Схема многопараметрического модема – Схема многопараметрического модема – Блок-схема передатчика синхронного модема — Производство и поставка электростанций, Бензиновые и дизельные генераторы от 1 до 100 кВт. Мини ТЭЦ на базе двигателя Стирлинга.

Содержание

РадиоКот :: USB GSM/GPRS модем.

РадиоКот >Схемы >Цифровые устройства >Примочки к ПК >

USB GSM/GPRS модем.

Устройство в сборе

Плата с держателем SIM-карты

Модуль + аккумулятор + антенна

GSM модуль SIM300C

Данное устройство представляет собой GSM/GPRS модем подключаемый к компьютеру через USB разъем. С помощью данного модема можно осуществлять доступ в Интернет со скоростью до 115,200 Кбит/сек или использовать его в составе пульта центрального наблюдения (ПЦН) для приема тревожных сообщений и звонков, а также отправки контрольных сообщений, от абонентских блоков GSM сигнализации. В общем сфера применения может быть любой.
Схема устройства:

Описание схемы

Схема устройства состоит из микросхемы преобразователя USBRS232 FT232 фирмы FTDI, осуществляющей связь компьютера с GSM/GPRS модулем SIM300C фирмы Simcom, а также микроконтроллера Atmega8L фирмы Atmel, осуществляющего управление питанием GSM модуля и настройку его конфигурации. Наличие свободных ножек микроконтроллера, при соответствующей корректировке программы, позволяет реализовать на данном устройстве простенькую GSM сигнализацию или дистанционное управление устройствами через GSM канал.
Изначально питание модуля SIM300C планировалось осуществлять через шину USB, но так как в моменты передачи потребляемый ток может достигать 2 А, то пришлось поставить аккумулятор, что в свою очередь позволило использовать модем как автономное устройство.
Светодиод VD2 отображает такие состояния работы, как подключение к компьютеру, состояние GSM сети, регистрация в сети, ошибка SIM карты, снижение денежных средств ниже порога.
Электронные ключи DD3 осуществляют переключение связи модуля SIM300C с компьютером или с микроконтроллером.

Детали

Резисторы - smd типоразмера 0805.
Конденсатор С6 танталовый, можно заменить на электролитический с тем же номиналом и напряжением не менее 6,3 В. Остальные конденсаторы - smd типоразмера 0805.

Диод VD1 можно заменить на любой другой с падением напряжения 0,6...0,7 В. Диод VD3 можно заменить на любой другой диод Шоттки с падением напряжения не более 0,5 В.
Транзистор VT1 может быть с любым буквенным индексом.
Светодиод VD2 можно заменить на любой другой двухцветный или поставить два отдельных светодиода.
Микросхему DD2 можно заменить на AT93C56 или AT93C66.
Аккумулятор BT1 можно заменить аккумулятором большей емкости.

Установка и настройка

Пример настройки рассмотрен для операционной системы Windows XP 32bit. Если у Вас стоит другая операционная система, то информацию по установке и необходимые драйверы можно скачать с сайта производителя.
Перед подключением к компьютеру, вытаскиваем модуль SIM300C и отключаем аккумулятор.
Распакуйте архив драйвера USB-RS232-driver.rar в отдельную папку. Подключите устройство к компьютеру. Заметив новое устройство, операционная система попросит указать папку с драйвером, укажите на распакованную папку. Следующим шагом заходим в распакованную папку и запускаем программу FTD2XXST.EXE, позволяющую запрограммировать микросхему eeprom. При первом запуске программы будет выведено следующее окно:

Необходимо будет заполнить следующие поля:
Manufacturer (производитель): FTDI.
Manufacturer ID (идентификатор производителя): FT.
Vendor ID (идентификатор поставщика): 0403.
Product ID (идентификатор продукта): 6001.
Description (описание): USB GSM/GPRS modem.
После заполнения всех полей, активным станет кнопка , при нажатии на нее откроется окно:

По умолчанию должны быть установлены флаги Plug and Play (автоматическое определение устройства) и Remote Wakeup (выход из режима пониженного энергопотребления).
Установка флага Fixed Serial Number позволяет присвоить устройству постоянный серийный номер, но при этом следует помнить что устройства с одинаковыми номерами подключать к компьютеру нельзя.
Флаг Self Powered оставляем не установленным, так как устройство питается не от своего источника, а от шины USB.

В окне Max Power (mA) (максимальный ток, потребляемый устройством) пропишите значение 490 мА.
Возвращаемся в основное окно и ставим галочку в строке FT232BM/FT245BM. Появятся дополнительно несколько строк, в которых необходимо поставить флаги Enable Serial Number и Int Pull-Down Enable.

Нажимаем на кнопку Save для сохранения настроек, после чего нажимаем на кнопку Program, чтобы записать введенные данные в eeprom преобразователя. Осталось перезагрузить операционную систему компьютера.
После записи данных в память DD2 необходимо прошить микроконтроллер файлом GSM_GPRS_modem.hex, для этого отключаем модем от компьютера, подключаем аккумулятор, подключаем программатор и с помощью программы CodeVisionAVR или другой прошиваем файл.
Для доступа в Интернет необходимо установить драйвер модема Samsung_GPRS_MODEM.rar.

Описание работы устройства.

Когда устройство отключено от компьютера, модуль SIM300C и микроконтроллер Atmega8L находятся в Sleep (спящем) режиме и суммарный ток потребления от аккумулятора составляет порядка 50 мкА. При подключении устройства к компьютеру, через ножку 32 (PD2) микроконтроллера возникает прерывание, по которому микроконтроллер выходит из спящего режима и производит процедуру включения модуля SIM300C, его настройку и регистрацию в GSM сети, после чего переключает модуль на компьютер. Длится этот процесс в течение 10-15 сек и светодиод VD2 горит красным цветом. После чего красное свечение светодиода VD2 сменяется на редкие вспыхивания зеленого с интервалом где-то 4 сек. Если вспыхивания зеленого частые, это означает что модем не(или еще не) зарегистрировался в сети или нет SIM карты. Стоит помнить что при подключении Интернет светодиод часто вспыхивает зеленым цветом. Дополнительно, при установке Интернет соединения, каждые полчаса происходит проверка состояния счета абонента, и при снижении последнего ниже заданного порога, светодиод VD2 начинает часто мигать красным цветом. Для активации проверки баланса необходимо в SIM карту с помощью телефона записать номер следующего вида:

*NNN#bb#, где NNN - номер проверки баланса оператора используемой SIM карты, bb - значение баланса, при котором происходит индикация, допустимые значения от 10 до 99, и сохранить данный номер с именем Number
. Функция проверки баланса может некорректно работать с некоторыми операторами.
Для отключения модема достаточно отсоединить его от компьютера, при этом светодиод VD2 загорится красным и произойдет отключение от GSM сети и правильное отключение модуля SIM300C.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Иллюстрированный самоучитель по локальным сетям › Подключение к глобальным сетям с помощью модемов › Структура модема [страница - 139] | Самоучители по операционным системам

Структура модема

Одна из возможных структурных схем модема показана на рис. 12.4.


Рис. 12.4. Структурная схема модема

Она содержит типовые функциональные узлы обработки и преобразования сигналов, из числа которых намеренно исключены некоторые второстепенные узлы, предназначенные для организации синхронизации и обработки служебных сигналов. Далее узлы, осуществляющие прямое и обратное преобразования в передающей и приемной части модема, рассматриваются попарно.

Кодер/декодер предназначены для защиты от ошибок и "сжатия" данных. Защита от ошибок предполагает включение в пакеты передаваемых данных избыточного циклического кода (CRC), как и в локальных компьютерных сетях. При этом в качестве стандартных протоколов, более подробно описывающих форматы данных (в том числе число бит в коде CRC – 16 или 32), используются протоколы серии MNP (Microcom Networking Protocol от фирмы Microcom) или V.42 (международный стандарт ITU-T).

Протокол V.42bis представляет собой протокол сжатия данных. Если нельзя увеличить пропускную способность линии передачи из-за ограничения, накладываемого теоремой Шеннона, то можно уменьшить избыточность передаваемой текстовой информации, используя свойство повторяемости цепочек символов в словах. Для этого на передающем и приемном конце линии модемы (точнее, их кодеры и декодеры) организуют и поддерживают идентичные динамические словари в виде структур типа дерева с отдельными символами в качестве узлов (см. рис. 12.5).

Достаточно передавать не сами слова, а, фактически, специальным образом описанные (в виде чисел) части словарей (пути в дереве), содержащие требуемые последовательности символов. Так, часть словаря на рис. 12.5 позволяет описать строки символов А, В, ВА, BAG, BAR, BI, BIN, C, D, DE, DO и DOG относительно соответствующих корневых узлов.


Рис. 12.5. Пример представления части словаря при работе протокола сжатия V.42bis

Скремблер/дескремблер производят такое преобразование передаваемого и принятого сигналов, которое исключает влияние длинных цепочек из логический нулей или единиц, а также коротких повторяющихся последовательностей на надежность синхронизации в приемной части модема. Скремблер при необходимости "прореживает" такие последовательности за счет вставляемых принудительно логических нулей или единиц, делая преобразованные данные псевдослучайными, а дескремблер удаляет лишние биты, восстанавливая исходный вид данных.

samoychiteli.ru

Функциональная схема модема. Режим передачи и тип окончания канала связи. Основные параметры абонентской линии

Содержание

     Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.  Функциональная схема модема . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.1.  Передающая часть . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.2.  Приемная часть . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.  Характеристики модема . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1  Скорость передачи данных и модуляция . . . . . . . . . . . . . . . . . .7

2.2  Режим передачи и тип окончания канала связи . . . . . . . . . . . . 9

2.3  Метод передачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.  Структурная схема модема . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.  Основные параметры абонентской линии . . . . . . . . . . . . . . . . . . . . . 14

5.  Расчет помехоустойчивости приема единичных элементов . . . . . . .17

6.  Расчет степени искажений сигналов в дискретных каналах . . . . . . .20

7.  Расчет параметров устройств регистрации . . . . . . . . . . . . . . . . . . . . 23

8.  Проектирование устройств синхронизации . . . . . . . . . . . . . . . . . . . . 28

9.  Расчет спектра сигнала . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10. Индивидуальное задание.  Скремблер, дескремблер . . . . . . . . . . . 33

11. Дополнительное задание.  Характеристики модема V.26 . . . . . . . . 37

Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Приложение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

ВВЕДЕНИЕ

Технические средства обмена и передачи информации    включают в себя аппаратуру передачи  данных  с  устройствами  сопряжения между оконечным оборудованием и каналами передачи данных.

На железнодорожном транспорте его распределенной  на  большие расстояния инфраструктурой  эта  техника  передачи  информации  и пользуется особенно эффективно,  способствуя  повышению  качества управления процессами перевозок на всех уровнях.

Для передачи информации между  двумя  пунктами  необходимо иметь передатчик, приемник и проводящую среду.  Для передачи сигналов передатчик должен обеспечить преобразование сигналов в форму, соответствующую среде передачи  информации.  Среда  передачи должна образовать  путь  передачи  информации  от  передатчика  к приемнику без значительного искажения.

В связи с тем, что телефонные линии первоначально проектировались для передачи аналоговых  сигналов  с  ограниченной  полосой частот, непосредственная передача цифровых сигналов по ним приводит к большим искажениям.  Для организации связи передаваемые  из терминала в другое устройство телефонным линиям дискретные сигналы, должны быть преобразованы в форм соответствующую среде  передачи.  Такое преобразование осуществляет специальное устройство – модем.

Модемом   называется электронное устройство, которое  преобразует цифровые  сигналы,  вырабатываемые  компьютером  или  терминальным устройством, аналоговые, которые передаются по телефонной сети с помощью аналоговых аппаратных средств.

Аппаратура образования каналов связи имеет  много  разновидностей, используется разнообразное оборудование  обработки  данных, различные каналы связи, поэтому  для  обеспечения  возможности совместной работы оборудования различных систем  с  оборудованием обработки данных и каналами связи имеются международные рекомендации, разрабатываемые Международным Консультативным  Комитетом  по Телефонии и Телеграфии (МККТТ).  МККТТ играет ведущую роль в стандартизации скорости передачи данных других важных параметров аппаратуры, а так же в принятии и единых технических приемов и решений.

Данный курсовой проект посвящен проектированию модема в соответствии с рекомендацией МККТТ V.33.

1. Функциональная схема модема

Большинство современных модемов для телефонных каналов коммутируемых телефонных сетей общего пользования (КТСОП) обеспечивают синхронную передачу данных по каналу.

В самом общем виде синхронный модем содержит приемник, передатчик, компенсатор электрического эха, схему управления и, возможно, источник питания (рис. 1). Схема управления, как правило, выполняется в виде микропроцессора универсального назначения и предназначена для обеспечения интеллектуального интерфейса с оборудованием обработки данных (ООД) и управления работой приемника, передатчика и эхо-компенсатора.

Эхо-компенсатор предназначен для ослабления вредного влияния помехи в виде электрического эха  (собственного отраженного сигнала) на прием сигнала от удаленного модема.

 
Рис.1.  Схема синхронного модема

1.1 Передающая часть

Передаваемые ООД данные  поступают в передатчик модема, который выполняет операции скремблирования, относительного кодирования, синхронизации и иногда вносит предыскажения, частично компенсирующие нелинейность амплитудной и фазочастотной характеристик (АЧХ и ФЧХ) используемого телефонного канала. Схема передатчика приведена на рис. 2.

Схема синхронизации передатчика получает сигнал опорной частоты от внутреннего генератора или получает его от ООД, например, через 24-контатный разъем DB-25 интерфейса RS-232. В последнем случае модем обязан поддерживать синхронный режим работы не только по каналу с удаленным модемом, но и по интерфейсу ООД –  аппаратура канала данных (АКД). Скремблер предназначен для придания свойств случайности (рандомизации) передаваемой последовательности данных с целью облегчения выделения тактовой частоты приемником удаленного модема. При использовании сигналов ФМ и производных о них, применение относительного кодирования позволяет решить проблему неоднозначности фазы, восстановленной на приеме несущей.

 

Рис. 2.  Схема передатчика синхронного модема

1.2 Приемная часть

Приемник типового синхронного модема в свою очередь содержит адаптивный эквалайзер со схемой управления, модулятор с задающим генератором, демодулятор, относительный декодер, дескремблер и схему синхронизации (рис 3). 

 
Рис. 3.  Схема приемника синхронного модема

Модулятор приемника совместно с задающим генератором позволяют перенести спектр принимаемого сигнала (300-3400 Гц) в область более высоких частот. Это делается для облегчения операций фильтрации и демодуляции. Относительный  декодер и дескремблер выполняют операции, обратные выполняемым в передатчике. Дескремблер выделяет из принятой последовательности исходную информационную последовательность. Схема синхронизации выделяет тактовую частоту из принимаемого сигнала и подает ее на другие узлы приемника.

Адаптивный эквалайзер приемника, как и эквалайзер передатчика, позволяет компенсировать нелинейные искажения, вносимые каналом передачи. Адаптивность эквалайзера заключается в его способности подстраиваться под изменяющиеся параметры канала в течении сеанса связи.

ООД передает и принимает данные посредством использования аппаратуры

vunivere.ru

Лекция 13. Модемы. Устройство. Классификация Глава 4 Модемы. Классификация и основные принципы работы

4.1. Устройство современного модема

Главной функцией модема является функция преобразования сигналов. По этой причине первые модемы, не обладавшие возможностями современных, часто называли просто УПС. В современном понимании понятие модема значительно шире, чем совокупность модулятора и демодулятора. В настоящее время модемы являются интеллектуальными устройствами, позволяющими помимо своей основной функции, реализовать множество других функций, предоставляя дополнительные удобства пользователю.

Интеллектуальные возможности модемов реализуются благодаря наличию в них схемы управления, выполненной на основе использования микропроцессоров. Обобщенную архитектуру современного модема можно представить в виде следующей схемы (рис. 4.1).

В этой схеме универсальный процессор выполняет функции управления взаимодействием с компьютером и схемами индикации состояния модема. Он реализует посылаемые компьютером команды и управляет режимами работы остальных частей модема. Он же может реализовать различные алгоритмы сжатия и восстановления передаваемых данных.

Рисунок 4.1. Обобщенная структура современного модема

Микропрограммы управления модемом хранятся в ПЗУ. Путем замены ПЗУ иногда можно добиться существенного улучшения свойств модема, т.е. произвести его модернизацию с целью обеспечения поддержки новых протоколов или сервисных функций. Для облегчения такой модернизации в последнее время вместо ROM стали широко применяться микросхемы флеш-ROM.

Схема ППЗУ позволяет сохранить установки модема на время его выключения.

ОЗУ используется для временного хранения данных при промежуточных вычислениях как универсальным процессором, так и цифровым сигнальным процессором.

На ЦСП возлагаются задачи по реализации основных функций кодирования как корректирующим, так и линейным кодом, скремблирование и другие функции, за исключением собственно операций модуляции и демодуляции.

Эти операции обычно выполняются специализированным модемным процессором.

Рассмотренная схема не является структурной схемой какого-либо конкретного модема, а представляет собой обобщенную функциональную организацию современного модема. В каждой конкретной модели описанные функции могут быть реализованы различными способами.

4.2. Классификация модемов

Строгой классификации модемов не существует по причине их большого разнообразия. Тем не менее, выделяется ряд признаков, по которым можно произвести условную классификацию.

К этим признакам можно отнести:

- поддерживаемый модемом протокол взаимодействия;

- метод передачи;

- область применения;

- используемый тип модуляции;

- используемый метод исправления ошибок и сжатия данных;

- интеллектуальные возможности.

Функции современных модемов относятся к наиболее далеким от пользователя уровням – физическому и канальному.

Физический уровень определяет интерфейсы системы с каналом связи, а именно, механические, электрические, функциональные и процедурные параметры соединения. Физический уровень выполняет три основные функции: установление и разъединение соединений; преобразование сигналов; реализация интерфейса.

Типовой профиль протоколов при использовании модема, поддерживающего только функции физического уровня, выглядит следующим образом (рис. 4.2).

Рисунок 4.2. Типовой профиль протоколов физического уровня

При этом считается, что ООД (компьютер) соединен с модемом посредством интерфейса RS-232, а модем для подключения к каналу тональной частоты КТСОП использует протокол модуляции в соответствии с рекомендациями V.21.

Возможный профиль протоколов для модема, поддерживающего функции физического и канального уровней выглядит следующим образом (рис. 4.3).

В этой схеме компьютер соединяется с модемом посредством интерфейса RS-232, а модем реализует протокол модуляцииV.34 и аппаратную коррекцию ошибок согласно рекомендациямV.42.

С функциональной точки зрения модемные протоколы могут быть разделены на следующие группы:

1. Протоколы, определяющие нормы взаимодействия модема с каналом связи – V.2,V.25.

2. Протоколы, регламентирующие соединение и алгоритмы взаимодействия модема и ООД – V.10,V.11,V.24,V.25,V.25bis,V.28.

Рисунок 4.3. Типовой профиль протоколов физического и канального уровней

3. Протоколы модуляции, определяющие основные характеристики модемов, предназначенных для коммутируемых и выделенных телефонных каналов – V.17,V.21,V.22,V.23,V.26,V.32,V.33,V.34 и другие.

4. Протоколы защиты от ошибок – V.41,V.42.

5. Протоколы сжатия передаваемых данных – V.42bisи другие.

6. Протоколы согласования параметров связи на этапе их установления – V.8.

По методу передачи модемы делятся на асинхронные и синхронные. Следует напомнить, что говоря о синхронном, либо асинхронном методе передачи обычно подразумевают передачу по каналу связи между модемами. Однако передача данных по интерфейсу «компьютер - модем» тоже может быть синхронной и асинхронной. Модем может работать с компьютером в асинхронном режиме и одновременно с удаленным модемом – в синхронном режиме и наоборот. В таком случае говорят, что модем работает в синхронно-асинхронном режиме.

studfile.net

Передача данных по сети 220 В: аналоговый front-end

16 октября 2009

Использование сети 220 В в качестве средства для передачи данных между двумя или несколькими устройствами давно будоражит умы разработчиков. Каких то 10-15 лет назад идея организации связи по бытовой электросети казалась шуткой и вызывала улыбку. В наши дни передача данных по высоковольтной сети не вызывает удивления и имеет вполне хорошие шансы на коммерческий успех. Самое очевидное преимущество использования высоковольтных коммуникаций для передачи данных — отсутствие необходимости прокладывать кабель и осуществлять монтажные работы. Для отечественных разработчиков наиболее перспективными областями применения данного вида связи являются системы удаленного сбора данных со счетчиков, охранные системы, системы типа «умный дом».

К сожалению, даже низкоскоростная передача данных по бытовой сети переменного тока пока не получила в нашей стране широкого распространения. Этому есть ряд причин — как низкое качество отечественных силовых коммуникаций, так и не слишком большая осведомленность рынка о модемах для этого типа передачи данных.

Заинтересовавшись темой разработки PLC-модемов, автор статьи потратил не одну неделю на поиск необходимой информации. При выборе решения, на основе которого можно было бы реализовать такой модем, особых сложностей не возникло. Практически сразу же были выбраны предложения от трех известных производителей микросхем — ON Semiconductor, STMicroelectronics и Texas Instruments.

При более глубоком изучении предлагаемой технической документации наибольшее число вопросов вызвала организация аналоговой части PLC-модема, тогда как по цифровой части в документации была вполне исчерпывающая информация. Какие параметры должны быть у изолирующего трансформатора? Какие требования предъявляются к элементной базе, и какими должны быть характеристики фильтров? Предлагаемая статья открывает цикл публикаций на тему практической реализации PLC-модемов и посвящена построению их аналоговой части.

Типовая структурная схема PLC-модема (рисунок 1) состоит из четырех основных частей.

 

 

Рис. 1. Структурная схема PLC-модема

 

Входная часть обеспечивает изоляцию, фильтрацию и усиление передаваемых и принимаемых аналоговых сигналов. Сердцем PLC-модема является микросхема модема, трансивера или DSP, которая организует протокол передачи данных, а также отвечает за физическую реализацию передачи (формирование несущей частоты, модуляция, демодуляция, фильтрация и т.д.). Для управления ИМС модема, как правило, необходим внешний контроллер, а для питания всей схемы используется источник питания, работающий от той же сети переменного тока, которая используется и для передачи данных.

 

ON Semiconductor AMIS-30585

Компания ON Semiconductor предлагает для организации передачи данных по силовым сетям специализированную микросхему модема AMIS-30585. Для передачи данных в AMIS-30585 используется S-FSK модуляция (разнос частот по умолчанию — 10 кГц), а несущая частота программируется в диапазоне 9…95 кГц. Максимальная скорость передачи 1200 бит/c. Особенностью данной микросхемы является наличие встроенного микроконтроллера с ядром ARM7-TDMI, что обеспечивает внутрисхемную реализацию MAC-уровня. Эта особенность является основным преимуществом перед решениями других производителей. Помимо данного модема, ONS предлегает pin-to-pin-совместимый модем AMIS-49587 со скоростью передачи данных до 2400 бит/с.

Входная часть модема на основе решений от ONS (рисунок 2) включает в себя: изолирующий трансформатор с разделительным конденсатором (по сути — пассивный ФВЧ), драйвер (усилитель мощности), приемный канал, изолятор на оптроне для получения синхронизирующего сигнала частотой 50 Гц и дополнительный канал для получения сигнала управления мощностью передатчика (обратная связь с передатчиком).

 

 

Рис. 2. Принципиальная схема входной части модема на основе AMIS-30585

 

Данная схема для модема на основе AMIS-30585 достаточно проста и не требует экзотической элементной базы, поэтому может быть модифицирована или использована в готовом виде в сочетании с любой другой ИМС модема. Это утверждение в целом справедливо и для всех иных схем, представленных в статье.

Передача данных от счетчиков посредством PLC-модемов наиболее распространена во Франции. По этой причине производством изолирующих трансформаторов для таких модемов занимаются нишевые французские и немецкие компании, а сами трансформаторы не слишком доступны. Из наиболее доступных рыночных вариантов были выбраны трансформаторы фирмы Vigortronix — VTX-111-010 и VTX-111-004 (в данный момент эти изделия имеются на складе компании КОМПЭЛ).

Драйвер линии реализован на операционном усилителе OPA561 c высоким значением выходного тока (до ±1,2 A). Это связано с тем, что драйверу приходится работать на нагрузку порядка 5 Ом. Выходной ток OPA561 в этой схеме ограничен 0,6 А с помощью резистора 10 кОм между четвертым выводом и минусом питания. Помимо функции раскачки линии, OPA561 также выполняет функцию ФНЧ. Смоделированная АЧХ такого фильтра изображена на рисунке 3.

 

Рис. 3. АЧХ передающей части

 

Поскольку выход ОУ отключается наличием на выводе E/S отрицательного напряжения питания, а выходная логика AMIS-30585 имеет уровни 0 и +3,3 В, для управления отключением выхода усилителя добавлена схема на транзисторах BC857 и BC847. Следует иметь в виду, что корпус данного ОУ имеет «Power Pad» для отвода тепла, который следует электрически соединить с минусом питания.

Приемник и канал управления мощностью передатчика схемотехнически повторяют друг друга и реализованы на сдвоенном ОУ NE5532. По сути это — ФВЧ, основная задача которого — подавить сигнал частотой 50 Гц. Такой фильтр позволяет получить ослабление до -90 дБ на частоте 50 Гц. Выход приемного канала соединяется с входом интегрированного в AMIS-30585 операционного усилителя, на котором также реализуется ФВЧ с ослаблением порядка -80 дБ, что в сумме дает ослабление до -170 дБ на частоте 50 Гц. АЧХ фильтра на NE5532 приведена на рисунке 4. Разумеется, с учетом пассивной фильтрации и входная, и выходная части являются более узкополосными.

 

Рис. 4. АЧХ приемной части

 

Для пакетной передачи данных AMIS-30585 требуется синхронизирующий сигнал, который несет в себе информацию о пересечении нуля сетевым напряжением частотой 50 Гц. Для этой цели добавлена схема на оптроне PC817С. Выходной сигнал этой схемы — импульсы частотой 50 Гц, амплитудой от 0 до напряжения VDD. Передний и задний фронты этих импульсов соответствуют пересечениям нуля сетевого напряжения.

На рисунке 5 изображена упрощенная схема включения AMIS-30585. Собственно, это минимум того, что необходимо для работы данной микросхемы. В зависимости от приложения, в котором используется PLC-модем, разработчику предстоит выбрать управляющий микроконтроллер. Более подробную информацию можно найти в технической документации на AMIS-30585.

 

Рис. 5. Упрощенная схема включения AMIS-30585

 

STMicroelectronics: ST7540

ST7540 — решение для PLC модема от STMicroelectronics. Отличительной особенностью этой микросхемы является наличие интегрированного усилителя мощности и двух линейных стабилизаторов напряжения на 5 и 3,3 В. На этом решении могут остановиться и разработчики, которые уже имеют свой собственный протокол передачи данных по последовательному интерфейсу, например, при переходе от передачи данных по RS-485 к передаче тех же данных посредством PLC. Входная часть модема на ST7540 показана на рисунке 6.

 

Рис. 6. Принципиальная схема входной части модема на основе ST7540

 

АЧХ активной части передатчика в целом похожа на АЧХ усилителя мощности для AMIS-30585 (полоса пропускания около 100 кГц, усиление в полосе 9 дБ) поэтому этот график не приводится. В документации на отладочный набор STMicroelectronics приводит более интересные характеристики (рисунок 7), а именно АЧХ приемной и передающей частей с учетом пассивной части (выделена красным на рисунке 6).

 

Рис. 7. АЧХ передающей и приемной частей

 

При реализации входной части PLC-модема возможно использование неизолированного решения (рисунок 8). В этом случае при сопряжении микросхемы модема с внешним устройством (микроконтроллер, микросхема интерфейса) следует применять цифровой изолятор интерфейсов, например, изолятор с емкостным барьером серии ISO7x от Texas Instruments.

 

Рис. 8. Неизолированная входная часть

 

Texas Instruments: C2000

Компания Texas Instruments в качестве коммуникационной микросхемы предлагает использовать цифровой сигнальный процессор (DSP) серии C2000 (рисунок 9). Преимуществом данного решения является то, что выбор типа модуляции, обеспечение протокола передачи и кодирования данных полностью предоставлено разработчику. Казалось бы, усложнение разработки не является преимуществом перед конкурентами, однако в этом случае у разработчика появляется возможность разработать свой собственный способ помехозащищенной передачи данных, что крайне важно в условиях реалий отечественных бытовых сетей. В итоге, решение на основе DSP может оказаться единственным жизнеспособным в нашей стране. Что каcается финансовой стороны вопроса, то самый простой DSP серии Piccolo от Texas Instruments (которого вполне достаточно для выполнения описанных задач) стоит дешевле микросхемы PLC-модема.

 

Рис. 9. Структурная схема сопряжения DSP и аналоговой части

 

Собственно при разработке аналоговой части для этого решения можно опираться на описанные выше схемы. Однако, следует учитывать один важный момент — это предлагаемый способ формирования несущих частот с использованием TMS320F280x, который графически продемонстрирован на рисунке 10.

 

Рис. 10. Формирование несущей частоты в модеме на DSP от Texas Instruments

 

Очевидно, что от аналоговой передающей части в данном случае требуется просуммировать сигналы с выходов ШИМ и затем отфильтровать высшие гармоники спектра суммарного сигнала, чтобы получить необходимый гармонический сигнал.

 

Заключение

Несколько слов об отладочных средствах для описанных выше решений. ON Semiconductor предлагает отладочный набор AMIS49587EVK для микросхемы модема AMIS-49587, которая pin-to-pin-совместима с AMIS-30585. Для отладки решения на основе ST7540 потребуются 2 платы: непосредственно плата с трансивером (EVALST7540-1) и коммуникационная плата (EVALCOMM) с микроконтроллером ST7 (ST72F651AR6), обеспечивающая связь с ПК через порты USB и RS-232.

Texas Instruments предлагает отладочный набор TMDSPLCKIT-V1. Отладочная плата состоит из источника питания, аналогового front-end’а и платы с установленным DSP. Все отладочные наборы содержат необходимое программное обеспечение для управления целевыми платами. Более подробная информация дается на официальных сайтах производителей.

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

•••

Наши информационные каналы

www.compel.ru

12. Современные модемы. Классификация. Функции модемов. Рекомендации мкктт.

Модем–устройство прямого ( модулятор ) и обратного ( демодулятор ) преобразования сигналов к виду, принятому для использования в определенном канале связи. Но в современном понимании понятие модема значительно шире, чем просто совокупность модулятора и демодулятора. В настоящее время модемы являются интеллектуальными устройствами, которые позволяют реализовать помимо основных, множество дополнительных функций.

Подразделяются:

  • На аналоговые ( самые распространенные сейчас модемы )

  • На цифровые ( или сетевые адаптеры ). В них нет классической модуляции и демодуляции. Входные и выходные сигналы у таких модемов импульсные. Для них не разработаны общепринятые стандарты и они выпускаются для работы в конкретных цифровых технологиях: ISDN, HDSL, ADSL и т.д.

По классу подразделяются:

  • Модемы 1 класса. Выполняют основную работу по приему и передаче сообщений компьютером с программой поддержки факсимильной связи.

  • Модемы 2 класса. Реализуют все процедуры приема и передачи факсов средствами самого модема.

По исполнению:

  • Внутренние.

  • Внешние.

По интерфейсу с каналом связи:

По назначению:

  • Для телефонных каналов ( стандарт V ).

  • Для телеграфных каналов.

  • Факс модемы.

  • Сотовые модемы.

  • Оптоволоконные модемы.

  • Спутниковые радиомодемы.

По скорости передачи:

По принципу работы линии:

  • Асинхронные. В этом режиме каждый переданный байт дополняется стартовым битом и 2 стоповыми битами. Иногда дополняется битом четности.

  • Синхронные. В данном режиме данные передаются одним потоком байт за байтом. Стартовые и стоповые биты отсутствуют.

  • Синхронно-ассинхронные.

По реализации протоколов:

Порт интерфейса ООД-АПД ( ПК – модем ) обеспечивает взаимодействие с ООД ( ПК ). Если модем внутренний, то вместо этого интерфейса используется внутренняя компьютерная шина PCI или ISA.

Порт канального интерфейса обеспечивает согласование электрических параметров с используемым каналом связи. Канал может быть аналоговым или цифровым с 2-х или 4-х проводным окончание.

Универсальный процессор выполняет функции управления взаимодействием с ООД и схемами индикации состояния модема. Именно он выполняет, посылаемые с ПК , АТ-команды и управляет режимами работы остальных составных частей модема. Может реализовывать операции компрессии и декомпрессии передаваемых данных.

Интеллектуальные возможности модема определяются в основном типом используемого универсального процессора и микропрограммой управления модемом, хранящейся в ПЗУ. Путем замены или перепрограммирования ПЗУ можно существенно улучшить свойства модема, т.е. произвести его модернизацию. Это может обеспечить поддержку новых протоколов и сервисных функций.

Схема ППЗУ позволяет сохранять установки модема в профилях ( профайлах ) на время его выключения. Параметры конфигурации модема хранятся в ППЗУ ( активный профиль), ПЗУ ( заводская ), в ОЗУ ( текущая конфигурация ). Выбор любого профиля производится по командам от ПК. Память ОЗУ интенсивно используется и для временного хранения данных и промежуточных вычислений, производимых как универсальным, так и цифровым сигнальным процессорами.

На сигнальный процессор возлагаются задачи по реализации основных функций протоколов модуляции ( линейное кодирование, скремблирование и т.д. ) за исключением собственно операций модуляции и демодуляции. Они выполняются модемным процессором.

Основные функции:

  • Осуществляет преобразование последовательных цифровых сигналов в аналоговый и наоборот.

  • Защита от ошибок.

  • Сжатие данных, что позволило радикально увеличить скорость передачи и достоверность ( код Хафмена, метод Шеннона-Фано ). Сжатие данных выполняется путем обнаружения и частичного устранения избыточности информации во входном потоке передающего модема, после чего закодированные блоки данных уменьшенного размера направляются принимающему модему, который восстанавливает их исходный вид.

  • Адаптивная коррекция.

  • Эхо-компенсация. На телефонных каналах присутствуют участки перехода с 2-х проводной части канала на 4-х проводную и наоборот. Переход идет через дифференциальную систему, которая не является идеальной. Поэтому присутствуют токи обратной связи и как следствие эхо-сигналы, поступающие на вход модема. Для борьбы с этим явлением модемы используют функцию эхо-компенсации.

  • Сверточное кодирование и декодирование.

  • Полное самотестирование модема.

  • Распознавание идентификатора звонящего.

  • Автоматический дозвон.

  • Процесс передачи информации с одновременным наблюдением за целостностью коммутируемого канала.

  • Автоматическая инициализация модема.

Помимо основных функций в современных модемах реализованы дополнительно интеллектуальные возможности, которые рассмотрены далее в ответе на вопрос 46.

По рекомендациям МККТТ, передача данных и их преобразования в модемах выполняются в соответствии принятыми протоколами.

Протокол передачи данных – это совокупность правил, регламентирующих формат данных и процедуры их передачи в канале связи.

Протоколы передачи по телефонным каналам связи:

V 21 - асинхронный режим, частотная модуляция, максимальная скорость 300 бит/с. Предназначен для факсимильной передачи данных.

V 22 – дуплексный , асинхронно-синхронный режим, относительная фазовая модуляция, максимальная скорость 1200 бит/с, есть скремблирование.

V 22bis – дуплексный , используется квадратурно-амплитудная модуляция, максимальная скорость 2400 бит/с.

V 32 – асинхронно-синхроннй режим, квадратурно – амплитудная модуляция, максимальная скорость 9600 бит/с, наличие скремблирования и эхо-компенсации.

V 32 bis - асинхронно-синхроннй режим, квадратурно – амплитудная модуляция, максимальная скорость 14400 бит/с, наличие скремблирования и эхо-компенсации, автоматическая подстройка скорости передачи.

V 34,V 34bis - максимальная скорость 28800, 33600 бит/с, 256 кратная квадратурно – амплитудная модуляция. Имеет новые методы коррекции ошибок, кодирование данных, управление уровнем сигнала и т.д.

V 90 – протокол 1998 года. «Полуцифровой» скоростной протол. Квадратурно – амплитудная модуляция, максимальная скорость 56000 бит/с.

Протоколы факсмодемов:

V17 – 2х провдный, максимальная скорость 14400 бит/с, подстройка с меньшей скорости, м128 кратная фазовая модуляция, решетчатое кодирование или кодирование со сверточным кодом.

V27bis – для выделенных телефонных и факсимильных каналов, максимальная скорость 4800 бит/с.

V29 – для 4х проводного канала, максимальная скорость 9600 бит/с, синхронный режим.

Протоколы широкополосных модемов:

V 35 – для передачи газетных полос по фототелеграфу. Максимальная скорость передачи 48000 бит/с, ширина канала 60-108 кГц.

V36 - Максимальная скорость передачи 72000 бит/с, ширина канала 60-108 кГц.

V37 - Максимальная скорость передачи более 72000 бит/с, ширина канала 60-108 кГц.

Протоколы коррекции ошибок и сжатия данных:

Практически все протоколы коррекции ошибок основаны на повторении передачи ошибочного блока по запросу от принимающего модема. Каждый блок снабжается контрольной суммой, которая проверяется на приеме и блок не отдается потребителю до тех пор, пока не будет принят в правильном виде. Наиболее распространены протоколы MNP – аппаратные протоколы коррекции ошибок и сжатия данных. Из них MNP 4 включая более поздний V42. Для сжатия данных наиболее распространены протоколы MNP5 и V 42bis. Сжатие данных в 2-4 раза.

Протоколы передачи данных:

ASCIT – без коррекции ошибок, поэтому используется на коротких линиях.

X-MODEM – наиболее распространен. Имеет 3 варианта. В последнем варианте если передача идет без ошибок, то размер пакета автоматически увеличивается до 1024 байт. При увеличении числа ошибок размер пакета уменьшается.

Y-MODEM – для использования с модемами, которые автоматически осуществляют коррекцию ошибок на аппаратном уровне.

Z-MODEM – это быстрый протокол передачи данных. Не требует писать полный путь передаваемого файла. Имеется автоматическая постройка размеров пакета.

studfile.net

Модем для цифровых видов связи | RUQRZ.COM


Основная цель, которую преследовал автор, разрабатывая модем для цифровых видов радиосвязи, — гальванически «развязать» персональный компьютер и трансивер IC-728. Управление режимом прием-передача трансивера организовано через СОМ-порт.

Модем для цифровых видов связи

Схема модема проста и не требует пояснений. Напряжение питания для узла управления приемом-передачей поступает с трансивера, с контакта №7 разъема АСС(1).

Для гальванической «развязки» сигнальных НЧ цепей применены трансформаторы с коэффициентом трансформации 1:3 (можно и с другим коэффициентом трансформации), используемые в аппаратуре связи. Трансформаторы намотаны на кольцевых магнитопроводах. «Развязку» управляющих сигналов обеспечивает оптрон АОТ110A.

Выбор реле РЭС-82 был обусловлен низким (5 — 7 В) напряжением срабатывания. Разумеется, — можно применить любое подходя щее реле.

Монтаж устройства печатно-навесной. Штекер для разъема АСС(1) был переделан из стандартного НЧ разъема.

У автора модем подключен к компьютеру и трансиверу постоянно. При работе цифровыми видами радиосвязи не забывайте выключать в трансивере компрессор сигнала.

С момента ввода в эксплуатацию модема до написания статьи проведено более 150 связей (в эфире работаю только по выходным) цифровыми видами – BPSK31, RTTY, SSTV. Если в SSB могут ответить и 3-5 раза, то здесь как правило с первого. Помнится только 3 случая, что мне не ответили.

UR5YCW

Что еще почитать по теме:

www.ruqrz.com

Отправить ответ

avatar
  Подписаться  
Уведомление о