Принципиальная схема трансформатора – ТРАНСФОРМАТОРЫ

ТРАНСФОРМАТОРЫ

   В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:


Трансформатор однофазный

   Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

   Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки. Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны. Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора

   При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции. Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции. Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:

  • U1 =напряжение первичной обмотки.
  • U2 = напряжение вторичной обмотки.
  • w1 = количество витков первичной обмотки.
  • w2 = количество витков вторичной обмотки.
  • кт = коэффициент трансформации.

Коэффициент трансформации — формула

   Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15. Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1\кт = 220\15 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.66 вольт.

Трансформаторы на схемах

   Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

   На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

   Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

   Существуют специальные сварочные трансформаторы. 

Сварочный трансформатор

   Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.  

Силовые трансформаторы

   Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше. Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность. В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:

Фото высоковольтный трансформатор

   Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание. 

Трансформатор 6 киловольт

   У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

   Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

   На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока — фото

   Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор — изображение на схеме

   Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

Фото ЛАТР

   В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

   Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

   Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото: 

Фотография — тороидальный трансформатор

   Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

   Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов — рисунок

   Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

   Форум по трансформаторам

   Обсудить статью ТРАНСФОРМАТОРЫ

radioskot.ru

Принцип действия и принципиальная схема трансформатора

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Принцип действия трансформатора

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная, подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Принципиальная схема трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнитопоток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуцируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.

При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.

Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН). А обмотка, присоединенная к сети меньшего напряжения — обмоткой низшего напряжения (НН).

Таким образом, трансформаторы — обратимые аппараты, то есть могут работать как повышающими, так и понижающими.

www.mtomd.info

Электрическая схема трансформатора

В России эра преобразования напряжения из одной величины в другую берёт начало из работ по изучению ферромагнитных материалов великим российским физиком Александром Григорьевичем Столетовым, который впервые открыл в 1880-х годах гистерезисную петлю, а так же перераспределение доменов в ферромагнитном материале при воздействии на него электромагнитного поля.

Ранее, тогда ещё не изученный этот эффект позволил выявить Майклу Фарадею в 1831 году возможность передачи энергии по всей плоскости ферромагнитного материала – так называемое явление электромагнитной индукции. Через 17 лет Генрих Даниэль Румкорф впервые положил прообраз графического изображения намагниченной катушки.

Первый трансформатор передачи переменного тока представлял собой ферромагнитный стержень с несколькими обмотками. Данное изобретение было зафиксировано выдачей патента Яблочникову Павлу Николаевичу в 1876 году, но трансформатор в его современном представлении был представлен уже через год в 1877 году Мотовиловым Дмитрием Николаевичем. Тогда же появилось первая электрическая схема трансформатора, отображающая две обмотки на ферромагнитном материале.

В скором времени в Лондоне в 1884 году на станции Гровнерской галереи (считается, что здесь появилась первая электростанция) были применены последовательно соединённые трансформаторы Голяра и Гиббса на основе замкнутого сердечника. За два года до этого в галерее были установлены первые паровые генераторы Томаса Эдисона. В том же году братья Эдуард и Джон Гобкинсоны произвели в свет первые трансформаторы с замкнутыми сердечниками. Промышленное производство трансформаторов с замкнутым сердечником началось в 1885 году в Венгрии электромашиностроительным заводом «Ганц и Ко». Это были конструкции на кольцевом, броневом и стрежневом сердечниках. Венгерский конструктор Макс Дери в этом же году получает патент на конструкцию трансформаторов с параллельным соединением. Первые модели тут же выявили один существенный недостаток – быстрый перегрев магнитопровода из-за большой величины нагрузки потребителей, что приводило в негодность обмотки трансформатора. В 1889 году шведский изобретатель Д. Свинберн для уменьшения перегрева обмоток погрузил рабочий трансформатор в керамический сосуд, наполненный маслом, назвав его при этом «масляным трансформатором». В этом же году шведский инженер Джонс Венстрем изобретает трёхфазную систему для генераторов, трансформаторов и электродвигателей. В это время появляется трёхфазная электрическая схема трансформатора, которую изобретает русский ученый М. О. Доливо-Добровольский, а уже в 1891 году Чарльз Браун и Волтер Бовери в швейцарском городе Баден организовали компанию по передаче высоковольтной энергии. Спрос на электричество рос экспоненциальной прогрессией и в 1893 году компания Брауна – Бовери предоставила Европе первую промышленную электростанцию на основе применения трёхфазных трансформаторов. Электричество вырабатывалось паровыми генераторами Эдисона. В Российской империи уже упомянутая фирма «Ганц и Ко» в оперном театре Одессы для его освещения запустила одну из первых установок переменного тока. Это произошло в 1887 году.

С тех пор развитие в этой области шагнуло далеко вперёд и на сегодняшний день существует 7 классификаторов трансформаторов.
Разделяют трансформаторы по предназначению:
— Силовые трансформаторы – достаточно общее понятие, объединяющее применение трансформаторов в статических преобразователях для преобразования переменного тока в постоянный (выпрямители), либо, наоборот — из постоянного в переменный (инверторы). Их основное предназначение заключается в преобразовании одной величины напряжения и тока в напряжение и ток другой величины без изменения мощности (с учётом, конечно, потерь из-за индукции рассеяния).

— Силовые трансформаторы специального назначения – чаще всего их можно встретить в старых сварочных аппаратах, устройствах пониженной или повышенной частоты (в электрооборудовании железных дорог) и т.д.
— Испытательные трансформаторы применяются для получения высоких или сверхвысоких напряжений и токов. В промышленности их применяют для проверки пробоя изоляции (керамических изоляторов, к примеру), в высоковольтных испытательных лабораториях. Долговременная работа таких трансформаторов исключена.
— К измерительным трансформаторам относят трансформаторы напряжения и тока. Применяют их преимущественно в силовой электронике или в электроустановках с высоким напряжением, где необходимо измерение высоковольтных цепей стандартным измерительным оборудованием.
— Ещё до совсем недавнего времени в блоках питания радиоустройств бытовой электроники применялись радиотрансформаторы. Так же этот тип используют для согласования сопротивлений в межблочных соединениях электрических цепей. Сегодня в блоках питания им на смену пришла импульсная технология, а радиотрансформаторы применяются лишь в устройствах, критичных к чИстоте питающего напряжения (мощных дорогих звуковых усилителях, например).

По виду охлаждения трансформаторы подразделяются на сухие и масляные. Количество фаз в силовой обмотке делит трансформаторы на однофазные и трёхфазные. Так же существует классификация по форме магнитопровода: стержневые (строчные трансформаторы в телеаппаратуре), броневые, тороидальные и овальные.

Электрическая схема трансформатора в самом простом исполнении должна содержать как минимум две обмотки. Такие трансформаторы называют двуобмоточными. Если обмоток больше двух, то они попадают в класс многообмоточных. Конструктивное исполнение обмоток трансформаторов разделяет их на цилиндрические, дисковые и концентрические.

По соотношению обмоток трансформаторы делятся на повышающие – если напряжение вторичной обмотки больше силовой, и понижающий (соответственно наоборот).

Принцип работы устройства хорошо виден из принципиальной электрической схемы трансформатора.

Первичная обмотка W1, при подключении к ней источника переменного напряжения U1, за счёт протекания тока I1 наводит в сердечнике из магнитопроводящего материала переменный магнитный поток Ф, который, в свою очередь, индуктирует в первичной и вторичной (W2) обмотках ЭДС Е1 и Е2. За счёт коэффициента трансформации (отношения ЭДС или количества витков первичной обмотки к вторичной) и эффекта магнитной индукции в обмотке W2 при подключении нагрузки Zн начинает протекать ток I2 . На нагрузке появляется напряжение U2 .

Коэффициент трансформации определяет отношение ЭДС либо количество витков первичной обмотки к вторичной. Если значение K>1, то трансформатор считается понижающим, если KСпособность передать энергию через магнитопровод без потерь, которые будут неизбежны, определяет КПД трансформатора. Современные трансформаторы в заводском исполнении позволяют достичь КПД до 99%. Основными причинами снижения КПД в трансформаторах являются магнитные потери в сердечнике за счёт вихревых токов и гистерезиса (потери энергии из-за перемагничивания сердечника), удельного сопротивления обмоток трансформатора, качества исполнения намотки, величины подключённой нагрузки по отношению к габаритной мощности сердечника.

Многие компьютерные программы, позволяющие производить симуляцию работы электронных схем, для обработки результатов физических процессов преобразования энергии трансформатором используют электронную схему замещения трансформатора. В такой схеме магнитная связь, обычно, заменяется электрической цепью. Существует 2 типа схем эмуляции трансформатора: Т-образная и упрощённая.

В данной электрической схеме замещения трансформатора магнитные связи заменяют электрическими. R1 и X1 совместно с R2 и X2 представляют собой электрическую эмуляцию первичной и вторичной обмоток трансформатора, а R0 и X0 – намагничивание и холостой ход. Если брать в расчёт идеальный трансформатор без потерь, то электрическая схема трансформатора будет выглядеть следующим образом.

1 января 1970 года был утверждён единый международный ГОСТ условного графического отображения трансформаторов. Согласно ГОСТу 2.723—68, электрическая схема трансформатора может отображаться в 3-х вариантах: упрощённом однолинейном, упрощённом многолинейном и развёрнутом. Упрощённое отображение УГО (условного графического отображения) представляет магнитную связь трансформатора в виде окружности .

К примеру, трёхфазный автотрансформатор с ферромагнитным магнитопроводом и девятью выводами на схеме отобразится следующим образом . Данный тип отображения электрической схемы трансформаторов чаще встречается в старых схемах 70-х годов. Современные принципиальные схемы используют УГО низкочастотных трансформаторов по 2-му типу в виде обозначения двух дросселей и ферромагнитного материала — (трансформатор с магнитодиэлектрическим сердечником). Электрическая схема трансформатора импульсного типа всё чаще встречается в таком обозначении .


В последнее время современная бытовая электроника практически полностью перешла на использование в блоках питания импульсной схемотехники. Преимущество её очевидно — меньшие массогабаритные размеры, большее КПД и лучшие мощностные показатели блоков питания. Во многих решениях сегодня используются трансформаторы на сердечниках с высокой магнитной проницаемостью от 400HH и выше. Такие трансформаторы называют высокочастотными или, в простонародье – импульсными. Разберите любой импульсный компьютерный блок питания, и вы увидите его схемотехнику и трансформаторы в том числе. К примеру, на принципиальной электрической схеме ниже представлена реализация мощного зарядного устройства (или блока питания) на основе популярного ШИМ контроллера UC3842, силового полевого транзистора UFN432 и высокочастотного силового трансформатора с изолированным магнитным материалом Т1.


Сердечники импульсных трансформаторов выпускают с немагнитным зазором и без него. Немагнитный зазор применяется для того, чтобы под воздействием больших индукционных токов ферромагнитный сердечник не входил в насыщение, что чревато снижением КПД, быстрым перегревом трансформатора и выходом его из строя. Как правило, такие трансформаторы применяют в импульсных блоках питания, работающих по принципу Flyback (однотактного преобразования энергии). По сути, на его первичную обмотку через силовой ключ поступают импульсы заданной ШИМом частоты. В сердечнике в рабочий период импульса накапливается ЭДС, а в момент паузы накопленная энергия, согласно коэффициенту трансформации передаётся в нагрузку вторичной обмоткой. То есть на практике мы получаем двуобмоточный дроссель. Выше приведённая схема (и большинство схем сетевых понижающих импульсных блоков питания) работает именно по такому принципу. Сетевые импульсные сварочные аппараты (большей частью) так же используют данный тип сердечника.

Сердечники без немагнитоного зазора (торроидальные, броневые и т.д.) используются чаще в топологии импульсных преобразователей по схеме Push-pool. Эта технология чаще используется в импульсных повышающих / понижающих преобразователях, когда необходимо из одного постоянного напряжения сделать напряжение другой величины. К примеру, по приведённой ниже схеме, реализуется простой блок питания автомобильного аудио усилителя.

В данной электрической схеме работа трансформатора Т1 подобна работе обычного трансформатора, то есть на обмотки I и II поочерёдно через ключи VT3 и VT4 поступают прямоугольные импульсы (в идеале). Через коэффициент трансформации напряжение снимается с обмоток III и IV. Возможно, читатель задаст вопрос о том, что если импульсы будут идти непрерывно, то, по сути, это же постоянное напряжение, которое приведёт к сквозным токам в первичной обмотке нашего трансформатора и транзисторам, что приведёт к практически моментальному выходу их из строя. Специально для этого в любой микросхеме ШИМ присутствует такой параметр, как «мёртвое время», задающее паузу подачи импульсов на один ключ и другой. Этим временем мы можем изменять напряжённость электромагнитного поля и его индуктивность, тем самым регулируя уровень напряжения на выходе преобразователя. Изучение работы импульсного трансформатора занимает довольно обширный материал, не входящий в специфику этой статьи.

Электрическая схема с применением импульсного трансформатора требует грамотного расчёта и подбора элементной базы, ведь такое схемотехническое решение является в первую очередь высокочастотным, что подразумевает использование специфических радиодеталей (транзисторы с низким сопротивлением перехода, низкоимпедансные конденсаторы, расчёт мощностей критических сопротивлений и т.д.). Особо важным моментом является расчёт импульсного трансформатора. Не вдаваясь в подробности, скажем, что наиболее простыми и удобными компьютерными программами для расчёта импульсных трансформаторов являются программы человека с ником Starichok (Владимир Денисенко) из Пскова.

Flyback – программа, позволяющая произвести расчёт импульсного трансформатора для обратноходового преобразователя или блока питания.

ExcellentIT – программа для расчёта импульсного трансформатора для двухтактного преобразователя.

Tranz50Hz – расчёт силового трансформатора для электрической 50Hz сети на различных сердечниках.

Все его программы имеют удобный интерфейс, обширную базу параметров заводских сердечников, файл помощи. Кроме того, автор без проблем отвечает на заданные вопросы. Эти и многие другие программы присутствуют в ветках автора на радиоэлектронных форумах.

Смотрите также схемы:

Регулятор освещения
Электронный термометр
Электрическая печи
Стабилизатор напряжения
Электрический счетчик

elektronika-muk.ru

5.2. Принципиальная схема трансформатора

Принципиальная
схема одноступенчатого электромагнитного
трансформатора тока и его схема замещения
приведены на рис.5.2. Как видно из схемы,
основными элементами трансформатора
тока участвующими в преобразовании
тока, являются первичная 1 и вторичная
2 обмотки, намотанные на один и тот же
магнитопровод 3. Первичная обмотка
включается последовательно (в рассечку
токопровода высокого напряжения 4), т.е.
обтекается током линии Ij.
Ко вторичной обмотке подключаются
измерительные приборы (амперметр,
токовая обмотка счетчика) или реле. При
работе трансформатора тока вторичная
обмотка всегда замкнута на нагрузку.

Рис. 5.2. Принципиальная
схема трансформатора тока и его схема

замещения.

Первичную обмотку
совместно с цепью высокого напряжения
называют первичной
цепью
, а
внешнюю цепь, получающую измерительную
информацию от вторичной обмотки
трансформатора тока (т.е. нагрузку и
соединительные провода), называют
вторичной
цепью
. Цепь,
образуемую вторичной обмоткой и
присоединенной к ней вторичной цепью,
называют ветвью
вторичного тока
.

Из принципиальной
схемы трансформатора видно, что между
первичной и вторичной обмотками не
имеется электрической связи. Они
изолированы друг от друга на полное
рабочее напряжение. Это и позволяет
осуществить непосредственное присоединение
измерительных приборов или реле ко
вторичной обмотке и тем самым исключить
воздействие высокого напряжения,
приложенного к первичной обмотке, на
обслуживающий персонал. Так как обе
обмотки наложены на один и тот же
магнитопровод, то они являются
магнитно-связанными.

На рис.5.2. изображены
только те элементы трансформатора тока,
которые участвуют в преобразовании
тока. Конечно, ТТ имеет много других
элементов, обеспечивающих требуемый
уровень изоляции, защиту от атмосферных
воздействий надлежащие монтажные и
эксплуатационные характеристики.

Перейдем к
рассмотрению принципов действия
трансформатора тока (рис. 5.2). По первичной
обмотке 1 трансформатора тока проходит
ток I1,
называемый первичным током. Он зависит
только от параметров первичной цепи.
Поэтому при анализе явлений, происходящих
в трансформаторе тока, первичный ток
можно считать заданной величиной. При
прохождении первичного тока по первичной
обмотке в магнитопроводе создается
переменный магнитный поток Ф1
изменяющийся с той же частотой, что и
ток I1.
Магнитный поток Ф1
охватывает витки как первичной, так и
вторичной обмоток. Пересекая витки
вторичной обмотки, магнитный поток Ф1
при своем изменении индуцирует в ней
электродвижущую силу. Если вторичная
обмотка замкнута на некоторую нагрузку,
т.е. к ней присоединена вторичная цепь,
то в такой системе «вторичная обмотка
— вторичная цепь» под действием
индуцируемой ЭДС будет проходить ток.
Этот ток согласно закону Ленца будет
иметь направление, противоположное
направлению первичного тока Ii.
Ток, проходящий по вторичной обмотке,
создает в магнитопроводе переменный
магнитный поток Ф2,
который направлен встречно магнитному
потоку Ф1.
Вследствие этого магнитный поток в
магнитопроводе, вызванный первичным
током, будет уменьшаться.

В результате
сложения магнитных потоков Ф1
и Ф2
в магнитопроводе устанавливается
результирующий магнитный поток: Ф0
= Ф
1
— Ф
2

составляющий
несколько процентов магнитного потока
Ф1.
Поток Ф0
и является тем передаточным «звеном,
посредством которого осуществляется
передача энергий от первичной обмотки
ко вторичной в процессе преобразования
тока.

Результирующий
магнитный поток Ф0,
пересекая витки обеих обмоток, индуцирует
при своем изменении в первичной обмотке
противо-ЭДС. E1,
а во вторичной обмотке — ЭДС E2.
Так как витки первичной и вторичной
обмоток имеют примерно одинаковое
сцепление с магнитным потоком в
магнитопроводе (если пренебречь
рассеянием), то в каждом витке обеих
обмоток индуцируется одна и та же ЭДС.
Под воздействием ЭДС E2
во вторичной обмотке протекает ток I2,
называемый вторичным током.

Если обозначить
число витков первичной обмотки, через
ω1,
а вторичной обмотки — через ω2,
то при протекании по ним соответственно
токов I1
и I2
в первичной обмотке создается
магнитодвижущая сила F1
=
I1
ω
1

называемая первичной
магнитодвижущей силой (МДС), а во вторичной
обмотке — магнитодвижущая сила F2
=
I2
ω
2называемая
вторичной МДС. Магнитодвижущая сила
измеряется в амперах.

При отсутствии
потерь энергии в процессе преобразования
тока магнитодвижущие силы F1
и F2
должны быть численно равны, но направлены
в противоположные стороны.

Трансформатор
тока, у которого процесс преобразования
тока не сопровождается потерями энергии,
называется идеальным. Для идеального
трансформатора тока справедливо
следующее векторное равенство: F1=F2
или I1ω1=I2ω2

Из равенства
следует, что I1/I2
= ω
1/
ω
2
=
n

Т.е. токи в обмотках
идеального трансформатора тока обратно
пропорциональны числам витков.

Отношение первичного
тока ко вторичному (I1/I2)
или числа витков вторичной обмотки к
числу витков первичной обмотки (ω12)
называется коэффициентом
трансформации
n
идеального трансформатора тока. Учитывая
равенство, можно написать I1
=
I2
1/
ω
2)
=
I2n

т.е. первичный ток
I1
равен вторичному току I2,
умноженному на коэффициент трансформации
трансформатора тока n.

В реальных ТТ
преобразование тока сопровождается
потерями энергии, расходуемой на создание
магнитного потока в магнитопроводе, на
нагрев и перемагничивание магнитопровода,
а также на нагрев проводов вторичной
обмотки и вторичной цепи. Эти потери
энергии нарушают установленные выше
равенства для абсолютных значений МДС
F1
и F2.
В реальном трансформаторе первичная
МДС должна обеспечить создание необходимой
вторичной МДС, а также дополнительной
МДС, расходуемой на намагничивание
магнитопровода и покрытие других потерь
энергии. Следовательно, для реального
трансформатора уравнение будет иметь
следующий вид: F1
=
F2
+
F0

где F0
— полная МДС намагничивания, затрачиваемая
на проведение магнитного потока Ф0
по магнитопроводу, на нагрев и
перемагничивание его.

В соответствии с
этим равенство примет вид I1
ω
1=
I2
ω2
+
I0
ω0

где I0
— ток намагничивания, создающий в
магнитопроводе магнитный поток Ф0
и являющийся частью первичного тока
I1.

Разделив все члены
уравнения на ω1
получим: I1
= I2
2/
ω
1)
+
I0

При первичном
токе, не превышающем номинальный ток
ТТ, ток намагничивания обычно составляет
не более 1÷3% первичного тока и им можно
пренебречь. Тогда будет иметь такой же
вид, т.е. I1
=
I2n

Таким образом,
вторичный ток трансформатора пропорционален
первичному току. Из выражений следует,
что для понижения измеряемого тока
необходимо чтобы число витков вторичной
обмотки было больше числа витков
первичной обмотки.

Сравнивая формулы,
видим, что они отличаются друг от друга
членом F0
(или I0ω1).
Следовательно, реальный трансформатор
тока несколько искажает результаты
измерений, т.е. имеет погрешности.

Иногда пользуются
так называемым приведением тока к
первичной или вторичной обмотке. Так,
например, если разделить первичный ток
на коэффициент трансформации, то получим
первичный ток, приведенный ко вторичной
обмотке: I0
=
I1/n.

Аналогично
приведенный ток намагничивания будет
I0
= I0/n.
Тогда получим: I1
= I2
+
I0

Путем такого
приведения трансформатор тока заменяется
эквивалентным ТТ с коэффициентом
трансформации, равным единице.

Из полученного
равенства следует, что часть приведенного
первичного тока I1
идет на намагничивание магнитопровода,
а остальная часть трансформируется во
вторичную цепь, т. е. первичный ток I1
как бы разветвляется по двум параллельным
цепям: по цепи нагрузки и цепи
намагничивания. Этому соответствует
схема замещения, приведенная на рис.5.2.,
где в цепь ветви намагничивания z0
от тока I1
ответвляется ток I0.
Остальная часть тока I1
проходит по вторичной цепи, представляя
собой вторичный ток I2.
Сопротивление первичной обмотки ТТ на
схеме замещения не показано, так как
оно не оказывает влияния на работу
трансформатора.

studfiles.net

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

sesaga.ru

Обозначение трансформатора на схеме

Содержание:
  1. Типы и принцип действия трансформаторов
  2. Схематическое обозначение трансформаторов
  3. Видео

В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.


Основные типы и принцип действия трансформаторов

Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения.

Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.


Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.

Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.

  • Чертеж 1 – ступенчатое регулирование трансформатора.
  • Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.
  • Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.

  • Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.
  • Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.
  • Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.
  • Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 – автотрансформатор на девять выводов.
  • Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.

Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.


electric-220.ru

Принципиальная схема трансформатора с рпн:

Обмотка
ВН (высшего напряжения) у трансформатора
с РПН состоит из двух частей: нерегулируемой
(основной) и регулируемой. На регулируемой
обмотке имеются ответвления, к которым
подключаются контактыаив.
Часть витков включена согласно, часть
— встречно. Кроме того, к одному из витков
нерегулируемой обмотки подключено
устройство переключения, которое состоит
из реактора, двух контакторов К1и К2и двух контактоваив.
Всё это находится в баке трансформатора.
Переключение из положения 2 в положение
1 происходит в следующей последовательности:

— Отключается К1.

— апереводится на контакт 1.

— Включается К1.

Реактор служит для уменьшения величины
уравнительного тока.

— Отключается К2.

— впереводится на контакт 1.

— Включается К2.

Регулировочная обмотка имеет большое
количество ответвлений, например ± 9
x 1,78
, где± 9 – это число отпаек в
сторону уменьшения коэф-та тр-ции и в
сторону его увеличения, т.е всего
18 отпаек. 1,78 – это коэф. тр-ции
соответствующий каждой отпайке.

  1. Описание понятий: проходная
    мощность, номинальная мощность, типовая
    мощность и её коэффициент.

Номинальной мощностью обмотки
трансформатора называется указанное
на паспортной табличке значение полной
мощности на основном ответвлении
обмотки, гарантированное изготовителем
при номинальных условиях эксплуатации.
Номинальная мощность 2хобмоточного
тр-ра – ном. мощность каждой из его
обмоток, в 3хобмоточном – наибольшая
из номинальных мощностей трёх его
обмоток.

Номинальная мощность автотрансформатора– номинальная мощность обмоток имеющих
общую часть, т.е.проходная мощность– мощность, передаваемая электрическим
путём, т.е. из сети В.Н. в сеть С.Н.или
обратно.

Типовая мощность автотрансформатора— мощность передаваемая в автотрансформаторе
магнитным путём (электромагнитная
мощность), она равна мощности
последовательной обмотки.

— коэффициент выгодности (он всегда
<1).

Коэффициент типовой мощности или
коэффициент эффективности
– это
отношение величины мощности передаваемой
в автотрансформаторе электрическим
путём (проходная мощность) к мощности
передаваемой магнитным путём (типовой
мощности)

  1. Почему автотрансформаторные
    обмотки автотрансформатора соединяются
    по схеме «звезда – звезда с заземлённой
    нейтралью»

Силовые автотрансформаторы получили
широкое применение для связи сетей
смежных напряжений, например 110 и 220,
220 и 500кВ и т.п. В этих случаях они
выполняются на значительные проходные
мощности, доходящие до 500МВА и выше.
Автотрансформаторные обмотки
автотрансформатора соединяются по
схеме звезда с заземлённой нейтралью,так как они работают в сетях с
глухозаземлённой нейтралью 110 – 1150кВ
(110кВ – может быть с эффективно заземлённой
нейтралью, через небольшое сопротивление
или индуктивность).

  1. Какие
    функции выполняет в автотрансформаторе
    трансформаторная обмотка. Может ли
    быть её мощность равной номинальной
    мощности автотрансформатора.

В
автотрансформаторах, предназначенных
для трёхфазных сетей, помимо двух
основных обмоток, имеющих автотрансформаторную
связь и соединённых по схеме звезды с
заземлённой нейтралью, предусматриваются
дополнительные обмотки, обычно низкого
напряжения, соединённые треугольником.
Наличие таких обмоток обеспечивает
компенсацию токов нулевой последовательности,
что приводит к выравниванию фазных
напряжений при несимметричной нагрузке,
а также устраняет появление в фазных
напряжениях основных обмоток, ЭДС
тройной частоты. Номинальная мощность
обмотки низшего напряжения составляет
от 20 до 50% номинальной (проходной )
мощности автотрансформатора.

27. Область использования
измерительных трансформаторов напряжения
(ИТН). Дайте определения параметров:
номинальных напряжений, мощности,
коэффициента трансформации,. амплитудной
и угловой погрешности, класс точности.

Типы ТН:

НОСК– ТН однофазный сухой
комплектуемый;

НОМ – однофазный, с естественным
масляным охлаждением;

НТМИ– трёхфазный, с естеств. масляным
охлаждением, с обмоткой для контроля
изоляции сети;

НТМК– трёхфазный, с естеств. масляным
охлаждением, с обмоткой для уменьшения
угловой погрешности;

ЗНОМ– однофазный, с естеств. масл.
охлаждением с заземлённым выводом
первичной обмотки;

НКФ– каскадный в фарфоровой
покрышке;

НДЕ– с емкостным делителем напряжения
(конденсаторный ТН)

ТН – аппарат предназначенный для
подключения контрольно-измерительных
приборов и средств защиты к сетям с
высоким напряжением. Трансформатор
является измерительным устройством,
его основные технические характеристики
связаны с точностью преобразованного
сигнала.

Первичное номинальное напряжение

напряжение обмотки, которая подключается
на измеряемую сторону.

Вторичное номинальное напряжение
— на него подключаются приборы.

Номинальный коэффициент трансформации

Номинальная мощность трансформатора
– мощность вторичной обмотки, при
которой трансформатор обеспечивает
заданный класс точности.

Погрешности трансформатора:

  • амплитудная погрешность

  • угловая погрешность
    ,
    появляется тогда, когдаопережаетпо фазе. Угловая погрешность появляется
    при измерении мощности.

Класс точности трансформатора определяется
двумя функциями:

Класс точности разделяется на:

  • эталонные приборы 0,2 ( угловая
    погрешность -10 мин. частотная ±0,2)

  • коммерческий расчет 0,5 ( угловая
    погрешность -20 мин. частотная ±0,5)

  • для релейной защиты 1, 3 ( угловая
    погрешность – для1 – 40, для 3- не
    нормирована. частотная ±1 и ±3 )

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о