Схема генератора звуковой частоты для начинающих радиолюбителей: Простейший генератор звуковой частоты

РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ | www.UnTehDon.ru

Здесь размещены схемы, для начинающих, радиолюбителей, рекомендуемые для успешного старта.

 

При сборке предложенных схем, обращайте особое внимание на исправность применяемых радиоэлементов!!!

  1. Светодинамические устройства.

  2. Звуковые генераторы, имитаторы.

  3. Источники питания.

  4. Усилители.

СВЕТОДИНАМИЧЕСКИЕ УСТРОЙСТВА

Мигалка на одном светодиоде

Описание схемы

Эта схема представляет собой простейший несимметричный мультивибратор, что приводит к прерывистому свечению светодиода. Частота вспышек светодиода определяется частотой генерации мультивибратора. При включении источника питания ток коллектора транзистора VТ 2 скачком изменится от нуля, до начального значения, которое определяется резисторами R 1, R 2 и коэффициентом h 21э транзисторов VТ 1, VТ 2. Силу начального тока коллектора VТ 2, устанавливают подбором резистора R 2, при отключенном конденсаторе C 1. При этом светодиод еще не должен светиться. Подбор начинают со значений сопротивления R 1, при котором светодиод светится, затем увеличивают сопротивление R 1, до погасания светодиода. Подбором конденсатора C 1, добиваются требуемой частоты миганий. Номиналы резисторов, могут отличаться от указанных на схеме, на +, - 10%. Транзисторы маломощные группы МП, вместо МП41, можно ставить МП39, МП42, с любым буквенным индексом. В место МП37 можно ставить МП10, МП38. Светодиод можно применить любой имеющийся в продаже. Схема неоднократно проверенна на работоспособность и если она правильно собрана, начинает работать сразу. Применить данную схему можно как сигнальное устройство, или как эмитатор сигнализационного устройства в автомобиле и дома.

Мигалка на двух светодиодах

Описание схемы

Эта схема представляет собой симметричный мультивибратор, частота которого зависит от номиналов конденсаторов С1, С2, а так же от резисторов R 1, R 2. Частота поочередного мигания светодиодов соответственно, зависит от частоты мультивибратора которую в свою очередь можно менять подбором конденсаторов С1, С2 и резисторов R 1, R 2. Транзисторы VT 1, VT 2, группы МП и могут быть МП39, МП40, МП41, МП42, с любым буквенным индексом. Светодиоды могут быть любые, кроме инфракрасных. Схема проста в изготовлении, неоднократно проверена на работоспособность и при правильной сборке начинает работать сразу при подаче питания. Применяться данная схема может как элемент световой индикации в различных устройствах.

ЗВУКОВЫЕ ГЕНЕРАТОРЫ, ИМИТАТОРЫ

Простой генератор звуковой частоты

Описание схемы

Генератор начинает работать при напряжении в несколько десятых долей вольта, даже с транзистором с малым статическим коэффициентом. Генерация возникает при нажатии кнопки S1, из - за действия сильной положительной обратной связи между коллектором и базой. R1 устанавливает нужную громкость и тональность звука. Трансформатор Т1 - от любого транзисторного малогабаритного радиоприемника. В качестве головных телефонов можно применить любые высокоомные телефоны типа ТМ - 2А, в крайнем случае подойдут и капсуля типа ДЭМ - 4М.

Электронная сирена

Описание схемы

При нажатии кнопки S 1, заряжается конденсатор С1. Разряжается конденсатор С1 через делитель напряжения на резисторах R 2, R 3, подключенного в цепь базы транзистора VT 1. Поскольку напряжение на конденсаторе С1, падает по мере его разрядки, то происходит уменьшение напряжения смещения на базе транзистора VT 1, в результате чего изменяется частота звучания. Из динамической головки слышен звук напоминающий вой серены. Транзистор VT 1, можно заменить на КТ315, КТ3102 с любым буквенным индексом. Транзистор VT 2, можно заменить на КТ837 с любым буквенным индексом. При сборки схемы особое внимание уделить правильности подключения кнопки. Несмотря на простоту схемы, почему то, именно подключение кнопки часто путают, в результате имитации серены не происходит, а слышен только обычный звуковой тон определенной частоты. Схема неоднократно проверена на работоспособность, при номиналах радиодеталей указанных на схеме и безошибочной сборке начинает работать сразу.

Двухтональный звонок

Двухтональный звонок

Описание схемы

Звонок состоит из двух генераторов, генератора тона, выполненного на транзисторах V 3, V 4 и симметричного мультивибратора V 1, V 2. Как известно при работе мультивибратора его транзисторы поочередно закрываются и открываются. Это свойство и использовано для управления частотой генератора тона. Выход мультивибратора соединен с генератором тона через резистор R 5 поэтому он будет периодически подключаться к общему проводу (к плюсу источника питания), т.е. параллельно резистору R 7. При этом частота генератора будет изменяться скачком, при закрытом транзисторе из динамической головки B 1, будет слышен звук одного тона, при открытом – другого. Конденсаторы С2, С3, защищают мультивибратор от импульсов, проникающих от генератора тона. При отсутствии конденсаторов частота мультивибратора будет изменяться, что приведет к появлению неприятных тонов в звучании звонка. В место указанных на схеме, можно применить любые другие маломощные низкочастотные германиевые транзисторы соответствующей структуры. Конденсаторы могут отличаться от номинала указанного в схеме на +,- 10%. Динамическая головка В1 любая, мощностью 1-2 Вт. и сопротивлением звуковой катушки постоянному току 4-10 Ом. В место конденсаторов С2, С3, можно установить один электролитический неполярный конденсатор на 1, 2 Мкф. на номинальное напряжение не ниже 6в. Детали звонка можно смонтировать на печатной плате из фольгированного гетинакса или стеклотекстолита. Схема неоднократно проверена на работоспособность, при номиналах радиоэлементов указанных на схеме и безошибочной сборки наладки не требует.

Рисунок печатной платы

Двухтональный звонок

Телеграфный тренажер на ИМС К155ЛА3

Описание схемы

Предлагаемый телеграфный тренажер достаточно прост в изготовлении, и предназначен для самостоятельного изучения телеграфной азбуки. Кнопкой S1 служит механический телеграфный ключ. Уст - во состоит из 4 - х элементов 2И - НЕ микросхемы К155ЛА3. Элементы DD1.1, DD1.2, DD1.3, образуют генератор импульсов, следующих с частотой 1000Гц. Элемент DD1.4, является буферным. С помощью резистора R1 подстраивают частоту генератора. В качестве источника питания может быть, маломощный блок питания напряжением 5в.

ИСТОЧНИКИ ПИТАНИЯ

Простой регулируемый блок питания

Конструкции на транзисторах требуют для своего питания постоянное напряжение определенной величины, 1,5В, 3 В, 4,5 В, 9 В и 12 В. Чтобы во время проверки и налаживания собираемых схем, не расходовать напрасно средства на преобретение гальванических элементов и батарей, воспользуйтесь универсальным блоком питания работающим от сети переменного тока и позволяющим получить любое постоянное напряжение. Схема такого блока приведена на рисунке. Его выходное напряжение можно плавно изменять от 0,5 до 12 В. Причем оно будет оставаться стабильным не только при изменении сетевого напряжения, но и при изменении тока нагрузки от нескольких миллиампер до 0,3 А. Кроме того, блок питания не боится коротких замыканий в цепи нагрузки, которые нередки в практике радиолюбителя.

Лабораторный блок питания

Познакомимся подробнее с работой блока питания. Включается он в сеть с помощью двухполюсной вилки ХР1. При замыкании контактов выключателя SA1 сетевое напряжение подается на первичную обмотку понижающего трансформатора Т1. На выводах вторичной обмотки появляется переменное напряжение, значительно меньшее, чем сетевое. Оно выпрямляется диодами VD1 — VD4, включенными по так называемой мостовой схеме. Чтобы выпрямленное напряжение было такое же стабильное, как напряжение батареи гальванических элементов, на выходе выпрямителя стоит электролитический конденсатор С1 большой емкости. Выпрямленное напряжение подается на несколько цепей: R1, VD5, VT1, R2, VD6, R3; VT2, VT3, R4, (R2, VD6) — это стабилитрон с балластным резистором. Они составляют параметрический стабилизатор. Как мы уже говорили выше, независимо от колебаний выпрямленного напряжения на стабилитроне VD6 будет строго определенное напряжение, равное напряжению стабилизации данного типа стабилитрона (в нашем случае от 11,5 до 14 В). Параллельно стабилитрону включен переменный резистор R 3, с помощью которого и устанавливают нужное выходное напряжение блока питания. Чем ближе к верхнему выводу находится движок резистора, тем больше выходное напряжение. С движка переменного резистора напряжение подается на усилительный каскад, собранный на транзисторах VT2 и VT3. Можно считать, что это усилитель мощности, обеспечивающий нужный ток через нагрузку при заданном выходном напряжении. Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Напряжение на нем почти равно напряжению между движком переменного резистора и общим проводом (зажим ХТ2). Чтобы можно было контролировать выходное напряжение, в блок введен вольтметр, составленный из микроамперметра и добавочного резистора R 6.

Примечание: Выпрямительные диоды, диодного моста VD1 - VD4 можно заменить на более современные типа КД226 которые расчитаны на обратное напряжение более 250В или импортные аналоги. Транзисторы VT1, VT2 можно заменить на КТ361 или импортные аналоги. Транзистор VT3 можно заменить на КТ837 с любой буквой, что даже облегчит его монтаж на теплоотводе. В качестве теплоотвода подойдет дюралевая или алюминиевая пластина толщиной 2мм., ширина 40мм., высота 60мм. Монтаж радиоэлементов осуществляют на печатной плате из стеклотекстолита, хотя есть примеры что для начала монтажную плату изготавливали из плотного картона. Вся конструкция помещается в корпус из диэлектрического материала (пластмасс, пластик и т.д.).

Монтаж транзистора VT3 на теплоотводе.

Лабораторный блок питания

При сборке нужно быть внимательным и осторожным т.к. здесь на первичной обмотке трансформатора, присутсвует напряжение опасное для жизни 220в.

УСИЛИТЕЛИ

Схема бестрансформаторного двухтактного УНЧ

Описание схемы

Простой бестрансформаторный двухтактный усилитель мощностью 1.5 Вт..Высокочастотный транзистор П416 применен здесь из соображения как можно больше снизить шумы входного каскада, потому как помимо того что он высокочастотный, он еще и малошумящий. Практически его можно заменить на МП39 - 42, с ухудшением шумовых характеристик соответственно или на кремниевые транзисторы КТ361 или КТ3107 с любой буквой.. Для предотвращения искажений типа "ступенька", между базами VT2, VT3, фазоинверсного каскада включен диод VD1 - Д9, с любой буквой, благодаря чему на базах транзисторов образуется напряжение смещения. Напряжение в средней точке (минусовой вывод конденсатора С2) будет равно 4,5в. Его устанавливают подбором резисторов R2, R4. Максимально допустимое рабочее напряжение конденсатора С2 может быть 6в.

Материал с сайта http://www.lessonradio.narod.ru

Схемы простых генераторов низкой частоты

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Схемы генераторов низкой частоты

Рис. 11.1

 

Схемы генераторов низкой частоты

Рис. 11.2

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Схемы генераторов низкой частоты

Рис. 11.3

 

Схемы генераторов низкой частоты

Рис. 11.4

 

Схемы генераторов низкой частоты

Рис. 11.5

 

Схемы генераторов низкой частоты

Рис. 11.6

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Схемы генераторов низкой частоты

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

Схемы генераторов низкой частоты

Рис. 11.7

 

Схемы генераторов низкой частоты

Рис. 11.8

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

Схемы генераторов низкой частоты

Рис. 11.9

 

Схемы генераторов низкой частоты

Рис. 11.10

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Схемы генераторов низкой частоты

Рис. 11.11

 

Схемы генераторов низкой частоты

Рис. 11.12

 

Схемы генераторов низкой частоты

Рис. 11.13

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Схемы генераторов низкой частоты

Рис. 11.14

 

Схемы генераторов низкой частоты

Рис. 11.15

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Схемы генераторов низкой частоты

Рис. 11.16

 

Схемы генераторов низкой частоты

Рис. 11.17

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Схемы генераторов низкой частоты

Рис. 11.18

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Генераторы сигналов, схемы самодельных измерительных приборов (Страница 3)

Генератор звуковой частоты на германиевом диоде Генератор звуковой частоты на германиевом диоде

Принципиальная схема простого генератора звуковой частоты на германиевом диоде. Свойство германиевых диодов иметь отрицательный участок на обратной ветви вольт-амперной характеристики использовано в генераторе-релаксаторе. Этот генератор можно использовать как пробник, источник звуковых колебаний при озвучивании игрушек и т. д. Амплитуда напряжения на выходе генератора около...

0 2727 0

Генератор звуковой и радиочастоты (ЗЧ и РЧ) Генератор звуковой и радиочастоты (ЗЧ и РЧ)

Простой генератор сигналов звуковой частоты (ЗЧ) - радиочастоты (РЧ) объединяет два генератора для налаживания и проверки радиоаппаратуры. Генератор ЗЧ собран на транзисторах V1, V3 и микросхеме А1. С резистора R16 сигнал ЗЧ поступает на выходной аттенюатор (R18—R22) и на измерительный прибор Р1. Транзистор V2 служит для...

0 4382 0

Простые генераторы импульсов на микросхемах (К133ЛА3) Простые генераторы импульсов на микросхемах (К133ЛА3)

На одном транзисторе и одном элементе логической микросхемы можно собрать импульсный генератор. Такой генератор можно применять при наладке радиоэлектронных утсройств, в измерениях и экспермиентах. При включении питания на выходе микросхемы D1 появляется логическая ...

1 4954 0

Несложный транзисторный LC-генератор звуковой частоты (ЗЧ) Несложный транзисторный LC-генератор звуковой частоты (ЗЧ)

Схема простого LC-генератора звуковой частоты (ЗЧ), можно использовать в измерительной аппаратуре. Преимуществом такого генератора является возможность использования контуров практически с любым соотношением L/C. При L1 = 50 мкГн и С, = 5 мкФ генерируемая частота равна 10 кГц ...

0 4527 0

RC-генератор с емкостной настройкой

Простой генератор сигналов своими руками


Здравствуйте друзья Самоделкины! Многим из вас доводилось ремонтировать вышедшие из строя радиоприемники и усилители низкой частоты.

Очередная самоделка, которую я сделал, как раз пригодится для этих целей. Это простой генератор сигналов, которым можно проверять не только тракт звуковой частоты приемника, но и радиочастотный. Его схема показана на фото.


Это обычный мультивибратор, который генерирует колебания не одной какой-то основной частоты, но и еще много кратных частот, называемых гармониками, вплоть до частот коротковолнового диапазона.

Генератор состоит из двух транзисторов. Выходное напряжение, снимаемое с резистора R4 через разделительный конденсатор С3 подается на вход проверяемого нами усилителя или приемника. Если на выходе приемника или усилителя в его громкоговорителе слышится неискаженный звук тональности, соответствующей частоте колебаний генератора, то проверяемые нами устройства –исправны. А если звук искажен или отсутствует совсем, то это говорит о неисправности в их цепях. Для создания самоделки нам потребуются следующие детали и инструменты.

Это: два транзистора КТ 315А, Резисторы МЛТ – 0,25 вт 3 ком – 2шт, 47 ком – 2шт, конденсаторы 0,01мкф -2шт, 0,05 мкф – 1шт, любая малогабаритная кнопка, батарейка на 1,5 в, один зажим «крокодил».

Инструменты: паяльник, пинцет, припой, монтажные провода, кусачки, пассатижи, маленький корпус, иголка, винты и гайки М2, латунные пластинки – для держателя батарейки, монтажная печатная плата размером 1,5 см * 7 см.

Собираем следующим образом:

Шаг -1. Проверяем все радиодетали на их работоспособность мультиметром. Спаиваем всю схему на печатной плате. Проверяем правильность сборки.



Шаг -2. В имеющемся у нас корпусе закрепляем кнопку и держатели для батарейки.


Ставим батарейку в корпус, подключаем спаянную плату. К выходу «А – В» подключаем головной телефон, и проверяем работу генератора на столе. Если схема собрана правильно, то он начинает генерировать звуковые сигналы, которые слышны в наушнике.

Шаг -3. Закрепляем плату в корпус, припаиваем выход «А» к иголке, а выход «в» - выводим наружу черным проводом с припаянным на его конце зажимом «крокодил».


Закрываем корпус крышкой.

Основная частота сигнала около 1 кгц, сигнал на выходе –около 0,5 в, потребляемый ток не более 0,5 ма. Батарейки хватит на целый год.

Вот и все, самоделка готова. А нужна ли она вам – решайте сами.

Успехов вам всем в ваших делах. До новых встреч.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Генератор НЧ радиолюбителя-конструктора | Кое-что из радиотехники

  Генератор НЧ является одним из самых необходимых приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов ( измерительных мостов, модуляторов и др. ).
Желательно чтобы генератор вырабатывал не только синусоидальное, но и прямоугольное напряжение, логического уровня, скважность и амплитуду которого можно регулировать.


Принципиальная схема генератора показана на Рис.1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и формирователя прямоугольных импульсов на микросхеме D1.

Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи ( С1-С3, R3, R4, R5, C4-C6 ) выполненной по схеме моста Винна, приведён в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причём R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискажённый синусоидальный сигнал наибольшей амплитуды.
Лампа накаливания включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока ( лампа Н1 выполняет функции терморезистора, увеличивая своё сопротивление от нагрева, вызванного протекающим током ).
Частота устанавливается двумя органами управления, – переключателем S1 выбирают один из трёх поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому применение самодельных сдвоенных резисторов ( сделанных из двух одиночных ) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала.
На оси переменного резистора закреплена ручка со стрелкой и простая шкала для установки частоты. Для точной установки частоты используют цифровой частотомер.
Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на милливольтметр, чтобы можно было установить необходимое выходное напряжение. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14.
Максимальное выходное напряжение НЧ генератора 1,0V.
Для формирования импульсов служит ключ на транзисторе VT2 и три логических элемента на микросхеме D1. Выходной уровень КМОП логики.
Транзистор VT2 включён по схеме ключа. Это значит, что при достижении на эго базе напряжения определённого уровня он лавинообразно открывается. На базу транзистора переменное напряжение с выхода генератора подаётся через делитель R9-R10. При помощи R9 можно установить величину минимального напряжения, при котором открывается VT2. Благодаря диоду VD1, который создаёт на эмиттере транзистора небольшое отрицательное напряжение смещения, этот порог можно устанавливать от 0,1 до 1V. То есть, до максимального значения выходного напряжения генератора. В зависимости от того, как установлен этот порок, транзистор VT2 будет открываться и закрываться на определённых участках положительной полуволны низкочастотного напряжения. И от этого будет зависеть ширина импульсов, возникающих на коллекторе транзистора. Окончательно прямоугольную форму импульсам предают элементы микросхемы D1. С гнёзд Х4 и Х5 можно снимать противофазные импульсы.
Регулируют амплитуду выходных прямоугольных импульсов изменяя напряжение питания микросхемы D1 в пределах от 9,5 до 3,5V. Регулятор напряжения выполнен на транзисторе VT1.
Выключают генератор тумблером на два положения S2, отключающим генератор от источника двуполярного напряжения ±10V.


Большинство деталей расположено на печатной плате рис.2. ( 110 х 42 мм ).  Плата устанавливается в корпус перпендикулярно передней панели. Все регуляторы-резисторы, переключатели и разъёмы расположены на передней панели. Многие детали ( на Рис.2 ) смонтированы на их выводах.
Переключатель S1 галетный на три направления. Используется только два направления. Выключатель S2 – тумблер на два направления. Все разъёмы типа «Азия» от видеотехники. Дроссели L1 и L2 – от модулей цветности старых телевизоров УСЦТ, но можно использовать любые дроссели индуктивностью не менее 30 мкГн. Лампа накаливания Н1 – индикаторная с гибкими проволочными выводами ( похожа на светодиод ), на напряжение 6,3V и ток 20 mA. Можно использовать и другую лампу на напряжение 2,5-13,5V и ток не более 0,1А.
Налаживать генератор желательно используя частотомер и осциллограф. В этом случае, подстройкой резистора R1 добиваются максимального и неискажённого переменного синусоидального напряжения на выходе генератора, во всём диапазоне частот ( это, обычно, соответствует величине выходного переменного напряжения 1V ). Затем, более точным подбором R4 и R3 ( эти сопротивления должны быть одинаковы ) устанавливают диапазоны перестройки частоты. Если используются недостаточно точные конденсаторы С1-С6 может понадобиться их подбор или включение параллельно им «достроечных» конденсаторов меньшей ёмкости.
Если нет осциллографа, настроить генератор с удовлетворительным качеством можно и при помощи милливольтметра переменного тока. Нужно установить R6 в положение максимального выходного напряжения ( вверх по схеме ), подключить милливольтметр в Х1 и подстроить R1 так, чтобы милливольтметр показывал где-то 0,8 – 1,1V во всём частотном диапазоне.  автор Иванов А.

источник: ” РАДИОКОНСТРУКТОР “, 3 – 2007, стр. 14-17

Похожее

Низкочастотный генератор для радиолюбительской лаборатории. Схема

Схема низкочастотного генератора.

Низкочастотный генератор является одним из необходимейших приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов (измерительных мостов, модуляторов и др.).

Низкочастотный генератор для радиолюбительской лаборатории. Схема.jpg
Принципиальная схема генератора показана на рисунке 1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и выходного делителя на резисторах R6, R12, R13, R14.

Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи (С1-СЗ, R3, R4, R5, С4-С6) выполненной по схеме моста Винна, переведен в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причем, R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискаженный синусоидальный сигнал наибольшей амплитуды.
Лампа накаливания Н1 включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока (лампа Н1 выполняет функции терморезистора, увеличивая свое сопротивление от нагрева, вызванного протекающим током).

Частота устанавливается двумя органами управления, - переключателем S1 выбирают один из трех поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому, применение самодельных сдвоенных резисторов (сделанных из двух одиночных) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала.

На оси переменного резистора закреплена ручка со стрелкой (как у галетных приборных переключателей) и простая шкала для установки частоты. Для точной установки частоты лучше всего использовать цифровой частотомер.
Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на выход. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14.
Максимальное выходное напряжение НЧ генератора, - 1,0V.
Контролировать величину выходного напряжение удобнее всего по низкочастотному милливольтметру, делая поправку на значение аттенюатора на резисторах R12-R14.

Выключают генератор тумблером на два направления S2, отключающим генератор от источника двуполярного напряжения ±10V.

Печатная плата генератора.jpg
Большинство деталей расположено на печатной плате. Все регуляторы-резисторы, переключатели и разъемы расположены на передней панели. Многие детали смонтированы на их выводах.

Переключатель S1 галет-ный на три направления и три положения. Используются только два направления. Выключатель S2 -тумблер на два направления. Все разъемы - коаксиальные разъемы типа «Азия» от видеотехники. Дроссели L1 и L2 - от модулей цветности старых телевизоров УСЦТ (можно использовать любые дроссели индуктивностью не менее 30 мкГн). Лампа накаливания Н1 - индикаторная, с гибкими проволочными выводами (похожа на светодиод), на напряжение 6,3V и то 20 тА. Можно использовать и другую лампу на напряжение 2,5-13,5V и ток не более 0,1 А.

Налаживать генератор желательно используя частотомер и осциллограф. В этом случае, подстройкой резистора R1 добиваются максимального и неискаженного переменного синусоидального напряжения на выходе генератора, во всем диапазоне частот (это, обычно, соответствует величине выходного переменного напряжения 1V). Затем, более точным подбором R4 и R3 (эти сопротивления должны быть одинаковы) устанавливают диапазоны перестройки частоты. Если используются недостаточно точные конденсаторы С1-С6 может понадобиться их подбор или включение параллельно им «достроечных» конденсаторов.

Иванов А.

Литература :
1. Овечкин М. Низкочастотный измерительный комплекс, ж. Радио №4, 1980.

Радиоконструктор 08-2016

banner-turbobit-unlock