Схема импульсного регулируемого блока питания – Импульсный лабораторный блок питания на TL494

Схема импульсного регулируемого блока питания – Импульсный лабораторный блок питания на TL494

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ


Схемы

Как работает импульсный блок питания на SG3525. Какие преимущества у данной схемы. Как собрать и настроить стабилизированный ИБП своими руками. Какие компоненты нужны для сборки.

Содержание

Преимущества импульсного блока питания на SG3525

Импульсный блок питания на микросхеме SG3525 имеет ряд важных преимуществ по сравнению с более простыми схемами:

  • Стабилизация выходного напряжения
  • Плавный пуск (soft start)
  • Защита от короткого замыкания
  • Самозапитка (не требуется отдельный дежурный источник питания)
  • Возможность регулировки выходного напряжения

Эти функции делают данный блок питания более надежным и универсальным устройством.

Принцип работы схемы импульсного блока питания

В основе работы схемы лежит широтно-импульсная модуляция (ШИМ), реализуемая микросхемой SG3525. Ключевые элементы схемы:

  • Силовой трансформатор для преобразования напряжения
  • Дополнительный трансформатор для гальванической развязки
  • Цепь мягкого старта на конденсаторе
  • Цепь защиты по току
  • Цепь обратной связи на оптроне для стабилизации выходного напряжения

Микросхема генерирует ШИМ-сигнал, управляющий силовыми транзисторами. Ширина импульсов регулируется в зависимости от выходного напряжения, обеспечивая его стабилизацию.


Особенности схемы самозапитки

Одна из важных особенностей данного блока питания — наличие схемы самозапитки. Она позволяет запустить микросхему без отдельного источника питания:

  1. При подаче питания заряжается пусковой конденсатор
  2. При достижении порогового напряжения конденсатор разряжается на микросхему
  3. Энергии конденсатора хватает для запуска микросхемы
  4. После запуска микросхема питается от вторичной обмотки трансформатора

Это избавляет от необходимости использовать отдельный дежурный блок питания, упрощая конструкцию.

Ключевые компоненты для сборки блока питания

Для сборки импульсного блока питания на SG3525 потребуются следующие основные компоненты:

  • Микросхема SG3525
  • Силовые MOSFET-транзисторы
  • Тороидальный или Ш-образный трансформатор
  • Дополнительный трансформатор для гальванической развязки
  • Оптрон и стабилитроны для цепи обратной связи
  • Входной дроссель
  • Электролитические и керамические конденсаторы
  • Резисторы
  • Диоды Шоттки для выпрямителя

Важно правильно рассчитать и намотать трансформаторы и дроссель. От этого во многом зависит эффективность работы блока питания.


Расчет и намотка трансформаторов

Одним из ключевых этапов сборки импульсного блока питания является расчет и намотка трансформаторов. Для силового трансформатора важно:

  • Правильно рассчитать количество витков первичной и вторичной обмоток
  • Обеспечить запас по напряжению на вторичной обмотке для стабилизации
  • Использовать провод подходящего сечения
  • Обеспечить качественную изоляцию между обмотками

Трансформатор гальванической развязки наматывается проводом МГТФ или эмалированным проводом на ферритовом кольце. Важно соблюдать фазировку обмоток.

Настройка и проверка работоспособности блока питания

После сборки блок питания необходимо аккуратно настроить и проверить. Основные этапы:

  1. Первое включение от низковольтного источника питания для проверки работы схемы управления
  2. Проверка наличия и стабильности выходного напряжения
  3. Настройка выходного напряжения с помощью подбора стабилитронов
  4. Проверка работы защиты от короткого замыкания
  5. Измерение пульсаций выходного напряжения
  6. Проверка КПД блока питания на разных нагрузках

При настройке рекомендуется использовать осциллограф для контроля формы сигналов на затворах транзисторов и выходе блока питания.


Возможности модификации и улучшения схемы

Базовую схему импульсного блока питания на SG3525 можно модифицировать и улучшать различными способами:

  • Добавление индикации выходного напряжения и тока
  • Реализация регулировки выходного напряжения
  • Установка вентилятора охлаждения с терморегулятором
  • Добавление защиты от перенапряжения на выходе
  • Увеличение выходной мощности за счет параллельного включения транзисторов
  • Реализация нескольких выходных напряжений

При модификации схемы важно не нарушить работу основных узлов и сохранить стабильность работы блока питания.

Применение импульсного блока питания на SG3525

Благодаря своим характеристикам, импульсный блок питания на SG3525 может применяться в различных областях:

  • Лабораторный источник питания
  • Блок питания для аудиоусилителей
  • Источник питания для светодиодных лент и прожекторов
  • Зарядное устройство для аккумуляторов
  • Блок питания для промышленной автоматики
  • Источник питания для радиолюбительских конструкций

При необходимости схему можно адаптировать под конкретное применение, изменив выходное напряжение и мощность.



ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ


radioskot.ru

Как работают импульсные блоки питания: 7 правил

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Содержание статьи

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Схема трансформаторного блока питанияСтруктурная схема блока питания

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Силовой трансформатор

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Структурная схема импульсного блока питания

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Импульсный блок питания

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Схема выпрямителя

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

Схема управления силовым ключом

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

ШИМ импульсы

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
Как работает импульсный трансформатор

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Схема электронного генератора

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Двухполупериодная схема

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Двухполярная схема питания

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Прямоходовая схема блока питания

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Как работает дроссель

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

Полумостовая схема

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Мостовая схема

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Пушпульная схема

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

Простая схема стабилизации напряжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

Схема импульсного блока питания

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Как работает оптопара

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Схема стабилизации

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

electrikblog.ru

Стабилизированный импульсный блок питания на SG3525

Приветствую, Самоделкины!
Перед вами очередная ступень эволюции, а именно, стабилизированный блок питания на микросхеме SG3525.



До этого момента Роман, автор YouTube канала «Open Frime TV», делал только самые простые блоки питания на микросхеме IR2153. Теперь же настало время более серьезного проекта. Сразу поговорим о достоинствах данной схемы. Первое, самое важное, это стабилизация выходного напряжения. Так же тут есть софт старт, защита от короткого замыкания и самозапит.

Для начала давайте рассмотрим схему устройства.

Новички сразу же обратят внимание на 2 трансформатора. В схеме один из них силовой, а второй для гальванической развязки.

Не стоит думать, что из-за этого схема усложнится. Наоборот все становится проще, безопаснее и дешевле. К примеру, если ставить на выходе микросхемы драйвер, то для нее нужна обвязка — это раз. А во-вторых, ее цена около 2-ух долларов.


Смотрим дальше. В данной схеме реализован микростарт и самозапит.

Это очень продуктивное решение, оно позволяет избавиться от потребности в дежурном блоке питания. И действительно, делать блок питания для блока питания не очень хорошая идея, а такое решение просто идеально.

Работает всё таким образом. От постоянки заряжается конденсатор и когда его напряжение превысит заданный уровень, открывается данный блок и разряжает конденсатор на схему.

Его энергии вполне достаточно для запуска микросхемы, а как только она запустилась, напряжение со вторичной обмотки начало питать саму микросхему. Также к микростарту необходимо добавить вот этот резистор по выходу, он служит нагрузкой.

Без этого резистора блок не запустится. Данный резистор для каждого напряжения свой и его необходимо рассчитать из таких соображений, что при номинальном выходном напряжении на нем рассеивался 1Вт мощности.

Также на схеме есть софт старт. Реализован он с помощью вот этого конденсатора.

И защита по току, которая в случае короткого замыкания начнет сокращать ширину ШИМ.

Частота данного блока питания изменяется с помощью вот этого резистора и кондёра.


Теперь поговорим про самое важное — это стабилизация выходного напряжения. За нее отвечают вот эти элементы:

Как видим автор поставил 2 стабилитрона. С помощью них можно получить любое напряжение на выходе.

Для того чтобы стабилизация работала корректно нужен запас по напряжению в трансформаторе, иначе при уменьшении входного напряжения микросхема попросту не сможет выдать нужного напряжения. Поэтому при расчете трансформатора следует нажать на вот эту кнопку и программа автоматом добавит вам напряжения на вторичной обмотке для запаса.


Теперь можно перейти к рассмотрению печатной платы. Как видим, тут все довольно таки компактно.
Также видим место под трансформатор, он тороидальный. Без особых проблем его можно заменить на Ш-образный.

Оптрон и стабилитроны расположены возле микросхемы, а не на выходе.

Ну некуда их было поставить на выход. Если не нравится — сделайте свою разводку печатной платы. Автор уверяет, что все и так прекрасно работает.

Вы можете спросить, почему бы не увеличить плату и не сделать все нормально? Ответ автора следующий: сделано это с тем расчетом, чтобы дешевле было заказать плату на производстве, так как платы размером больше 100 на 100мм стоят гораздо дороже.

Ну а теперь настало время собрать нашу схему. Тут все стандартно. Запаиваем без особых проблем. Наматываем трансформатор и устанавливаем.


Автор признается, что вначале думал, что данный проект будет провальным. Такие мысли пришли после того как он сделал макет, и появлялись постоянные косяки. Вот так выглядел опытный образец, прям ёжик какой-то.

Но все обошлось благодаря Юрию, автору YouTube канала «RED Shade», который помог решить несколько важных моментов данного проекта.
Стоит также обратить внимание на отдельные важные моменты. К таким моментам относится входной дроссель. Его можно мотать на сердечнике проницаемостью 2000 НМ, размеры 20 на 13 и на 7 мм.


Желательно развести обмотки на 2 части. Для изоляции используются обыкновенные пластмассовые стяжки. Мотаем проводом 0,8 мм. Количество витков каждой обмотки 10-13.

А теперь самая страшная часть схемы – ТГР.


На самом деле он мотается не тяжелее чем дроссель. Берём кольцо с проницаемостью 2000 НМ, размеры такие же, как и у дросселя, можно меньше, это не критично, и мотаем в 3 жилы проводом МГТФ 20 витков.


Нет такого провода — не беда, можно и обыкновенным эмалированным с диаметром 0,4 -0,6 мм.

И все, ТГР готов.

Единственное где нужно быть внимательным, это при установке его на плату. Соблюдайте фазировку! Выходные обмотки включены встречно — это важно.

Следует также показать, что происходит на затворах транзисторов. Это для тех, у кого есть осциллограф.


Как видим довольно четкий сигнал. Он немного завален, но на работу это не влияет. Ну вот и вся информация про блок. Первое включение желательно производить от низковольтного питания, отключив эту схему и подав 12В одновременно и на силу, и на управление.


Проверяем напряжение на выходе. Если оно присутствует, то уже можно включать в сеть.

Для начала проверим выходное напряжение. Как видим блок автор рассчитывал на напряжение 24В, но получилось чуть меньше из-за разброса стабилитронов.


Но такая погрешность не критична. Давайте же проверим самое главное – стабилизацию. Для этого возьмем лампу на 24В, мощностью 100Вт и подключим ее в нагрузку.


Как видим, напряжение не просело и блок выдержал без проблем. Можно нагрузить еще сильнее.

Как видим результат тот же, напряжение стабильно. Также проверим защиту от короткого замыкания.
Для этого выкручиваем резистор в верхнее положение и коротим выводы.

Фух, ничего не взорвалось и блок себя спас. Ну а теперь, подстраивая номинал резистора, можно выбрать любой ток ограничения короткого замыкания под ваши нужды. В конце хотелось бы обсудить пару важных моментов. Во-первых, мощность данного блока автор не советует увеличивать выше 500Вт, а во-вторых, в описании под оригинальным видеороликом автора (ссылка ИСТОЧНИК) вы найдете ссылку на видео про данную микросхему, которым автор пользовался при создании данного проекта.

На этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Схема импульсного блока питания — четыре версии на чипе IR2153

Схема импульсного блока питания — 4 рабочие схемы

Схема импульсного блока питания-1Схема импульсного блока питания-1

Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема импульсного блока питания-2Схема импульсного блока питания-2

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Схема импульсного блока питания-3Схема импульсного блока питания-3

Схема импульсного блока питания-4Схема импульсного блока питания-4

Схема импульсного блока питания-5Схема импульсного блока питания-5

Теперь рассмотрим следующий блок питания:

Схема импульсного блока питания-6Схема импульсного блока питания-6

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Схема импульсного блока питания-7Схема импульсного блока питания-7

Схема импульсного блока питания-8Схема импульсного блока питания-8

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Схема импульсного блока питания-9Схема импульсного блока питания-9

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

Схема импульсного блока питания-10Схема импульсного блока питания-10

Четвертая схема импульсника:

Схема импульсного блока питания-11Схема импульсного блока питания-11

В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

Схема импульсного блока питания-12Схема импульсного блока питания-12

Схема импульсного блока питания-13Схема импульсного блока питания-13

Скачать: Дополнительные файлы

usilitelstabo.ru

Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / Habr

Всем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.



Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.


Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.
Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

Она встраивается в БП вот таким образом:

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

habr.com

Регулируемый БП — из нерегулируемого

Электропитание

Главная  Радиолюбителю  Электропитание



В статье предложен способ, как из блока питания с фиксированным выходным напряжением сделать регулируемый источник.

В радиолюбительской практике зачастую требуется регулируемый источник питания 3,5…12 В с выходным током до 1,5…2 А. Чтобы не делать такой БП заново, можно доработать уже имеющийся с фиксированным выходным напряжением. В зависимости от схемы БП его доработка может быть очень простой.

Таким блоком оказался БП JTA0302E-E (рис. 1), который представляет собой обратноходовый преобразователь напряжения, собранный на специализированной микросхеме UC3843B и полевом транзисторе STP4NK60ZFP. На входе и выходе БП установлены LC-фильтры, стабилизация выходного напряжения осуществляется с помощью микросхемы TL431AC (параллельный стабилизатор напряжения) и оптопары PC817 (или аналогичной). Согласно заявленным производителем параметрам БП JTA0302E-E при сетевом напряжении 110…240 В обеспечивает выходное стабилизированное напряжение 5 В при токе нагрузки до 2,5 А. На самом деле выходное напряжение без нагрузки было немногим более 5,2 В. Сделано это, видимо, для компенсации падения напряжения на выходном двухпроводном кабеле при максимальном токе нагрузки. Логично предположить, что при напряжении сети 230 ± 5 % В он сможет «выдать» 12 В при токе до 1 А. Небольшая доработка позволит превратить его в регулируемый с выходным напряжением от 3,5 до 10…12 В.

Рис. 1. БП JTA0302E-E

Фрагмент выходной цепи дорабатываемого БП показан на рис. 2. Все доработки и вновь введённые элементы выделены цветом. Обозначения штатных элементов приведены в соответствии с печатной платой, а должены. Особенность оригинального БП — значение выходного напряжения задано с помощью резистивного делителя R15R16 в цепи управляющего входа микросхемы U3. Если в этот делитель ввести переменный резистор (в нашем случае — R18), это позволит плавно регулировать выходное напряжение. В этом случае стабилитрон ZD2 (на напряжение стабилизации 6,2 В) удаляют, резистор RLзаменяют другим, с вдвое большим сопротивлением. Для индикации наличия выходного напряжения установлен светодиод HL1 с токоограничивающим резистором R19. Чтобы свечение светодиода было заметно во всём интервале выходного напряжения, он должен быть с повышенной яркостью свечения.

Рис. 2. Фрагмент выходной цепи дорабатываемого БП

Доработка БП — несложная. Переменный резистор (СП4-1 или аналогичный по размерам) и светодиод устанавливают на задней стенке корпуса БП (рис. 3). Для них просверлены отверстия соответствующего диаметра. Сглаживающий конденсатор С1 (см. рис. 1) на выходе мостового выпрямителя разворачивают на плате в про-тивоположую сторону. Освободившееся место займёт переменный резистор. Резисторы R15 и R16 установлены перпендикулярно плате, поэтому их можно не выпаивать, а просто перекусить по одному выводу, к которым припаивают изолированные провода, соединяющие их с выводами переменного резистора R18. Стабилитрон ZD2 (он расположен рядом с резисторами R15, R16) также можно не выпаивать, а перекусить один из его выводов — в авторском варианте было сделано именно так. В результате с переменным резистором R18 сопротивлением 10 кОм интервал регулировки выходного напряжения получился 3,5…8 В. Если применить резистор R18 с большим сопротивлением, интервал регулировки расширится в обе стороны. При этом нижний предел можно скорректировать подборкой резистора R15, верхний — резистора R16. После проверки и налаживания переменный резистор снабжают шкалой (рис. 3), которую градуируют с помощью вольтметра постоянного тока. Но следует учесть, что минимальный нижний предел — 3,3…3,5 В. Обусловлено это тем, что минимальное падение напряжения на микросхеме U3 — около 2 В, а на излучающем диоде оптопары U1.2 — 1,1…1,2 В.

Рис. 3. Внешний вид доработанного БП

Были проведены испытания доработанного БП для различных выходных напряжений от 3,5 до 10 В. При изменении выходного тока от 0 до 1,5 А (при выходном напряжении до 10 В) и 2,5 А (при напряжении до 5 В) выходное напряжение уменьшалось на несколько милливольт (измерение проводилось непосредственно на выходе БП), амплитуда пульсаций не превысила 15 мВ, а полевой транзистор нагревался умеренно. Однако при установке выходного напряжения менее 3,3 В на выходе наблюдались релаксационные колебания с амплитудой пульсаций около 1 В. Причина этого — недостаточное напряжение на микросхеме U3 и излучающем диоде оптопары U1.2.

Следует учесть, что в выходной цепи БП применены конденсаторы С9-С11 с номинальным напряжением 10 В, поэтому выходное напряжение не должно превышать этого значения, а с учётом падения напряжения на дросселе L2 должно быть даже меньше. Если планируется увеличить верхний предел до 12 В, эти конденсаторы необходимо заменить другими с такой же ёмкостью и большим номинальным напряжением.

Автор:class=»strong-analog»> И. Нечаев, г. Москва

Дата публикации: 16.02.2018

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Блок питания старого принтера, как переделать его в регулируемый источник питания



Многие люди при выходе из строя принтера недолго думая выкидывают на мусор. Но если разобрать старый неисправный принтер, то можно получить массу нужных деталей для самоделок. Добыть из принтера можно качественные металлические валы, штанги, направляющие, шаговые двигатели которые можно использовать в создании самодельного ЧПУ и тому подобных самоделках. В принтере есть разъемы USB, разнообразные датчики положения. Коллекторные электродвигатели используем для создания электросверлилок и для привода разнообразных моделей и игрушек и так далее.

В общем даем вторую жизнь старой оргтехнике.
Сейчас рассмотрим тему о переделке импульсного блока питания от принтера Canon и дальнейшем применении его в быту. В принтерах устанавливаются безтрансформаторные блоки питания построенные по импульсной схеме. Они могут выдавать напряжение от 24-х до 42-х Вольт с током нагрузки до 2 Ампер. Эти блоки питания довольно надежные, обладают большим ресурсом и могут проработать еще долгое время.

Перечень инструментов и материалов.
— импульсный блок питания от принтера Canon-1шт ;
-подстроечный многооборотный резистор на 5-10Ком -1шт;
-соединительные провода;
-паяльник;
-тестер;
-минивольтметр -1шт;
— клей;
— кусок алюминия листового;
— колпачок от тюбика;
-пластиковая трубка от стержня авторучки -1шт.


Шаг первый. Переделка схемы импульсного блока питания принтера.

Рассмотрим схему данного импульсного блока питания.

При штатном включении блока питания на выводе SB имеем напряжение 7 В, а на выводе +24 напряжение отсутствует. Если вам нужно нерегулируемое напряжение 24 В, то можно соединить между собой выходы SB и +24.

Наша задача состоит в том, чтобы регулировать управляемый стабилитрон TL431. На схеме он обозначен как IC51. Управляемый стабилитрон TL431 стабилизирует напряжение на выходе блока питания в зависимости от нагрузки так, как он включен в цепь обратной связи. Выпаиваем резистор R57 на плате.

Вместо него подключаем подстроечный многооборотный резистор номиналом от 5 до 10Ком.

Теперь нужное напряжение можно выставить вращением оси подстроечный резистор. Многооборотный подстроечный резистор дает более плавную регулировку выходного напряжения блока питания.

К выходу переделанного блока питания подключаем минивольтметр (в принципе можно подключить любой вольтметр, но просто мало места в штатном корпусе). На диодную сборку я поставил дополнительный радиатор из полоски аллюминия чтобы снизить нагрев на максимальных токах нагрузки. Также можно насверлить в корпусе вентиляционных отверстий.

Устанавливаем плату в родной штатный корпус(при желании можно разместить в более просторном корпусе, добавить выходные клеммы). В верхней крышке делаем окно для вольтметра и отверстие для подстроечного резистора. Сам подстроечник приклеиваем термоклеем. На поворотную ось резистора надеваем кусочек от пластмассового стержня(предварительно мажем клеем). На стержень приклеиваем колпачок от тюбика.

Шаг второй. Проверка работы блока питания.

После переделки получил пределы регулирования блока питания от 4,5 до 25 В. Подключил автомобильную лампу в качестве нагрузки. При напряжении 5,8В ток составил 1,22А. При напряжении 9,3 В ток составил 1,56А. При напряжении 24 В ток составил 2,2 А. Вполне приемлемый результат.



В результате небольшой переделки получили бесплатный компактный регулируемый источник питания. Его можно будет использовать в качестве зарядного устройства смартфонов, шуруповертов. Также питать светодиодные ленты, самоделок –все зависит от ваших потребностей.
Подробнее переделку и тест импульсного от принтера можно посмотреть в видео


Всем желаю здоровья и удачи в жизни и творчестве! Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru