Схемы унч на микросхемах – () ,

Содержание

Микросхемы серии TDA — AmpExpert

TDA1010

TDA1010 datasheet

Моно усилитель 6(10) Вт

Напряжение питания — 6…24 B

Максимальный потребляемый ток — 3 A

Выходная мощность (Un =14,4 В,.КНИ=10%):
RL=2 Ом — 6,4 Вт
RL=4 Ом — 6,2 Вт
RL=8 Ом — 3,4 ВтКНИ (Р=1 Вт, RL=4 Ом) — 0,2 %Ток покоя — 31 мА

TDA1011

TDA1011 datasheet

Моно усилитель 2(6) Вт

Напряжение питания — 3,6…20 B

Максимальный потребляемый ток — 3 A

Выходная мощность (RL=4 Ом, КНИ=10%):
Un=16B — 6,5 Вт
Un=12В — 4,2 Вт
Un=9В — 2,3 Вт
Un=6B — 1,0 ВтКНИ (Р=1 Вт, RL=4 Ом) — 0,2 %Ток покоя — 14 мА

TDA1013B

 TDA1013 datasgeet

Моно усилитель 4 Вт

Напряжение питания — 10…40 B

Максимальный потребляемый ток — 1,5 A

Выходная мощность (КНИ=10%) — 4,2 ВтКНИ (Р=2,5 Вт, RL=8 Ом) — 0,15 %

TDA1015

TDA1015 datasheet

Моно усилитель 1(4) Вт

Напряжение питания — 3,6…18 В

Максимальный потребляемый ток — 2,5 А

Выходная мощность (RL=4 Ом, КНИ=10%):
Un=12В — 4,2 Вт
Un=9В — 2,3 Вт
Un=6B — 1,0 ВтКНИ (Р=1 Вт, RL=4 Ом) — 0,3 %Ток покоя — 14 мА

TDA1020

 TDA1020 datasheet

Моно усилитель 12 Вт
Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un =14,4 В, КНИ=10%):
RL=2 Oм — 12 Вт
RL=4 Ом — 7 Вт
RL=8 Ом — 3,5 ВтТок покоя — 30 мА

TDA1510

 TDA1510 datasheet

Моно\стерео усилитель 24 Вт, 2х12 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un=14,4B RL=4 Oм):
КНИ=0,5% — 5,5 Вт
КНИ=10% — 7,0 ВтТок покоя — 120 мА

TDA1514

TDA1514 datasheet

Моно усилитель 50 Вт

Напряжение питания — ±10…±30 В

Максимальный потребляемый ток — 6,4 А

Выходная мощность:
Un =±27,5 В, R=8 Ом — 40 Вт
Un =±23 В, R=4 Ом — 48 ВтТок покоя — 56 мА

TDA1515

 TDA1515 datasheet 

Моно\стерео усилитель 24 Вт, 2х12 Вт
Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un =14,4 В, КНИ=0,5%):
RL=2 Ом — 9 Вт
RL=4 Ом — 5,5 Вт

Выходная мощность (Un=14,4 В, КНИ=10%):
RL=2 Oм — 12 Вт
RL4 Ом — 7 ВтТок покоя — 75 мА

TDA1516

 TDA1516 datasheet

Моно\стерео усилитель 24 Вт, 2х12 Вт

 Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un =14,4 В, КНИ=0,5%):
RL=2 Ом — 7,5 Вт
RL=4 Ом — 5 Вт

Выходная мощность (Un =14,4 В, КНИ=10%):
RL=2 Oм — 11 Вт
RL=4 Ом — 6 ВтТок покоя — 30 мА

TDA1517

TDA1517 datasheet

Стерео усилитель 2х6 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 2,5 А

Выходная мощность (Un=14,4B RL=4 Oм):
КНИ=0,5% — 5 Вт
КНИ=10% — 6 ВтТок покоя — 80 мА

TDA1518

 TDA1518 datasheet

Моно\стерео усилитель 24 Вт, 2х12 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un =14,4 В, КНИ=0,5%):
RL=2 Ом — 8,5 Вт
RL=4 Ом — 5 Вт

Выходная мощность (Un =14,4 В, КНИ=10%):
RL=2 Oм — 11 Вт
RL=4 Ом — 6 ВтТок покоя — 30 мА

TDA1519

TDA1519 datasheet

Стерео усилитель 2х6 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп=14,4 В, КНИ=0,5%):
RL=2 Ом — 6 Вт
RL=4 Ом — 5 Вт

Выходная мощность (Un =14,4 В, КНИ=10%):
RL=2 Ом — 11 Вт
RL=4 Ом — 8,5 Вт

Ток покоя — 80 мА

TDA1551

 TDA1551 datasheet

Стерео усилитель 2х22 Вт
Напряжение питания -6…18 В

Выходная мощность (Un =14,4 В, RL=4 Ом):
КНИ=0,5% — 5 Вт
КНИ=10% — 6 ВтТок покоя — 160 мА

TDA1552

 TDA1552 datasheet

Стерео усилитель 2х22 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Un =14,4 В, RL=4 Ом):
КНИ=0,5% — 17 Вт
КНИ=10% — 22 ВтТок покоя — 160 мА

TDA1553

 TDA1553 datasheet

Стерео усилитель 2х22 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп=4,4 В, RL=4 Ом):
КНИ=0,5% — 17 Вт
КНИ=10% — 22 Вт

Ток покоя — 160 мА

TDA 1554

 TDA1554 datasheet

Квадро\стерео усилитель 4х11 Вт\ 2х22 Вт
Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп =14,4 В, RL=4 Ом):
КНИ=0,5% — 5 Вт
КНИ=10% — 6 ВтТок покоя — 160 мА

TDA2004

 TDA2004 datasheet

Стерео усилитель 2х10 Вт

Напряжение питания — 8…18 В

Максимальный потребляемый ток — 3,5 А

Выходная мощность (Un=14,4 В, КНИ=10%):
RL=4 Ом — 6,5 Вт
RL=3,2 Ом — 8,0 Вт
RL=2 Ом — 10 Вт
RL=1,6 Ом — 11 ВтKHИ (Un=14,4B, Р=4,0 Вт, RL=4 Ом)- 0,2%;Полоса пропускания (по уровню -3 дБ) — 35…15000 Гц

Ток покоя — <120 мА

TDA2005

 TDA2005 datasheet

Готовое устройство

Моно\стерео усилитель 20 Вт\ 2х10 Вт

Напряжение питания — 8…18 В

Максимальный потребляемый ток — 3,5 А

Выходная мощность

(Uп =14,4 В, КНИ=10%):RL=4 Ом — 20 Вт
RL=3,2 Ом — 22 ВтКНИ (Uп =14,4 В, Р=15 Вт, RL=4 Ом) — 10 %Полоса пропускания (по уровню -3 дБ) — 40…20000 Гц

Ток покоя — <160 мА

TDA2006

 TDA2006 datasheet

Моно усилитель 12 Вт

Напряжение питания — ±6…±15 В

Максимальный потребляемый ток — 3 А

Выходная мощность (Еп=±12В,КНИ=10%):
при RL=4 Oм — 12 Вт
при RL=8 Ом — 6…8 Вт КНИ (Еп=±12В):
при Р=8 Вт, RL= 4 Ом — 0,2 %
при Р=4 Вт, RL= 8 Ом — 0,1 %

Полоса пропускания (по уровню -3 дБ) — 20…100000 ГцТок потребления:
при Р=12 Вт, RL=4 Ом — 850 мА
при Р=8 Вт, RL=8 Ом — 500 мА

tda2007

 TDA2007 datasheet

Стерео усилитель 2х6 Вт

Напряжение питания — +6…+26 В

Ток покоя (Eп=+18 В) — 50…90 мА

Выходная мощность (КНИ=0,5 %):
при Еп=+18 В, RL=4 Ом — 6 Вт
при Еп=+22 В, RL=8 Ом — 8 ВтКНИ:
при Еп=+18 В Р=3 Вт, RL=4 Ом — 0,1 %
при Еп=+22 В, Р=3 Вт, RL=8 Ом — 0,05 %Полоса пропускания (по уровню -3 дБ) — 40…80000 Гц

Максимальный ток потребления — 3 А

TDA2008

 TDA2008 datasheet

Моно усилитель 12 Вт

Напряжение питания — +10…+28 В

Ток покоя (Еп=+18 В) — 65…115 мА

Выходная мощность (Еп=+18В, КНИ= 10%):
при RL=4 Oм — 10…12 Вт
при RL=8 Ом — 8 ВтКНИ (Еп= +18 В):
при Р=6 Вт, RL=4 Ом — 1 %
при Р=4 Вт, RL=8 Ом — 1 %

Максимальный ток потребления — 3 А

TDA2009

 TDA2009 datasheet

Стерео усилитель 2х10 Вт

Напряжение питания — +8…+28 В

Ток покоя (Еп=+18 В) — 60…120 мА

Выходная мощность (Еп=+24 В, КНИ=1 %):
при RL=4 Oм — 12,5 Вт
при RL=8 Ом — 7 Вт

Выходная мощность (Еп=+18 В, КНИ=1 %):
при RL=4 Oм — 7 Вт
при RL=8 Ом — 4 ВтКНИ:
при Еп= +24 В, Р=7 Вт, RL=4 Oм — 0,2 %
при Еп= +24 В, Р=3,5 Вт, RL=8 Oм — 0,1 %
при Еп= +18 В, Р=5 Вт, RL=4 Oм — 0,2 %
при Еп= +18 В, Р=2,5 Вт, RL=8 Ом — 0,1 %

Полоса пропускания (по уровню -3 дБ) — 20…80000Гц

Максимальный ток потребления — 3,5 А

TDA2030

 TDA2030 datasheet

Hi-Fi моно усилитель 14 Вт

Напряжение питания — ±6…±18 В

Ток покоя (Еп=±14 В) — 40…60 мА

Выходная мощность (Еп=±14 В, КНИ = 0,5 %):
при RL=4 Oм — 12…14 Вт
при RL=8 Ом — 8…9 ВтКНИ (Еп=±12В):
при Р=12 Вт, RL=4 Ом — 0,5 %
при Р=8 Вт, RL=8 Ом — 0,5 %

Полоса пропускания (по уровню -3 дБ) — 10…140000 ГцТок потребления:
при Р=14 Вт, RL=4 Ом — 900 мА
при Р=8 Вт, RL=8 Ом — 500 мА

TDA2040

 TDA2040 datasheet

Hi-Fi моно усилитель 25 Вт

Напряжение питания — ±2,5…±20 В

Ток покоя (Еп=±4,5…±14 В) — мА 30…100 мА

Выходная мощность (Еп=±16 В, КНИ = 0,5 %):
при RL=4 Oм — 20…22 Вт
при RL=8 Ом — 12 ВтКНИ(Еп=±12В, Р=10 Вт, RL = 4 Ом) — 0,08 %

Максимальный ток потребления — 4 А

TDA2050

 TDA2050 datasheet

Hi-Fi моно усилитель 32 Вт

Напряжение питания — ±4,5…±25 В

Ток покоя (Еп=±4,5…±25 В) — 30…90 мА

Выходная мощность (Еп=±18, RL = 4 Ом, КНИ = 0,5 %) — 24…28 ВтКНИ (Еп=±18В, P=24Bт, RL=4 Ом) — 0,03…0,5 %

Полоса пропускания (по уровню -3 дБ) — 20…80000 Гц

Максимальный ток потребления — 5 А

TDA2051

 TDA2051 datasheet

Hi-Fi моно усилитель 40 Вт

Напряжение питания — ±18…±25 В

Выходная мощность:
при Еп=±18 В, RL=4 Ом, КНИ=10% — 40 Вт
при Еп=±22 В, RL=8 Ом, КНИ=10% — 33 Вт

TDA2052

 TDA2052 datasheet

Hi-Fi моно усилитель 60 Вт

Напряжение питания — ±6…±25 В

Ток покоя (En = ±22 В) — 70 мА

Выходная мощность (Еп = ±22 В, КНИ = 10%):
при RL=8 Ом — 22 Вт
при RL=4 Ом — 40 Вт

Выходная мощность (En = 22 В, КНИ = 1%):
при RL=8 Ом — 17 Вт
при RL=4 Ом — 32 ВтКНИ (при полосе пропускания по уровню -3 дБ 100… 15000 Гц и Рвых=0,1…20 Вт):
при RL=4 Ом — <0,7 %
при RL=8 Ом — <0,5 %

TDA2611

 TDA2611 datasheet

Моно усилитель 5 Вт

Напряжение питания — 6…35 В

Ток покоя (Еп=18 В) — 25 мА

Максимальный ток потребления — 1,5 А

Выходная мощность (КНИ=10%):

при Еп=18 В, RL=8 Ом — 4 Вт
при Еп=12В, RL=8 0м — 1,7 Вт
при Еп=8,3 В, RL=8 Ом — 0,65 Вт
при Еп=20 В, RL=8 Ом — 6 Вт
при Еп=25 В, RL=15 Ом — 5 Вт

КНИ (при Рвых=2 Вт) — 1 %

Полоса пропускания — >15 кГц

TDA2613

 TDA2613 datasheet

Hi-Fi моно усилитель 6 Вт

Напряжение питания — 15…42

ВКНИ:
(Еп=24 В, RL=8 Ом, Рвых=6 Вт) — 0,5 %
(Еп=24 В, RL=8 Ом, Рвых=8 Вт) — 10 %Ток покоя (Еп=24 В) — 35 мА

Максимальный ток потребления — 2,2 А

TDA2614

 TDA2614 datasheet

Hi-Fi моно усилитель 6 Вт

Напряжение питания — 15…42 В

Максимальный ток потребления — 2,2 А

Ток покоя (Еп=24 В) — 35 мАКНИ:
(Еп=24 В, RL=8 Ом, Рвых=6,5 Вт) — 0.5 %
(Еп=24 В, RL=8 Ом, Рвых=8,5 Вт) — 10 %

Полоса пропускания (по уровню -3 дБ) — 30…20000 Гц

TDA2615

 TDA2615 datasheet

Hi-Fi стерео  усилитель 2х6 Вт

Напряжение питания — ±7,5…21 В

Максимальный потребляемый ток — 2,2 А

Ток покоя (Еп=7,5…21 В) — 18…70 мА

Выходная мощность (Еп=±12 В, RL=8 Ом):
КНИ=0,5% — 6 Вт
КНИ=10% — 8 Вт

Полоса пропускания (по уровню-3 дБ и Рвых=4 Вт) — 20…20000 Гц

TDA2822

 TDA2615 datasgeet

Стерео усилитель 2х1,7 Вт

Напряжение питания — 3…15 В

Максимальный потребляемый ток — 1,5 А

Ток покоя (Еп=6 В) — 12 мА

Выходная мощность (КНИ=10%, RL=4 Ом):
Еп=9В — 1,7 Вт
Еп=6В — 0,65 Вт
Еп=4.5В — 0,32 Вт

TDA7052

 TDA7052 datasheet

Моно усилитель 1 Вт

Напряжение питания — 9…18 В

Максимальный потребляемый ток — 1,5 А

Ток покоя 100 мА

Выходная мощность:
КНИ=10% — 1,2 Вт

TDA7053

 TDA7053 datasheet

Стерео усилитель 2х1 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 1,5 А

Ток покоя 100 мА

Выходная мощность:
КНИ=10% — 1 Вт

 

TDA2824

 TDA2824 datasheet

Стерео усилитель 2х2 Вт

Напряжение питания — 3…15 В

Максимальный потребляемый ток — 1,5 А

Ток покоя (Еп=6 В) — 12 мА

Выходная мощность (КНИ=10%, RL=4 Oм)
Еп=9 В — 1,7 Вт
Еп=6 В — 0,65 Вт
Еп=4,5 В — 0,32 Вт

КНИ (Еп=9 В, RL=8 Ом, Рвых=0,5 Вт) — 0,2 %

TDA7231

 TDA7231 datasheet

Моно усилитель 1,6 Вт

Напряжение питания — 1,8…16 В

Максимальный потребляемый ток — 1,0 А

Ток покоя (Еп=6 В) — 9 мА

Выходная мощность (КНИ=10%):
En=12B, RL=6 Oм — 1,8 Вт
En=9B, RL=4 Ом — 1,6 Вт
Еп=6 В, RL=8 Ом — 0,4 Вт
Еп=6 В, RL=4 Ом — 0,7 Вт
Еп=З В, RL=4 Oм — 0,11 Вт
Еп=3 В, RL=8 Ом — 0,07 Вт

КНИ (Еп=6 В, RL=8 Ом, Рвых=0.2 Вт) — 0,3 %

TDA7235

 TDA7235 datasheet

Моно усилитель 1,6 Вт

Напряжение питания — 1,8…24 В

Максимальный потребляемый ток — 1,0 А

Ток покоя (Еп=12 В) — 10 мА

Выходная мощность (КНИ=10%):
Еп=9 В, RL=4 Oм — 1,6 Вт
Еп=12 В, RL=8 Oм — 1,8 Вт
Еп=15 В, RL=16 Ом — 1,8 Вт
Eп=20 B, RL=32 Oм — 1,6 Вт

КНИ (Еп=12В, RL=8 Oм, Рвых=0,5 Вт) — 1,0 %

TDA7240

 TDA7240 datasheet

Моно усилитель 20 Вт

Максимальное напряжение питания — 18 В

Максимальный потребляемый ток — 4,5 А

Ток покоя (Еп=14,4 В) — 120 мА

Выходная мощность (Еп=14,4 В, КНИ=10%):
RL=4 Ом — 20 Вт
RL=8 Ом — 12 Вт

КНИ:
(Еп=14,4 В, RL=4 Ом, Рвых=12 Вт) — 0,1 %

(Еп=14,4 В, RL=8 Ом, Рвых=12Вт) — 0,05 %

Полоса пропускания по уровню -3 дБ (RL=4 Ом, Рвых=15 Вт) — 30…25000 Гц

TDA7241

 TDA7241 datasheet

Моно усилитель 20 Вт

Максимальное напряжение питания — 18 В

Максимальный потребляемый ток — 4,5 А

Ток покоя (Еп=14,4 В) — 80 мА

Выходная мощность (Еп=14,4 В, КНИ=10%):
RL=2 Ом — 26 Вт
RL=4 Ом — 20 Вт
RL=8 Ом — 12 Вт

КНИ:
(Еп=14,4 В, RL=4 Ом, Рвых=12 Вт) — 0,1 %
(Еп=14,4 В, RL=8 Ом, Рвых=6 Вт) — 0.05 %

Полоса пропускания по уровню -3 дБ (RL=4 Ом, Рвых=15 Вт) — 30…25000 Гц

TDA1555Q

 TDA1555 datasheet

Квадро\стерео усилитель 4х11 Вт\2х22 Вт

Напряжение питания — 6…18 B

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп =14,4 В. RL=4 Ом):
— КНИ=0,5% — 5 Вт
— КНИ=10% — 6 Вт Ток покоя — 160 мА

TDA1557Q

 TDA1557 datasheet

Стерео усилитель 2х22 Вт

Напряжение питания — 6…18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп =14,4 В, RL=4 Ом):

— КНИ=0,5% — 17 Вт
— КНИ=10% — 22 Вт

Ток покоя, мА 80

TDA1556

 TDA1556 datasheet

Стерео усилитель 2х22 Вт

Напряжение питания -6…18 В

Максимальный потребляемый ток -4 А

Выходная мощность: (Uп=14.4 В, RL=4 Ом):
— КНИ=0,5%, — 17 Вт
— КНИ=10% — 22 ВтТок покоя — 160 мА

TDA1558

 TDA1558 datasheet

Квадро\стерео усилитель 4х11 Вт\ 2х22 Вт

Напряжение питания — 6..18 В

Максимальный потребляемый ток — 4 А

Выходная мощность (Uп=14 В, RL=4 Ом):
— КНИ=0.6% — 5 Вт
— КНИ=10% — 6 ВтТок покоя — 80 мА

TDA1561Q

 TDA1561 datasheet

Стерео усилитель 2х23 Вт

Напряжение питания — 6…18 В

Максимальный потребляемы ток — 4 А

Выходная мощность (Uп=14В, RL=4 Ом):

— КНИ=0.5% — 18 Вт
— КНИ=10% — 23 Вт

Ток покоя — 150 мА

TDA1904

 TDA1904 datasheet

Моно усилитель 4 Вт

Напряжение питания — 4…20 В

Максимальный потребляемы ток — 2 А

Выходная мощность (RL=4 Ом, КНИ=10%):
— Uп=14 В — 4 Вт
— Uп=12В — 3,1 Вт
— Uп=9 В — 1,8 Вт
— Uп=6 В — 0,7 Вт

КНИ (Uп=9 В, P<1,2 Вт, RL=4 Ом) — 0,3 %

Ток покоя — 8…18 мА

TDA1905

 TDA1905 datasheet

Моно усилитель 5 Вт

Напряжение питания — 4…30 В

Максимальный потребляемы ток — 2,5 А

Выходная мощность (КНИ=10%)
— Uп=24 В (RL=16 Ом) — 5,3 Вт
— Uп=18В (RL=8 Ом) — 5,5 Вт
— Uп=14 В (RL=4 Ом) — 5,5 Вт
— Uп=9 В (RL=4 Ом) — 2,5 Вт

КНИ (Uп=14 В, P<3,0 Вт, RL=4 Ом) — 0,1 %

Ток покоя — <35 мА

TDA1910

 TDA1910 datasheet

Моно усилитель 10 Вт

Напряжение питания — 8…30 В

Максимальный потребляемы ток — 3 А

Выходная мощность (КНИ=10%):
— Uп=24 В (RL=8 Ом) — 10 Вт
— Uп=24 В (RL=4 Ом) — 17,5 Вт
— Uп=18 В (RL=4 Ом) — 9,5 Вт

КНИ (Uп=24 В, P<10,0 Вт, RL=4 Ом) — 0,2 %

Ток покоя — <35 мА

TDA2003

 TDA2003 datasheet

Готовое устройство

Моно усилитель 10 Вт

Напряжение питания — 8…18 В

Максимальный потребляемый ток — 3,5 А

Выходная мощность (Uп=14В, КНИ=10%):
— RL=4,0 Ом — 6 Вт
— RL=3,2 Ом — 7,5 Вт
— RL=2,0 Ом — 10 Вт
— RL=1,6 Ом — 12 Вт

КНИ (Uп=14,4 В, P<4,5 Вт, RL=4 Ом) — 0,15 %

Ток покоя — <50 мА

TDA7293

 TDA7293 datasheet

Моно усилитель 100 Вт

Напряжение питания — ±12…50 В

Максимальный потребляемы ток — 10 А

Выходная мощность :
VS = ±45V; RL = 8Ω; THD = 10% — 140 Вт
VS = ±30V; RL = 4Ω; THD = 10% — 110 Вт

КНИ (PO = 5W; f = 1kHz PO = 0.1 to 50W; f = 20Hz to 15kHz) — 0,1 %

TDA7294

 TDA7294 datasheet

Моно усилитель 100 Вт

Напряжение питания — ±12…40 В

Максимальный потребляемы ток — 10 А

Выходная мощность :
d = 10% RL = 8Ω ; VS = ±38V RL = 6Ω ; VS = ±33V RL = 4Ω ; VS = ±29V- 100 Вт

КНИ (VS = ±27V, RL = 4Ω: PO = 5W; f = 1kHz PO = 0.1 to 50W; f = 20Hz to 20kHz) — 0,1 %

ampexpert.ru

УСИЛИТЕЛИ МОЩНОСТИ НИЗКИХ ЧАСТОТ НА МИКРОСХЕМАХ

Усилители, основным назначением которых является усиление сигнала по мощности, называют усилителями мощности. Как правило, такие усилители работают на низкоомную нагрузку, например, громкоговоритель.

Через выходные транзисторы таких микросхем протекают большие токи, микросхемы заметно нагреваются при длительной работе. Поэтому для обеспечения нормальных условий эксплуатации микросхемы усилителей мощности обязательно устанавливают на теплоотводящие радиаторы. Современные микросхемы усилителей мощности имеют защиту от перегрева и короткого замыкания нагрузки.

Пример практической схемы УНЧ, реализующий использование внешнего выходного транзисторного каскада, приведен на рис. 31.1

[31.1.31.2] .

Усилитель НЧ, предназначенный для использования в связном приемнике (рис. 31.1) с выходным каскадом на транзисторах КТ814А и КТ815А

[31.2]         на нагрузке 8 Ом развивает мощность 110—120 мВт, потребляя в режиме покоя ток всего 0,6 мА. Чувствительность усилителя — 10 мВ. Конденсатор СЗ выбран из соображений обеспечения частоты среза АЧХ на частоте 3,0—3,4 кГц. Коэффициент усиления выходного каскада опре-

Рис. 31.1. УНЧ на микросхеме К140УД1208

деляется соотношением резисторов R8/R10. Номинал резистора R6 подбирают по минимуму потребляемого тока покоя и приемлемому уровню искажений.

Рис. 31.2. Схема стереофонического предусилители на микросхеме LM387AN

При использовании транзисторов КТ502 и КТ503 (или КТ3107 и КТ3102) и сопротивлении нагрузки 50 Ом ток покоя составляет 0,5—0,6 мА, выходная мощность усилителя ниже [31.1].

Рис. 31.3. Схема стереофонического предусилителя на микросхеме pA749D

Микросхема LM387AN предназначена для использования в качестве предусилителя стереофонической радиоаппаратуры. Номинальное напряжение питания микросхемы — 12 В при токе потребления 10 мА, максимальное — 30 В. Полоса усиливаемых частот от 20 Гц до 1,8 МГц с коэффициентом гармоник не свыше 0,1 %. Коэффициент усиления — до 104 дБ. Входное сопротивление — 100 кОм. Разновидность микросхемы LM387AN выпускается также в круглом корпусе ТО-99 (с сохранением номеров цоколевки). Коэффициент передачи предусилителя (рис. 31.2) определяется соотношением резистивных элементов R1—R3 и R4—R6 для каждого из каналов.

Ухудшенным аналогом микросхемы LM387AN служит микросхема μΑ749Ό (рис. 31.3). Номинальное напряжение питания этой микросхемы — 12 В при токе потребления 3 мА, максимальное — 24 В. Полоса усиливаемых частот от 20 Гц до 20 кГц с коэффициентом гармоник не свыше 0,1 %. Коэффициент усиления — до 86 дБ. Входное сопротивление — 150 кОм. Следует учитывать, что микросхема под маркировкой μΑ749ΌΗΟ выпускается также в круглом корпусе ТО-99 (с сохранением номеров цоколевки), а под маркировкой μΑ749Ω8 — в корпусе DIP14.

Линейный предусилитель на микросхеме ΑΝ127, работающий в полосе частот 20 Гц—1,8 МГц при напряжении питания 1,3—5 В при потребляемом токе 1,2 мА, показан на рис. 31.4. Входное сопротивление усилителя — 3 кОм, выходное — 500 Ом, выходное напряжение — 0,1 В, коэффициент усиления — 57 дБ. Недостаток усилителя — повышенный коэффициент нелинейных искажений — до 1,8 %.

УНЧ с выходной мощностью до 1 Вт, рассчитанный на работу с нагрузкой 8 Ом при напряжении питания 12 В и токе покоя 7,5 мА может быть выполнен на микросхемах U410B и U821B. Первая из них способна работать при питающих напряжениях от 3 до 15 В, вторая — от 2 до 16 В в диапазонах частот при типовом включении 40—18000 и 50—20000 Гц, соответственно, рис. 31.5 и рис. 31.6.

Рис. 31.4. Схема линейного предусилителя на микросхеме AN 127

Рис. 31.5. Схема УНЧ на микросхеме’U410В

УНЧ на микросхеме ТВА820М (аналоги JJ820, LM820M, КА2201)У типовые схемы включения которых приведены на рис. 31.7 и рис. 31.8, обеспечивают выходную мощность до 1,8—2,0 Вт при напряжении питания 12 В. Полоса усиливаемых частот — 30(40) —

18000 Гц. Рекомендуемое сопротивление нагрузки 4 Ом. Напряжение питания УНЧ может составлять 3—16 В.

Рис. 31.6. Схема УНЧ на микросхеме U821В

Входное сопротивление микросхемы 5 МОм. Коэффициент усиления до 56 дБ.

Довольно простой предусилитель НЧ диапазона 20 Гц—20 кГц может быть собран на микросхеме ТВА880, рис. 31.9. Микросхема имеет 2 вывода питания, вход и выход. Номинальное напряжение питания 4,6 В (максимальное — 12 В) при потребляемом токе 18 мА. Входное сопротивление усилителя 12 кОм, выходное — 200 Ом. Коэффициент усиления — 46 дБ, коэффициент нелинейных искажений — до 5 %. Практически полным аналогом этой микросхемы служит микросхема ТСА980, отличающаяся только повышенным выходным напряжением.

Микросхема ТА7368Р фирмы Toshiba предназначена для создания простых УНЧ, рис. 31.10, рис. 31.11. Напряжение питания микросхемы может изменяться в пределах 2—10(14) В (номинальное 4 В). Выходная мощность при работе на сопротивление нагрузки 4 Ом достигает 1,1 Вт в полосе частот 20—20000 Гц при коэффициенте гармоник до 0,2 %.

Коэффициент усиления — 40 дБ. Входное сопротивление микросхемы 27 кОм.

Рис. 31.7. Схема УНЧ на микросхеме ТВА820М (U820)

УНЧ на микросхеме КР1064УН2 (аналоги ЭКР1436УН1,      МС34119Р,

Рис. 31.8. Вариант схемы УНЧ на микросхеме ТВА820М (U820)

фирма Motorola) работает при напряжении питания 2—16 В (рис. 31.12, 31.13). Ток покоя составляет 4 мА. При включении ключа SA1 «Mute» потребляемый микросхемой ток снижается до тока утечки (порядка 65 мкА). Выходная мощность усилителя в диапазоне частот 50—16000 Гц на сопротивление нагрузки 8 Ом при напряжении питания 9 В достигает 250 мВт при коэффициенте гармоник 0,22 %. Коэффициент усиления — 46 дБ.

Вариант включения микросхемы МС34119Р приведен на рис. 31.14. Коэффициент усиления УНЧ определяется как 2R2/R1. Остальные характеристики такие же, как у аналогов, см. выше, однако ток покоя всего 2,7 мА. В качестве нагрузки можно использовать относительно высокоомные телефоны — 32 Ом.

Рис. 37.9. Схема усилителя на микросхеме ТВА880

Рис. 31.10. Эквивалентная схема микросхемы ТА7368Р

Рис. 31.12. Эквивалентная схема микросхем КР1064УН2 (ЭКР1436УН1, МС34119Р)

Рис. 31.11. Схема УНЧ на микросхеме ТА7368Р

Рис. 31.13. Схема УНЧ на микросхеме КР1064УН2

Рис. 31.14. Схема УНЧ на микросхеме МС34119Р

Рис. 31.15. Состав и цоколевка микросхем серии LM358, К1464УД1

Микросхемы серии LM358 (National Semiconductor Corporation, NSC), отечественный аналог — К1464УД1, состоят из двух операционных усилителей (рис. 31.15) в корпусе DIP8 (либо Т099, S08). Напряжение питания микросхемы — ±3 — ±32 В, коэффициент усиления — до 100 дБ [31.3].

На базе ОУ К1464УД1 может быть изготовлен генератор стабильных токов, имеющий несколько выходов, схема которого представлена на рис. 31.16 [31.3]. Резисторы Rl, R2 образуют делитель напряжения. Образцовое напряжение с этого делителя (иобр=3 В) поступает на вход ОУ Ток через транзистор VT1 создает падение напряжения на резисторе R3. Это напряжение служит сигналом отрицательной обратной связи ОУ, что стабилизирует ток через транзистор. Тогда

При больших коэффициентах передачи по току транзисторов можно принять 1э1=1э2; IKl=IK2. С транзистором КТ315Е источник может обеспечить выходной ток до 50 мА.

При конструировании магнитофонов актуальной остается проблема обеспечения

Рис. 31.16. Схема мульти- генератора стабильных токов

Рис. 31.17. Схема выходного каскада записи магнитофона (преобразователь напряжение- ток записи)

записи-воспроизведения верхних частот. Схемное решение, представленное на рис. 31.17, позволяет стабилизировать ток записи вне зависимости от частоты входного сигнала [31.4]. Для этого использован усилитель, выполняющий функцию преобразователя напряжения в ток.

На датчике тока R6 поддерживается постоянная разность напряжения во всем диапазоне звуковых частот. Величину этого тока можно регулировать подбором номинала этого резистора. Предельное напряжение на головке записи В1 ограничено размахом напряжения питания, поэтому для достижения верхней границы записи 22 кГц желательно на тран- зис горы выходного каскада подавать повышенное до ±30 В или более напряжение.

Микросхема LA4140 (фирма Sanyo) предназначена для использования в выходных каскадах монофонических магнитофонов, CD-плееров, а также радиоприемников. Типовая схема УНЧ с использованием этой микросхемы приведена на рис. 31.18. Микросхема может работать при напряжении питания 3,5—14 В на сопротивление нагрузки 16 Ом, при

Рис. 31.18. Схема УНЧ на микросхеме LA4140

сопротивлении нагрузки 8 Ом верхняя граница напряжения питания снижается до 12 В. Потребляемый усилителем ток при напряжении питания 6 В не превышает 11 мА. Выходная мощность при этом на сопротивление нагрузки 8 Ом достигает 500 мВт при КНЛ не выше 10 %. Коэффициент усиления — 50 дБ. Входное сопротивление — 15 кОм, уровень шума на выходе — 400 мкВ.

Более высокую выходную мощность имеет УНЧ на микросхеме LA4145, рис. 31.19. Напряжение питания усилителя на этой микросхеме — 3,6—8,0 В.

Рис. 31.19. Схема УНЧ на микросхеме LA4145

Рис. 31.20. Эквивалентная схема микросхем TDA10WA, TDA1011, TDA1015, TDA1020.

ПУ— предусилитель; УМ —усилитель мощности

Потребляемый ток при напряжении питания 6 В — 10 мА. Выходная мощность при КНЛ до 10 % и сопротивлении нагрузки 8 Ом — 600 мВт; при 4 Ом — 900 мВт. Коэффициент усиления — 50 дБ. Входное сопротивление — 30 кОму уровень шума на выходе — 600 мкВ.

Микросхема TDA1010A (Philips) предназначена для работы при повышенном напряжении питания (6—24 В), номинальное напряжение 14,4 В. Эквивалентная схема микросхем этой серии приведена на рис. 31.20, а типовые схемы практического использования — на рис. 31.21 и рис. 31.22. Выходная мощность УНЧ на микросхеме TDA1010A при сопротивлении нагрузки 2 Ом может достигать 9 Вт при коэффициенте гармоник 0,2 %. Коэффициент усиления может доходить до 54 дБ. Входное сопротивление — 20 кОм.

Рис. 31.21. Схема УНЧ на микросхеме TDA 1010А

УНЧ на микросхеме TDA1020 (рис. 31.22), обеспечивает выходную мощность 12 Вт на сопротивление 2 Ом; коэффициент гармоник 0,2 %, напря-

Рис. 31.23. Типовая схема включения микросхемы TDA 1011, TDA1015

Рис. 31.22. Вариант схемы УНЧ на микросхемах TDA1010А, TDA1020

усилитель) + 29 (усилитель мощности) = 52 дБ. Входное сопротивление свыше 100 кОм. Разновидность микросхемы в корпусе S08 — TDA1015T имеет иную цоколевку и «облегченные» характеристики (выходная мощность до 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 16 Ом).

жение питания 14,4 В (автомобильный аккумулятор), пределы изменения напряжения питания 6—18 В. Коэффициент усиления 47,3 дБ — 17,7 (предусилитель) +

29.5   (усилитель мощности). Входное сопротивление — 40 кОм.

Микросхема TDA1011 (рис. 31.23), предназначена для работы при номинальном напряжении питания 16 В (пределы 3,6—24 В). Выходная мощность УНЧ при работе на сопротивление нагрузки 4 Ом составляет

6.5     Вт при коэффициенте гармоник 0,2 %. Коэффициент усиления — 52 дБ. Входное сопротивление — 200 кОм.

Микросхема TDA1015 (рис. 31.23) работает при номинальном напряжении питания 12 В (пределы 3,6—18 В). Выходная мощность УНЧ с сопротивлением нагрузки 4 Ом составляет 4,2 Вт при коэффициенте гармоник 0,3 %. При снижении напряжения питания до 9 (6) В выходная мощность падает до 2,3 (1,0) Вт.

Частотный диапазон усиления на уровне -3 дБ— 60—15000 Гц. Коэффициент усиления — 23 (пред-

Микросхема TDA1013B отличается от предшествующих по цоколевке (рис. 31.24) и, соответственно, схемой включения (рис. 31.25).

При напряжении питания 18 В выходная мощность на сопротивление 8 Ом — 4,2 Вт при Рис.31.24. Эквивалентная коэффициенте гармоник 0,2 %. Коэффициент схема микросхемы TDA101ЗВ

усиления — 38 дБ. Входное сопротивление — 200 кОм.

Рис. 31.25. Типовая схема включения микросхемы TDA101ЗВ

Микросхема TDA1518Q (Philips) способна отдавать в нагрузку при КНЛ 10 % мощность до 11 Вт и более (в зависимости от качества радиатора). Напряжение питания микросхемы 6—18 В, оптимальное

Рис. 31.26. Схема УНЧ на микросхеме TDA 1518Q

Рис. 31.27. Стереофонический УНЧ на микросхеме TDA 1518Q

14,4 В. Рекомендуемое сопротивление нагрузки 2 Ом. Микросхема допускает работу как в моно- так и в стереофоническом (двухканальном) режимах, рис. 31.26 и рис. 31.27. Коэффициент усиления в полосе частот 20—20000 Гц — 40 дБ. Ключ S1 предназначен для отключения микросхемы (режим «Stand-By»). Аналогом микросхемы TDA1518Q является TDA1516Q с пониженным до 20 дБ коэффициентом усиления и КНЛ 0,2 %.

При введении в УНЧ на микросхеме TDA1518BQ положительной обратной связи устройство, рис. 31.28, переходит в режим генерации, вырабатывая сигнал частотой около 2 кГц [31.5].

Рис. 31.28. Схема звукового генератора повышенной мощности на микросхеме TDA1518BQ

Микросхема TDA1553Q содержит два мостовых усилителя, схема которого представлена на рис. 31.29, к выходам которых без переходных конденсаторов возможно подключение низкоомных нагрузок (2×4 Ом). При напряжении питания 12—14,4 В, например, от автомобильного аккумулятора, выходная мощность на каждый канал может доходить до 22 Вт при КНЛ не свыше 0,2—0,5 %. Коэффициенту усиления — 26 дБ. Ключ S ι предназначен для переключения микросхемы в режим «Stand-By» (спящий режим).

Рис. 31.29. УНЧ на микросхеме TDA1553Q

На основе микросхемы TDA1553Q или ее аналога TDA1557Q может быть собран автомобильный усилитель мощности для аудио- плеера (рис. 31.30) [31.6]. Для питания аудиоплеера обычно используют напряжение порядка 2,8 В (две пальчиковые батареи). Это напряжение несложно получить при помощи стабилизатора напряжения, питаемого от аккумулятора автомобиля.

Примечание.

Оригинальность схемного решения, рис. 31.30, заключается в том, что стабилизатор напряжения одновременно управляет режимом «Stand-By» усилителя мощности.

Для перевода усилителя в этот режим достаточно отключить питание аудиоплеера. Тогда ток через резистор–датчик тока R3 прерывается, транзистор VT3 запирается, и вывод 11 микросхемы DA1 оказывается соединенным с общей шиной. Усилитель отключается. Для снижения уровня помех в цепи питания усилителя следует установить помехоподавляющий дроссель.

Микросхема TDA2822 (Philips), предназначена для сборки простых моно- или стереофонических УНЧ (рис. 31.31 и 31.32), работающих в полосе частот 30 Гц — 18 кГц с выходной мощностью на канал до 1,8 Вт при напряжении питания 6 В. Допустимый диапазон питающих напряжений — 3—15 В.

Рис. 31.30. Схема стереофонического усилителя мощности для аудиоплеера на микросхеме TDA1553

Примечание.

Аналогичную схему имеет микросхема TDA2822M, однако она выполнена в ином корпусе и имеет иную цоколевку и характеристики (пониженную до 0,65 Вт выходную мощность).

УНЧ на микросхеме TDA2006, включенный почти по типовой схеме (рис. 31.33), работает от источника питания напряжением 4,5—13,5 В

[31.7]. Коэффициент его усиления можно плавно регулировать потенциометром R4. Входное сопротивление усилителя — порядка 100 кОм.

Рис. 31.31. Типовая схема стереофонического УНЧ на микросхеме TDA2822

Рис. 31.32. Типовая схема одноканального УНЧ на микросхеме TDA2822

Рис. 31.33. Схема УНЧ на микросхеме TDA2006

Типовые схемы включения микросхемы1TDA7050 (фирма Philips) в двух- и одноканальных УНЧ показаны на рис. 33.34 и рис. 33.35 [31.8]. Напряжение питания микросхемы может составлять 1,6—6,0 В. Ток покоя при напряжении питания 3,0 В 3,2 мА. Коэффициент усиления по напряжению 32 дБ (мостовой режим) 26 дБ (стереорежим). Предельная рабочая частота до 500 кГц. Выходная мощность в мостовом режиме при напряжении питания 3,0—4,5 В и коэффициенте нелинейных искажений до 10 % около 140—150 мВт. В стереорежиме — 35 и 75 мВт при напряжении питания 3,0 и 4,5 В. Входное сопротивление — 1 МОм. Сопротивление нагрузки в мостовом режиме — 8—64 Ом, рис. 31.34, в стереорежиме — 32 Ом, рис. 31.35.

В моноканальном включении нагрузка (электродинамический громкоговоритель) включена по мостовой схеме, поэтому необходимость использования переходных конденсаторов, ограничивающих частотный диапазон, отпадает.

Монофонический мостовой УНЧ на микросхеме TDA7052 (рис. 31.36, рис. 31.37) может работать в диапазоне питающих напря-

Рис. 3 Ί.34. Двухканальный УНЧ на микросхеме TDA7050

Рис. 31.35. Схема монофонического УНЧ на микросхеме TDA7050

жений 3—18 В (номинальное — 6 В) [31.8]. Максимальный потребляемый ток — 1,5 А при токе покоя 7 мА (при 6 В) и 12 мА (при 18 В). Коэффициент усиления по напряжению 36,5 дБ. Полоса пропускания усилителя на уровне —1 дБ 20 Гц — 300 кГц. Номинальная выходная мощность при коэффициенте нелинейных искажений 10 %

1,1     Вт. Входное сопротивление 100 кОм. Сопротивление нагрузки 8 Ом.

Мостовой стереофонический УНЧ (рис. 31.38) на микросхеме TDA7053, также способен работать в диапазоне питающих напряжений 3—18 В (номинальное 6 В при токе покоя 9 мА). Выходная мощность на канал при напряжении питания 6 В и сопротивлении нагрузки 8 Ом — 1,2 Вт (коэффициент нелинейных искажений 10 %). Полоса частот 20—20000 Гц. Максимальный потребляемый ток до 1,5 А. Входное сопротивление 100 кОм. Сопротивлейие нагрузки 8—32 Ом.

Рис. 37.36. Схема УНЧ на микросхеме TDA7052

Рис. 31.37. Вариант схемы УНЧ на микросхеме TDA7052A с регулятором громкости

Рис. 31.38. Схема стереофонического УНЧ на микросхеме TDA7053

УНЧ на микросхеме TDA7231 (рис. 31.39) может работать при напряжении питания 1,8—15 В,. При напряжении питания 12 В выходная мощность на нагрузку 4 Ом достигает 1,6 Вт в диапа-зоне частот 40—18000 Гц. Ток покоя микросхемы — около 4 мА.

Рис. 31.40. Цоколевка микросхем TDA7233, TDA7233D

Рис. 31.39. Схема УНЧ но микросхеме TDA7231

Микросхемы TDA7233, TDA7233D (ST Microelectronics) с выходной мощностью до 1 Вт предназначены для портативных экономичных бытовых звуковоспроизводящих приборов, рис. 31.40 и рис. 31.41 [31.9, 31.10].

Примечание.

Цоколевка микросхем, выполненных в корпусах Minidip и S08, отличается друг от друга, а именно, для микросхемы TDA7233 выводы Зи4 (питание!) в отличие от TDA7233D поменяны местами, рис. 31.40.

Диапазон рабочих напряжений микросхем составляет 1,8—15 В. При напряжении питания 6 В коэффициент усиления — 39 дБ. Диапазон частот 22 Гц—22 кГц. Входное сопротивление 100 кОм. Сопротивление нагрузки 4(8) Ом. Микросхемы имеют вывод — 2 «Mute» («Отключено»), что позволяет при замыкании этого вывода на общий провод (переключатель SA1) экономить ресурс элементов питания или

Рис. 31.41. Типовая схема монофонического УНЧ на микросхеме TDA7233D

Рис. 31.42. УНЧ удвоенной выходной мощности на микросхемах TDA7233D

временно отключать звуковое сопровождение. Удвоить выходную мощность УНЧ на микросхемах TDA7233D можно при их включении по схеме, представленной на рис. 31.42 [31.10]. Конденсатор С7 предотвращает самовозбуждение устройства в области

высоких частот. Резистор R3 подбирают до получения равной амплитуды выходных сигналов на выходах микросхем.

Рис. 31.43. Структурная схема микросхемы КР174УНЗ 7

Микросхема КР174УН31 предназначена для использования в качестве выходных маломощных УНЧ бытовой РЭА.

При изменении напряжения питания от

2.1     до 6,6 В при среднем токе потребления 7 мА (без входного сигнала), коэффициент усиления микросхемы по напряжению меняется от 18 до 24 дБ [31.11].

Коэффициент нелинейных искажений при выходной мощности до 100 мВт не более 0,015 %, выходное напряжение шумов не превышает 100 мкВ. Входное сопротивление микросхемы 35—50 кОм. Сопротивление нагрузки — не ниже 8 Ом. Диапазон рабочих частот — 20 Гц — 30 кГц, предельный — 10 Гц — 100 кГц. Максимальное напряжение входного сигнала — до 0,25—0,5 В.

Структурная схема микросхемы КР174УН31 приведена на рис. 31.43. Вывод 6 — фильтр блокировки, вывод 7 — фильтр делителя смещения.

Выходная мощность стереофонического УНЧ (рис. 31.44) на микросхеме КР174УН31 на канал при напряжении питания 6,0 В — 0,44 Вт, при 4,5 В — 0,24 Вт, при 3,0 В — 0,1 Вт.

Выходная мощность монофонического УНЧ (рис. 31.45) на микросхеме КР174УН31 на каждый канал при напряжении питания 6,0 В —

1.1     Вт, при 4,5 В — 0,54 Вт, при 3,0 В — 0,2 Вт.

Рис. 31.44. Схема стереофонического УНЧ на микросхеме КР 7 74УНЗ 7 С1=С4=С8=0,15мкФ, С2- 7 00 мкФ, СЗ=10мкФ, С7= 7 000 мкФ, С5-С6-500 мкФ

Рис. 31.45. Схема монофонического УНЧ на микросхеме КР 7 74УНЗ 7 С1=С4-С6=0,75 мкФ, С2=2000 нФ, СЗ=ЮмкФ, С5-Ю00мкФ

Микросхема КР174УН34 производства ОАО «Ангстрем» (рис. 31.46) — двухканальный низкочастотный усилитель мощности с выходной мощностью до 1,3 Вт при напряжении питания 6 В [31.12]. Напряжение питания 2—9 В (предельное — 1,8—15 В). Потребляемый ток в режиме

молчания при напряжении питания 6 В — менее 9 мА. Коэффициент усиления при напряжении питания 6 В и сопротивлении нагрузки 4 Ом — 36—41 дБ. Входное сопротивление — не менее 100 кОм.

Рис. 31.48. Схема мостового монофонического УНЧ на микросхеме КР174УН34

Стереофонический УНЧ (рис. 31.47) на микросхеме КР174УН34 при напряжении питания 2 В (сопротивление нагрузки 32 Ом) обеспечивает выходную мощность 2 мВт на канал при КНЛ 10 %; при 3 В (4 Ом) — 40 мВт·, при 6 В (8 Ом) — 300 мВт; при 6 В (4 Ом) — 450 мВт; при 9 В (8 Ом) — 600 мВт.

Рис. 31.49. Внешний вид и цоколевка микросхемы TDA2030 (К 7 74УН79)

Рис. 31.46. Структурная                   Рис. 31.47. Схема стереофонического

схема микросхемы КР174УН34                        УНЧ на микросхеме КР174УН34

Монофонический УНЧ по мостовой схеме (рис. 31.48) при напряжении питания 2 В (сопротивление нагрузки 4 Ом) обеспечивает выходную мощность свыше 30 мВт при КНЛ 10 %; при 3 В (8 Ом) — 120 мВт; при 3 В (4 Ом) — 200 мВт; при 4,5 В (4 Ом) — 400 мВт; при 6 В (8 Ом) — 900 мВт; при 9 В (16 Ом) — 1400 мВт.

Микросхема TDA2030, выпускаемая фирмами RFT, SGS-Thomson Microelectronics, ST Microelectronics [31.8, 31.13], предназначена для создания недорогих УНЧ с выходной мощностью до 10—12 Вт (в зависимости от напряжения питания и используемого радиатора), рис. 31.49 и рис. 31.50.

Отечественный аналог микросхемы — К174УН19. В микросхеме предусмотрена защита от короткого замыкания нагрузки и перегрева.

Рис. 31.50. Типовая схема использования микросхемы TDA2030 (К174УН19) в качестве УНЧ

Типовые характеристики УНЧ (рис. 31.50) на микросхеме TDA2030: максимальное напряжение питания до 18 В, выходная мощность до 20 Вт. При питании от 14 В выходная мощность снижается до 14 Вт на сопротивлении нагрузки 4 Ом при КНЛ 0,5 %. Полоса усиливаемых частот в зависимости от разновидности микросхемы 30 Гц — 20 кГц (40 Гц — 15 кГц).

Параллельно резистору R6 в целях коррекции амплитудно-частотной характеристики УНЧ можно включить последовательную RC-цепочку 10 пФ, 15 кОм с подбором номиналов элементов, рис. 31.50.

При использовании двуполярного источника питания схема включения микросхемы видоизменяется, рис. 31.51. Корректирующая цепочка C4R4 может отсутствовать.

Ррс. 31.51. Типовая схема включения микросхемы TDA2030 (К174УН19) в качестве УНЧ с питанием от двуполярного источника питания

Рис. 31.52. Схема мостового усилителя мощностью 28 Вт. на микросхемах TDA2030 (К 174УН19) с питанием от двуполярного источника питания

Мостовой УНЧ на микросхемах TDA2030 (К174УН19) с выходной мощностью до 28 Вт питается от двуполярного источника питания напряжением ±14 В, он показан на рис. 31.52 [31.13]. Параллельно резисторам R3 и R7 могут быть включены корректирующие RC-цепочки, см., например, рис. 31.51.

На рис. 31.53 показан вариант применения микросхемы TDA2030

при использовании ее в составе активных колонок для персонального компьютера (показан один из каналов) [31.14].

Коэффициент усиления УНЧ (20 раз) определяется соотношением R5/R6. Конденсаторы С2, С6 и С5 определяют нижнюю границу усиливаемых частот. Цепочка R7C7 повышает стабильность работы УНЧ в области верхних частот.

УНЧ (рис. 31.54) на микросхеме TDA2030A с выходной мощностью до 30 Вт [31.8] работает в диапазоне частот 40 Гц — 15 кГц, обеспечивая КНЛ 0,5 %.

Рис. 31.53. УНЧ на микросхеме TDA2030

Рис. 31.55. Схема мощного звукового генератора

На микросхеме TDA2030, предназначенной для работы в качестве выходного каскада мощного УНЧ, может быть собран не менее мощный генератор звуковых сигналов, схема которого представлена на рис. 31.55 [31.15].

Такой генератор можно использовать для охранной сигнализации, в качестве гудка транспортного средства, электрического звонка, устройства для отпугивания животных и насекомых и т. д.

Частоту звукового сигнала можно плавно варьировать регулировкой потенциометра R5, а грубо — переключением емкости конденсатора С1. Микросхема должна быть установлена на теплоотводящую пластику. При напряжении питания 20 В устройство потребляет ток 400 мА, при 4 В — 25 мА.

Рис. 31.54. Схема УНЧ повышенной мощности с использованием микросхемы TDA2030A

Нели взамен головки ВА1 включить простейший выпрямитель, то на основе генератора можно получить достаточно мощный преобразователь напряжения любой полярности.

Простой УНЧ (рис. 31.56) на микросхеме К157УД1 может быть использован в качестве выходного каскада приемопередающего устройства, линии связи, переговорного устройства, домофона [31.16].

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

nauchebe.net

Самодельный звуковой усилитель на микросхеме

Если нужно сделать простой, но достаточно мощный УМЗЧ — микросхема TDA2040 или TDA2050 будет наилучшим и недорогим решением. Этот небольшой стереофонический усилитель ЗЧ построен на основе двух всем известных микросхем TDA2030A. По сравнению с классическим включением, в этой схеме улучшена фильтрация питания и оптимизирована разводка печатной платы. После добавления любого предусилителя и блока питания — конструкция идеально подходит для изготовления самодельного домашнего усилителя мощности звука, примерно на 15 Вт (каждый канал). Проект изготовлен на основе TDA2030A, но можно использовать TDA2040 или TDA2050, тем самым раза в полтора увеличивая выходную мощность. Усилитель подходит для динамиков с сопротивлением 8 или 4 Ом. Преимуществом конструкции является то, что она не требует двух-полярного питания, как большинство более серьёзных усилителей НЧ. Схема отличается хорошими параметрами, легкостью запуска и надежностью в работе.

Принципиальная электрическая схема УНЧ

Усилитель 2x15W ТДА2030 — схема стерео

TDA2030A позволяет спаять усилитель низкой частоты класса AB. Микросхема обеспечивает большой выходной ток, характеризуясь при этом низкими искажениями сигнала. Есть защита встроенная от короткого замыкания, которая автоматически ограничивает мощность до безопасной величины, а также традиционная для таких устройств тепловая защита. Схема состоит из двух одинаковых каналов, работа одного из которых описана далее.

Принцип действия усилителя на TDA2030

Резисторы R1 (100k), R2 (100k) и R3 (100k) служат для создания виртуального нуля усилителя U1 (TDA2030A), а конденсатор C1 (22uF/35V) фильтрует это напряжение. Конденсатор С2 (2,2 uF/35V) отсекает постоянную составляющую — предотвращает попадание постоянного напряжения на вход микросхемы усилителя через линейный вход.

Элементы R4 (4,7k), R5 (100k) и C4 (2,2 uF/35V) работают в петле отрицательной обратной связи и имеют задачу формирования частотной характеристики усилителя. Резисторы R4 и R5 определяют уровень усиления, в то время как C4 обеспечивает усиление в единицу для постоянной составляющей.

Резистор R6 (1R) вместе с конденсатором C6 (100nF) работают в системе, которая формирует характеристику АЧХ на выходе. Конденсатор C7 (2200uF/35V) предотвращает прохождение постоянного тока через динамик (пропуская переменный звуковой сигнал музыки).

Диоды D1 и D2 предотвращают появление опасных напряжений обратной полярности, которые могут возникнуть в катушке динамика и испортить микросхему. Конденсаторы C3 (100nF) и C5 (1000uF/35V) фильтруют питающее напряжение.

Печатная плата УНЧ

Печатная плата УНЧ ТДА2030

Печатную плату можете посмотреть на фотографиях. Скачать файлы с чертежами можно в архиве (без регистрации). Что касается сборки — удобно сначала впаять две перемычки на шинах питания. По возможности следует использовать более толстый провод, а не тоненькую ножку от резистора, как часто бывает. Если усилитель будет работать с АС 8 Ом, а не 4 Ома — конденсаторы C7 и C14 (2200uF/35V) могут иметь значение 1000uF.

На фланцы обязательно следует прикрутить радиаторы или один общий радиатор, помня, что корпуса микросхем TDA2030A внутренне связаны с массой.

На печатной плате с успехом можно применять микросхемы TDA2040 или TDA2050 без всяких изменений цоколёвки. Плата была разработана таким образом, чтобы ее можно было при необходимости перерезать в месте, обозначенном пунктирной линией, и использовать только одну половину усилителя с микросхемой U1. На место разъемов AR2 (TB2-5) и AR3 (TB2-5) можете впаивать провода напрямую, если аудио разъёмы закреплены на корпусе усилителя.

Печатная плата усилителя готовая с расположением деталей

Корпус и БП

Блок питания берите или с трансформатором плюс выпрямитель, или готовый импульсный, например от ноутбука. Усилитель необходимо питать не стабилизированным напряжением в пределах 12 — 30 В. Максимальное напряжение питания 35 В, до которого естественно лучше не доходить на пару вольт, мало ли что.

Корпус делать с нуля очень хлопотно, так что проще всего подобрать готовую коробку (металл, пластик) или даже готовый корпус от электронного устройства (ТВ тюнер спутниковый, плеер DVD).

2shemi.ru

Очень простой мощный усилитель на микросхеме

Я бы сказал, что это просто супер простой усилитель, содержащий все четыре элемента и выдающий мощность 40 Вт на два канала!
4 детали и 40 Вт х 2 выходной мощности Карл! Это находка для автолюбителей, так как питается усилитель от 12 Вольт, полный диапазон от 8 до 18 Вольт. Его можно запросто встраивать в сабвуферы или акустические системы.
Все сегодня доступно благодаря использованию современной элементной базы. А именно микросхеме — TDA8560Q.

Кстати купить ее можно на за сущие копейки тут – TDA8560Q

Это микросхема фирмы «PHILIPS». Ранее была в ходу TDA1557Q, на которой можно также собрать стерео усилитель с выходной мощностью 22 Вт. Но её в последствии модернизировали, обновив выходной каскад и появилась TDA8560Q с выходной мощностью 40 Вт на канал. Также аналогом является TDA8563Q.

Схема автомобильного усилителя на микросхеме


На схеме микросхема, два входных конденсатора и один фильтрующий. Фильтрующий конденсатор указан с минимальной емкостью 2200 мкФ, но лучшем решением будет взять 4 таких конденсатора и запараллелить, так вы обеспечите более стабильную работу усилителя на низких частотах. Микросхему нужно обязательно устанавливать на радиатор, чем больше, тем лучше.

Сборка простого усилителя



Также можно увеличить в схеме число компонентов, повышающих надежность при эксплуатации, но не принципиально.

Тут добавилось ещё пять деталей, объясню для чего. Два резистора на 10 К Ом уберут фон, если к схеме идут длинные провода. Резистор 27 К Ом и конденсатор 47 мкФ дают плавный пуск усилителя без щелчков. А конденсатор 220 пF отфильтрует высокочастотные помехи идущие по проводам питания. Так что я рекомендую доработать схему этими узлами, лишним не будет.
Хочу ещё добавить, что усилитель развивает полную мощность только на нагрузке 2 Ома. На 4 Ом будет где-то порядка 25 Вт, что тоже очень неплохо. Так что нашу советскую акустику раскачает.
Низковольтное, однополярное питание дает дополнительные плюсы: использование в автомобильной акустике, дома же можно питать от старого компьютерного блока питания.
Минимальное количество компонентов позволяет встраивать усилитель в замен старому, вышедшему из строя, на микросхеме других марок.

Смотрите видео теста усилителя


sdelaysam-svoimirukami.ru

УНЧ и Звукотехника | Усилители мощности низкой частоты | Микросхема

Как много в этой аббревиатуре для сердца радиолюбителя слилось. Каждый, кто когда-нибудь занимался радиотехникой и электроникой, собирал различные усилители низкой частоты. Простые и сложные, маломощные и мощные. Сейчас, с развитием интегральных микросхем, стало вообще всё намного проще. Усилители не содержат каких-то уникальных радиодеталей. Одна микросхема, которая, собственно, и представляет собой уже готовый усилитель мощности низкой частоты, и схема, практически, собрана. Как правило, выходная мощность таких усилителей и качество воспроизведения на высоте. А если прикупить головку динамическую прямого излучения Ватт так на 1500 — 2000 и встроить в корпус с фазоинвертором, выполненный по рассчитанным размерам, то вообще замечательно. Получится сабвуфер не хуже покупного. В большинстве случаев даже лучше.

Чистота и качество воспроизведения постоянно совершенствуются. Основные термины в данном разделе:
Бел (Б) — логарифмическая единица, соответствующая (при частоте 1000 Гц) десятикратному изменению силы звука. Логарифмическая единица, соответствующая 1/10 бела, называется децибелом (дБ). Одному дБ соответствует изменение звукового давления в 1,12 раза.
Частота звуковых колебаний воспринимается на слух как высота тона. Самый низкий предел, воспринимаемый человеком, 20 Гц, а самый высокий — 20000 Гц.
Тембр — окраска звука, определяемая количеством, частотой и интенсивностью обертонов.
Уровень звукового давления — отношение данного звукового давления p к нулевому уровню p0, выраженное в дБ. Вычисляется как N=20 lg(p/p0).
Болевой порог — звуковое давление, которое вызывает болевое ощущение на коже. Уровень равен 120 дБ.

В радиолюбительской практике принято делить УНЧ на обычные и высокого качества (Hi-Fi класса). Максимальная выходная мощность всех звуковых усилителей определяется по простой формуле: Pвых=U2/Rн. Т.е. замеряете напряжение на выходе УНЧ (обязательно под нагрузкой), возводите в квадрат и делите на сопротивление нагрузки (обычно сопротивление динамика 4-8 Ом). Можно ещё упомянуть о предварительном усилении. К усилителям мощности обязательно нужны такие каскады, чтобы напряжение на его входе было достаточным.

Бывают ещё различные по сложности усилительные каскады. Однотактные, двухтактные, трансформаторные и бестрансформаторные, мостовые схемы включения усилительных элементов. Одна из возможных схем двухтактного трансформаторного каскада усилителя звуковой частоты приведена ниже. Номинальная выходная мощность 4 Вт, максимальная — 6 Вт.

Но такие, я думаю, уже никто не будет собирать. Слишком трудоёмко наматывать трансформатор, плюс ко всему нужно найти подходящий магнитопровод.

Приведу ещё пример двухтактного бестрансформаторного каскада УНЧ. Выходная мощность порядка 10 Вт.

У нас в наличии имеется более 850 схем УНЧ на интегральных микросхемах. По мере необходимости будем выкладывать их на сайт, особенно самые лучшие, на наш взгляд. Если Вам нужен какой-то усилитель и Вы не можете найти его схему, то пишите, пожалуйста, в комментариях или в форме обратной связи. Мы обязательно поможем.


Ниже приведены ссылки на различные материалы по данной теме. Особо отметим, что среди них есть полностью опубликованные с полным описанием схемы, входящих радиоэлементов, различных настроек и замеров основных параметров (например, силы тока и напряжения) на разных участках цепи и между элементами. Также есть с кратким описанием, содержащие ссылку на скачивание всего документа в одном архиве, где, в свою очередь, содержится уже полное описание конструкции, печатной платы и прочее. Архивы имеют расширение *.rar (распаковать можно, например, программой WinRAR версии 2.9 и выше) и доступны для скачивания. Примечание: эта мера введена из-за того, что многие запакованные материалы являются целыми пособиями. Подразумевается, что Вам будет удобнее скачать на жесткий диск и просматривать уже локально, нежели листать страницу за страницей, расходуя трафик и время.


xn--80a3afg4cq.xn--p1ai

Схема усилителя звука на микросхеме

Схема усилителя звука на микросхеме — Hi-Fi усилитель на TDA7294

Схема усилителя звука на микросхеме — несмотря на относительную простоту, обеспечивает довольно высокие параметры. Вообще-то, по правде говоря, у «микросхемных» усилителей есть ряд ограничений, поэтому усилители на «рассыпухе» могут обеспечить более высокие показатели. В защиту микросхемы (а иначе почему я и сам ее использую, и другим рекомендую?) можно сказать:

Простая и эффективная схема

  • схема очень простая
  • и очень дешевая
  • и практически не нуждается в наладке
  • и собрать ее можно за один вечер
  • а качество превосходит многие усилители 70-х … 80-х годов, и вполне достаточно для большинства применений (да и современные системы до 300 долларов могут ей уступить)
  • таким образом, усилитель подойдет и начинающему, и опытному радиолюбителю (мне, например, как-то понадобился многоканальный усилитель проверить одну идейку. Угадайте, как я поступил?).

В любом случае, плохо сделанный и неправильно настроенный усилитель на «рассыпухе» будет звучать хуже микросхемного. А наша задача — сделать очень хороший усилитель. Надо отметить, что звучание усилителя очень хорошее (если его правильно сделать и правильно питать), есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294! И наш усилитель ничуть не хуже!!!

Схема усилителя звука на микросхеме — это практически повторение схемы включения, предлагаемой производителем. И это неслучайно — уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы.

Входной тракт

Входная цепочка R1C1 представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя — ХХI век — это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально — я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе будет стоять регулятор громкости, то в самый раз — его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше — лучше, но нарушится закон регулирования).

Далее цепочка R2C2 выполняет прямо противоположную функцию — не пропускает на вход частоты ниже 7 Гц. Если для вас это слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низких. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. И помните, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3! И еще. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже:

С2[мкФ] = 1000 / ( 6,28 * Fmin[Гц] * R2[кОм])

Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по даташиту, но это и лучше — слишком низкое входное сопротивление может «не понравиться» источнику сигнала. Учтите, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33…68 кОм (большее сопротивление снизит помехоустойчивость).

Схема усилителя звука на микросхеме , а именно схема включения усилителя — не инвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:

Ку = R4 / R3 + 1 = 28,5 раза = 29 дБ

Коэффициент усиления

Это почти равно оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учтите, что делать Ку меньше 20 нельзя — микросхема может само возбуждаться. Больше 60 его также делать не стОит — глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 50 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.

Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что приятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние С4. Об этом поподробнее. Схема усилителя звука на микросхеме работает в такой последовательности: конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:

f [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ] ) = 1,3 Гц

Уменьшение искажений

Эта частота и должна быть очень низкая. Дело в том, что С3 — электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжение на нем увеличивается (выходное напряжение усилителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать не полярный конденсатор, но я не могу однозначно сказать, улучшится от этого звук, или ухудшится: не полярный конденсатор это «два в одном» полярных, включенных встречно.

Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) — они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, ценой 7-12 евро за штуку неплохо работает и на 20 кГц). Пленочный конденсатор С4 «берет высокие частоты на себя», тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 — тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.

Устойчивость усилителя

Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но мне попадались экземпляры микросхем, которые без этой цепи работали хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.

Схема усилителя звука на микросхеме , и в частности конденсаторы С8 и С9 осуществляют так называемую вольт-добавку. Через них часть выходного напряжения поступает обратно в пред оконечный каскад и складывается в напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение вольт на 5 меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольт-добавки выходное напряжение микросхемы было бы вольт на 10 меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Управление режимами Mute и StdBy

Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания (см. Режимы Mute и StandBy в микросхеме TDA7294/TDA7293). Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при «неправильной» их последовательности , так что такое управление нужно больше для собственного удовольствия.

Конденсаторы С10-С13 фильтруют питание. Их использование обязательно — даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах)! Уменьшать емкости не стОит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны — не жалейте припоя. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Разделение входной и выходной земли

И, наконец, резистор R10. Он служит для разделения входной и выходной земли. «На пальцах» его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по «земляному» проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по «земле»). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении «земляного» провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет, только всякую гадость. Сопротивление резистора R10 хоть и мало (оптимальное значение 1…5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.

В принципе, при хорошей разводке платы (а она у меня хорошая) этого не произойдет, но с другой стороны, что-то подобное может случиться в «макромасштабе» по цепи источник_сигнала-усилитель-нагрузка. Резистор поможет и в этом случае. Впрочем, его можно вполне заменить перемычкой — он использован исходя из принципа «лучше перебдеть, чем недобдеть».

Источник питания

Схема усилителя звука на микросхеме питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).

Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт — микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):

Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:

где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип — напряжения одного плеча источника питания в режиме молчания.

Мощность блока питания

Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).

Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на вторичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания:

Скачать —>> PowerSup (zip-файл около 230 кБайт ). И не забывайте, что схема усилителя звука на микросхеме требует вдвое более мощный блок питания (при расчете по предлагаемой программе все учитывается автоматически).

От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику — малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных «просадок» и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повысится в 10-100 раз, хотя «на вид» там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио — это сложное и недешевое устройство, поэтому изготовить «старомодный» аналоговый блок питания будет зачастую проще и дешевле.

Печатная плата односторонняя и имеет размеры 65х70 мм:

Разводка печатной платы

Схема усилителя звука на микросхеме, плата которого разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в «экран» из разделенной земли — входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клеммники для подключения входа, выхода и питания — место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять — так надежнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении «лазерно-утюжным» методом если где и не «пропечатается» квадрат 1 мм х 1 мм, то не страшно — все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

Дорожки рекомендуется облудить — и сопротивление меньше, и коррозия.

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся… С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц — там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих «аудиофильских» я считаю неоправданным экономически, а дешевые «керамические» дадут худший звук (это по идее, в принципе — пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. Схема усилителя звука на микросхеме имеет на печатной плате нанесенные значки полярности подключения всех электролитических конденсаторов и диода. Диод — любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3 — можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.

Теплоотвод для микросхемы

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с «минусом» питания. Отсюда возникают два способа установки ее на радиатор:

Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.

Первый вариант рекомендуется, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор — больше.

Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.

Схема усилителя звука на микросхеме — налаживание

Общение в интернете показывает, что 90% всех проблем с аппаратурой составляет ее «не налаженность». То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и во всеуслышание объявляет схему плохой. Поэтому наладка — самый важный (и зачастую самый сложный) этап создания электронного устройства.

Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс» и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой — предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы — при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Ток покоя микросхемы

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в «земляном» проводе от источника; перепутаны «плюс» и «минус»; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что схема усилителя звука на микросхеме держит нормальный ток покоя, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с не подключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Если и тут все в порядке, подключаем нагрузку, еще раз проверяем на отсутствие возбуждения уже с нагрузкой, и все — можно слушать!

Дополнительное тестирование

Но лучше все же провести еще один тест. Дело в том, что самым, на мой взгляд, мерзким видом возбуждения усилителя, является «звон» — когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде. Потому что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится колоссально из-за огромных интер-модуляционных искажений. Причем на слух это обычно воспринимается как «тяжелый» звук, т.е. без всяких дополнительных призвуков (т.к. частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает, и решит, что микросхема «плохая», и «не звучит».

Еслиcхема усилителя звука на микросхеме правильно собрана и нормальный источник питания такого быть не должно.

Однако иногда бывает, и цепь С7R9 как раз и борется с такими вещами. НО! В нормальной микросхеме все ОК и при отсутствии С7R9. Мне попадались экземпляры микросхемы со звоном, в них проблема решалась введением цепи С7R9 (поэтому я ее и использую, хоть в даташите ее и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, «поигравшись» с сопротивлением (его можно уменьшить до 3 Ом), но я бы не советовал использовать такую микросхему — это какой-то брак, и кто его знает, что в ней еще вылезет.

Проблема в том, что «звон» можно увидеть только на осциллографе, это когда схема усилителя звука на микросхеме получает сигнал со звукового генератора (на реальной музыке его можно и не заметить) — а это оборудование есть далеко не у всех радиолюбителей. (Хотя, если хотите эти делом хорошо заниматься, постарайтесь такие приборы заметь, хотя бы где-то ими пользоваться). Но если желаете качественного звука — постарайтесь провериться на приборах — «звон» — коварнейшая вещь, и способен повредить качеству звучания тысячей способов. Мои платы:


печатка изготовлена с помощью ЛУТ

«Настольная» проверка усилителя

Схема усилителя звука на микросхеме после предварительного включение на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

Предварительное включение усилителя на столе, показала, что схема и печатная плата абсолютно рабочие! Дополнительных настроек после сборки по схеме не производились! очень доволен, рекомендую!

Скачать вложения: HiFi7294
Источник: electroclub.info

usilitelstabo.ru

Несколько УНЧ на ИМС серии TDA




Юрий Баранов
http://yooree.narod.ru

Адрес Email — yooree (at) inbox.ru

(замените (at) на @)
Стереоусилитель 2х1 Вт

На рис. 1 приведена принципиальная схема стереофонического усилителя
с выходной мощностью до 1 Вт на канал, собранного на одной интегральной
микросхеме TDA7053 производства фирмы Philips в корпусе DIP-16, а также
двух переменных резисторов, двух керамических и одного оксидного конденсаторов.
Особенностью усилителя является наличие в каждом канале не одной, а
двух динамических головок сопротивлением по 8 Ом. Здесь возможно использование
самых распространенных головок 1ГД-40 старого производства или подобных
по конструкции головок с эллиптическим диффузором, например 2ГДШ-2-8.
Другой особенностью усилителя является то, что его выходы нигде не соединены
с общим проводом питания. Это характерно для мостовых усилителей мощности
с бесконденсаторным выходом.




Рис. 1. Принципиальная схема стереофонического УМЗЧ
на ИМС TDA7053 с регуляторами громкости


Интегральная микросхема рассчитана на работу при напряжении питания 3-15 В
и токе покоя около 5 мА. Минимальное сопротивление нагрузки — 8 Ом.


Такой усилитель удобно и экономично подключить к карманному плейеру и использовать
для музыкального сопровождения. В этом случае целесообразно упростить
конструкцию усилителя, убрав регуляторы громкости, поскольку они уже
имеются в плейере. Измененная принципиальная схема усилителя приведена
на рис. 2. Здесь на входе каждого канала установлен делитель напряжения
из двух резисторов во избежание перегрузки усилителя. Сигналы снимаются
с гнезда для внешнего телефона плейера с помощью двойного кабеля от
стереофонического телефона, вышедшего из строя.




Рис. 2. Принципиальная схема стереофонического УМЗЧ
на ИМС TDA7053 с нерегулируемыми входами

При повторении конструкций данных усилителей можно воспользоваться монтажными
схемами и чертежами печатных плат, приведенными на рис. 3 и 4, а также
рис. 5 и 6 соответственно.





Рис. 3. Монтажная схема УМЗЧ на ИМС TDA7053



Рис. 4. Печатная плата УМЗЧ на ИМС TDA7053



Рис. 5. Монтажная схема УМЗЧ на ИМС TDA7053 с нерегулируемыми
входами



Рис. 6. Печатная плата УМЗЧ на ИМС TDA7053 с нерегулируемыми
входами

Усилитель на выходную мощность до 5 Вт


На рис. 7 дана принципиальная схема самого простого, надежного, экономичного
и широко распространенного в промышленной аппаратуре усилителя мощности
звуковой частоты на отечественной интегральной микросхеме К174УН14,
имеющей десятки аналогов за рубежом, среди которых самым популярным
является ТДА2003. Микросхема предназначена для работы при напряжении
источника питания 8-18 В и сопротивлении нагрузки не менее 2 Ом. При
этом достигается равномерное усиление сигнала в полосе частот 30 Гц
— 20 кГц, а ток покоя составляет 40-60 мА. Чувствительность усилителя
— около 50 мВ. Микросхема снабжена собственным теплоотводом, допускающим
работу с выходной мощностью не более 2 Вт. Для получения большей мощности
обязательно требуется установка дополнительного пластинчатого либо ребристого
или игольчатого теплоотвода.





Рис. 7. Принципиальная схема УМЗЧ на ИМС TDA2003

Большое усиление микросхемы требует принятия определенных мер по повышению
стабильности и устойчивости ее работы. Это достигается двумя способами.
Во-первых, для предотвращения самовозбуждения на высоких и ультравысоких
частотах громкоговоритель шунтируется последовательно соединенными низкоомным
постоянным резистором R4 типа С1-4 и керамическим конденсатором С6.
Во-вторых, коэффициент усиления во всей полосе воспроизводимых частот
стабилизирован за счет наличия на выходе усилителя делителя напряжения
сигнала 1:100 и подачей с него напряжения отрицательной обратной связи
на инвертирующий вход усилителя. Через оксидный конденсатор большой
емкости С4 громкоговоритель подключен к выходу усилителя через стандартный
акустический разъем и своим одним выводом соединен с общим проводом
питания, то есть заземлен.


Поскольку потребляемый ток быстро меняется в пределах от нескольких десятков
миллиампер до ампера и более, конденсатор С2, шунтирующий по постоянному
току источник питания, также имеет большую емкость (обычно не менее
2200 мкФ) и напряжение не менее 16 В при источнике 12 В или 25 В при
источнике 15 В. Дополнительно источник питания шунтируется керамическим
конденсатором СЗ во избежание возможного самовозбуждения на высоких
частотах из-за паразитных обратных связей.


На рис. 8 и 9 приведены схема размещения навесных деталей на печатной плате,
а также чертеж самой платы. Интегральная микросхема монтируется на дополнительном
теплоотводе и соединяется с платой посредством тонких изолированных
гибких проводов в тефлоновой, то есть фторопластовой изоляции. По возможности
длина проводников должна быть минимальной. Обязательным условием нормальной
работы усилителя является свободный доступ воздуха к его теплоотводу.





Рис. 8. Монтажная схема УМЗЧ на ИМС TDA2003



Рис. 9. Печатная плата УМЗЧ на ИМС TDA2003

Стереофонический усилитель 2х4 Вт


На базе интегральной микросхемы К174УН14 отечественная промышленность выпускает
стереофонический усилитель с выходной мощностью до 4 Вт на каждый канал.
Особенностью данной микросхемы является то, что два одинаковых кремниевых
кристалла, на которых она основана, помещены в общий корпус с небольшими
металлическими теплоотводами. Специально для нее выпускается дополнительный
игольчатый теплоотвод, способный обеспечивать нормальный тепловой режим
работы обоих каналов усилителя при выходной мощности до 4 Вт на каждый
канал. Внешне эта интегральная микросхема ничем не отличается от широко
распространенных в любительской практике микросхем К174УН7 и К174УН9,
но по своим возможностям превосходит их. Микросхема К174УН20 рассчитана
на работу с источником питания напряжением до 12 В при токе покоя 65
мА и сопротивлении нагрузки 4 или 8 Ом. Равномерное усиление сигнала
производится в полосе частот 50 Гц — 16 кГц, что вполне приемлемо для
большинства любительских конструкций. Причем если выходная мощность
на каждый канал не будет превышать 0,5-0,8 Вт, то можно обойтись без
дополнительного теплоотвода, в противном случае он необходим. Если специального
игольчатого теплоотвода приобрести не удастся, его можно заменить пластинчатым,
например, из листового алюминия или меди толщиной 1,0-1,5 мм. Его площадь
должна быть не менее 9-10 см2 для каждого металлического выступа с отверстием
под винт. Теплоотвод можно оформить в виде уголка, что сэкономит место
на плате.





Рис. 10. Схема стереофонического УМЗЧ на ИМС К174УН20

На рис. 10 приведена принципиальная схема стереофонического усилителя на основе
микросхемы К174УН20. Он обеспечивает выходную мощность 4 Вт по каждому
каналу при напряжении питания 12 В и сопротивлении нагрузки 4 Ом. При
увеличении сопротивления нагрузки до 8 Ом в каждом канале выходная мощность
уменьшается до 2,2 Вт на канал при том же напряжении питания.


Особенностью схемы является отсутствие плавных регуляторов громкости, которые
заменены делителями входного напряжения на двух резисторах R1, R2 и
R3, R4 с коэффициентом деления 1:2. Это сделано с целью подключения
к выходу карманного аудиоплейера входа данного усилителя. В таком случае
монтаж на печатной плате может иметь вид, показанный на рис. 11 и 12.
При необходимости усилитель разрешается снабдить светодиодным индикатором
включения питания, что бывает весьма полезно при работе от автономного
источника. Это легко сделать с помощью постоянного резистора R5 и светодиода
HL1, подключенных к источнику питания после выключателя.





Рис. 11. Монтаж стереофонического УМЗЧ на ИМС К174УН20



Рис. 12. Печатная плата стереофонического УМЗЧ на ИМС
К174УН20

Двухканальный усилитель 2х10 Вт


На рис. 13 приведена принципиальная схема двухканального усилителя мощности
звуковой частоты на одной интегральной микросхеме фирмы Philips TDA7370.
При наличии дополнительного теплоотвода и достаточно мощном источнике
напряжения постоянного тока 12 В он способен развивать номинальную выходную
мощность по каждому каналу 10 Вт при коэффициенте нелинейных искажений
1%. Особенностью усилителя является очень малое число дополнительных
навесных деталей — всего четыре конденсатора и два переменных резистора.
Два громкоговорителя сопротивлением 4 или 8 Ом подключены непосредственно
к выводам микросхемы без громоздких переходных конденсаторов большой
емкости, что имеет место во многих других усилителях мощности звуковой
частоты. Известно, что их гордо называют «усилителями с бестрансформаторным
выходом», как бы в упрек когда-то существовавшим усилителям на электронных
лампах, имевшим громоздкие выходные трансформаторы. Данный усилитель
с полным правом можно называть усилителем мощности с бестрансформаторным
и бесконденсаторным выходом. Аналогичные усилители уже описывались ранее,
но они были малой мощности, всего по 1 Вт на канал. Именно это существенное
отличие требует в данном усилителе обязательной установки эффективного
дополнительного теплоотвода, к которому плотно (под винт МЗ) прижимается
интегральная микросхема. Для этой цели подходят стандартные теплоотводы
из дюралюминия под транзисторы КТ818, КТ819. В крайнем случае можно
использовать пластину из дюралюминия размером 100х100 мм и толщиной
2-4 мм. Не рекомендуется даже на мгновение включать усилитель без такого
теплоотвода, так как при работе с номинальной мощностью внутри микросхемы
развивается тепловая мощность 30 Вт, как у паяльника.





Рис. 13. Принципиальная схема стереофонического УМЗЧ
на ИМС TDA7370

Другой особенностью, благодаря которой удается обходиться без конденсаторов
на выходе, является мостовая схема выходных каскадов, когда громкоговорители
не имеют контакта с общим заземленным проводом. Если такое все же случится,
то микросхеме грозит выход из строя. Поэтому как при монтаже деталей,
так и в процессе эксплуатации необходимо следить за тем, чтобы ни один
из проводов, идущих к громкоговорителям, не имел контакта с общим проводом
питания.


Расположение деталей на печатной плате показано на рис. 14 и 15. Усилитель
нормально работает при изменении напряжения питания от 9 до 20 В и сопротивлении
нагрузки каждого канала не менее 4 Ом. Источник питания должен обеспечивать
ток до 3,5 А при напряжении 12В. Если он обеспечит ток до 3,5 А при
напряжении 12 В, с громкоговорителями сопротивлением по 4 Ом можно получить
по 10 Вт мощности с каждого канала. Если источник может дать не более
2 А при том же напряжении, следует применить громкоговорители сопротивлением
8 Ом. Тогда выходная мощность каждого канала составит 6 Вт.



Рис. 14. Монтажная схема стереофонического УМЗЧ на
ИМС TDA7370



Рис. 15. Печатная плата стереофонического УМЗЧ на
ИМС TDA7370

С учетом выделения большого количества тепла конструкция усилителя должна обеспечивать
свободный приток свежего воздуха к микросхеме и дополнительному теплоотводу.
Это будет гарантией надежной долговременной работы усилителя.


Усилитель звуковой частоты на 20 Вт


Усилитель, принципиальная схема которого приведена на рис. 16, также выполнен
по бестрансформаторной и бесконденсаторной схеме мостового оконечного
каскада со всеми присущими ей достоинствами и недостатками. Главное
отличие его от предыдущего в том, что имеется только один канал усиления
на 20 Вт. Такой усилитель потребляет большой ток (до 3,5 А), поэтому
его можно питать или от достаточно мощного выпрямителя, или от автомобильного
аккумулятора напряжением 13,6 В.





Рис. 16. Принципиальная схема монофонического УМЗЧ
на ИМС TDA7240A

Расположение деталей на печатной плате показано на рис. 17 и 18. Интегральная
микросхема устанавливается на дополнительном теплоотводе (стандартном
или самодельном), как упоминалось выше, под винт МЗ. Для улучшения отвода
тепла рекомендуется смазать соприкасающиеся поверхности теплоотвода
и микросхемы тонким слоем вазелина. Как и в предыдущем случае, можно
увеличить сопротивление нагрузки с 4 до 8 Ом, снизив, таким образом,
выходную мощность до 10-12 Вт и потребляемый ток до 2 А. При отсутствии
сигнала потребляемый ток составляет 80-100 мА, что является первым признаком
работоспособности усилителя. Значительно больший или меньший ток свидетельствует
либо об ошибке в монтаже, либо о неисправности деталей, включая микросхему.
Однако опыт применения подобных микросхем при использовании исправных
деталей показывает, что усилитель начинает работать сразу и не требует
дополнительных регулировок. Его чувствительность равна 50-80 мВ, а полоса
воспроизводимых частот составляет 20 Гц — 20 кГц.




Рис. 17. Монтажная схема монофоническою УМЗЧ на ИМС
TDA7240A




Рис. 18. Печатная плата монофонического УМЗЧ на ИМС
TDA7240A

Будут вопросы, пожелания, предложения — пишите. Юрий yooree (at) inbox.ru

www.qrz.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о