Схему включения транзистора с общим эмиттером – Биполярные транзисторы. For dummies / Habr

Содержание

Биполярные транзисторы. For dummies / Habr

Предисловие


Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история


Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики



Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но б

ольшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст

статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется

граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора


Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером


Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой


Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором


Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах


Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов


Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка


Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .

Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

habr.com

Лекция 12 микроэлектроника

6.2 Включение транзистора по схеме с общим эмиттером

Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:

Лучше с землей и двумя источниками

Рис. 6.13. Схема включения транзистора с общим эмиттером

В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы IБ, и напряжение на базе относительно эмиттера UБЭ, а выходными характеристиками будут ток коллектора IК и напряжение на коллекторе UКЭ. Для любых напряжений:

Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp-транзистора и положительный в случае npn-транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.

Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:. В схеме с общим эмиттером для pnp-транзистора (в соответствии с первым законом Кирхгофа) (6.1): , отсюда получим:

.

(6.36)

После перегруппирования сомножителей получаем:

.

(6.37)

Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером. Обозначим этот коэффициент знаком β, итак:

.

(6.38)

Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора IК при изменении тока базы IБ. Поскольку величина коэффициента передачи α близка к единице (α<1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β>>1). При значениях коэффициента передачи α=0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β=50÷100.

6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером

Рассмотрим ВАХ pnp-транзистора в режиме ОЭ (рис. 6.13, 6.14).

Рис. 6.13. Выходные ВАХ ОЭ

Рис. 6.14. Входные ВАХ ОЭ

Входные ВАХ.

Рекомбинационный ток базы составляет часть тока эмиттера:

(6.36)

При UКЭ=0 . С увеличением напряжения UБЭ концентрация на переходе ЭБ растет(рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn-переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).

При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |UБЭ| (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения UКЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.

а

б

UКЭ=const, UБЭ – переменное

UБЭ =const, UКЭ– переменное

Рис. 6.15 Распределение неосновных носителей в базе pnp-транзистора при включении в схеме с ОЭ

При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз.

При UБЭ=0 и отрицательном напряжении на коллекторе (Uкб<<0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок IКЭ0.

В базе, как и в pn-переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки, он характеризуется сменой направления тока базы.

Выходные ВАХ.

В активном режиме (|UКЭ|>|UБЭ|>0) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом . Часть дырок (1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.

При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.

Проанализируем, почему малые изменения тока базы IБ вызывают значительные изменения коллекторного тока IК. Значение коэффициента β, существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.

Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.

По аналогии с (6.34) можно записать:

(6.37)

Учитывая (6.1): , получим:

Учитывая, что

где - сквозной тепловой ток отдельно взятого коллекторного pn-перехода в режиме оторванной базы (при , т. С, режим отсечки). За счет прямого смещения базового перехода (рис. 6.16) ток много больше теплового тока коллектора Iк0.

Рис. 6.16 UБЭ =const, UКЭ– переменное

В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (UКБ=0). В силу уравнения UКЭ=UКБ+UБЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При UКЭ0 и UБЭ<0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (UКЭ<UБЭ) UКБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).

При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).

Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.

Рост тока коллектора с увеличением UКЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ растет быстрее α. Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.

Рис. 6.23 Выходные характеристики pnp-транзистора

а – в схеме с ОБ, б – в схеме с ОЭ

6.3 Включение транзистора по схеме с общим коллектором

Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:

(6.42)

Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем. Однако этот тип включения используется сравнительно редко.

Сопоставляя полученные результаты, можно сделать выводы:

  1. Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.

  2. Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.

  3. Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.

studfile.net

Схемы Подключения Биполярных Транзисторов - tokzamer.ru

В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером.


Конденсатор Ср является разделительным. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Вольт-амперная характеристика стабилитрона представлена на рис.
Биполярные транзисторы

По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц.

Рисунок 3.

Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ.

Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, — не более


Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ [РадиолюбительTV 42]

Характеристики транзистора, включенного по схеме об

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.

Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.

Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

Активный режим транзистора — это нормальный режим работы транзистора.


При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1

Смотрите также: Энергоаудит предприятия для чего и когда проводится

Схема с общей базой

При этом входное сопротивление очень мало, а выходное — велико.

Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле: Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. В выходной цепи для сигнала требуется нагрузка. Кроме биполярных существуют униполярные полевые транзисторы, у которых используется лишь один тип носителей — электроны или дырки.

Активный режим транзистора — это нормальный режим работы транзистора. Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется.

Это усиление осуществляется за счет энергии источника питания. Напряжение 0,6В это напряжение на переходе Б—Э, и при расчетах о нем не следует забывать!

Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи. Достоинства каскада по схеме с общим эмиттером: 1. Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема включения биполярного транзистора с общим коллектором


Работа транзистора в ключевом режиме Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме. Эмиттерные повторители схемы с общим коллектором применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Быстродействие БТ зависит от толщины базового слоя БС. Теперь проследим саму работу данной схемы: источник питания 1.

Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки читай одной партии. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками. Рисунок 7. Следовательно, для усилителей постоянного тока нижняя граничная частота усиления равна нулю переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. На рисунке изображена схема работы транзистора в ключевом режиме.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором ОК. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! База является управляющим электродом.
Биполярные транзисторы. Принцип действия.

Характеристики транзистора, включённого по схеме оэ:

Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием.

Благодаря незначительной толщине слоя микроны и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Где транзисторы купить? Транзисторы по праву считаются одним из великих открытий человечества.

При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном — обратное. Его также обозначают как Исходы из выше сказанного транзистор может работать в четырех режимах: Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Ответ может быть да а может и нет. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Схема с общим коллектором ОК Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь.

Читайте также: Снип по прокладке кабеля в земле

Схемы включения биполярного транзистора

Ваш email:. Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем рис. Поэтому плотность компоновки элементов в МОП- интегральных схемах значительно выше. Коллектор имеет более положительный потенциал , чем эмиттер Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.

Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Такой режим работы транзистора рассматривался уже давно. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада. Выводы транзистора звонятся как два диода, соединенные в общей точке в области базы транзистора.

Устройство и принцип действия

В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя.

Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. Все эти схемы показаны на рисунке 2. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами.
Ключевой режим работы транзистора Схема с общим эмиттером

tokzamer.ru

§3. Основные схемы включения транзисторов.

Применяют три основные схемы включения транзисторов в усилительные или иные каскады. В этих схемах один из электродов транзистора является общей точкой входа и выхода каскада.

Во избежание ошибок при этом надо помнить, что под входом(выходом) понимают точки, между которыми действует входное(выходное) переменное напряжение. Не следует рассматривать вход и выход по постоянному напряжению.

Основные схемы включения транзисторов называются соответственно схемами с общим эмиттером(ОЭ), общим коллектором(ОК), общей базой(ОБ). Вместо слов с «с общим» иногда говорят «с заземлённым», хотя заземление бывает не всегда. Принцип усиления колебаний во всех этих каскадах одинаков, но свойства схем различны.

Различают статическийрежим транзистора, при котором на его электроды поданы только напряжения от источников питания, идинамический, при котором кроме этих напряжений на вход транзистора подаётся усиливаемый сигнал, а в цепь выходного электрода включено сопротивление нагрузки. В данном параграфе рассматривается статический режим транзистора и соответствующие этому режиму статические характеристики и параметры транзистора.

Статические характеристики транзистора представляют собой зависимости тока в цепи одного из электродов от изменяющегося питающего напряжения на этом электроде при неизменном питающем напряжении на другом электроде или токе в цепи последнего. Различают входные и выходные характеристики транзисторов. Входные характеристики определяют связь входного тока и входного напряжения, при постоянном выходном напряжении. Несколько одноимённых статических характеристик снятых при различных значениях поддерживаемой постоянной третьей величины и построенных в одной общей системе координат, называют семейством статических характеристик.

Включение транзистора с общей базой (ОБ)

На рис. 6 приведена схема включения транзистора с общей базой.

В схеме с общей базой семейство входных статических характеристик – это зависимости IЭ = f(UЭБ), при UКБ = const

Рис. 7 – Семейство входных характеристик транзистора, включенного по схеме с общей базой.

Типичное семейство входных характеристик для маломощногоn-p-nтранзистора показано на рис. 7. Отрицательные значения напряженияUЭБсоответствуют прямому включению эмиттерного перехода. Характеристика дляUКБ = 0 практически совпадают с характеристикойp-nперехода. В активном режиме(UЭБ < 0, UКБ > 0)сдвиг характеристик при изменении напряжения на коллекторе обусловлен эффектом Эрли: с ростомUКБпри постоянном токеIЭпрямое напряжение эмиттерного перехода снижается и характеристика сдвигается влево. В режиме насыщения(UЭБ < 0, UКБ < 0) кроме тока инжекции через эмиттерный переход течёт встречный ток электронов, инжектированных в базу из коллектора. При постоянном напряженииUЭБс ростом по модулю напряженияUКБвстречный ток увеличивается, а полный эмиттерный ток уменьшается, то есть приUКБ < 0 характеристики сдвигаются вниз относительно характеристикиUКБ = 0.

Выходные характеристики– это зависимости выходного тока от выходного напряжения при постоянном входном токе. Для схемы с общей базой семейство выходных характеристикn-p-nтранзистора представлено на рис. 8; здесь параметром служит ток эмиттера:

IK = f(UКБ), при IЭ = const

Область характеристик при UКБ > 0соответствует активному режиму, гдеIК ≈ αIЭ, так какα = 1, тоIКIЭ. Область характеристик приUКБ< 0 относится к режиму насыщения, где с ростом прямого напряжения коллекторного перехода экспоненциально возрастает его ток инжекции, направленный противоположно току коллектора, поэтому полный токIКуменьшается и может даже изменить направление.

При больших напряжениях UКБток резко увеличивается вследствие пробоя коллекторного перехода. Для коллекторного перехода характерен лавинный пробой, что объясняется низкой концентрацией примесей в коллекторе.

В семействе выходных характеристик для транзистора, включённого по схеме с общей базой, нет характеристики соответствующей IЭ = 0. ПриIЭ = 0 в базу из эмиттера не поступают дырки и в цепи коллектора протекает только обратный токIКБ0, который настолько мал, что сливается с горизонтальной осью.

Слабая зависимость тока коллектора от коллекторного напряжения свидетельствует об очень высоком выходном сопротивлении транзистора подключённого по схеме с общей базой:

, при IЭ = const.

Для транзисторов малой мощности Rвых.бимеет порядок сотен тысяч Ом, а для некоторых типов транзисторов может даже превышать 1 МОм.

Из характеристик рис. 7 видно, что малые изменения эмиттерного напряжения вызывают значительные приросты тока эмиттера. Это говорит о том, что транзистор, включённый по схеме с общей базой, имеет малое входное дифференциальное сопротивление.

, приUКБ = const

Для транзисторов малой мощности Rвх.бсоставляет единицы – десятки Ом.

Транзистор, включённый по схеме с общей базой, характеризуется также дифференциальным коэффициентом передачи тока эмиттера(просто коэффициент передачи):

, приUКБ = const

Поскольку всегда ΔIK < ΔIЭ, α < 1 (α = 0,96…0,99),то есть транзистор, включённый по схеме с общей базой, не даёт усиления по току. Но в то же время он обладает способностью усиления по напряжению и мощности. Это может быть объяснено следующим образом. Входное сопротивление транзистора мало. Поэтому с помощью малого прироста входного напряжения ΔUЭБможно получить значительный прирост тока ΔIЭ. Этот прирост тока почти полностью передаётся в коллекторную цепь:ΔIKΔIЭ. Благодаря тому, что выходное сопротивление транзистора велико и напряжение коллекторного источникаЕК >> ЕЭ2>>Е1),в коллекторную цепь можно включить нагрузочное сопротивлениеRK, во много раз превышающее входное сопротивление транзистора, от этого прирост коллекторного тока практически не уменьшается. Прирост коллекторного токаΔIKсоздаст прирост падения напряжения на нагрузочном резисторе примерно во столько же раз больший, чем прирост входного напряжения, во сколько разRK> Rвх.б. При этом возникает такой же по величине, но с обратным знаком прирост падения напряжения на коллекторе = ΔIKRK.

Коэффициент усиления по напряжению определяется соотношением:

КUб=

Таким образом, транзистор даёт возможность перейти от цепи малым сопротивлением к цепи с большим сопротивлением, но практически с тем же приростом тока, т.е. транзистор как бы преобразует сопротивление цепи. Наличие усиления по напряжению при ΔIK≈ΔIЭозначает, что транзистор вносит также усиление по мощности.

Выводы:

  1. В схеме с общей базой входная характеристика представляет собой характеристику p-nперехода при прямом включении.

  2. Входное дифференциальное сопротивление транзистора в схеме с общей базой мало, т.к. малые изменения напряжения на эмиттере вызывают значительные приросты тока эмиттера.

  3. В схеме с общей базой коллекторное напряжение влияет на ток эмиттера. Причём с повышением (по абсолютному значению) коллекторного напряжения ток эмиттера увеличивается (входная характеристика сдвигается влево).

  4. У транзисторной схемы с общей базой ток коллектора очень слабо зависит от коллекторного напряжения. Это означает что выходное сопротивление транзисторной схемы с общей базой очень велико.

  5. Транзистор, включённый по схеме с общей базой, вносит усиление по напряжению и мощности.

  6. Схема не даёт усиления по току.

  7. из-за малого входного сопротивления схема включения транзистора с общей базой потребляет относительно большой ток от источника сигнала.

  8. Чрезмерное большое выходное сопротивление затрудняет согласование с нагрузкой.

Включение транзистора с общим эмиттером (ОЭ)

На рис. 9 приведена схема включения транзистора с общим эмиттером.

Рис. 9 Схема включения транзистора с общим эмиттером

Указанные недостатки устраняются, если источник эмиттерного напряжения, а в рабочем (положении и источник сигнала) включить не в эмиттерный, а в базовый провод (рис.9). В этом случае общей точкой подключения входных и выходных транзистора является вывод эмиттера. При таком включении транзистора воздействие приростов напряжения источника Еб1) на эмиттерный переход(а значит и на ток эмиттера) остаётся по существу тем же, что и в схеме с общей базой, поскольку они также приложены между выводами эмиттера и базы. Но теперь источник включён в участок входной цепи с малым током базы. Последний в данном случае является входным токоми поэтому усилительное свойствоVTв схеме с ОЭ характеризуется дифференциальным коэффициентом передачи тока Б :

при

Но .

В свою очередь , .

Подставив значение в выражение для , получим

.

При при Т.о.,VT,вкл. по схеме с ОЭ, усиливает приращение тока Б (амплитуду тока сигнала) в десятки раз. Усиление по напряжению в данной схеме остаётся примерно таким же, как и в схеме с ОБ, т.е. порядка десятков. Поэтому коэффициент усиления по мощности в схеме с ОЭ

Дифференциальное входное сопротивление VTв схеме с ОЭ:

при

значительно больше, чем в схеме с ОБ (сотни Ом.), т.к. при одном и том же приросте напряжения на Эом переходе прирост тока Б много меньше прироста тока Э.

Выходное сопротивление VTв схеме с ОЭ:

при

меньше, чем в схеме с ОБ (десятки кОм.), поскольку один и тот же прирост К-го напряжения в схеме с ОЭ вызывает больший прирост К-го тока, чем в схеме с ОБ. Объясняется это тем, что в схеме с ОЭ небольшая часть напряжения К-го источника (а также приростов К-го напряжения) прикладывается к Э-му переходу (“-” к Э непосредственно, а “+” через К и К-ый переход к Б) [для VTn-p-n]. При этом, например, повышениеUкэ на ΔUкэ вызывает дополнительное понижение φ-го барьера в Э-ом переходе, что приводит к повышению токов Э и К.Кроме того, повышениеUкэ приводит и к увеличениюUкБ , а от этого расширяется К-ый переход , что, в свою очередь приводит к понижению тока базы, ноRвыхэ определяется при условииIБ=const.Поэтому для восстановления прежнего значенияIБ приходится несколько повысить напряжениеUБэ, а от этого возрастают токиIэ иIк.

Входная статическая характеристика для схемы с ОЭ представляет собой зависимость тока Б от напряжения на Б при неизменном напряжении на К:

IБ=f (UБэ) при Uкэ=const.

Рассматривая зависимость тока Б от напряжения на Б, следует иметь в виду, что последнее воздействует на ток Б не непосредственно, а, как и в схеме с ОБ, через ток Э.Так, например, повышение UБэ вызовет увеличениеIэ.При этом за счёт роста составляющихIэnиIэрек увеличется и ток Б.

Рис. 11 – Семейство выходных характеристик транзистора в схеме с ОЭ

Сравнивая входные статические характеристики VTв схеме с ОЭ с одноимёнными характеристиками для схем с ОБ, можно заметить некоторые различия между ними:

1.В схеме с ОЭ К-ое напряжение не увеличивает входной ток (Б),а уменьшает его, то есть смещает характеристику вправо.

2.Входные характеристики в схеме с ОЭ, снятые при наличии К-го напряжения, имеют отрицательный участок (IБ<0).При малых значениях напряжения на Б (на Э-ом переходе) суммарный ток, образованный составляющими тока БIэnиIэрек, оказывается меньше встречной составляющей-токаIкБо. Поэтому результирующий ток Б совпадает с направлением токаIкБо. Поэтому результирующий ток Б совпадает с направлением токаIкБо, тоесть втекает в Б.Входная характеристика пересекает горизонтальную ось в точке, для которой выполняется равенство:

Iэn+Iэрек = -IкБо.

Выходная статическая характеристика VT, включённого по схеме с ОЭ (рис.11), представляет собой график зависимости тока К от напряжения на К при неизменном токе Б:

Iкэ=f(Uкэ) при IБ=const.

Поскольку при Uкэ=0 ток К представляет собой диффузионный ток, протекающий в обратном направлении, статические выходные характеристики начинаются не с нуля, а с некоторого отрицательного значения тока.

К-ые характеристики в схеме с ОЭ имеют заметно больший угол наклона к горизонтальной оси, чем в схеме с ОБ. Это говорит о меньшем сопротивлении VTпо сравнению со схемой ОБ.

Выводы:

1.В отличие от схемы с ОБ схема с ОЭ наряду с усилением по напряжению даёт также усиление по току. Поэтому усиление по мощности в схеме с ОЭ значительно больше, чем в схеме с ОБ.

2.VT, включённый по схеме с ОЭ, имеет более приемлемые значения входного и выходного сопротивлений, чем в схеме с ОБ.

3.Благодаря указанным преимуществам схемы с ОЭ находит наибольшее применение на практике.

Схема включения с общим коллектрором (ОК)

Статические характеристики ОЭ и ОК примерно одинаковые.

В отличие от схемы с ОЭ в схеме с ОК нагрузочный резистор включают не в цепь К, а в цепь Э и выходное напряжение снимают не с К VT, а с указанного нагрузочного резистора в цепи Э (рис. 12). Особенность данной схемы состоит в том, что входные и выходные напряжения сигнала действуют в одной цепи Б-Э. Причём приросты напряжения, создаваемые источником с-ла, вызывают близкие по значению приросты падения напряжения на нагрузочном резистореRэ, но противоположной полярности. Поэтому непосредственно между Б и Э будет приложена разность указанных приростов напряжения, которая во много раз меньше прироста напряжения источника с-ла, поступающего на БVTв отсутствиеRэ, то есть в схеме с ОЭ. Соответственно будут меньшими и приросты токов вVT, в частности тока Б. Последним объясняется то, что схема с ОК имеет наибольшее из всех схем включениеVTдифференциальное входное сопротивление (Rвх.к. может

при Uкэ=const.

составлять десятки кОм.).Выходное сопротивление схемы с ОК наименьшее из всех схем включения VTа (десятки-сотни Ом.). Очевидно, что в данной схеме прирост падения напряжения наRэ, то естьUвых всегда меньшеUвх. Это означает, что схема с ОК не даёт усиления по напряжению. В то же время схема с ОК даёт усиление по току и мощности. Статические характеристикиVTснимаются при отсутствии нагрузочного резистора (Rк=Rэ=0). Но в этом случае схема с ОК превращается в схему с ОЭ. Поэтому статические характеристики для схемы с ОК те же, что и для схемы с ОЭ.

Выводы:

1.Схема с ОК вносит усиление по IиP, но не даёт усиление по напряжению.

2.Схема с ОК имеет наибольшее из всех схем включения VTвходное и наименьшее выходное сопротивление.

Для удобства сравнения основные свойства всех трёх схем включения транзисторов сведены в таблицу 1.

Таблица 1.

Важнейшие параметры основных схем включения транзисторов.

Параметр

Схема ОЭ

Схема ОБ

Схема ОК

Ki

Десятки-сотни

Немного меньше 1

Десятки-сотни

Ku

Десятки-сотни

Десятки-сотни

Немного меньше 1

Kp

Сотни-десятки тысяч

Десятки-сотни

Десятки-сотни

Rвх

Сотни Ом.- единицы кОм.

Единицы-десятки Ом.

Десятки-сотни кОм.

Rвых

Единицы-десятки кОм.

Сони кОм.- единицы МОм.

Сотни Ом.- единицы кОм.

Фазовый сдвиг между Uвых иUвх.

180°

0

0

studfile.net

схемы включения. Схема включения биполярного транзистора с общим эмиттером

Одним из типов трехэлектродных полупроводниковых приборов являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

биполярные транзисторы схемы включения

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения биполярных транзисторов способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

схемы включения биполярных транзисторов

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток Iб. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: Iэ = Iб + Iк.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению Uэк/Uбэ и току: β = Iк/Iб (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения биполярного транзистора с общим коллектором: сигнал поступает на резистор RL, который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

схема включения биполярного транзистора с общим коллектором

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

схема включения биполярного транзистора с общей базой

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.

схема включения биполярного транзистора с общим эмиттером

Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.

Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения VБЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

биполярный транзистор схемы включения режимы работы

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания VCC, а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: IC = (VCC - VCE)/RC. Из рисунка следует, что рабочая точка, определяющая ток коллектора IC и напряжение VCE, будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы IВ.

Зона между осью VCE и первой характеристикой выхода (заштрихована), где IВ = 0, характеризует режим отсечки. При этом обратный ток IC ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью IC и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

биполярный транзистор схемы включения усилитель

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Транзисторные ключи предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

fb.ru

Принцип усиления транзистора | Как усиливает транзистор

Что такое усиление

Давайте для начала разберем, что мы вообще подразумеваем под словом “усиление”? Ну… усиление это когда мы производим какое-то действие, чтобы было лучше, качественнее, комфортнее, удобнее, безопаснее. По-моему как-то так. Усиливаем подвеску на машине, чтобы езда была комфортнее. Усиливаем фундамент под дом, загоняя туда железную арматуру, чтобы дом стоял долго и не трещал. Усиливаем армию военной техникой, чтобы обеспечить себе и своему народу безопасность, усиливаем свое тело, чтобы выглядеть уверенно и дать отпор гопникам.

Принцип усиления транзистора

Но какое слово идет рядом в паре со словом “усиление”? Мне кажется – это слово “мощность”. 

Усиливаем подвеску на машине, то есть делаем ее мощнее. Усиливаем фундамент – делаем его мощнее. Усиливаем армию танками и самолетами – делаем ее мощнее :-), усиливаем свою тушку – значит делаем ее опять же мощнее.

Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:

Увеличить человека в размерах

Принцип усиления транзистора

Либо усилить его с помощью экзоскелета:

Принцип усиления транзистора

Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами – то пальчиками :-). Во втором случае, с экзоскелетом – хуком справа и слева.

Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его…Хм… Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления.

Получается,  для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же “бодрым и энергичным”, каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своей реактора на груди, то сигнал должен брать энергию от какого-либо мощного источника 😉  Сравнение, конечно, так себе, но думаю, суть вы уловили.

Как усиливает транзистор

Итак, представим себе нашу сборную России по футболу. Ну да, ребята частенько лажают), но суть не в этом. Для того, чтобы наши футболисты играли хорошо, нужно к каждому футболисту приставить хорошего тренера, установить нормальный график труда и отдыха, кормить самой лучшей спортивной едой, пичкать допингами и тд. Как результат – команда может быть дотянет до полуфинала на чемпионате мира.

Но… есть и другой вариант. Почему бы в команду не пригласить таких футболистов, как Месси, Рональдо, Роналду, Бекхэма и других знаменитостей? То есть в этом варианте мы полностью заменили всю команду. Но для нас ведь главное  – победа, и не волнует, кто играет в нашей команде. Главное, чтобы наша команда порвала всех на чемпионате.

И там и там мы усилили эти команды. Но как вы думаете, какой вариант будет лучше? Ну тут уже и ежу понятно, что второй вариант – стопроцентный! Если провести параллельную грань с электроникой, то можно сказать, что транзистор использует именно второй вариант. В нем нет ничего такого, чтобы он сам бы усиливал сигнал. Он его полностью заменяет другим сигналом. То есть усиливаемый сигнал, который выходит из транзистора, является копией входного слабенького сигнала, но это не тот же самый слабенький сигнал.

Тяжко для понимания? Ну давайте приведем тогда еще один пример.

Вернемся в детство. Вам купили маленького хомячка. Вы за ним ухаживаете, меняете водичку, убираете какашки, покупаете колесико, чтобы он бегал и радовался жизни. Через год из маленького хомячка вырастает здоровый пушистый хомяк. Вы очень рады, что у вас вырос такой здоровый хомячок. Но…  как-то летом вы решили съездить в деревню к бабушке, за хомяком никто не ухаживал и он сдох. Ваши предки, конечно же, ничего вам не сказали. Они быстренько сбегали в зоомагазин и купили точно такого же хомяка! Один в один! Вы приезжаете к себе домой и продолжаете радоваться своему хомяку, даже не догадываясь, что это вообще не он))). Именно точно также ведет себя транзистор). Он не усиливает сигнал, а просто выводит усиленную копию на выходе.

Откуда берется энергия для усиления

Вспомните  также в своей жизни моменты, когда вы или кто-то другой прилагали очень малую силушку, но наворотили делов.

Принцип усиления транзистора

Получается, какое-то слабенькое движение хвостиком привело к нехорошим последствиям, но энергия использовалась извне. Для мышки-норушки это будет гравитационная сила. Тот же самый принцип заложен и в транзисторе. Он не может сам по себе усиливать. Он использует энергию извне. А для энергии извне используется источник постоянного тока.

Можно сказать, транзистор представляет из себя именно такую же систему – слабенький управляющий базовый ток управляет огромным током коллектор-эмиттер. Справа это все показано на бачке с водой. То есть чуток открыв краник, чтобы из трубки “База”(Б) полилась водичка, мы открываем клапан, который держит закрытым бачок “Коллектор” (К). Вода сразу же из бачка “Коллектор” стремится в тазик “Эмиттер” (Э). Если же мы закрываем краник “База”, то пружинка возвращает клапан и закрывает прохождение водички из бачка “Коллектор”.

Принцип усиления транзистора

Из всего выше рассказанного и показанного можно сделать некоторые выводы:

Принцип усиления транзистора

– выходной сигнал с транзистора – это усиленная копия входного сигнала

– транзистор для усиления сигнала использует энергию извне, а точнее, источник постоянного тока.

– малый управляющий базовый ток управляет намного большим коллекторным током (рисунок выше)

– независимо от схемы включения управляющий P-N переход – эмиттерный, а управляемая цепь – эмиттер-коллектор

Усиление в электронике

Увеличивая амплитуду сигнала, мы меняем его напряжение, а делая сигнал “неуязвимым”, мы добавляем ему силу. Силу тока. Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы сделаем сигнал мощнее.

Для тех, кто позабыл:

P=IU

где

P – это мощность, измеряется в Ваттах

I – сила тока, в Амперах

U – напряжение, в Вольтах

В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:

– увеличить его амплитуду напряжения, при этом силу тока оставить неизменной

– оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока

– увеличить и напряжение и силу тока

В основном применяют усиление сразу по обоим параметрам.  Поэтому в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.

Для транзистора PNP проводимости подключение транзистора  с ОЭ выглядит так:

А для NPN транзистора вот так:

Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Но тогда это уже будет совсем другой сигнал.

На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.

Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2. Это пример идеального усилителя.

Принцип усиления

Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе мы должны уже получить точную копию сигнала, но бОльшего напряжения. Но как это сделать с практической точки зрения?

А почему бы нам не использовать делитель напряжения, у которого один резистор будет постоянным, а другой – переменным:

Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе U. А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?

Помните, как в одной из статей мы сравнивали транзистор с краником? Открываем чуток – напор воды слабый, открываем больше – сильнее. Открываем полностью – вода бежит полным потоком

Принцип усиления транзистора

В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером 😉 Следовательно, наша схема из такого вида:

примет вот такой вид

Выглядеть должно все приблизительно так, но не совсем так… и далее вы поймете почему.

Опыт с транзистором

Итак, для того, чтобы все это показать нам понадобится:

1) Генератор частоты. Он у меня китайского происхождения.

2) Двухканальный цифровой осциллограф OWON

3) Блок питания постоянного напряжения

А также мелочевка… Транзистор и резистор. Собираем все это дело вот по такой схеме:

Осциллограммы будем снимать с красной и желтой точек на схеме.

Загоняю на базу сигнал с частотой в 1 КилоГерц и амплитудой в 1 Вольт. Смотрим, что у нас получилось:

Принцип усиления транзистора

На осциллограмме, снятой с желтой точки, мы видим только шумы.

Ладно, ставлю амплитуду в 2 Вольта:

Принцип усиления транзистора

Ничего не изменилось…

И только тогда, когда уже амплитуда стала больше, чем 2 Вольта, на желтой осциллограмме появился уже какой-то периодический сигнал

Принцип усиления транзистора

С увеличением амплитуды его импульсы просто стали шире.

Принцип усиления транзистора

Принцип усиления транзистора

Итак, теперь обо все по  порядку:

Первый косяк этой схемы в том, что мы не учли напряжение для открытия транзистора. Оно, как вы помните, составляет 0,6-0,7 Вольт.

Режимы работы транзистора

Второй косяк. Для того, чтобы транзистор усиливал, мы его должны вогнать в активный режим. Это промежуточный режим между режимом насыщения и режимом отсечки транзистора.

Режим отсечки – это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.

Режим насыщения – это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.

В режиме отсечки и насыщения работает транзисторный ключ.

В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока , мы можем подавать большее или меньшее напряжение на базу.

Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер. Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h21э или просто  β.

Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалью газа)

Принцип усиления транзистора

Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педаль в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором – это и есть режим насыщения.

Вообще убираем ногу от педали – машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педали.

Ну а в активном режиме мы нажимаем педаль с такой силой, которая нам нужна 😉 В этом режиме мы сами регулируем скорость. Хотим – едем быстрее, а хотим медленнее 😉  То есть мы управляем автомобилем между режимами отсечки и насыщения. Именно в этом режиме работает транзистор в режиме усиления сигналов.

Недостатки усилителя на транзисторе

Честно говоря, усилитель на биполярном транзисторе – тот еще геморрой.

Во-первых, он управляется силой тока, а не напряжением.

Во-вторых, мы должны обязательно предусмотреть напряжение смещения.

В-третьих, схема каскада усилителя на биполярном транзисторе получается довольно таки громоздкая

В-четвертых, даже тогда, когда мы не подаем сигнал на такой транзисторный каскад, то схема все равно жрет ток.

Как тогда должны выглядеть схема, чтобы мы могли из слабого сигнала получать усиленную копию?

Основные схемы включения транзистора

Итак, существуют три основные схемы соединения биполярного транзистора:

– с Общей Базой (ОБ)

Эта схема усиливает по напряжению. Схема с общей базой используется редко.

– с Общим Эмиттером (ОЭ)

Эта схема усиливает и по напряжению, и по току, и на практике используется наиболее часто.

– с Общим Коллектором (ОК)

Эта схема усиливает по току. Ее часто называют эмиттерный повторитель.

Здесь все просто: какой вывод является общим для входного и выходного сигнала, такая значит и схема включения транзистора.

Обозначение напряжений выводов транзистора

А теперь давайте поговорим об условностях, которые применяются в схемотехническом жаргоне транзистора.

Итак, если вы слышите, что напряжение на базе равно 1 Вольт, то это означает, что это напряжение между базой и общим проводником. На общий в основном садят “минус” и обозначается общий проводник вот таким значком:

Например, UБ  (напряжение на базе)  транзистора VT1 замеряется как-то вот так:

напряжение на базе транзистора

Напряжение между выводами обозначается двумя индексами, например, напряжение между базой и эмиттером обозначается как UБЭ . Также на схемах часто можно увидеть обозначения типа UКК (в буржуйском варианте VCC ) – это напряжение питания коллектора, обычно положительное. Также есть и UЭЭ (в буржуйском варианте VEE) – напряжение питания эмиттера, обычно отрицательное. Короче говоря, это в основном напряжение питания схемы.

Также имейте ввиду, что каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IК UКЭ 

4) UБЭ  напряжение между базой и эмиттером

Attention!

Превышение какого-либо параметра из списка выше приведет к неминуемой гибели транзистора!

Принцип работы транзистора

Для того, чтобы понять принцип работы транзистора, давайте рассмотрим вот такое фото:

Условимся считать, что это самая простая модель транзистора. Направление потока воды – это направление электрического тока. Пусть у нашего “транзистора” будет проводимость N-P-N, то есть он будет выглядеть вот так:

С помощью краника (Базы) мы уменьшаем или увеличиваем скорость потока воды через трубу. В нашем случае вода бежит с жёлтой трубы к чёрной трубе, или по аналогии с транзистором: от коллектора к эмиттеру, потому что стрелочка эмиттера показывает направление электрического тока.

Итак, в таком положении краник полностью закрыт, следовательно поток воды не проходит через трубу:

А вот так краник полностью открыт и поток воды бежит на полной мощности через трубу:

Краник открыли, вода через трубу побежала на полной мощности:

Принцип усиления транзистора

Краник закрыли, вода не бежит:

Принцип усиления транзистора

С помощью одного только пальчика, я включал и выключал ОГРОМНЫЙ поток воды, который бы мог смыть все какашки на вашей тельняшке). То есть поток воды из трубы обладает огромнейшей силой, по сравнению с силой пальчика, которую я прикладывал к рыжачку краника. 

Транзистор работает аналогичным образом! Прикладывая небольшое напряжение к базе, я могу управлять огромнейшим током проходящим через коллектор и эмиттер. В данном случае я показал только два положения, краник полностью включен, или краник полностью выключен. Режим, при котором я включал и отключал краник до упора, в транзисторе называется “ключевым режимом”.  Не от слова “ключевой” – типа главный, важный, а от слова “ключ”. А что у нас делает ключ? Что-то отпирает и закрывает, да хотя бы те же самые двери или бабушкин комод.

Режим, когда я ЗАКРЫВАЛ краник полностью, называется в транзисторе закрытый или в простонародье “зАпертый”. В этом случае на базу ток не идет и транзистор не пропускает электрический ток между коллектором и эмиттером.

Режим, когда я полностью ОТКРЫВАЛ краник, называется в транзисторе режимом “насыщения”. В этом случае через эмиттер и коллектор ток бежит по полной. Хочу сказать, что дальнейшее открывание краника бессмысленно, так как от этого ток не увеличится между коллектором и эмиттером, то есть нет резона подавать еще большее напряжение на базу, если транзистор уже работает в режиме насыщения.

Опыты на практике

Ну что же, надо теперь все это дело проверить на реальном транзисторе. У нас в гостях всеми вами любимый транзистор КТ815Б:

Его проводимость N-P-N, то есть он выглядит вот так:

Мы с вами разобрали, что краник – это база, а большой поток воды должен течь с коллектора на эмиттер. Направление стрелки на эмиттере показывает направление движения электрического тока. 

В транзисторе все то же самое. Давайте используем его в деле. Для этого собираем вот такую схемку:

Ну что, вроде бы все элементарно и просто. Есть батарея, есть лампочка. Электрический ток должен бежать от “плюса” к “минусу” и лампа должна гореть. Собираем схему в реале. Щупы-крокодилы идут от Блока питания. Красный – плюс, черный – минус. Напряжение на них около 13,5  Вольт, лампа на такое же напряжение. Лампа  не горит… В чем же дело?

Помните эту картинку?

Принцип усиления транзистора

Елки-палки, нам базу-то надо “повернуть” так, чтобы электрический ток мог бежать от коллектора к эмиттеру!  Но как “повернуть” базу? Да все просто! Для этого нам надо всего-то подать на нее напряжение ;-). 

Теперь наша схема будет выглядеть вот так:

Собираем схему. Крокодилы с синими проводами идут от блока питания Bat1.

Но теперь вопрос. Какое минимальное напряжение должно быть на Bat1, чтобы “краник открылся”?

Помните мы с вами разбирали статью, что на PN переходе у кремниевых транзисторов (а у нас как раз кремниевый) “падает” напряжение где-то 0,5-0,7 В? Кто не помнит, читаем эту статью. А давайте выставим на Bat1 где-то 0,5 В.

Нет… не канает.

Кручу крутилку и выставляю 0,6 Вольт и вуаля! В простонародье говорят, что транзистор “открылся”.

Отсюда делаем вывод: для того, чтобы через коллектор-эмиттер побежал электрический ток, мы должны на базу подать напряжение более чем 0,5-0,7 В, то есть  больше падения напряжения на PN переходе.

Но как много мы можем подать напряжения в базу? Давайте крутанем крутилку на уровень 0,7 В.

При 0,7 В базовый ток составляет уже 20 мА.

Давайте еще чуток добавим:

При 0,8 В уже 140 мА.

А при 0,9 Вольтах:

чуть меньше пол-Ампера! Дальнейшее увеличение напряжения может привести … к полному выходу транзистора из строя.

Максимальные параметры транзистора

Каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IКЭ х UКЭ

4) UБЭ  напряжение между базой и эмиттером

Более подробно про них можно прочитать здесь.

Если глянуть в даташит, то можно узнать, что максимальный допустимый ток коллектора транзистора КТ815Б составляет 1,5 А. Но как же теперь быть? Наша аппаратура ведь не может работать с такими маленькими допусками напряжения? А что если вдруг случись, напряжение на базе скаканет на 0,3 В? Транзистору сразу придет жопа… Поэтому, чтобы такого не случилось, в базу транзистора ставят токоограничительный резистор. Резистора на 500 Ом вполне хватит, чтобы транзистор был “открытым” от 1 В и до 40 В (ну это в данном опыте). Все, конечно же, зависит от токоограничительного резистора и самого транзистора.

В основном токоограничительный резистор высчитывают по формулам или на практике.

Итак, сколько у нас потребляет транзистор в открытом состоянии?

P = IU

0,7 В х 20 х 10-3 А = 14 мВт.

А коммутирует нагрузку мощностью 13,5 х 115 х 10-3 = 1,55 Вт

То есть 14 милливатт управляют 1,55 Ваттами.  Это получилось почти в 110 раз больше.  В этом одна из “фишек” транзистора 😉

www.ruselectronic.com

Биполярный транзистор с общим эмиттером Википедия

Усилительный каскад по схеме с общим эмиттером на основе npn-транзистора (Схема с заземленным эмиттером)

При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала с не очень высокой частотой фаза выходного сигнала сдвинута относительно входного на 180°, при высоких частотах фазовый сдвиг отличается от 180° из-за инерционности транзистора).

Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.

Общее описание включения транзистора по схеме ОЭ[ | ]

Биполярные транзисторы, в отличие от полевых транзисторов, приборы управляемые током базы. Напряжение на прямо смещённом переходе база-эмиттер при этом остаётся почти постоянным и зависит от материала полупроводника, для германия около 0,2 В, для кремния около 0,65 В, но на сам каскад подаётся управляющее напряжение.

Ток базы, коллектора и эмиттера и другие токи и напряжения на электродах транзистора можно вычислить по закону Ома и правилам Кирхгофа для разветвлённой многоконтурной цепи.

Токи в транзисторе связаны нижеследующими соотношениями:

по правилу Кирхгофа для узлов алгебраическая сумма всех трёх токов (Ie, Ic, Ib{\displaystyle I_{e},\ I_{c},\ I_{b}} — ток эмиттера, ток коллектора и ток базы соответственно) равна нулю:

∑k=13Ik=0,{\displaystyle \sum _{k=1}^{3}I_{k}=0,}
Ic=Ib⋅β,{\displaystyle I_{c}=I_{b}\cdot \beta ,}

ru-wiki.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о