Схема включения трансформатора напряжения – » :

Содержание

Трансформаторы напряжения

Как и трансформаторы тока, трансформаторы напряжения (ТН) выполняют две функции: служат для разделения (изоляции) первичных и вторичных цепей, а так же, для приведения величины напряжения к уровню удобному для измерения (стандартное номинальное напряжение вторичной обмотки: 100/57 В). ТН работают в режиме близком к холостому ходу.

Рис. 2.6. Устройство и схема включения трансформатора напряжения

Рис. 2.7. Маркировка (обозначение) выводов обмоток трансформатора напряжения

Трансформатор напряжения по принципу действия и конструктивному выполнению аналогичен силовому трансформатору. Как показано на рис. 2.6, трансформатор напряжения

TVсостоит из стального сердечника (магнитопровода)С, собранного из тонких пластин трансформаторной стали, и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника.

Первичная обмотка w1имеющая большое число витков (несколько тысяч) тонкого провода, включается непосредственно в сеть высокого напряжения, а к вторичной обмоткеw2имеющей меньшее количество витков (несколько сотен), подключаются параллельно реле и измерительные приборы. Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике переменный магнитный поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней ЭДСЕ, которая при разомкнутой вторичной обмотке (холостой ход ТН) равна напряжению на её зажимахU2x.

Напряжение U2xво столько раз меньше первичного напряженияU1, во сколько раз число витков вторичной обмоткиw2меньше числа витков первичной обмоткиw1.

(2.16)

Отношение чисел витков обмоток называется коэффициентом трансформации и обозначается

(2.17)

Введя такое обозначение, можно написать:

(2.18)

Если ко вторичной обмотке ТН подключена нагрузка в виде реле и приборов, то напряжение на её зажимах U2будет меньше ЭДС на величину падения напряжения в сопротивлении вторичной обмотки. Однако поскольку это падение напряжения невелико, оно не учитывается и пересчёт первичного напряжения на вторичное производится по формулам:

(2.19)

(2.20)

Схемы соединения трансформаторов напряжения

Для правильного соединения между собой вторичных обмоток ТН и правильного подключения к ним реле направления мощности, ваттметров и счётчиков заводы-изготовители обозначают (маркируют) выводные зажимы обмоток определенным образом (см. рис 2.7, 2.8): начало первичной обмотки – А, конец – Х; начало основной вторичной обмотки – а, конец – х; начало дополнительной вторичной обмотки – ад, конец – хд.

Рис. 2.8. Схемы соединения обмоток однофазных трансформаторов напряжения с одной вторичной обмоткой

На рис. 2.8 и 2.9 приведены основные схемы соединения обмоток однофазных ТН.

На рис. 2.8, а

дана схема включения одного ТН на междуфазное напряжение. Эта схема применяется, когда для защиты или измерений достаточно одного междуфазного напряжения.

На рис. 2.8, бприведена схема соединения двух ТН в открытый треугольник, или в неполную звезду. Эта схема, получившая широкое распространение, применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рис. 2.8, вприведена схема соединения трёх ТН в звезду. Эта схема также получила широкое распространение и применяется, когда для защиты или измерений нужны фазные напряжения, или же фазные и междуфазные напряжения одновременно.

На рис. 2.8, гприведена схема соединения трёх ТН треугольник – звезда. Эта схема обеспечивает повышенное напряжение на вторичной стороне, равное ~ 173 В. Такая схема, в частности, используется для питания электромагнитных корректоров напряжения устройств автоматического регулирования возбуждения генераторов.

Рис. 2.9. Схема соединения обмоток трансформатора напряжения с двумя вторичными обмотками

На рис. 2.9 представлена схема соединения трансформаторов напряжения, имеющих две вторичные обмотки. Первичные и вторичные основные обмотки соединены в звезду, т.е. так же как в рассмотренной выше схеме на рис. 2.8, в. Дополнительные вторичные обмотки соединены в схему разомкнутого треугольника (на сумму фазных напряжений). Такое соединение применяется для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных КЗ в сети с заземлёнными нулевыми точками трансформаторов, и для сигнализации при однофазных замыканиях на землю в сети с изолированными нулевыми точками трансформаторов. Как известно, сумма трёх фазных напряжении в нормальном режиме, а также при двух-трёхфазных КЗ равна нулю. Поэтому, в указанных условиях напряжение между точками О1—О2 на рис. 2.9 равно нулю (практически между этими точками имеется небольшое напряжение: 0,5–2 В, которое называется напряжением небаланса). При однофазном КЗ в сети с заземлёнными нулевыми точками трансформаторов (сети 110 кВ и выше) фазное напряжение поврежденной фазы становится равным нулю, а геометрическая сумма фазных напряжений двух неповреждённых фаз оказывается равной фазному напряжению.

В сети с изолированными нулевыми точками трансформаторов (сети 35 кВ и ниже) при однофазных замыканиях на землю напряжения неповреждённых фаз относительно земли становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. Для того чтобы в последнем случае напряжение на реле не превосходило номинального значения, равного 100 В, у ТН, предназначенных для сетей, работающих с изолированными нулевыми точками трансформаторов, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют увеличенные в 3 раза коэффициент трансформации, например 6000/100/3 В.

Напряжение нулевой последовательности может быть также получено от специальных обмоток трёхфазных ТН. В конструкции, показанной на рис. 2.10, специальные обмотки расположены на крайних стержнях пятистержневого сердечника и соединены между собой последовательно. В нормальном режиме, а также при двух- и трех фазных КЗ, когда сумма фазных напряжений равна нулю, магнитный поток в крайних стержнях отсутствует, и поэтому напряжении на специальных обмотках нет. При однофазных КЗ или замыканиях на землю сумма фазных напряжений не равна нулю. Поэтому магнитный поток замыкается по крайним стержням и индуктирует напряжение на специальных обмотках.

Рис. 2.10. Схема соединений обмоток трёхфазного трансформатора напряжения с дополнительной обмоткой, расположенной на крайних стержнях

В другой конструкции, показанной на рис. 2.11, имеются дополнительные вторичные обмотки, расположенные на основных стержнях и соединённые в схему разомкнутого треугольника.

При включении первичных обмоток ТН на фазные напряжения они соединяются в звезду, нулевая точка которой обязательно соединяется с землей (заземляется), как показано на рис. 2.8, в; 2.9 – 2.11. Заземление первичных обмоток необходимо для того, чтобы при однофазных КЗ или замыканиях на землю в сети, где установлен ТН, реле и приборы, включённые на его вторичную обмотку, правильно измеряли напряжение фаз относительно земли. Вторичные обмотки ТН подлежат обязательному заземлению независимо от схемы их соединений. Это заземление является защитным, обеспечивающим безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды (рис. 2.8,

виг) или один из фазных проводов – как правило, фазы «В» – для удобства проверки правильности включения электросчётчиков (рис. 2.8,аиб, 2.9). В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных аппаратов (рубильников) переключателей, автоматических выключателей, предохранителей и т.д.). Сечение заземляющего провода должно быть не менее 4 мм2(по меди).

Рис. 2.11. Схема соединений обмоток трёхфазного пятистержневого трансформатора напряжения с дополнительной обмоткой, расположенной на основных стержнях

На промышленных предприятиях широко используются трансформаторы напряжения типа 3×ЗНОЛ-6(10) и НТМИ. Для защиты трансформаторов напряжения со стороны ВН обычно используются высоковольтные предохранители (например, ПКТ-10, ПКТ-35). Для защиты вторичных обмоток трансформаторов напряжения от перегрузок и КЗ применяются автоматические выключатели с отсечкой

.

В схемах указаны меры, которые предпринимаются для защиты сети от самопроизвольного смещения нейтрали при феррорезонансе трансформатора напряжения. Феррорезонанс возникает в случае, когда ёмкость, какой либо фазы в сети компенсируется индуктивностью трансформатора напряжения, в этой фазе напряжение меняет знак и напряжение нейтрали приобретает величину . Такое явление может произойти при малой ёмкости сети – подаче напряжения на холостые шины, или в случае, если общая длина подключенных кабелей меньше 3 км, а воздушных линий меньше 60 км.

Для защиты от феррорезонансных перенапряжений в схемах с трансформаторами НТМИ или 3×ЗНОЛ применяется включение резисторов общим сопротивлением 25 Ом на обмотку 3

U0.

Однако включение такой нагрузки приводит к перегрузке дополнительной обмотки ТН при замыканиях на землю, и такой режим может существовать ограниченное время: до 8 часов для НТМИ-10.

В настоящее время в России и за рубежом выпускаются трансформаторы серий НАМИ-10, НТМ(i), НОМ и НАМИТ-6(10)-2, которые обладают антирезонансными свойствами.

Балансная схема фильтра 3U0.

Фильтр напряжения нулевой последовательности (3U0) может быть выполнен двумя способами: по напряжению – при наличии трансформатора напряжения с отдельной обмоткой разомкнутого треугольника, или по схеме фильтра напряжения нулевой последовательности, встроенного в реле, и предназначенного для подключения к звезде напряжений, при отсутствии такой обмотки. Такая схема используется, например, в ячейках фирмы «Таврида-Электрик». Схема балансного фильтра показана на рис. 2.12.

Рис. 2.12. Схема фильтра напряжения нулевой последовательности

Три резистора одинаковой величины подключаются соответственно к фазам а,в,снапряжения обмотки ТН соединённой в звезду, ко вторым концам резисторов, соединённым вместе и выводу нейтрали ТН подключается реле напряжения. На реле выделяется напряжениеU0.

Для сигнализации замыкания на землю выполняются уставки:

Схема работает неправильно при перегорании предохранителей на стороне ВН (или НН, если они там имеются).

studfile.net

Схемы подключения трансформаторов напряжения

Общие сведения

Трансформаторами напряжения, как правило, называют разновидность трансформаторов, которые предназначены не для передачи мощности, а для гальванического разделения высоковольтной стороны от низковольтной.

Такие трансформаторы предназначены для питания измерительных и управляющих приборов. На «высокой» стороне различных трансформаторов напряжения, естественно, напряжение  может быть разным, это и 6000, и 35000 вольт и даже много более, а вот на «низкой» стороне (на вторичной обмотке) оно не превышает 100 вольт.

Это очень удобно для унификации приборов управления. Если делать измерительные приборы и приборы управления, а это в основном реле, на высокое напряжение, то они, во-первых, будут очень большими, а во-вторых, очень опасными в обслуживании.

Коэффициент трансформации указан на самом трансформаторе и может выглядеть как Кu = 6000/100, либо просто 35000/100. Разделив одно число на другое, получим в первом случае этот коэффициент 60, во втором 350.

Данные трансформаторы бывают как «сухие», в которых в качестве изоляции используется электрокартон. Они применяются, обычно, для напряжений до 1000 вольт. Пример НОС-0,5. Где, Н означает напряжение, имеется ввиду трансформатор напряжения, О – однофазный, С – сухой, 0,5 – 500 вольт (0,5кВ). А так же масляные: НТМИ, НОМ, 3НОМ, НТМК, в которых масло играет роль, как изолятора, так и охладителя. И литые, если быть точным, то с литой изоляцией (3НОЛ – трехобмоточный трансформатор напряжения однофазный с литой изоляцией), в которых все обмотки и магнитопровод залиты эпоксидной смолой.

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения.

В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования. Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения. Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%.

Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

 

Однофазный двухобмоточный трансформатор представлен на рисунке, так, как он выглядит на самом деле.

На схемах он обозначается как:

 

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе. Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

 

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитопроводов: трехстержневые и пятистержневые.

 

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

 

 

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы. Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках. Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Схемы соединений обмоток трансформаторов напряжения

Самым простым способом измерения межфазного напряжения является включение однофазного двухобмоточного трансформатора напряжения по схеме представленной на рисунке слева.

 

При этом на концах вторичной обмотки имеем напряжение соответствующее межфазному ВС, но уменьшенное с учетом коэффициента трансформации.

Все три межфазных напряжения можно измерять при помощи двух однофазных трансформатора подключенных определенным способом.

 

В трехфазных трансформаторах первичные обмотки всегда подключается по схеме «звезда».

 

Вторичные обмотки могут подключаться как по схеме «звезда» так и по схеме «треугольник».

 

При верхнем подключении на точках вывода вторичной обмотки мы имеем возможность измерения межфазных напряжений. При нижнем подключении, по схеме так называемого разомкнутого треугольника, мы можем выявить факт короткого замыкания или обрыва провода в одной их фаз на высокой стороне. Выводы при этом маркируются 01 и 02, поскольку при нормальных условиях работы между этими точками нет напряжения.

Для подключения реле защиты применяются, как уже было сказано выше дополнительные обмотки в трехобмоточных трансформаторах напряжения. Пот пример подключения таких трансформаторов в трехфазную сеть. При этом концы обмоток заземляются как в первичной, так и во вторичной обмотке.

 

Вот еще несколько вариантов подключения однофазных трансформаторов для измерения межфазных и фазных напряжений, а так же для питания аппаратуры управления.

 

Более сложные варианты подключения трансформаторов напряжения, содержащих большее количество обмоток изучается в специальном курсе электротехники.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Схемы соединения измерительных трансформаторов напряжения.

Схема включения однофазного трансформатора напряжения представлена на рис. 1, а. Предохранители FV1 и FV2 защищают сеть высокого напряжения от повреждений первичной обмотки TV. Предохранители FV3 и FV4 (или автоматические выключатели) защищают TV от повреждений в нагрузке.

Схема соединения двух однофазных трансформаторов напряжения TV1 и TV2 в открытый треугольник (рис. 2). Трансформаторы включены на два междуфазных напряжения, например UAB и UBC. Напряжение на зажимах вторичных обмоток TV всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включается нагрузка (реле).

Схема позволяет получать все три междуфазных напряжения UAB, UBC и UCA (не рекомендуется присоединять нагрузку между точками а и с, так как через трансформаторы будет протекать дополнительный ток нагрузки, вызывающий повышение погрешности). 

Рис. 1. Схема включения измерительного трансформатора напряжения

Рис. 2. Схема соединения двух однофазных трансформаторов напряжения в открытый треугольник

Схема соединения трех однофазных трансформаторов напряжения в звезду, приведенная на рис. 3, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки TV соединяются в звезду. Начала каждой обмотки Л присоединяются к соответствующим фазам линии, а концы X объединяются в общую точку (нейтраль N1) и заземляются.

При таком включении к каждой первичной обмотке трансформатора напряжения (ТН) подводится напряжение фазы линии электропередачи (ЛЭП) относительно земли. Концы вторичных обмоток ТН (х) также соединяются в звезду, нейтраль которой N2 связывается с нулевой точкой нагрузки. В приведенной схеме нейтраль первичной обмотки (точка N1) жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будут иметь нейтраль N2 и связанная с ней нейтраль нагрузки. 

Рис. 3. Схема соединение трех однофазных трансформаторов напряжения в звезду

При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны. Заземление нейтрали первичной обмотки трансформатора напряжения и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Схема соединения однофазных трансформаторов напряжения в фильтр напряжения нулевой последовательности (рис. 4). Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные — последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле напряжения KV. Напряжение U2 на зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток: 

Рис. 4. Схема соединения трех однофазных трансформаторов напряжения в фильтр напряжений нулевой последовательности

Рассмотренная схема является фильтром нулевой последовательности (НП). Необходимым условием работы схемы в качестве фильтра НП является заземление нейтрали первичной обмотки ТН. Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую — по схеме разомкнутого треугольника (рис. 5). 

Рис. 5. Схема включения трех однофазных трансформаторов напряжения для контроля изоляции

Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема включения трехфазного трехстержневого трансформатора напряжения показана на рис. 6. Нейтраль ТН заземлена.

Рис. 6. Схема включения трехфазного трехстержневого трансформатора напряжения в системе с заземленной нейтралью

Схема соединения обмоток трехфазного трансформатора напряжения в фильтр напряжения НП показана на рис. 5.

Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоков НП Фо, создаваемых током 10 в первичных обмотках при замыкании на землю в сети. В этом случае поток Фо замыкается через воздух по пути с большим магнитным сопротивлением.

Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличению Iнам. Повышенный ток Iнам вызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых трансформаторов напряжения недопустимо.

В пятистержневых трансформаторах для замыкания потоков Ф0 служат четвертый и пятый стержни магнитопровода (рис. 7). Для получения 3U0 от трехфазного пятистержневого трансформатора напряжения на каждом из его основных стержней 7, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника.

Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по 4 и 5 стержням маг-нитопровода. Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения. Применяются для измерения напряжений и контроля изоляции в сетях с изолированной нейтралью. Для этих же целей можно использовать схему рис. 5 с тремя однофазными ТН.

При измерении мощности или энергии трехфазной системы применяется схема включения трансформатора напряжения, приведенная на рис.8 .

Рис. 7. Пути замыкания магнитных потоков нулевой последовательности в трехфазном пятистержневом трансформаторе напряжения

Рис. 8. Схема включения трехфазного трехстержневого трансформатора напряжения для измерения мощности по методу двух ваттметров

transformator-service.ru

Трансформатор напряжения — Википедия

Антирезонансный трансформатор напряжения

Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

  • Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
  • Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
  • Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
  • Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
  • Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
  • Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).

Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Особенности работы ТН в сетях с изолированной и заземлённой нейтралями[править | править код]

В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.

В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.

Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.

Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

Параметры трансформатора напряжения[править | править код]

На шильдике трансформатора напряжения указываются следующие параметры:

  • Напряжение первичной обмотки.
  • Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
  • Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
  • Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
  • Максимальная мощность трансформатора, в ВА.
  • Напряжение короткого замыкания, в процентах.

Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.
  • В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977
  • ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
  • Правила устройства электроустановок. Издание седьмое.

Трансформатор

ru.wikipedia.org

Трансформатор напряжения НТМИ-10 | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Счетчики электрической энергии, установленные в электроустановках напряжением 10 (кВ), подключаются через измерительные трансформаторы напряжения и трансформаторы тока (вот пример).

В данной статье я хотел бы остановиться на измерительных трансформаторах напряжения и более подробно рассказать Вам про конструкцию и схему подключения трехфазного трансформатора напряжения НТМИ-10.

Помимо трехфазных трансформаторов НТМИ-10, у нас на предприятии установлены и однофазные трансформаторы типа НОМ-10 и ЗНОЛ.06-10, но о них я расскажу Вам в следующий раз — подписывайтесь на рассылку новостей сайта, чтобы не пропустить выход новых статей.

Внешний вид трансформатора НТМИ-10:

Расшифровка НТМИ-10:

  • Н — трансформатор напряжения
  • Т — трехфазный
  • М — масляный (естественное масляное охлаждение)
  • И — измерительный с дополнительной обмоткой для контроля изоляции (КИЗ)
  • 10 — класс напряжения

Трансформаторы напряжения (ТН) необходимы для снижения уровня высокого напряжения 10 (кВ) до стандартного значения 100 (В). Таким образом, мы изолируем вторичные цепи напряжения от первичных цепей 10 (кВ).

По принципу работы трансформаторы напряжения (ТН) аналогичны обычным силовым понижающим трансформаторам. Они имеют стандартные коэффициенты трансформации в зависимости от уровня первичного напряжения сети: 10000/100 (В), 6000/100 (В), 3000/100 (В), 500/100 (В) и т.д.

Коэффициент ТН указывается через дробь: в числителе — номинальное значение первичного напряжения, а в знаменателе — номинальное значение вторичного напряжения.

В нашем примере у НТМИ-10 коэффициент трансформации равен 10000/100 (В). Это значит, что трансформатор напряжения предназначен для работы в сети напряжением 10 (кВ) и имеет коэффициент трансформации 100. Хотел бы напомнить, что этот коэффициент нужно учитывать при вычислении расчетного коэффициента счетчика электроэнергии.

Независимо от того, какой измерительный трансформатор напряжения у Вас установлен — вторичное напряжение у него должно быть всегда 100 (В).

Ко вторичным цепям подключаются различные измерительные приборы, устройства релейной защиты, автоматики и сигнализации: киловольтметры, счетчики электрической энергии, приборы для измерения мощности (ваттметры, варметры), различные преобразователи напряжения и мощности, реле контроля напряжения, реле защиты минимального напряжения, пусковые органы АВР, блоки регулирования напряжения (РКТ) и управления ступенями переключающих устройств РПН силовых трансформаторов и т.д.

 

Технические характеристики НТМИ-10

Основные технические характеристики НТМИ-10 (1967 года выпуска) указаны на его бирке:

Как видите, один и тот же трансформатор может работать с разными классами точности, правда для каждого класса точности определена его номинальная вторичная нагрузка (мощность).

Рассматриваемый НТМИ-10 предназначен для питания расчетных счетчиков коммерческого учета, а значит должен работать в классе точности 0,5 (ПУЭ, п.1.5.16):

Напомню, что класс точности расчетных счетчиков для потребителей мощностью до 670 (кВт) при напряжении 10 (кВ) должен быть не ниже 1,0.

Для работы трансформатора напряжения в классе точности 0,5 его номинальная нагрузка (мощность) не должна превышать 120 (ВА). Но в связи с массовым переходом от индукционных счетчиков к электронным (читайте статью о преимуществах и недостатках того или иного типа) я столкнулся со следующей проблемой.

У электронных счетчиков потребляемая мощность в несколько раз меньше, чем у индукционных, поэтому трансформатор напряжения получился не перегружен, а наоборот — не загружен, что отрицательно сказывается на его погрешности. В методике измерений МИ 3023-2006, п.3 говорится, что фактическая мощность трансформатора напряжения должна быть в пределах от 25% до 100% от его номинальной мощности. Читайте статью о том, как после замены счетчиков я производил измерение фактической мощности трансформатора напряжения, и что нужно делать, чтобы нагрузить ТН для работы в нужном классе точности.

Так, что не забывайте об этом.

Максимальная предельная мощность — это предельная мощность трансформатора, которая в несколько раз превышает номинальную мощность, но при которой трансформатор может работать с допустимым нагревом обмоток.

Остальные характеристики приведены ниже:

  • схема и группа соединений обмоток — Унн — 0 (Унн -12)
  • режим работы — продолжительный
  • температура эксплуатации от -45°С до +40°С (исполнение У3)
  • срок службы — не менее 20 лет (по факту уже более 47 лет)
  • масса 190 (кг)

Устройство и конструкция НТМИ-10

Рассмотрим конструкцию трансформатора напряжения НТМИ-10.

Пришел очередной срок поверки трансформатора напряжения НТМИ-10, установленного в ячейке ТН-2 сек. распределительной подстанции 10 (кВ). Мы пригласили метрологов и по результатам поверки данный НТМИ-10 был забракован по причине повышенной погрешности при работе в классе точности 0,5.

Данный трансформатор пришлось демонтировать с ячейки, а на его место установить новые однофазные 3хЗНОЛ.06-10. Об этом я еще расскажу Вам в ближайшее время.

Ну раз демонтировали НТМИ-10 с ячейки, то это и стало поводом для написания подробной статьи о нем.

Бак трансформатора НТМИ-10 имеет круглую форму и сварен из листовой стали (на фотографии ниже виден сварной шов).

Для его транспортировки имеются специальные крюки, приваренные к баку трансформатора.

На крышке бака расположены 3 высоковольтных ввода (А, В , С), нулевой вывод первичной обмотки (О), выводы вторичных обмоток (основной и дополнительной), пробка для заливки (доливки) масла.

Вводы трансформатора состоят из фарфоровых проходных изоляторов.

Пробка для заливки трансформаторного масла имеет мерную пластину для контроля его уровня в баке.

Внизу бака имеется пробка для слива или отбора масла для испытаний на пробой и проведения химического анализа.

Сливную пробку и крышку бака трансформатора можно опломбировать.

Кстати, наша ЭТЛ занимается испытанием трансформаторного масла на пробой, что подтверждается нашим решением. Для этого у нас имеется специальная установка — АИМ-90.

С другой стороны от сливной пробки находится болт для заземления корпуса трансформатора.

Активная часть трансформатора состоит из пятистержневого магнитопровода броневого типа, собранного из пластин электротехнической холоднокатанной стали. Обмотки (А, В, С) насажены на средние стержни магнитопровода. Свободные по краям стержни необходимы для замыкания магнитных потоков нулевой последовательности.

 

Схема подключения НТМИ-10

Схему подключения трансформатора напряжения НТМИ-10 рассмотрим на этой же распределительной подстанции, только на соседней ячейке ТН-1 сек, где установлен аналогичный НТМИ-10.

Однолинейная принципиальная схема:

Питание первичной обмотки НТМИ-10 осуществляется со сборных шин 10 (кВ) через шинный разъединитель.

Как видите, цветовая маркировка шин полностью соблюдена. На каждой фазе имеются участки шин без краски, которые необходимы для установки переносных заземлений.

В качестве защиты в каждой фазе установлены предохранители ПКТ-10. Эти предохранители защищают от короткого замыкания только первичные обмотки ТН. Если повреждение возникнет во вторичной цепи и даже на ее выводах, значение тока в первичной цепи будет недостаточно для перегорания плавкой вставки предохранителя.

1. Первичная обмотка ТН

Первичная обмотка НТМИ-10 соединена в звезду с нулевым выводом (Ун). Нулевой вывод выведен на крышку трансформатора и должен быть обязательно заземлен.

Заземляется он к стальной полосе, которая соединена с заземляющим устройством подстанции.

Маркировка первичной обмотки:

У трансформатора НТМИ-10 имеется две вторичные обмотки:

  • основная
  • дополнительная (для контроля изоляции)

2. Основная вторичная обмотка

Основная вторичная обмотка соединена в звезду с нулевым выводом (Ун). Ее нулевой вывод выведен на крышку трансформатора.

Маркировка выводов основной вторичной обмотки:

  • a — начало обмотки фазы А
  • b — начало обмотки фазы В
  • c — начало обмотки фазы С
  • o — нулевой вывод (концы всех обмоток соединены в одной точке)

На вторичных выводах имеются металлические бирки, на которых выбита маркировка.

Вторичные цепи ТН маркируются следующим образом (в скобках указаны старые обозначения):

  • а — А601 (501)

  • b — В600 (521)
  • c — С601 (541)
  • o — О601 (500)

У нас на подстанциях в основном сохранилась старая маркировка, но кое-где имеется и новая.

Для информации: почитайте статью о том, как выполняется маркировка вторичных цепей трансформаторов тока.

Для безопасности обслуживания (в случае попадания высокого напряжения во вторичные цепи), один из выводов вторичной обмотки ТН должен обязательно заземляться. Об этом отчетливо говорится в ПУЭ, п.3.4.24:

Заземление должно по возможности быть ближе к трансформатору напряжения. Обычно это выполняется, либо на самих вторичных выводах ТН, либо на ближайшем от ТН клеммнике.

В цепи заземления не должно быть установлено никаких коммутационных аппаратов (рубильников, переключателей, автоматов, предохранителей).

Иногда встречаются схемы, где у вторичной обмотки трансформатора напряжения заземлена не нейтраль, а фаза В. Вот пример схемы подключения НТМИ-10 с заземленной фазой В:

При заземленной фазе В гораздо легче перепроверить себя при подключении счетчиков и других приборов. Еще, фазу В заземляют по причине того, что она по конструкции ближе находится к первичной обмотке — так утверждают специалисты. Пока сам не разберу ТН — подтвердить данный факт не могу.

Но лично я привык, что заземлена всегда нейтраль (нулевая точка у звезды), поэтому при монтаже всегда заземляю именно нулевой вывод.

Для защиты ТН от перегрузок и коротких замыканий во вторичных цепях ~100 (В) устанавливается автоматический выключатель или предохранители. В моем случае установлен трехполюсный автомат АП-50Б, имеющий электромагнитную и тепловую защиты. В случае отключения автомата на панели сигнализации сработает указательное реле (в разговор. — блинкер) «автомат отключен» или «неисправность в цепях напряжения», который выдаст предупредительный сигнал на диспетчерский пульт.

Автомат или предохранители должны быть установлены как можно ближе к ТН. Если это ячейка КСО, то на самой панели, если же это КРУ, то на выкатном элементе или в релейном отсеке.

3. Дополнительная вторичная обмотка (для КИЗ)

Дополнительная обмотка соединена в схему разомкнутого треугольника (сумма фазных напряжений) и является фильтром напряжения нулевой последовательности. К ней подключается реле напряжения (реле контроля изоляции), например, РН53/60Д, которое реагирует и выдает сигнал при замыкании на землю в сети 10 (кВ).

Напряжение на дополнительной обмотке в симметричном режиме составляет около 2-3 (В). При однофазном замыкании какой-либо фазы 10 (кВ) на землю в ней возникает напряжение 3Uо, приблизительно равное 100 (В).

Маркировка выводов дополнительной обмотки для контроля изоляции (КИЗ):

Провода дополнительной обмотки ТН маркируются следующим образом (в скобках указаны старые обозначения):

  • ад — Н601 (561)

  • хд — Н600 (562)

Дополнительную обмотку также необходимо заземлить, например, на выводе хд.

В связи с малой протяженностью вторичных цепей дополнительной обмотки, аппараты защиты в ней можно не устанавливать.

Для защиты трансформатора напряжения от перенапряжений, возникающих при самопроизвольных смещениях нейтрали, в цепь дополнительной вторичной обмотки необходимо установить резисторы номиналом 25 (Ом) мощностью 400 (Вт). Эти резисторы устанавливаются только там, где нет компенсирующих устройств (дугогасящих катушек). Дугогасящие катушки на рассматриваемой подстанции имеются в наличии, но выведены из работы.

Дополнение про НТМИ-10-66

В завершении статьи я решил упомянуть про трансформатор напряжения НТМИ-10 с приставкой «66» (НТМИ-10-66).

Трансформаторы напряжения НТМИ-10-66 стали выпускаться в более позднее время. По принципу действия, техническим характеристикам и схеме подключения они полностью аналогичны с рассмотренным в данной статье НТМИ-10, правда есть небольшие отличия по габаритным размерам и высоковольтным вводам, которые Вы увидите на фотографиях ниже.

Внешний вид.

Бирка с техническими характеристиками НТМИ-10-66.

Сливная пробка.

Маркировка выводов.

А вот видеоролик, который я снял по материалам данной статьи:

P.S. Если у Вас возникли вопросы по тематике данной статьи, то буду рад Вам помочь. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Трехфазный трансформатор: схема подключения, типы соединений

В данной статье вы узнаете что такое трехфазный трансформатор тока, какие бывают его соединения, подробно опишем его конструкцию.

Описание трехфазного трансформатора

До сих пор мы рассматривали конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения его вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазных, трехфазных, шестифазных и даже сложных комбинаций до 24 фаз для некоторых выпрямительных трансформаторов постоянного тока.

Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом и их вторичные обмотки друг с другом в фиксированной конфигурации, мы можем использовать трансформаторы от трехфазного источника питания.

Трехфазные, также записанные как 3-фазные или 3φ источники питания, используются для выработки, передачи и распределения электроэнергии, а также для всех промышленных применений. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов нам приходится иметь дело с тремя переменными напряжениями и токами, различающимися по фазе на 120 градусов, как показано ниже.

Трехфазные напряжения и токи

Трансформатор не может действовать как устройство для изменения фазы и превращать однофазное в трехфазное или трехфазное в однофазное. Чтобы обеспечить совместимость трансформаторных соединений с трехфазными источниками питания, нам необходимо соединить их особым образом, чтобы сформировать конфигурацию трехфазного трансформатора.

Трехфазный трансформатор или 3φ трансформатор может быть сконструирован либо путем соединения вместе три однофазных трансформатора, тем самого образуя так называемый трехфазный трансформаторный блок, или с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пар однофазных обмоток, установленные на одном ламинированном сердечнике.

Преимущества создания одного трехфазного трансформатора в том, что при одинаковой номинальной мощности кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечник используются более эффективно. Способы подключения первичной и вторичной обмоток одинаковы, будь то использование только одного трехфазного трансформатора или трех отдельных однофазных трансформаторов. Рассмотрим схему ниже:

Трехфазные трансформаторные соединения

Первичная и вторичная обмотки трансформатора могут быть подключены в различной конфигурации, как показано выше, для удовлетворения практически любых требований. В случае трехфазных обмоток трансформатора возможны три формы подключения: «звезда», «треугольник» и «взаимосвязанная звезда».

Комбинации трех обмоток могут быть с первичным соединенным треугольником и вторичной соединенной звездой, или звезда-треугольник, звезда-звезда или треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют многофазным трансформатором .

Трехфазный трансформатор звезда и треугольник

Но что мы подразумеваем под «звездой» (также известной как тройник) и «треугольником» (также известной как сетка) при работе с трехфазными трансформаторными соединениями. Трехфазный трансформатор имеет три комплекта первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток связаны между собой, определяется, является ли соединение звездой или треугольником.

Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых на первичной и вторичной сторонах, но и определяют поток токов трансформатора.

При подключении трех однофазных трансформаторов магнитный поток в трех трансформаторах различается по фазе на 120 градусов. С одним трехфазным трансформатором в сердечнике есть три магнитных потока, различающихся по фазе времени на 120 градусов.

Стандартный метод маркировки трехфазных обмоток трансформатора заключается в маркировке трех первичных обмоток заглавными (заглавными буквами) буквами A, B и C , которые используются для обозначения трех отдельных фаз КРАСНОГО,  ЖЕЛТОГО и СИНЕГО (см. картинку ниже). Вторичные обмотки помечены маленькими (строчными буквами) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначенные 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены как В1 и В2, в то время как третья обмотка вторичной обмотки будет обозначена с1 и с2, как показано ниже.

Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых в верхнем регистре Y для подключения звездой, D для подключения треугольником, звезды и Z для взаимосвязанных первичных обмоток звезды, со строчными буквами y, d и z для их соответствующих вторичных. Тогда звезда-звезда будет обозначаться как Yy, дельта-дельта будет обозначаться как Dd, а взаимосвязанная звезда и взаимосвязанная звезда будут Zz для однотипных подключенных трансформаторов.

Таблица идентификация обмотки трансформатора
СоединениеПервичная обмоткаВторичная обмотка
Треугольник (дельта)Dd
ЗвездаYy
ВзаимосвязанноеZz

Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичной и вторичной трехфазными цепями. Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).

Трансформаторы для работы под высоким напряжением со звездообразными соединениями имеют то преимущество, что снижают напряжение на отдельном трансформаторе, уменьшают необходимое количество витков и увеличивают размер проводников, делая обмотки катушек легче и дешевле для изолирования, чем дельта-трансформаторы.

Тем не менее, соединение треугольник-треугольник имеет одно большое преимущество перед конфигурацией звезда-треугольник, заключающееся в том, что если один трансформатор из группы трех должен выйти из строя или отключиться, два оставшихся будут продолжать выдавать трехфазную мощность с мощностью, равной приблизительно две трети первоначальной мощности трансформаторного блока.

Трансформатор дельта-дельта соединения

В дельта подключении ( Dd ) группа трансформаторов, напряжение линии V L равно напряжению питания V L  = V S . Но ток в каждой фазной обмотке задается как: 1 / √ 3 × I L тока линии, где L — ток линии.

Один из недостатков трехфазных трансформаторов, соединенных треугольником, состоит в том, что каждый трансформатор должен быть намотан для напряжения полной линии (в нашем примере выше 100 В) и для 57,7% линейного тока. Большее число витков в обмотке, вместе с изоляцией между витками, требует большей и более дорогой катушки, чем звездное соединение. Другим недостатком трехфазных трансформаторов, соединенных треугольником, является отсутствие «нейтрального» или общего подключения.

В схеме «звезда-звезда» ( Yy ) каждый трансформатор имеет одну клемму, соединенную с общим соединением, или нейтральную точку с тремя оставшимися концами первичных обмоток, подключенными к трехфазному сетевому питанию. Число витков в обмотке трансформатора для соединения «звезда» составляет 57,7% от требуемого для соединения треугольником.

Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выйдет из строя или отключится, вся группа может быть отключена. Тем не менее трехфазный трансформатор со звездообразным соединением особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки ( n ) из трех вторичных проводов,  как показано на рисунке.

Трансформатор звезда-звезда соединения

Напряжение между любой линии трехфазного трансформатора называется «линейное напряжение» V L , в то время как напряжение между линией и нейтральной точкой трансформатора с соединением звезда называется «фаза напряжения» V P . Это фазовое напряжение между нейтральной точкой и любым из подключений к линии составляет 1 / √ 3  × V L от напряжения сети. Тогда выше, напряжение фазы первичной стороны P задается как:

Вторичный ток в каждой фазе группы трансформаторов соединенных «звездой» такое же, что и для линии тока питания, то I L = I S .

Тогда соотношение между линейными и фазовыми напряжениями и токами в трехфазной системе можно суммировать как:

СоединениеФазовое напряжениеЛинейное напряжениеФазный токЛиния тока
ЗвездаP = V L ÷ √ 3L = √ 3 × V PI P = I LL = I P
ДельтаP = V LL = V PP = I L ÷√ 3L = √ 3 × I P

Где, опять же, L — это напряжение между линиями, а P — это напряжение между фазами и нейтралью на первичной или вторичной стороне.

Другими возможными соединениями для трехфазных трансформаторов являются звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная обмотка соединена треугольником или треугольником Dy с первичным соединением первичной обмотки и вторичной обмоткой со звездой.

Трансформаторы с соединением треугольником и звездой широко используются при низком распределении мощности, при этом первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для коммунального предприятия, а вторичные обмотки обеспечивают требуемое нейтральное или заземляющее 4-проводное соединение.

Когда первичная и вторичная обмотки имеют разные типы соединений обмотки, звезда или треугольник, общее отношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен как дельта-дельта ( Dd ) или звезда-звезда ( Yy ), то трансформатор может иметь отношение витков 1: 1. То есть входные и выходные напряжения для обмоток одинаковы.

Однако, если 3-фазный трансформатор соединен звезда-треугольник, ( Yd ) каждое звездообразное соединение первичной обмотки будет получать напряжение фазы V P от источника, который равен 1 / √ 3  × V L .

Тогда каждая соответствующая вторичная обмотка будет иметь то же самое напряжение, индуцированное в ней, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √ 3  × V L станет напряжением вторичной линии. Затем при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, будет обеспечивать коэффициент линейного напряжения с понижением √ 3 : 1 .

Тогда для  трансформатора, подключенного звезда-треугольник ( Yd ), отношение витков становится равным:

Аналогично, для дельта-звезда ( Dy ) соединенный трансформатор, с 1: 1 соотношением витков, трансформатор будет обеспечивать 1: √ 3 соотношение повышающего линейного напряжения. Тогда для трансформатора, соединенного треугольником-звезда, отношение витков становится равным:

Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформатора по отношению к напряжению первичной линии, V L и его току первичной линии I L, как показано в следующей таблице.

Где: n равно числу витков трансформатора числа вторичных обмоток N S, деленной на число первичных обмоток N P . ( N S / N P  ) и V L — линейное напряжение, при этом V P — это напряжение между фазой и нейтралью.

Пример трехфазного трансформатора

К первичной обмотке  трансформатора 50 ВА, подключенного к треугольнику ( Dy ), подключено трехфазное питание 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте вторичные стороны напряжений и токов.

Приведенные данные: номинальный трансформатор, 50 ВА, напряжение питания, 100 В, первичные витки 500 , вторичные витки, 100.

Получается, что на вторичную сторону трансформатора подается линейное напряжение, V Lоколо 35 В, дающее фазное напряжение, V P 20 В при 0,834 Ампер.

Конструкция трехфазного трансформатора

Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.

Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.

Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.

Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.

meanders.ru

11. Трансформаторы напряжения. Назначение и классификация. Принцип действия.

Трансформаторы напряжения предназначены для измерения напряжения, питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

По числу фаз – однофазные и трёхфазные; По числу обмоток – двухобмоточные и трёхобмоточные;

По классу точности, т.е. по допускаемым значениям погрешностей – согласно таблице 2.3;

По способу охлаждения:

трансформаторы с масляным охлаждением (масляные); трансформаторы с естественным

воздушным охлаждением (сухие и с литой изоляцией).

По роду установки:

для внутренней установки; для наружной установки.

Трансформатор напряжения (ТН) по принципу действия и конструктивному выполнению аналогичен обычному силовому трансформатору и состоит из стального сердечника (магнитопровода), собранного из тонких пластин трансформаторной стали, и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника.

Устройство и принцип действия трансформатора напряжения

Устройство и схема включения трансформатора напряжения изображены на рисунке 2.14.

Первичная обмотка W1, имеющая очень большое число витков, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке W2, имеющей меньшее число витков, подключаются параллельно измерительные приборы и реле:

Рисунок 2.14 – Устройство и схема включения ТН.

Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней э.д.с. Е, равную при разомкнутой вторичной обмотке (холостой ход трансформатора) напряжению на её зажимах U2хх.

Напряжение U2хх, меньше первичного напряжения U1 во столько раз, во сколько раз число витков вторичной обмотки W2 меньше числа витков первичной обмотки W1:;

Отношения чисел витков обмоток называется коэффициентом трансформации и обозначается nн:

; Следовательно, можно записать:

Если ко вторичной обмотке подключена нагрузка в виде приборов и реле, то напряжение на её зажимах

U2 будет меньше э.д.с. на величину падения напряжения в сопротивлении вторичной обмотки. Однако

это падение напряжения невелико и им можно пренебречь, тогда: U1 = U2nн и ;

В паспортах на трансформаторы напряжения их коэффициенты трансформации указываются дробью, в

числителе которой – номинальное первичное напряжение, а в знаменателе – номинальное вторичное

напряжение. Для правильного соединения обмоток ТН между собой и правильного подключения к ним реле направления мощности, ваттметров и счётчиков выводы обмоток маркируются определенным образом: начало первичной обмотки – А, конец – Х; начало основной вторичной обмотки – a, конец – х;

начало дополнительной обмотки aд, конец – xд.

12. Схемы соединения трансформаторов напряжения.

Однофазные трансформаторы напряжения в зависимости от назначения соединяются между собой в различные схемы.

На рисунке 2.16 приведены основные схемы соединения однофазных ТН.

Рисунок 2.16 – Схемы соединения обмоток однофазных трансформаторов напряжения с одной вторичной обмоткой.

На рисунке а) представлена схема включения одного ТН на междуфазное напряжение АС.

Эта схема применяется, когда для защиты или измерений нужно только одно междуфазное напряжение.

На рисунке б) приведена схема соединения 2-х ТН в открытый треугольник (или неполную звезду). Эта схема применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рисунке в) приведена схема соединения трёх однофазных ТН в звезду. Эта схема получила широкое распространение и применяется когда для защиты и измерений нужны фазные напряжения или же одновременно фазные и междуфазные напряжения.

Соединение 3-х однофазных ТН по схеме треугольник – звезда представлена на рисунке г). Эта схема обеспечивает напряжение на вторичной стороне, равное

На рисунке д) представлена схема соединения обмоток 3‑х однофазных ТН в фильтр напряжения нулевой последовательности. В этой схеме первичные обмотки ТН соединяются в звезду с заземлённой нейтралью, а вторичные обмотки соединяются последовательно, образуя разомкнутый (не замкнутый) треугольник. Напряжение на зажимах разомкнутого треугольника равно геометрической сумме напряжений нулевой последовательности вторичных обмоток:

;

Так как сумма 3‑х фазных напряжений равна утроенному напряжению нулевой последовательности, то

;

Следовательно, на зажимах схемы разомкнутого треугольника получается напряжение, пропорциональное напряжению нулевой последовательности.

В нормальных режимах и при к.з. без земли Up=0, т.к. векторы напряжений не содержат нулевой последовательности.

При к.з. на землю в сетях с заземлённой нейтралью и при замыканиях на землю в сетях с изолированной нейтралью геометрическая сумма фазных напряжений не равна нулю за счёт появления напряжения нулевой последовательности. На зажимах разомкнутого треугольника появится напряжение нулевой последовательности 3U0.

Таким образом, рассмотренная схема является фильтром напряжений нулевой последовательности.

Следует отметить, что обязательным условием работы рассмотренной схемы д) в качестве фильтра U0 является заземление нейтрали первичных обмоток ТН, так как при отсутствии заземления первичным обмоткам ТН будут подводиться не фазные напряжения относительно земли, а фазные напряжения относительно изолированной нейтрали, сумма напряжения которых не содержит U0. Их сумма всегда равна нулю и при замыканиях на землю напряжение на выходе схемы будет отсутствовать.

На рисунке 2.17 представлена схема соединения трансформатора напряжения, имеющего две вторичные обмотки. Здесь первичная и основная вторичная обмотки соединены в звезду, а дополнительная вторичная обмотка соединена в схему разомкнутого треугольника (на сумму фазных напряжений – для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных к.з. в сетях с заземлённой нейтралью, а также для устройств контроля изоляции действующих на сигнал в сетях с изолированной нейтралью).

Рисунок 2.17 – Схема соединений обмоток ТН с двумя вторичными обмотками.

Как известно, сумма 3-х фазных напряжений в нормальном режиме, а также при 2-х и 3-х фазных к.з. равна нулю. Поэтому в этих условиях напряжение на выводах разомкнутого треугольника будет равно нулю.

Обычно на выводах разомкнутого треугольника в нормальном режиме (при отсутствии замыкания на землю) имеется небольшое напряжение величиной 0,5-2 В, которое называется напряжением небаланса.

При однофазном.к.з. в сети с заземлённой нейтралью фазное напряжение повреждённой фазы становится равным нулю, а геометрическая сумма фазных напряжений 2-х неповрежденных фаз оказывается равной фазному напряжению.

При однофазных замыканиях на землю в сети с изолированной нейтралью напряжения неповреждённых фаз становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. В этом случае, чтобы на реле напряжение не превосходило номинального значения, равного 100 В, у ТН, предназначенных для работы в сетях с изолированными нейтралями, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют повышенный в 3 раза коэффициент трансформации (например, . Следует иметь в виду, чтопри включении первичных обмоток ТН на фазные напряжения они должны соединяться в звезду, нулевая точка которой обязательно должна соединяться с землёй. Заземление первичных обмоток необходимо для того, чтобы при однофазном.к.з или замыканиях на землю в сети, где установлен ТН, приборы и реле, включенные на его вторичную обмотку, правильно измеряли напряжения фаз относительно земли.

Заземление вторичных обмоток также обязательно независимо от их схемы соединения т.к. это заземление является защитнымобеспечивает безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется один из фазных проводов (как правило, фаза В) или нулевая точка звезды.

Первичные обмотки ТН до 35 кВ подключаются к сети через высоковольтные предохранители для быстрого отключения от сети повреждённого ТН.

Для защиты обмоток ТН при повреждениях во вторичных цепях устанавливаются автоматические выключатели (или предохранители) низкого напряжения.

Вторичные цепи ТН должны выполняться с высокой степенью надёжности, исключающей обрывы и потерю контактов для исключения исчезновения напряжения на защитах, так как исчезновение напряжения будет восприниматься защитами как понижение напряжения при к.з. в защищаемой сети и может привести к их неправильному действию. Исчезновение напряжения от ТН вследствие неисправностей или перегорания предохранителей также будет восприниматься защитами как потеря напряжения и также может привести к их неправильному действию. Поэтому защиты, реагирующие на понижение напряжения, выполняются так, что отличают к.з. от неисправности во вторичных цепях, либо снабжаются специальными устройствами – блокировками при неисправностях в цепях напряжения.

studfile.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *