Принципиальная схема трансформатора – Электротрансформатор — Википедия

Содержание

Принцип действия и принципиальная схема трансформатора

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Принцип действия трансформатора

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная, подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Принципиальная схема трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнитопоток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуцируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.

При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.

Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН). А обмотка, присоединенная к сети меньшего напряжения — обмоткой низшего напряжения (НН).

Таким образом, трансформаторы — обратимые аппараты, то есть могут работать как повышающими, так и понижающими.

www.mtomd.info

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток

Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока

Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток

Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода

заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали

, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают

прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

sesaga.ru

Электрическая схема трансформатора

В России эра преобразования напряжения из одной величины в другую берёт начало из работ по изучению ферромагнитных материалов великим российским физиком Александром Григорьевичем Столетовым, который впервые открыл в 1880-х годах гистерезисную петлю, а так же перераспределение доменов в ферромагнитном материале при воздействии на него электромагнитного поля.

Ранее, тогда ещё не изученный этот эффект позволил выявить Майклу Фарадею в 1831 году возможность передачи энергии по всей плоскости ферромагнитного материала – так называемое явление электромагнитной индукции. Через 17 лет Генрих Даниэль Румкорф впервые положил прообраз графического изображения намагниченной катушки.

Первый трансформатор передачи переменного тока представлял собой ферромагнитный стержень с несколькими обмотками. Данное изобретение было зафиксировано выдачей патента Яблочникову Павлу Николаевичу в 1876 году, но трансформатор в его современном представлении был представлен уже через год в 1877 году Мотовиловым Дмитрием Николаевичем. Тогда же появилось первая электрическая схема трансформатора, отображающая две обмотки на ферромагнитном материале.

В скором времени в Лондоне в 1884 году на станции Гровнерской галереи (считается, что здесь появилась первая электростанция) были применены последовательно соединённые трансформаторы Голяра и Гиббса на основе замкнутого сердечника. За два года до этого в галерее были установлены первые паровые генераторы Томаса Эдисона. В том же году братья Эдуард и Джон Гобкинсоны произвели в свет первые трансформаторы с замкнутыми сердечниками. Промышленное производство трансформаторов с замкнутым сердечником началось в 1885 году в Венгрии электромашиностроительным заводом «Ганц и Ко». Это были конструкции на кольцевом, броневом и стрежневом сердечниках. Венгерский конструктор Макс Дери в этом же году получает патент на конструкцию трансформаторов с параллельным соединением. Первые модели тут же выявили один существенный недостаток – быстрый перегрев магнитопровода из-за большой величины нагрузки потребителей, что приводило в негодность обмотки трансформатора. В 1889 году шведский изобретатель Д. Свинберн для уменьшения перегрева обмоток погрузил рабочий трансформатор в керамический сосуд, наполненный маслом, назвав его при этом «масляным трансформатором». В этом же году шведский инженер Джонс Венстрем изобретает трёхфазную систему для генераторов, трансформаторов и электродвигателей. В это время появляется трёхфазная электрическая схема трансформатора, которую изобретает русский ученый М. О. Доливо-Добровольский, а уже в 1891 году Чарльз Браун и Волтер Бовери в швейцарском городе Баден организовали компанию по передаче высоковольтной энергии. Спрос на электричество рос экспоненциальной прогрессией и в 1893 году компания Брауна – Бовери предоставила Европе первую промышленную электростанцию на основе применения трёхфазных трансформаторов. Электричество вырабатывалось паровыми генераторами Эдисона. В Российской империи уже упомянутая фирма «Ганц и Ко» в оперном театре Одессы для его освещения запустила одну из первых установок переменного тока. Это произошло в 1887 году.

С тех пор развитие в этой области шагнуло далеко вперёд и на сегодняшний день существует 7 классификаторов трансформаторов. Разделяют трансформаторы по предназначению: - Силовые трансформаторы – достаточно общее понятие, объединяющее применение трансформаторов в статических преобразователях для преобразования переменного тока в постоянный (выпрямители), либо, наоборот - из постоянного в переменный (инверторы). Их основное предназначение заключается в преобразовании одной величины напряжения и тока в напряжение и ток другой величины без изменения мощности (с учётом, конечно, потерь из-за индукции рассеяния). - Силовые трансформаторы специального назначения – чаще всего их можно встретить в старых сварочных аппаратах, устройствах пониженной или повышенной частоты (в электрооборудовании железных дорог) и т.д. - Испытательные трансформаторы применяются для получения высоких или сверхвысоких напряжений и токов. В промышленности их применяют для проверки пробоя изоляции (керамических изоляторов, к примеру), в высоковольтных испытательных лабораториях. Долговременная работа таких трансформаторов исключена. - К измерительным трансформаторам относят трансформаторы напряжения и тока. Применяют их преимущественно в силовой электронике или в электроустановках с высоким напряжением, где необходимо измерение высоковольтных цепей стандартным измерительным оборудованием. - Ещё до совсем недавнего времени в блоках питания радиоустройств бытовой электроники применялись радиотрансформаторы. Так же этот тип используют для согласования сопротивлений в межблочных соединениях электрических цепей. Сегодня в блоках питания им на смену пришла импульсная технология, а радиотрансформаторы применяются лишь в устройствах, критичных к чИстоте питающего напряжения (мощных дорогих звуковых усилителях, например).

По виду охлаждения трансформаторы подразделяются на сухие и масляные. Количество фаз в силовой обмотке делит трансформаторы на однофазные и трёхфазные. Так же существует классификация по форме магнитопровода: стержневые (строчные трансформаторы в телеаппаратуре), броневые, тороидальные и овальные.

Электрическая схема трансформатора в самом простом исполнении должна содержать как минимум две обмотки. Такие трансформаторы называют двуобмоточными. Если обмоток больше двух, то они попадают в класс многообмоточных. Конструктивное исполнение обмоток трансформаторов разделяет их на цилиндрические, дисковые и концентрические.

По соотношению обмоток трансформаторы делятся на повышающие – если напряжение вторичной обмотки больше силовой, и понижающий (соответственно наоборот).

Принцип работы устройства хорошо виден из принципиальной электрической схемы трансформатора.

Первичная обмотка W1, при подключении к ней источника переменного напряжения U1, за счёт протекания тока I1 наводит в сердечнике из магнитопроводящего материала переменный магнитный поток Ф, который, в свою очередь, индуктирует в первичной и вторичной (W2) обмотках ЭДС Е1 и Е2. За счёт коэффициента трансформации (отношения ЭДС или количества витков первичной обмотки к вторичной) и эффекта магнитной индукции в обмотке W2 при подключении нагрузки Zн начинает протекать ток I2 . На нагрузке появляется напряжение U2 .

Коэффициент трансформации определяет отношение ЭДС либо количество витков первичной обмотки к вторичной. Если значение K>1, то трансформатор считается понижающим, если KСпособность передать энергию через магнитопровод без потерь, которые будут неизбежны, определяет КПД трансформатора. Современные трансформаторы в заводском исполнении позволяют достичь КПД до 99%. Основными причинами снижения КПД в трансформаторах являются магнитные потери в сердечнике за счёт вихревых токов и гистерезиса (потери энергии из-за перемагничивания сердечника), удельного сопротивления обмоток трансформатора, качества исполнения намотки, величины подключённой нагрузки по отношению к габаритной мощности сердечника.

Многие компьютерные программы, позволяющие производить симуляцию работы электронных схем, для обработки результатов физических процессов преобразования энергии трансформатором используют электронную схему замещения трансформатора. В такой схеме магнитная связь, обычно, заменяется электрической цепью. Существует 2 типа схем эмуляции трансформатора: Т-образная и упрощённая.

В данной электрической схеме замещения трансформатора магнитные связи заменяют электрическими. R1 и X1 совместно с R2 и X2 представляют собой электрическую эмуляцию первичной и вторичной обмоток трансформатора, а R0 и X0 – намагничивание и холостой ход. Если брать в расчёт идеальный трансформатор без потерь, то электрическая схема трансформатора будет выглядеть следующим образом.

1 января 1970 года был утверждён единый международный ГОСТ условного графического отображения трансформаторов. Согласно ГОСТу 2.723—68, электрическая схема трансформатора может отображаться в 3-х вариантах: упрощённом однолинейном, упрощённом многолинейном и развёрнутом. Упрощённое отображение УГО (условного графического отображения) представляет магнитную связь трансформатора в виде окружности .

К примеру, трёхфазный автотрансформатор с ферромагнитным магнитопроводом и девятью выводами на схеме отобразится следующим образом . Данный тип отображения электрической схемы трансформаторов чаще встречается в старых схемах 70-х годов. Современные принципиальные схемы используют УГО низкочастотных трансформаторов по 2-му типу в виде обозначения двух дросселей и ферромагнитного материала - (трансформатор с магнитодиэлектрическим сердечником). Электрическая схема трансформатора импульсного типа всё чаще встречается в таком обозначении .

В последнее время современная бытовая электроника практически полностью перешла на использование в блоках питания импульсной схемотехники. Преимущество её очевидно - меньшие массогабаритные размеры, большее КПД и лучшие мощностные показатели блоков питания. Во многих решениях сегодня используются трансформаторы на сердечниках с высокой магнитной проницаемостью от 400HH и выше. Такие трансформаторы называют высокочастотными или, в простонародье – импульсными. Разберите любой импульсный компьютерный блок питания, и вы увидите его схемотехнику и трансформаторы в том числе. К примеру, на принципиальной электрической схеме ниже представлена реализация мощного зарядного устройства (или блока питания) на основе популярного ШИМ контроллера UC3842, силового полевого транзистора UFN432 и высокочастотного силового трансформатора с изолированным магнитным материалом Т1.

Сердечники импульсных трансформаторов выпускают с немагнитным зазором и без него. Немагнитный зазор применяется для того, чтобы под воздействием больших индукционных токов ферромагнитный сердечник не входил в насыщение, что чревато снижением КПД, быстрым перегревом трансформатора и выходом его из строя. Как правило, такие трансформаторы применяют в импульсных блоках питания, работающих по принципу Flyback (однотактного преобразования энергии). По сути, на его первичную обмотку через силовой ключ поступают импульсы заданной ШИМом частоты. В сердечнике в рабочий период импульса накапливается ЭДС, а в момент паузы накопленная энергия, согласно коэффициенту трансформации передаётся в нагрузку вторичной обмоткой. То есть на практике мы получаем двуобмоточный дроссель. Выше приведённая схема (и большинство схем сетевых понижающих импульсных блоков питания) работает именно по такому принципу. Сетевые импульсные сварочные аппараты (большей частью) так же используют данный тип сердечника.

Сердечники без немагнитоного зазора (торроидальные, броневые и т.д.) используются чаще в топологии импульсных преобразователей по схеме Push-pool. Эта технология чаще используется в импульсных повышающих / понижающих преобразователях, когда необходимо из одного постоянного напряжения сделать напряжение другой величины. К примеру, по приведённой ниже схеме, реализуется простой блок питания автомобильного аудио усилителя.

В данной электрической схеме работа трансформатора Т1 подобна работе обычного трансформатора, то есть на обмотки I и II поочерёдно через ключи VT3 и VT4 поступают прямоугольные импульсы (в идеале). Через коэффициент трансформации напряжение снимается с обмоток III и IV. Возможно, читатель задаст вопрос о том, что если импульсы будут идти непрерывно, то, по сути, это же постоянное напряжение, которое приведёт к сквозным токам в первичной обмотке нашего трансформатора и транзисторам, что приведёт к практически моментальному выходу их из строя. Специально для этого в любой микросхеме ШИМ присутствует такой параметр, как «мёртвое время», задающее паузу подачи импульсов на один ключ и другой. Этим временем мы можем изменять напряжённость электромагнитного поля и его индуктивность, тем самым регулируя уровень напряжения на выходе преобразователя. Изучение работы импульсного трансформатора занимает довольно обширный материал, не входящий в специфику этой статьи.

Электрическая схема с применением импульсного трансформатора требует грамотного расчёта и подбора элементной базы, ведь такое схемотехническое решение является в первую очередь высокочастотным, что подразумевает использование специфических радиодеталей (транзисторы с низким сопротивлением перехода, низкоимпедансные конденсаторы, расчёт мощностей критических сопротивлений и т.д.). Особо важным моментом является расчёт импульсного трансформатора. Не вдаваясь в подробности, скажем, что наиболее простыми и удобными компьютерными программами для расчёта импульсных трансформаторов являются программы человека с ником Starichok (Владимир Денисенко) из Пскова.

Flyback – программа, позволяющая произвести расчёт импульсного трансформатора для обратноходового преобразователя или блока питания.

ExcellentIT – программа для расчёта импульсного трансформатора для двухтактного преобразователя.

Tranz50Hz – расчёт силового трансформатора для электрической 50Hz сети на различных сердечниках.

Все его программы имеют удобный интерфейс, обширную базу параметров заводских сердечников, файл помощи. Кроме того, автор без проблем отвечает на заданные вопросы. Эти и многие другие программы присутствуют в ветках автора на радиоэлектронных форумах.

Смотрите также схемы:

Регулятор освещения Электронный термометр Электрическая печи Стабилизатор напряжения Электрический счетчик

elektronika-muk.ru

Электронные трансформаторы. схемы, фото, обзоры

Электронный трансформатор: устройство, принцип работы и переделка в блок питания своими руками

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным.

В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному — место на помойке. Но это не так.

Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат — с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы — отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы. Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять — отрывается вместе с металлизацией при малейшем усилии.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим — это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I – 7 витков.
  • II – 7.
  • III – 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную – 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники — ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом — два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор, при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт — вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.

Источник: https://220v.guru/elementy-elektriki/transformatory/peredelka-elektronnogo-transformatora-v-blok-pitaniya.html

Эксперименты с электронным трансформатором tashibra

Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора – не мало.

Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы).

Диапазон применения блоков питания на базе “Tashibra” может быть весьма широким, сопоставимым с применением обычных трансформаторов.
Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.

Ну, что, – поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска “Tashibra” при различных нагрузках, частотах и применении различных трансформаторов.

Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса “Tashibra” в качестве радиатора.
Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение.

Смотрим рис1, иллюстрирующий начинку “Tashibra”. 
Схема справедлива для ЭТ “Tashibra” 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.

И еще раз напомню, чего же не хватает “Tashibra” для полноценного блока питания.
1. Отсутствие входного сглаживающего фильтра (он же – противопомеховый, предотвращающий попадание продуктов преобразования в сеть),
2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,
3. Отсутствие выходного выпрямителя,
4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки “Tashibra” и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы…

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`1

2. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 – 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора – не очень приятно).

Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.
На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, – для получения фильтрованного постоянного напряжения на выходе “пациента”. При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, “спрятанный” за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая “провал” напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это – при расчетной для ЭТ нагрузке.

Однако этого недостаточно. “Tashibra” не желает запускаться без существенного тока нагрузки.
Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также – меньше, чем при полной нагрузке. Изменение частоты в режимах различной мощности – довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование “Tashibra” в таком (пока еще) виде при работе со многими устройствами.
Но – продолжим.
Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2. 

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений.

На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке) , способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки.

Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач.

Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато – стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг “Tashibra”, однако, я счел для себя эту тему исчерпанной, т.к.

для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и – высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней – влезть внутрь “Tashibra” и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, что

с пол-сотни подобных схем мною было собрано еще во времена эры компьютеров “Спектрум” (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах. 

Переделываем? Конечно. Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото 

или с помощью любых других технологий.

В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции – только лак) и освободить место для другого трансформатора. Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) – Н2000-НМ1. 90 витков первички (диаметр провода – 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией. Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода – обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора. Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4 

и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате.

По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате.

Резисторы, установленные базовых цепях транзисторов следует оставить – они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их

случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства. Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным.

Поэтому при “упаковке” готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод.

При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, – на будущее.

А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства. В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, – сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов – разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35Вт.
Итак, все готово для первого пуска переделанной схемы “Tashibra”. Включаем для начала – без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем. Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, “непропаи”, ошибочно установленные номиналы.
При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае – к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1Ohm, частота ненагруженного преобразователя составила 18кГц. При нагрузке 20Ом – 20,5кГц. При нагрузке 12Ом – 22,3кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5В. Расчетное значение напряжения было несколько иным (20В), но выяснилось, что вместо номинала 5,1Ом, сопротивление установленного на плате R1=51Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей. Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4Вт.
Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.
Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2Ом, частота преобразователя без нагрузке возросла до 38,5кГц, с нагрузкой 12Ом – 41,8кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.

С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.
Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке http://interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта http://www.moskatov.narod.ru/Design_tools_pulse_transformers.html.
Можно избежать нагрева резистора R5, заменив его… конденсатором. 

Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа 

преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220Вт (минимально).

Мощность трансформатора: значения – приблизительны, с определенными допущениями, но – не завышены.
К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.Раздел: [Схемы]

Источник: http://www.cavr.ru/article/484-eksperimenty-s-elektronnym-transformatorom-tashibra

:: СХЕМА ТРАНСФОРМАТОРА ::

Источник: http://samodelnie.ru/publ/samodelnye_bloki_pitanija/skhema_transformatora/3-1-0-196

   Обычные трансформаторы на 220 вольт, в силу своих больших размеров, веса и дороговизны производства, постепенно вытесняются лёгкими и надёжными электронными трансформаторами, обеспечивающими значительный ток при размерах меньше пачки сигарет. Как правило все они китайского производства, пусть даже на коробке и написано “Сделано в Германии”. Принципиальная схема представляет из себя автогенератор, запускающийся только при подключении нагрузки (лампы).

Схема электронного трансформатора

   К достоинствам этих трансформаторов, прежде всего, следует отнести их малые габариты и вес, что позволяет устанавливать их практически где угодно.

Некоторые модели современных осветительных приборов, рассчитанные на работу с галогенными лампами, содержат встроенные электронные трансформаторы, иногда даже по несколько штук. Такая схема применяется, например, в люстрах.

Известны варианты, когда электронные трансформаторы устанавливаются в мебели для устройства внутренней подсветки полок и вешалок.

Схема подключения в сеть

   Для устройства освещения помещений трансформаторы могут устанавливаться за подвесным потолком или за гипсокартонными плитами стенных покрытий в непосредственной близости от галогенных ламп.

При этом длина соединительных проводов между трансформатором и лампой должна быть не более метра, что обусловлено большими токами, а также высокочастотной составляющей выходного напряжения такого трансформатора. Индуктивное сопротивление провода увеличивается с увеличением частоты, а также его длины. В основном длина и определяет индуктивность провода.

При этом общая мощность подключенных ламп, не должна превышать указанную на этикетке электронного трансформатора. Для повышения надежности всей системы в целом лучше, если мощность ламп будет, ниже на 20% мощности трансформатора.

   Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения. Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку.

Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов. И несмотря на такое несовершенство, схема ЭТ себя вполне оправдывает при использовании его в штатном режиме – для питания постоянной нагрузки, например галогенных ламп.

Простота схемы обуславливает ее дешевизну и широкую распространенность.

Поделитесь полезными схемами

   Чтобы удобно и качественно паять различные миниатюрные детали и микросхемы, включая SMD компоненты, разработана конструкция миниатюрного низковольтного паяльника. Напряжение паяльника — 6 В, мощность около 15-ти Ватт. Диаметр нагревательного элемента пол сантиметра. 

    Задающий генератор пушки настроен на частоту 60-65 кГц, для 400 вольт вторичная обмотка содержит 80 витков провода 0,2 -0,6 мм. Обмотка мотается в 2 слоя по 40 витков. В качестве межслойной изоляции можно использовать несколько слоев скотча или изоленты. 

    Схема из себя представляет достаточно мощный двухтактный преобразователь напряжения. Сигнал поступает с пульта управления на маломощный усилитель низкой частоты, который выполнен на микросхеме LM386.

electshema.ru

Автотрансформатор: описание, конструкция, схема

В данной статье подробно опишем все про автотрансформатор, его конструкцию и принцип работы, а так же рассмотрим переменный автотрансформатор.

Описание

В отличие от трансформатора напряжения, который имеет две электрически изолированные обмотки: первичную и вторичную, автотрансформатор имеет только одну одиночную обмотку напряжения, которая является общей для обеих сторон. Эта отдельная обмотка «постукивает» по разным точкам вдоль своей длины, чтобы обеспечить процент первичного напряжения питания на его вторичной нагрузке. Тогда автотрансформатор имеет обычный магнитный сердечник, но имеет только одну обмотку, которая является общей для первичной и вторичной цепей.

Поэтому в автотрансформаторе первичная и вторичная обмотки связаны друг с другом как электрически, так и магнитно. Основным преимуществом этого типа конструкции трансформатора является то, что он может быть значительно дешевле при той же номинальной мощности ВА, но самым большим недостатком автотрансформатора является то, что он не имеет изоляции первичной / вторичной обмотки обычного трансформатора с двойной обмоткой.

Участок обмотки, обозначенный как первичная часть обмотки, соединен с источником питания переменного тока, причем вторичная обмотка является частью этой первичной обмотки. Автотрансформатор также можно использовать для повышения или понижения напряжения питания путем изменения направления соединений. Если первичная обмотка является общей обмоткой и подключена к источнику питания, а вторичная цепь подключена только через часть обмотки, то вторичное напряжение «понижается», как показано ниже.

Конструкция автотрансформатора

Когда первичный ток P протекает через одну обмотку в направлении стрелки, как показано, вторичный ток I S протекает в противоположном направлении. Таким образом, в части обмотки, которая генерирует вторичное напряжение, В S ток , вытекающий из обмотки представляет собой разность P и I S .

Автотрансформатор также может быть построен с более чем одной точкой врезки. Автотрансформаторы могут использоваться для подачи различных точек напряжения вдоль его обмотки или увеличения напряжения питания относительно напряжения питания V P, как показано на рисунке.

Автотрансформатор с несколькими точками подключения

Стандартный метод маркировки обмоток автотрансформатора — маркировать его заглавными буквами, например, A , B , Z и т.д. Обычно общее нейтральное соединение обозначается как N или n . Для вторичных ответвлений используются номера суффиксов для всех точек ответвления вдоль первичной обмотки автотрансформатора. Эти числа обычно начинаются с цифры « 1 » и продолжаются в порядке возрастания для всех точек касания, как показано на рисунке.

Автотрансформаторный терминал маркировки

Автотрансформатор используется в основном для регулировки линейных напряжений, чтобы либо изменить его значение, либо сохранить его постоянным. Если регулировка напряжения на небольшую величину, либо вверх, либо вниз, то коэффициент трансформатора мал, так как P и S почти равны. Токи P и S также почти равны.

Следовательно, часть обмотки, которая несет разницу между двумя токами, может быть изготовлена ​​из проводника намного меньшего размера, поскольку токи намного меньше, что экономит затраты на эквивалентный трансформатор с двойной обмоткой.

Однако регулирование, индуктивность рассеяния и физический размер (поскольку нет второй обмотки) автотрансформатора для заданного значения ВА или КВА ниже, чем для трансформатора с двойной обмоткой.

Автотрансформаторы явно намного дешевле, чем обычные трансформаторы с двойной обмоткой и той же оценкой ВА. При принятии решения об использовании автотрансформатора обычно сравнивают его стоимость со стоимостью эквивалентного типа с двойной обмоткой.

Это делается путем сравнения количества меди, сэкономленной в обмотке. Если отношение « n » определено как отношение более низкого напряжения к более высокому напряжению, то можно показать, что экономия в меди составляет: n * 100% . Например, экономия на меди для двух автотрансформаторов будет:

Автотрансформатор пример

Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.

Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.

Недостатки автотрансформатора

  • Основным недостатком автотрансформатора является то, что он не имеет изоляции первичной и вторичной обмоток обычного трансформатора с двойной обмоткой. Тогда автотрансформатор нельзя безопасно использовать для понижения более высоких напряжений до гораздо более низких напряжений, подходящих для меньших нагрузок.
  • Если обмотка вторичной стороны становится разомкнутой, ток нагрузки прекращает протекать через первичную обмотку, останавливая действие трансформатора, в результате чего на вторичные клеммы подается полное первичное напряжение.
  • Если вторичная цепь испытывает состояние короткого замыкания, результирующий первичный ток будет намного больше, чем у эквивалентного трансформатора с двойной обмоткой, из-за увеличенного магнитного потока, повреждающего автотрансформатор.
  • Поскольку нейтральное соединение является общим как для первичной, так и для вторичной обмотки, заземление вторичной обмотки автоматически заземляет первичную, поскольку между этими двумя обмотками нет изоляции. Трансформаторы с двойной обмоткой иногда используются для изоляции оборудования от земли.

Автотрансформатор имеет множество применений и устройств, в том числе и пуск асинхронных двигателей, используемых для регулирования напряжения линий электропередачи, и может быть использована для преобразования напряжения, когда первичные к вторичному отношению близко к единице.

Автотрансформатор также может быть изготовлен из обычных двухобмоточных трансформаторов путем последовательного соединения первичной и вторичной обмоток, и в зависимости от того, как выполнено соединение, вторичное напряжение может увеличивать или уменьшать первичное напряжение.

Переменный автотрансформатор

Наряду с наличием фиксированной или постукивающей вторичной обмотки, которая создает выходное напряжение на определенном уровне, существует еще одно полезное применение устройства типа автотрансформатора, которое можно использовать для получения переменного напряжения от источника переменного тока с фиксированным напряжением. Этот тип  переменного автотрансформатора обычно используется в лабораториях и научных лабораториях в школах и колледжах и более известен как Variac.

Конструкция переменного автотрансформатора, или вариака, такая же, как и для фиксированного типа. Одинарная первичная обмотка, намотанная на многослойный магнитный сердечник, используется, как в автотрансформаторе, но вместо того, чтобы фиксироваться в некоторой заранее определенной точке ответвления, вторичное напряжение отводится через угольную щетку.

Эта угольная щетка вращается или может скользить вдоль открытой части первичной обмотки, соприкасаясь с ней по мере движения, обеспечивая требуемый уровень напряжения.

Затем переменный автотрансформатор содержит переменный отвод в форме угольной щетки, которая скользит вверх и вниз по первичной обмотке, которая контролирует длину вторичной обмотки, и, следовательно, вторичное выходное напряжение полностью изменяется от значения первичного напряжения питания до нуля вольт.

Переменный автотрансформатор обычно имеет значительное количество первичных обмоток для создания вторичного напряжения, которое можно регулировать в диапазоне от нескольких вольт. Это достигается благодаря тому, что угольная щетка или ползун всегда находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по ее длине. Тогда выходное напряжение становится пропорциональным угловому вращению.

Мы видим, что вариак может плавно регулировать напряжение на нагрузке от нуля до номинального напряжения питания. Если в некоторой точке вдоль первичной обмотки было подано напряжение питания, то потенциально вторичное выходное напряжение могло бы быть выше, чем фактическое напряжение питания. Переменный автотрансформатор также можно использовать для регулировки яркости света, а при использовании в этом типе приложений их иногда называют «диммерами».

Вариак также очень полезен в электротехнических и электронных мастерских и лабораториях, так как они могут использоваться для обеспечения переменного питания. Но следует соблюдать осторожность с подходящей защитой предохранителей, чтобы гарантировать, что более высокое напряжение питания не присутствует на вторичных клеммах в условиях неисправности.

Автотрансформатор имеет много преимуществ по сравнению с обычными трансформаторами двойных обмоток. Они, как правило, более эффективны при одинаковом номинальном значении ВА, имеют меньшие размеры и, поскольку в их конструкции требуется меньше меди, их стоимость ниже по сравнению с трансформаторами с двойной обмоткой с одинаковыми номинальными характеристиками. Кроме того, их потери в сердечнике и меди, I 2 R , ниже из-за меньшего сопротивления и реактивного сопротивления рассеяния, обеспечивающих более высокое регулирование напряжения, чем у эквивалентных двухобмоточных трансформаторов.

В следующей статье о трансформаторах мы рассмотрим другой дизайн трансформатора, у которого нет обычной первичной обмотки, намотанной вокруг его сердечника. Этот тип трансформатора обычно называют трансформатором токаи используется для питания амперметров и других таких индикаторов электрической мощности.

meanders.ru

принцип работы и типы приборов

Трансформатор — незаменимое устройство в электротехнике.

Без него энергосистема в ее нынешнем виде не могла бы существовать.

Присутствуют эти элементы и во многих электроприборах.

Желающим познакомиться с ними поближе предлагается данная статья, тема которой — трансформатор: принцип работы и виды приборов, а также их назначение.

 

Что такое трансформатор

Так называют устройство, изменяющее величину переменного электрического напряжения. Существуют разновидности, способные менять и его частоту.

Таким аппаратами оснащают многие приборы, также они применяются в самостоятельном виде.

Например, установки, повышающие напряжение для передачи тока по электромагистралям.

Генерируемое электростанцией напряжение они поднимают до 35 – 750 кВ, что дает двойную выгоду:

  • уменьшаются потери в проводах;
  • требуются провода меньшего сечения.
В городских электросетях напряжение снова уменьшается до величины в 6,1 кВ, опять же с использованием трансформатора. В распределительных сетях, раздающих электричество потребителям, напряжение понижают до 0,4 кВ (это привычные нам 380/220 В).

Принцип работы

Работа трансформаторного устройства основана на явлении электромагнитной индукции, состоящей в следующем: при изменении параметров магнитного поля, пересекающего проводник, в последнем возникает ЭДС (электродвижущая сила). Проводник в трансформаторе присутствует в форме катушки или обмотки, и общая ЭДС равна сумме ЭДС каждого витка.

Для нормальной работы требуется исключить электрический контакт между витками, потому используют провод в изолирующей оболочке. Эту катушку называют вторичной.

Магнитное поле, необходимое для генерации во вторичной катушке ЭДС, создается другой катушкой. Она подключается к источнику тока и называется первичной. Работа первичной катушки основана на том факте, что при протекании через проводник тока, вокруг него формируется электромагнитное поле, а если он смотан в катушку, оно усиливается.

Как работает трансформатор

При протекании через катушку постоянного тока параметры электромагнитного поля не меняются и оно неспособно вызвать ЭДС во вторичной катушке. Поэтому трансформаторы работают только с переменным напряжением.

На характер преобразования напряжения влияет соотношение количества витков в обмотках – первичной и вторичной. Его обозначают «Кт» – коэффициент трансформации. Действует закон:

Кт = W1 / W2 = U1 / U2,

где,

  • W1 и W2 — количество витков в первичной и вторичной обмотках;
  • U1 и U2 — напряжение на их выводах.

Следовательно, если в первичной катушке витков больше, то напряжение на выводах вторичной ниже. Такой аппарат называют понижающим, Кт у него больше единицы. Если витков больше во вторичной катушке — трансформатор напряжение повышает и называется повышающим. Его Кт меньше единицы.

Большой силовой трансформатор

Если пренебречь потерями (идеальный трансформатор), то из закона сохранения энергии следует:

P1 = P2,

где Р1 и Р2 — мощность тока в обмотках.

Поскольку P = U * I, получим:

  • U1 * I1 = U2 * I2;
  • I1 = I2 * (U2 / U1) = I2 / Кт.

Это означает:

  • в первичной катушке понижающего устройства (Кт > 1) протекает ток меньшей силы, чем в цепи вторичной;
  • с повышающими трансформаторами (Кт < 1) все наоборот: сила тока в первичной катушке выше, чем в цепи вторичной.

Данное обстоятельство учитывают при подборе сечения проводов для обмоток аппаратов.

Конструкция

Трансформаторные обмотки надевают на магнитопровод — деталь из ферромагнитной, трансформаторной или иной магнитомягкой стали. Он служит проводником электромагнитного поля от первичной катушки ко вторичной.

Под действием переменного магнитного поля в магнитопроводе также генерируются токи — они называются вихревыми. Эти токи приводят к потерям энергии и нагреву магнитопровода. Последний, с целью свести данное явление к минимуму, набирают из множества изолированных друг от друга пластин.

На магнитопроводе катушки располагают двояко:

  • рядом;
  • наматывают одну поверх другой.

Обмотки для микротрансформаторов изготавливают из фольги толщиной 20 – 30 мкм. Ее поверхность в результате окисления становится диэлектриком и играет роль изоляции.

Конструкция трансформатора

На практике добиться соотношения Р1 = Р2 невозможно из-за потерь трех видов:

  1. рассеивание магнитного поля;
  2. нагрев проводов и магнитопровода;
  3. гистерезис.

Потери на гистерезис — это затраты энергии на перемагничивание магнитопровода. Направление силовых линий электромагнитного поля постоянно меняется. Каждый раз приходится преодолевать сопротивление диполей в структуре магнитопровода, выстроившихся определенным образом в предыдущей фазе.

Потери на гистерезис стремятся уменьшить, применяя разные конструкции магнитопроводов.

Итак, в реальности величины Р1 и Р2 отличаются и соотношение Р2 / Р1 называют КПД устройства. Для его измерения используются следующие режимы работы трансформатора:

  • холостого хода;
  • короткозамкнутый;
  • с нагрузкой.

В некоторых разновидностях трансформаторов, работающих с напряжением высокой частоты, магнитопровод отсутствует.

Режим холостого хода

Первичная обмотка подключена к источнику тока, а цепь вторичной разомкнута. При таком подключении в катушке течет ток холостого хода, в основном представляющий реактивный ток намагничивания.

Такой режим позволяет определить:

  • КПД устройства;
  • коэффициент трансформации;
  • потери в магнитопроводе (на языке профессионалов — потери в стали).

Схема трансформатора в режиме холостого хода

Короткозамкнутый режим

Выводы вторичной обмотки замыкают без нагрузки (накоротко), так что ток в цепи ограничивается лишь ее сопротивлением. На контакты первичной подают такое напряжение, чтобы ток в цепи вторичной обмотки не превышал номинального.

Такое подключение позволяет определить потери на нагрев обмоток (потери в меди). Это необходимо при реализации схем с применением вместо реального трансформатора активного сопротивления.

Режим с нагрузкой

В этом состоянии к выводам вторичной обмотки подключен потребитель.

Охлаждение

В процессе работы трансформатор греется.

Применяют три способа охлаждения:

  1. естественное: для маломощных моделей;
  2. принудительное воздушное (обдув вентилятором): модели средней мощности;
  3. мощные трансформаторы охлаждаются при помощи жидкости (в основном используют масло).

Прибор с масляным охлаждением

Виды трансформаторов

Аппараты классифицируются по назначению, типу магнитопровода и мощности.

Силовые трансформаторы

Наиболее многочисленная группа. К ней относятся все трансформаторы, работающие в энергосети.

Автотрансформатор

У этой разновидности между первичной и вторичной обмотками имеется электрический контакт. При намотке провода делают несколько выводов — при переключении между ними задействуется разное число витков, отчего меняется коэффициент трансформации.

Достоинства автотрансформатора:

  • Повышенный КПД. Объясняется тем, что преобразованию подвергается только часть мощности. Это особенно важно при незначительной разнице между напряжением на входе и выходе.
  • Низкая стоимость. Это обусловлено меньшим расходом стали и меди (автотрансформатор имеет компактные размеры).

Эти устройства выгодно применять в сетях напряжением 110 кВ и более с эффективным заземлением при Кт не выше 3-4.

Трансформатор тока

Используется для снижения силы тока в подключенной к источнику питания первичной обмотке. Устройство находит применение в защитных, измерительных, сигнальных и управляющих системах. Преимущество в сравнении с шунтовыми схемами измерения, состоит в наличии гальванической развязки (отсутствие электроконтакта между обмотками).

Первичная катушка включается в цепь переменного тока – исследуемую или контролируемую –  с нагрузкой последовательно. К выводам вторичной обмотки подключают исполнительное индикаторное устройство, к примеру, реле, или прибор измерения.

Трансформатор тока

Допустимое сопротивление в цепи вторичной катушки ограничено мизерными значениями — почти короткое замыкание. У большинства токовых трансформаторов величина номинального тока в этой катушке составляет 1 или 5 А. При размыкании цепи в ней формируется высокое напряжение, способное пробить изоляцию и повредить подключенные приборы.

Импульсный трансформатор

Работает с короткими импульсами, продолжительность которых измеряется десятками микросекунд. Форма импульса практически не искажается. В основном используются в видеосистемах.

Сварочный трансформатор

Данное устройство:

  • понижает напряжение;
  • рассчитано на номинальный ток в цепи вторичной обмотки до тысяч ампер.

Регулировать сварочный ток можно изменением числа витков обмоток, задействованных в процессе (они имеют по нескольку выводов). При этом изменяется величина индуктивного сопротивления или вторичное напряжение холостого хода. Посредством дополнительных выводов обмотки разбиты на секции, потому регулировка сварочного тока осуществляется ступенчато.

Габариты трансформатора во многом зависят от частоты переменного тока. Чем она выше, тем более компактным получится устройство.

Сварочный трансформатор ТДМ 70-460

На этом принципе основано устройство современных инверторных сварочных аппаратов. В них переменный ток перед подачей на трансформатор подвергается обработке:

  • выпрямляется посредством диодного моста;
  • в инверторе — управляемом микропроцессором электронном узле с быстро переключающимися ключевыми транзисторами — снова становится переменным, но уже с частотой 60 – 80 кГц.

Потому эти сварочные аппараты такие легкие и небольшие.

Также устроены блоки питания импульсного типа, например, в ПК.

Разделительный трансформатор

В этом устройстве обязательно присутствует гальваническая развязка (нет электрического контакта между первичной и вторичной обмотками), а Кт равен единице. То есть разделительный трансформатор напряжение оставляет неизменным. Он необходим для повышения безопасности подключения.

Прикосновение к токоведущим элементам оборудования, подключенного к сети через такой трансформатор, к сильному удару током не приведет.

В быту такой способ подключения электроприборов уместен во влажных помещениях— в ванных и пр.

Кроме силовых трансформаторов, существуют сигнальные разделительные. Они устанавливаются в электроцепи для гальванической развязки.

Магнитопроводы

Бывают трех видов:

  1. Стержневые. Выполнены в виде стержня ступенчатого сечения. Характеристики оставляют желать лучшего, но зато просты в исполнении.
  2. Броневые. Лучше стержневых проводят магнитное поле и вдобавок защищают обмотки от механических воздействий. Недостаток: высокая стоимость (требуется много стали).
  3. Тороидальные. Наиболее эффективная разновидность: создают однородное сконцентрированное магнитное поле, чем способствуют уменьшению потерь. Трансформаторы с тороидальным магнитопроводом имеют наибольший КПД, но они дороги из-за сложности изготовления.

Мощность

Мощность трансформатора принято обозначать в вольт-амперах (ВА). По данному признаку устройства классифицируются так:
  • маломощные: менее 100 ВА;
  • средней мощности: несколько сотен ВА;

Существуют установки большой мощности, измеряемой в тысячах ВА.

Трансформаторы отличаются назначением и характеристиками, но принцип действия у них одинаков: переменное магнитное поле, генерируемое одной обмоткой, возбуждает во второй ЭДС, величина которого зависит от числа витков.

Необходимость в преобразовании напряжения возникает очень часто, потому трансформаторы получили самое широкое распространение. Данное устройство можно изготовить самостоятельно.

proprovoda.ru

схема трансформатора | Электрознайка. Домашний Электромастер.


Трансформатор – это электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте.
Действие трансформатора основано на использовании явления электромагнитной индукции.

Переменный электрический ток (ток, который изменяется по величине и по направлению) наводит в первичной катушке переменное магнитное поле. Это переменное магнитное поле, наводит переменное напряжение во вторичной обмотке. Величина напряжения ЭДС зависит от числа витков  в катушке и от скорости изменения магнитного поля.

Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации:
   k = w1 / w2;   где:
w1 — число витков в первичной обмотке;
w2 — число витков во вторичной обмотке.
Если число витков в первичной обмотке больше чем во вторичной — это понижающий трансформатор.
Если число витков в первичной обмотке меньше, чем во вторичной — это повышающий трансформатор.

Один и тот же трансформатор может быть как понижающим, так и повышающим, в зависимости от того на какую обмотку подается переменное напряжение.

Трансформаторы без сердечника или с сердечником из высокочастотного феррита или альсифера — это высокочастотные трансформаторы ( частота выше 100 килогерц).
Трансформаторы с ферромагнитным сердечником (сталь, пермаллой, феррит) – это низкочастотные трансформаторы (частота ниже 100 килогерц).

Высокочастотные трансформаторы используются в устройствах техники электросвязи, радиосвязи и др. Низкочастотные трансформаторы используются в усилительной технике звуковых частот, в телефонной связи.
Особое место трансформаторы со стальным (набор из стальных листов) сердечником занимают в электротехнике.

Развитие электроэнергетики напрямую зависит от мощных, силовых трансформаторов.
Мощности силовых трансформаторов имеют величины от нескольких ватт до сотен тысяч киловатт и выше.

Силовой трансформатор – что же это?

На замкнутый сердечник (магнитопровод), набранный из стальных листов, надевают две или больше, обмоток, одна из которых соединяется с источником переменного тока. Другая (или другие) обмотка соединяется с потребителем электрического тока – нагрузкой.

Переменный ток, проходящий по первичной обмотке, создает в стальном сердечнике магнитный поток, который наводит в каждом витке обмотки – катушки переменное напряжение. Напряжения всех витков складываются в выходное напряжение трансформатора.

 Форма сердечника – магнитопровода, может быть Ш – образной, О – образной и тороидальной, в виде тора. Таким образом в силовом трансформаторе электрическая мощность из первичной обмотки передается во вторичную обмотку через магнитный поток в магнитопроводе.

Потребителей электрической энергии очень много: электрическое освещение, электронагреватели, радио и теле аппаратура, электродвигатели и многое другое. И все эти приборы требуют различные напряжения (переменные и постоянные) и разные мощности.

Проблема эта легко решается с помощью трансформатора. Из бытовой сети с переменным напряжением 220 вольт можно получить переменное напряжение любой величины и , если необходимо, преобразовать его в постоянное напряжение.

Коэффициент полезного действия трансформатора довольно велик, от 0,9 до 0,98 и зависит от потерь в магнитопроводе и от магнитных полей рассеяния.
От величины электрической мощности Р зависит площадь поперечного сечения магнитопровода S.
По значению площади S определяется, при расчетах трансформатора, количество витков w на 1 вольт:

w = 50 / S.

Мощность трансформатора Рс выбирается из требуемой величины нагрузки Рн плюс величина потерь в сердечнике.

При расчете трансформатора с определенной степенью точности можно считать, что мощность нагрузки во вторичной обмотке Pн = Uн * Iн и мощность потребляемая из сети в первичной обмотке Pc = Uc * Ic приблизительно равны. Если  потерями в сердечнике  пренебречь, то получается равенство:

k = Uс / Uн = Iн / Iс.

То есть, выводится правило: токи в обмотках трансформатора обратно пропорциональны их напряжениям, а соответственно и числу их витков.

domasniyelektromaster.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о