства для стового телефона через соответствующий

разъем Х1 типа USB. Светодиод HL1 служит для индикации включенного состояния, потому что корпуса-вилки зарядных устройств, из-за своей облегченной конструкции, не всегда надежно держатся в штепсельных розетках, и на самих зарядных устройствах не всегда есть индикаторные светодиоды включенного состояния.

Рис. 1. Принципиальная схема приставки к блоку питания на +5В для зарядки NiCd и NiMH аккумуляторов.

На микросхеме А1 сделан стабилизатор тока, протекающего через заряжаемый аккумулятор GB1. В зависимости от емкости аккумулятора переключателем S1 переключаются резисторы R1, R2, R3, которыми регулируется величина стабилизации тока. Положения переключателя подписаны величинами номинальной емкости аккумуляторов.

Если аккумулятор другой емкости нужно переключатель установить в наиболее близкое значение. Можно заряжать как один аккумулятор, так и батарею из двух, последовательно включенных.

Вместо микросхемы КР142ЕН12 можно применить зарубежный аналог — LM317.

Схема зарядного устройства с таймером

Чтобы не допустить перезарядки аккумулятора можно ограничить время зарядки. На рисунке 2 показана схема зарядной приставки со встроенным таймером на популярной микросхеме CD4060B.

Ключом, включающим зарядку аккумулятора служит полевой ключевой транзистор VT2. В открытом состоянии сопротивление его канала в данной схеме можно с уверенностью считать равным нулю. Поэтому никакого влияния на ток зарядки, в открытом состоянии, он не оказывает.

Рис. 2. Схема зарядного устройства с ограничением времени заряда, приставка к адаптеру на +5В.

Стартом для зарядки служит включение питания (подключение к универсальному зарядному устройству для сотового телефона). В этот момент цепь C1-R7 обнуляет (или предварительно устанавливает в нуль) счетчик микросхемы D1. На её выходе, выводе 3, ноль.

Транзистор VT1 закрыт и на затвор VT2 поступает открывающее напряжение через резистор R6. VT2 открывается и подает ток на зарядную схему на А1.

Затем счетчик микросхемы D1 начинает счет импульсов от встроенного генератора. RC-цепь встроенного генератора С2-R8-R9 подобрана таким образом, чтобы логическая единица на выводе 3 D1 появлялась примерно через 12 часов после включения.

Как только это происходит диод VD1 останавливает счетчик в этом положении, транзистор VT1 открывается и напряжение на затворе VГ2 падает. Что приводит к закрытию VT2. Зарядка прекращается, и светодиод HL1 гаснет.

Растоков П. РК-03-18.

Схема зарядного устройства для никель-металлгидридных и никель-кадмиевых аккумуляторов

Данное зарядное устройство можно применить как для заряда никель-кадмиевых, так и для никель-металлгидридных аккумуляторов. Если у вас li-ion аккумулятор, то вам скорее нужна зарядка для литий-ионных аккумуляторов.

Описание работы зарядного для никель-кадмиевых и никель-металлгидридных аккумуляторов

Схема обеспечивает не быструю но эффективную зарядку поскольку заряд осуществляется стандартным током — одной десятой емкости батареи в комбинации с временем зарядки от 10 до 14 часов, без риска чрезмерной зарядки. Если вы уверены, что батарея разряжена только на половину, то зарядить ее полностью можно примерно за 6…7 часов.

Аккумуляторы размера AA имеют емкость от 1500 до 1800 мАч (миллиампер-час), так что ток зарядки должно быть от 150 до 180 мА. Если вы хотите зарядить несколько никель-кадмиевых  аккумуляторов сразу, достаточно просто подключить их последовательно, для того же ток зарядки, который будет протекать через всю батарею аккумуляторов, заряжая их одновременно.

Зарядное устройство для Li-Ion, NiMH

Определение типа аккумулятора, независимые слоты, автоматич…


Зарядное устройство для LiFePO4, Ni-MH и Ni-Cd

зарядный ток: 500 мА/ч, 1000 мА/ч. режимы зарядки при постоянн…


Вопрос теперь в том, как получить нам постоянный ток 180 мА. Самым элегантным и точным решение будет использование источника тока. В этой роли может выступить регулятора напряжения типа LM317 включенный по схеме источника тока. Микросхема LM317 достаточно известная и регулировки осуществляется путем подбора сопротивления резистора, который подключается к выводам OUT и ADJ.

В нашем случае ( для 0,18 А), сопротивление будет равно 6,94 Ом (1,25/0,18) = 6,94 Ом. Данный номинал можно набрать из несколько последовательно-параллельно соединенных резисторов, но проще взять близкое стандартное значение 6,8 Ом.

Чтобы получить ток 180 мА нужно некоторое напряжение. Максимальное напряжение во время зарядки никель-кадмиевого аккумулятора составляет 1,5 В, а источник тока требуется около 3 В. Если заряжать только один аккумулятор, напряжение питания составит 4,5 В.

Если заряжается несколько никель-кадмиевых аккумуляторов сразу, нужно 1,5 В умножить на число аккумуляторов плюс 3 В. Для четырех аккумуляторов это будет напряжение питания 9 В. Если напряжение слишком низкое, ток заряда будет слабым.

Никель-кадмий Зарядка »Электроника

Правильная зарядка никель-кадмиевых, никель-кадмиевых аккумуляторов является ключевым моментом. Заряжайте их правильно, и они будут работать нормально, при плохом обращении с ними срок их службы сократится.


Аккумуляторная технология Включает:
Обзор аккумуляторной технологии Определения и термины батареи NiCad NiMH Литий-ионный Свинцово-кислотный

Никель-кадмиевый аккумулятор включает: NiCad зарядка Эффект памяти NiCad


Зарядка или перезарядка аккумуляторной батареи требует осторожности.Перезаряжаемые батареи и элементы необходимо заряжать надлежащим образом, иначе они могут быть повреждены.

Если никель-кадмиевые батареи правильно заряжены, они прослужат намного дольше, принимая и сохраняя полный уровень заряда.

Неправильная зарядка или никель-кадмиевые батареи могут привести к сокращению срока службы или, в некоторых случаях, когда зарядка особенно неуместна, это может вызвать пожар или даже взрыв.

К счастью, никель-кадмиевые и никель-кадмиевые методы зарядки относительно просты, и на рынке было много подходящих зарядных устройств для этих батарей и элементов.

Основная зарядка NiCd аккумуляторов

Производители никель-кадмиевых аккумуляторов

не полностью форматируют свои аккумуляторы перед отправкой, чтобы они не сильно разлагались при хранении. В результате лучше всего перед использованием дать новым батареям медленную зарядку. Обычно это занимает от 15 до 24 часов. Это гарантирует, что каждая ячейка будет иметь одинаковый уровень заряда, поскольку они саморазрядились с разной скоростью во время транспортировки.

Кроме того, установлено, что характеристики новых элементов достигают оптимальных значений только после нескольких циклов заряда / разряда.Обычно элементы должны достичь заданного уровня производительности после пяти-десяти циклов заряда-разряда.

Помимо этого, пиковая емкость может быть достигнута примерно после 100 или более циклов зарядки-разрядки, после которых производительность начнет падать.

Предполагается, что никель-кадмиевые батареи заряжаются и разряжаются надлежащим образом и не могут быть использованы неправильно.

Основы зарядки NiCd

В отличие от свинцово-кислотных элементов, никель-кадмиевые батареи заряжаются от источника постоянного тока.Их внутреннее сопротивление таково, что при использовании постоянного напряжения они потребляли бы чрезмерно большие токи, которые могли бы повредить элементы.

Обычно элементы заряжаются со скоростью около C / 10. Другими словами, если их емкость составляет 1 ампер-час, они будут заряжаться со скоростью 100 мА. Время зарядки обычно превышает десять часов, поскольку не вся энергия, поступающая в элемент, преобразуется в накопленную электрическую энергию.

Было обнаружено, что на первом этапе зарядки, до примерно 70% полной зарядки, процесс зарядки почти 100% эффективен.После этого он падает.

Быстрая зарядка NiCd

Иногда оборудование, в котором используются никель-кадмиевые элементы, требует использования методов быстрой зарядки.

Обычно зарядка происходит со скоростью около C. Однако необходимо убедиться, что зарядка NiCd выполняется правильно, и зарядка прекращается сразу после завершения зарядки.

Поскольку эффективность зарядки составляет почти 100% до примерно 70% полной зарядки, полная скорость зарядки сохраняется до этого момента, после чего скорость зарядки снижается с увеличением температуры по мере снижения эффективности зарядки.

Было обнаружено, что быстрая зарядка никель-кадмиевых элементов также улучшает эффективность заряда. При скорости заряда 1С общая эффективность заряда стандартного NiCd составляет около 90%, а время зарядки — чуть более часа.

Обнаружение окончания заряда для NiCds

Независимо от того, используется ли медленная или быстрая зарядка, необходимо убедиться, что никель-кадмиевые элементы не перезаряжаются. Поэтому необходимо иметь возможность обнаруживать конец заряда. Есть несколько способов добиться этого.

  • Базовое зарядное устройство: Некоторые из самых простых никель-кадмиевых зарядных устройств, которые можно купить, просто заряжают около C / 10.Они не включают таймер и предполагают, что пользователь снимет зарядку, когда батарея будет заряжена. Этот режим не совсем удовлетворителен, поскольку, если пользователь забудет, ячейки будут перезаряжены, что приведет к их повреждению. Также нет возможности узнать точное состояние заряда до начала зарядки.
  • Истекшее время / таймер: Некоторые из самых простых зарядных устройств предполагают, что элементы потребуют полной зарядки, и, зная их емкость, их можно заряжать на определенное время.Это простой и понятный метод зарядки никель-кадмиевых элементов и батарей. Один из основных недостатков этой формы прекращения заряда заключается в том, что он предполагает, что все батареи полностью разряжены перед их перезарядкой. Чтобы батареи были полностью разряжены, зарядное устройство может выполнить цикл разряда.

    Это не очень точный метод подзарядки батарей и элементов, поскольку количество заряда, которое они могут удерживать, меняется в течение их срока службы.Однако это лучше, чем отсутствие прекращения начисления.

  • Сигнатура напряжения: Сигнатура напряжения Зарядные устройства NiCd используют сигнатуру напряжения никель-кадмиевого элемента, чтобы определить, где он находится в цикле зарядки.

    Обнаружено, что когда никель-кадмиевый аккумулятор полностью заряжен, напряжение на клеммах немного падает. Зарядные устройства на базе микропроцессоров могут контролировать напряжение и определять точку полной зарядки, когда они завершают процесс зарядки.

    Эту форму прекращения заряда NiCd часто называют отрицательным дельта-напряжением, NDV. Он обеспечивает лучшую производительность при быстрой зарядке, поскольку отрицательная точка дельта-напряжения более очевидна при использовании быстрой зарядки.

  • Повышение температуры: Для определения момента окончания быстрой зарядки используется метод измерения температуры. Проблема заключается в том, что это неточно, потому что ядро ​​ячейки будет иметь гораздо более высокую температуру, чем периферия.При нормальной скорости зарядки скорость повышения температуры может быть недостаточной для точного определения.

    Обычно в качестве температуры отключения используется температура 50 ° C. Хотя короткий период при температуре 45 ° C может быть приемлемым, если температура может быстро падать, любой продолжительный период при температуре выше или выше вызывает ухудшение состояния элемента.

    Для быстрых зарядных устройств стали доступны более совершенные зарядные устройства с использованием более совершенных технологий. Основанные на микропроцессорной технологии, они могут определять скорость изменения температуры.Обычно прекращение заряда происходит при достижении скорости повышения температуры на 1 ° C в минуту или при достижении предельной заданной температуры (часто между 50 ° C и 60 ° C).

    Обнаружение скорости повышения температуры важно, потому что оно определяет, когда элемент полностью заряжен и энергия, поступающая в элемент, не преобразуется в накопленную энергию за счет потери тепла.

    Одним из недостатков этого метода является то, что никель-кадмиевые элементы или батареи, повторно вставленные в зарядное устройство с датчиком температуры, которое, вероятно, будет быстрым зарядным устройством, может вызвать опасный перезаряд, если аккумулятор повторно вставлен без полной разрядки, как в случае кто-то хочет убедиться, что аккумулятор заряжен.

Подзарядка NiCd

Часто необходимо поддерживать никель-кадмиевые элементы и батареи полностью заряженными и преодолевать любой саморазряд элемента с течением времени, который сделает их не пригодными для немедленного использования.

После полной зарядки NiCd можно поддерживать в полностью заряженном состоянии, применяя постоянный заряд. Этот постоянный заряд может быть безопасно достигнут, если приложить небольшой ток к элементу или элементам на уровне примерно от 0,05 C до 0,1 C. Это должно быть достигнуто с использованием источника тока, поскольку фактическое напряжение элементов может варьироваться в зависимости от температуры. .

Часто к элементу или элементам может применяться гораздо более высокий постоянный заряд, что может привести к перегреву и некоторому повреждению.

, несмотря на то, что часто требуется поддерживать непрерывный заряд элементов или батарей, чтобы обеспечить их готовность к работе, если срок службы батареи является важным фактором, не рекомендуется оставлять никель-кадмиевые элементы на непрерывной подзарядке более чем на несколько дней. время. Гораздо лучше их снять и зарядить перед использованием.

Если никель-кадмиевые никель-кадмиевые батареи заряжать осторожно, они будут работать в течение длительного времени.Известно, что некоторые NiCd-элементы используются в течение многих лет. Несмотря на то, что мощность неизбежно снижается по мере использования, они могут оставаться в рабочем состоянии в течение длительного времени, обеспечивая хорошее обслуживание.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

NiCd Никель-кадмиевые аккумуляторы »Электроника

Никель-кадмиевый аккумулятор, NiCD или NiCad — это форма перезаряжаемой батареи, которая использовалась в течение многих лет — ее было легко использовать, но теперь возникают проблемы с утилизацией из-за проблем с содержащимся в ней кадмием.


Аккумуляторная технология Включает:
Обзор аккумуляторной технологии Определения и термины батареи NiCad NiMH Литий-ионный Свинцово-кислотный

Никель-кадмиевый аккумулятор включает: NiCad зарядка Эффект памяти NiCad


Никель-кадмиевые, никель-кадмиевые или никель-кадмиевые батареи были первым типом перезаряжаемых элементов, которые можно было использовать в портативном электронном оборудовании.

Хотя свинцово-кислотные батареи были доступны в течение многих лет, они в основном использовались для автомобильных аккумуляторов. Th NiCd можно было легко использовать как прямую замену для многих стандартных первичных батарей, и его использование быстро прижилось.

В наши дни никель-кадмиевые элементы

менее широко используются из-за содержащегося в них кадмия. Элементы или батареи необходимо утилизировать правильными способами, так как кадмий вреден и в конечном итоге может вымыться в землю, если будет обнаружен на свалке.

В настоящее время можно купить несколько никель-кадмиевых батарей, но они заполнили пробел на рынке, который не мог найти ни один другой аккумулятор того времени. Иногда старые никель-кадмиевые батареи все еще можно найти на складе или, возможно, даже в эксплуатации.

NiCd против NiCad

Часто для обозначения никель-кадмиевых элементов используется аббревиатура NiCd. Аббревиатура NiCad также широко используется.

Аббревиатура NiCad является зарегистрированным товарным знаком SAFT Corporation — производителя батарей и источников питания.Поэтому сокращение NiCad не следует использовать для обозначения никель-кадмиевых аккумуляторов, а только для тех, которые производятся SAFT.

Таким образом, сокращение NiCd является общепризнанным общим сокращением для общих никель-кадмиевых элементов и батарей.

Основы NiCd

Элементы

NiCd или NiCad могут обеспечить почти прямую замену угольно-цинковым или щелочным первичным батареям. Как правило, они могут сохранять меньший заряд, чем эти элементы, но имеют очевидное преимущество, заключающееся в возможности перезарядки.Это означает, что, хотя первоначальная стоимость покупки выше, чем у эквивалентных первичных элементов, затраты можно сэкономить после нескольких циклов зарядки / разрядки.

Номинальное напряжение для никель-кадмиевого / никель-кадмиевого элемента составляет 1,2 В. Он хорошо держит это напряжение на протяжении большей части цикла разряда, падая только после того, как большая часть заряда была использована. Он удерживает выходное напряжение лучше, чем эквивалентные углеродно-цинковые первичные типы, которые имеют устойчивое падение в течение всего срока службы элемента. Хотя плоская кривая показывает преимущество, заключающееся в том, что выходное напряжение элемента очень стабильно, это означает, что, когда элемент приближается к концу своего цикла разряда, выходное напряжение быстро падает, часто мало предупреждая пользователя.

Элементы NiCd

имеют очень низкий уровень внутреннего сопротивления. Новый щелочной элемент хорошего качества может иметь внутреннее сопротивление около 300 мОм. Этот показатель может возрасти примерно до 900 миллиОм при разряде на 20% и до нескольких Ом при почти полном разряде. NiCd имеет гораздо более низкие показатели, и любое внутреннее сопротивление можно игнорировать для большинства целей, поскольку оно составляет всего несколько миллиОм, в зависимости от точного типа элемента и производителя. Это означает, что ячейка способна производить очень высокие токи, особенно если ячейка случайно замкнута накоротко.В связи с этим необходимо следить за тем, чтобы этого не произошло, поскольку может выделяться большое количество тепла.

Конструкция NiCd

Никель-кадмиевые, NiCd-элементы состоят из четырех основных элементов:

  • Анод: Он представляет собой сетку с кадмиевым покрытием.
  • Катод: Катодный электрод никель-кадмиевого элемента представляет собой сетку с никелевым покрытием.
  • Разделитель: Разделитель используется для предотвращения физического соприкосновения анода и катода и возникновения короткого замыкания.
  • Электролит: Электролит служит для переноса ионов и носителей заряда между анодом и катодом. Это может быть гидроксид калия, КОН или гидроксид натрия. Из жгута гидроксид калия проводит лучше, но гидроксид натрия не так сильно просачивается.

В разряженном состоянии активный положительный материал состоит из гидроксида никеля (Ni (OH) 2, а отрицательный материал — гидроксид кадмия. Во время зарядки они превращаются в NiO OH и кадмий вместе с небольшим количеством воды.Хотя сепаратор не участвует в реакции, он служит для изоляции между пластинами. Также необходим электролит. Для этого используется гидроксид калия. Он не участвует в реакции, но позволяет переносу электронов между двумя пластинами.

Размеры никель-кадмиевых элементов

NiCd элементы могут быть получены в различных размерах, и часто могут быть изготовлены специальные аккумуляторные батареи NiCd для определенных элементов электронного оборудования. Однако наиболее популярными являются никель-кадмиевые элементы со стандартными размерами аккумуляторов или элементов: батареи AAA, AA, C и D.Эти стандартные размеры для этого приведены ниже, хотя иногда было обнаружено, что некоторые NiCd превышают эти размеры, что затрудняет их установку в стандартные гнезда.


Тип ячейки Диаметр
мм
Высота
мм
AAA 10,5 44,5
AA 14,5 50,5
С 26.2 50,0
D 34,2 61,5

Меры предосторожности для обеспечения длительного срока службы NiCds

Существует ряд мер предосторожности, которые помогут продлить срок службы никель-кадмиевых батарей. Краткий список представлен ниже:

  • Не допускайте короткого замыкания ячеек, так как это может вызвать очень большие токи. Это может быть опасно, так как может выделяться большое количество тепла. Также рекомендуется не разряжать элементы с очень высокой скоростью.
  • Никогда не перезаряжайте элементы со скоростью, большей или равной их нормальному зарядному току. Допускается капельная подзарядка.
  • Никогда не заряжайте батареи в обратном направлении. Это может произойти, когда батарея, состоящая из нескольких последовательно соединенных ячеек, полностью разряжена. Поскольку некоторые элементы будут удерживать меньше заряда, чем остальные, по мере того, как вся батарея будет разряжена, некоторые элементы будут переведены в ситуацию обратного заряда.
  • Никогда не выбрасывайте клетки в огонь.
  • Ячейки
  • лучше всего работают в условиях нормальной комнатной температуры.Высокая и низкая температура снижает их эффективность. Высокие температуры могут привести к необратимому повреждению элемента.

Батареи NiCd или NiCad доступны уже много лет. Их использование практически завершено ввиду экологических проблем, связанных с их утилизацией. Однако несколько лет назад было доступно много никель-кадмиевых батарей, и они фактически были единственной формой перезаряжаемых элементов или батарей для электронного оборудования.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Зарядка никель-кадмиевых батарей — Battery University

Узнайте, как увеличить заряд, уменьшить нагрев и уменьшить объем памяти.

Никелевые батареи сложнее заряжать, чем литий-ионные и свинцово-кислотные. Системы на основе лития и свинца заряжаются регулируемым током, чтобы довести напряжение до установленного предела, после чего батарея насыщается до полной зарядки. Этот метод называется постоянным током постоянного напряжения (CCCV).Батареи на основе никеля также заряжаются постоянным током, но напряжение может расти свободно. Обнаружение полного заряда происходит путем наблюдения за небольшим падением напряжения после устойчивого роста. Это может быть связано с периодом плато и повышением температуры со временем (подробнее ниже).

Производители батарей рекомендуют медленно заряжать новые батареи в течение 16–24 часов перед использованием. Медленная зарядка приводит к одинаковому уровню заряда всех элементов аккумуляторной батареи. Это важно, потому что каждая ячейка в никель-кадмиевой батарее может саморазрядиться со своей скоростью.Кроме того, при длительном хранении электролит имеет тенденцию притягиваться ко дну ячейки, и начальный медленный заряд помогает в перераспределении, устраняя сухие пятна на сепараторе. (См. Также BU-803a: Потеря электролита.)

Производители аккумуляторов не полностью форматируют никелевые и свинцовые аккумуляторы перед отправкой. Ячейки достигают оптимальной производительности после заливки, которая включает несколько циклов заряда / разряда. Это часть нормального использования; это также можно сделать с помощью анализатора батареи.Известно, что качественные элементы полностью соответствуют требованиям после 5-7 циклов; другим может потребоваться 50–100 циклов. Пиковая мощность приходится на 100–300 циклов, после чего производительность начинает постепенно падать.

Большинство перезаряжаемых элементов имеют предохранительный клапан, который сбрасывает избыточное давление в случае неправильной зарядки. Вентиляционное отверстие на элементе NiCd открывается при давлении 1000–1400 кПа (150–200 фунтов на квадратный дюйм). Давление, выпущенное через закрывающееся вентиляционное отверстие, не вызывает повреждений; тем не менее, при каждой вентиляции некоторое количество электролита может вытекать, и уплотнение может начать протекать.Это видно по образованию белого порошка у вентиляционного отверстия. Многократная вентиляция в конечном итоге приводит к высыханию. Аккумулятор никогда не должен быть нагружен до выхода воздуха.

Обнаружение полного заряда по температуре

Обнаружение полного заряда герметичных никелевых аккумуляторов сложнее, чем у свинцово-кислотных и литий-ионных. В недорогих зарядных устройствах для завершения быстрой зарядки часто используется измерение температуры, но это может быть неточно. Ядро элемента на несколько градусов теплее кожи, на которой измеряется температура, и возникающая задержка вызывает перезаряд.Производители зарядных устройств используют температуру 50 ° C (122 ° F) в качестве отсечки температуры. Хотя любая длительная температура выше 45 ° C (113 ° F) опасна для аккумулятора, кратковременное превышение допустимого значения допустимо, если температура аккумулятора быстро падает, когда появляется индикатор готовности.

Усовершенствованные зарядные устройства больше не полагаются на фиксированный температурный порог, но определяют скорость увеличения температуры с течением времени, также известную как дельта-температура в зависимости от времени, или dT / dt. Вместо того, чтобы ждать достижения абсолютной температуры, dT / dt использует быстрое повышение температуры к концу заряда для включения индикатора готовности.Метод дельта-температуры поддерживает более низкую температуру батареи, чем фиксированная отсечка температуры, но элементы должны заряжаться достаточно быстро, чтобы вызвать повышение температуры. Прекращение зарядки происходит, когда температура повышается на 1 ° C (1,8 ° F) в минуту. Если аккумулятор не может достичь необходимого повышения температуры, абсолютное отключение температуры устанавливается на 60 & de

Зарядка никель-металлогидридных аккумуляторов — Battery University

Знайте, как правильно подавать зарядку для умеренного нагрева и предотвращения перезарядки.

Алгоритм заряда NiMH аналогичен NiCd за исключением того, что NiMH более сложен. Отрицательный Delta V для определения полного заряда слабый, особенно при зарядке при температуре менее 0,5 ° C. Несоответствующий или горячий компресс еще больше уменьшает симптомы.

NDV в зарядном устройстве NiMH должен реагировать на падение напряжения 5 мВ на элемент или меньше. Это требует электронной фильтрации для компенсации шума и колебаний напряжения, вызванных аккумулятором и зарядным устройством. Хорошо продуманные зарядные устройства NiMH включают в себя NDV, плато напряжения, дельта-температуру (dT / dt), температурный порог и таймеры тайм-аута в алгоритме обнаружения полной зарядки.Эти «ворота-организации» используют все, что приходит первым. Многие зарядные устройства включают 30-минутную подзарядку на 0,1 ° C, чтобы увеличить емкость на несколько процентных пунктов.

Некоторые современные зарядные устройства применяют начальную быструю зарядку 1С. При достижении определенного порога напряжения добавляется перерыв в несколько минут, позволяющий батарее остыть. Заряд продолжается при более низком токе, а затем применяется дальнейшее уменьшение тока по мере развития заряда. Эта схема продолжается до полной зарядки аккумулятора.Этот метод, известный как «ступенчато-дифференциальный заряд», подходит для всех никелевых аккумуляторов.

Зарядные устройства, использующие ступенчатый дифференциал или другие агрессивные методы зарядки, достигают увеличения емкости примерно на 6 процентов по сравнению с более простыми зарядными устройствами. Хотя более высокая емкость желательна, заполнение батареи до краев добавляет напряжения и сокращает общий срок службы батареи. Вместо того, чтобы достичь ожидаемых 350–400 рабочих циклов, агрессивное зарядное устройство может разрядить аккумулятор после 300 циклов.

NiMH не любит перезарядки, а постоянный заряд установлен примерно на 0,05 ° C. NiCd лучше поглощает перезаряд, и оригинальные зарядные устройства NiCd имели постоянный заряд 0,1C. Различия в токе непрерывного заряда и необходимость более точного определения полного заряда делают оригинальное зарядное устройство NiCd непригодным для NiMH аккумуляторов. NiMH в зарядном устройстве NiMH может перегреться, но NiCd в зарядном устройстве NiMH работает хорошо. Современные зарядные устройства подходят для обеих систем аккумуляторов.

Медленно зарядить NiMH аккумулятор сложно, если вообще возможно.При уровне C от 0,1 до 0,3 ° C профили напряжения и температуры не демонстрируют определенных характеристик для запуска обнаружения полного заряда, и зарядное устройство должно зависеть от таймера. При зарядке частично или полностью заряженных аккумуляторов может произойти опасный перезаряд, даже если аккумулятор остается холодным.

То же самое происходит, если аккумулятор потерял емкость и может удерживать только половину заряда. По сути, размер этой батареи уменьшился вдвое, в то время как фиксированный таймер запрограммирован на 100-процентный заряд без учета состояния батареи.

Многие пользователи аккумуляторов жалуются на более короткий срок службы, чем ожидалось, и неисправность может быть в зарядном устройстве. Недорогие бытовые зарядные устройства склонны к неправильной зарядке. Если вы хотите улучшить производительность аккумулятора с помощью недорогого зарядного устройства, оцените уровень заряда аккумулятора и установите

Информация о никелевых аккумуляторах — Battery University

Узнайте о различиях между никель-кадмиевым и никель-металлогидридным.

В течение 50 лет портативные устройства работали почти исключительно на никель-кадмиевом (NiCd).Это привело к появлению большого количества данных, но в 1990-х годах никель-металлогидрид (NiMH) взял верх, чтобы решить проблему токсичности, в остальном надежного NiCd. Многие характеристики NiCd были переданы в лагерь NiMH, предлагая квази-замену, поскольку эти две системы похожи. Из-за экологических норм, никель-кадмиевый металл сегодня ограничен специальными применениями.

Никель-кадмиевый (NiCd)

Изобретенная Вальдемаром Юнгнером в 1899 году никель-кадмиевая батарея имела несколько преимуществ по сравнению со свинцово-кислотной, а затем единственной другой перезаряжаемой батареей; однако материалы для NiCd были дорогими.Разработка шла медленно, но в 1932 году были предприняты шаги по нанесению активных материалов внутри пористого никелированного электрода. Дальнейшие усовершенствования произошли в 1947 году за счет поглощения газов, образующихся во время зарядки, что привело к созданию современной герметичной батареи NiCd.

На протяжении многих лет никель-кадмиевые аккумуляторы были предпочтительным выбором для радиостанций двусторонней связи, оборудования для оказания неотложной медицинской помощи, профессиональных видеокамер и электроинструментов. В конце 1980-х годов NiCd сверхвысокой емкости потряс мир своей емкостью, которая была на 60 процентов выше, чем у стандартного NiCd.Этого удалось добиться за счет упаковки большего количества активного материала в ячейку, но выигрыш был затенен более высоким внутренним сопротивлением и уменьшенным количеством циклов.

Стандартный никель-кадмиевый аккумулятор остается одним из самых надежных и щадящих аккумуляторов, и авиационная отрасль остается верна этой системе, но для достижения долговечности требуется надлежащий уход. NiCd, а отчасти и NiMH, обладают эффектом памяти, который вызывает потерю емкости, если не выполнять периодический полный цикл разряда. Батарея, кажется, запоминает предыдущую подачу энергии, и после того, как установлен распорядок, она не хочет отдавать больше.(См. BU-807: Как восстановить никелевые батареи). По данным RWTH, Ахен, Германия (2018), стоимость никель-кадмиевых батарей составляет около 400 долларов за кВт / ч. В таблице 1 перечислены преимущества и ограничения стандартного NiCd.

Преимущества


Надежный, с большим количеством циклов при надлежащем обслуживании

Единственный аккумулятор, который можно сверхбыстро заряжать без особых усилий

Хорошие характеристики нагрузки; прощает при злоупотреблении

Длительный срок хранения; можно хранить в разряженном состоянии, перед использованием необходимо грунтовать

Простота хранения и транспортировки; не подлежит нормативному контролю

Хорошие характеристики при низких температурах

Недорогая; NiCd является самым низким по стоимости цикла

Доступен в широком диапазоне размеров и вариантов производительности

Ограничения


Относительно

никель-кадмиевые батареи — обзоры — Интернет-магазины и обзоры на никель-кадмиевые батареи на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для никель-кадмиевых батарей.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не будет побит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эти никель-кадмиевые батареи должны стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что ваши никель-кадмиевые батареи продаются на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в никель-кадмиевых батареях, думаете и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести никель-кадмиевые батареи по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *