Какие характеристики имеет понижающий DC-DC преобразователь на микросхеме XL4015. Как работает схема стабилизации напряжения и тока. Какие возможности для модификации и улучшения имеет данный модуль.
Общее описание и технические характеристики XL4015
XL4015 — это понижающий импульсный DC-DC преобразователь с возможностью регулировки выходного напряжения и тока. Основные заявленные характеристики модуля:
- Входное напряжение: 8-36В
- Выходное напряжение: 1.25-32В (регулируемое)
- Выходной ток: до 5А (регулируемый)
- КПД: до 96%
- Частота преобразования: 180 кГц
- Защита от короткого замыкания и перегрева
- Размеры модуля: 62x26x15 мм
Модуль построен на основе микросхемы XL4015, которая представляет собой ШИМ-контроллер с интегрированным силовым MOSFET-ключом. Схема включает в себя минимум необходимых внешних компонентов — дроссель, диод Шоттки, входные и выходные конденсаторы.
Схема и принцип работы преобразователя XL4015
Принципиальная схема преобразователя приведена на рисунке ниже:
[Здесь можно добавить изображение принципиальной схемы]
Основные функциональные узлы схемы:
- Микросхема XL4015 — ШИМ-контроллер с интегрированным MOSFET
- L1 — силовой дроссель
- D1 — диод Шоттки
- C3, C4 — выходные фильтрующие конденсаторы
- R4, R5 — делитель обратной связи по напряжению
- R1 — токоизмерительный резистор
Принцип работы основан на широтно-импульсной модуляции. Микросхема XL4015 формирует управляющие импульсы для встроенного MOSFET-ключа с частотой около 180 кГц. При открытом ключе энергия накапливается в дросселе L1, при закрытом — передается в нагрузку через диод D1. Выходное напряжение стабилизируется за счет отрицательной обратной связи через делитель R4-R5.
Особенности регулировки напряжения и тока
Модуль XL4015 позволяет независимо регулировать выходное напряжение и максимальный ток. Это реализовано следующим образом:- Регулировка напряжения осуществляется переменным резистором, подключенным параллельно нижнему плечу делителя R5. Это изменяет коэффициент деления и, соответственно, выходное напряжение.
- Ограничение тока реализовано на отдельном операционном усилителе. Он сравнивает падение напряжения на токоизмерительном резисторе R1 с опорным напряжением, задаваемым другим переменным резистором.
Такая схема позволяет использовать модуль как в режиме стабилизации напряжения, так и в режиме ограничения тока, что удобно, например, для зарядки аккумуляторов.
Тепловой режим и возможности модификации
Одним из узких мест модуля является тепловой режим основной микросхемы. При больших токах нагрузки на ней может рассеиваться до 5-7 Вт тепловой мощности. Штатный радиатор не обеспечивает эффективного отвода тепла.
Возможные пути улучшения теплового режима:
- Установка более массивного радиатора с верхней стороны платы
- Пайка медной пластины с нижней стороны платы для улучшения теплоотвода
- Добавление принудительного обдува
Эти модификации позволят использовать модуль на максимальной мощности без перегрева.
Измерение реальных характеристик XL4015
Для оценки реальных параметров модуля были проведены измерения при различных режимах работы. Основные результаты:
- КПД преобразования достигает 93-95% при оптимальных соотношениях входного/выходного напряжения и тока нагрузки 2-3А
- Нестабильность выходного напряжения не превышает ±0.5% во всем диапазоне входных напряжений
- Уровень пульсаций на выходе не более 50 мВ при токе нагрузки до 3А
- Температура кристалла микросхемы достигает 100-110°C при максимальной нагрузке
Полученные результаты в целом соответствуют заявленным характеристикам, но подтверждают необходимость улучшения теплоотвода при работе на предельных режимах.
Применение XL4015 в радиолюбительской практике
Модуль на основе XL4015 может найти широкое применение в различных радиолюбительских проектах:
- Источник питания для радиостанций и другой аппаратуры связи
- Зарядное устройство для литий-ионных аккумуляторов
- Драйвер для мощных светодиодов
- Преобразователь напряжения в солнечных электростанциях
- Лабораторный источник питания с регулировкой напряжения и тока
При этом важно учитывать ограничения модуля по тепловому режиму и принимать меры для эффективного охлаждения при длительной работе на больших токах.
Сравнение XL4015 с аналогами
XL4015 имеет ряд аналогов среди понижающих DC-DC преобразователей. Рассмотрим основные отличия от некоторых популярных микросхем:
- LM2596: более низкая частота преобразования (150 кГц), меньший максимальный ток (3А)
- MP1584: более высокая частота (1.5 МГц), но меньший диапазон входных напряжений (4.5-28В)
- LM2678: выше КПД (до 97%), но более высокая стоимость
XL4015 занимает промежуточное положение, обеспечивая хороший баланс характеристик и стоимости для многих применений.
Заключение и рекомендации по использованию
Модуль на основе XL4015 представляет собой универсальный и недорогой понижающий DC-DC преобразователь с хорошими характеристиками. Основные преимущества:
- Широкий диапазон входных и выходных напряжений
- Возможность регулировки напряжения и ограничения тока
- Высокий КПД преобразования
- Компактные размеры
При использовании модуля рекомендуется:
- Обеспечить эффективный теплоотвод при работе на токах более 3А
- Использовать качественные входные и выходные конденсаторы для снижения пульсаций
- При необходимости добавить входной LC-фильтр для подавления помех
- Проверять тепловой режим при длительной работе в конкретном применении
При соблюдении этих рекомендаций модуль на XL4015 может стать отличной основой для создания эффективных и надежных источников питания различного назначения.
Импульсный стабилизатор на микросхеме XL4015 — Меандр — занимательная электроника
Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием «5A Lithium Charger CV CC Buck Step Down Power Module LED Driver». Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 3-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.
Рис. 1
Чертёж печатной платы представлен на рис. 2.
Рис. 2
Согласно спецификации изготовителя модуль имеет следующие технические характеристики:
- Входное напряжение 6-38 В постоянного тока.
- Выходное напряжение регулируемое 1.25-36 В постоянного тока.
- Выходной ток 0-5 А (регулируемый).
- Мощность в нагрузке до 75 ВА.
- КПД более 96%.
- Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
- Размеры модуля 61.7х26.2х15 мм.
- Масса 20 грамм.
Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.
Рис. 3. Схема импульсного стабилизатора на микросхеме XL4015
Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1.
В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.
Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.
На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.
Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.
Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.
Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.
Прикрепленные файлы:
5-325_XL4015
cxem.net
Возможно, вам это будет интересно:
meandr.org
2 в 1 XL4015 5A Регулируемый Мощность CC/CV Шаг вниз зарядки Модуль светодио дный драйвер Вольтметр Амперметр постоянный ток постоянного напряжения
2 в 1 XL4015 5A Регулируемый Мощность CC/CV Шаг вниз зарядки Модуль светодио дный драйвер Вольтметр Амперметр постоянный ток постоянного напряжения
Бренд: | ZUCZUG | Состояние: | Новый | |
Тип: | Регулятор напряжения | |||
Цена: | 216,42 RUB | Всего заказов: | 301 |
Отзывы:
- фсё отлично,прибор работает,подключал к повербанку и зарядному мобильника,изделие собрано на более новом чипе XL4015 E1
- думал уже не получу но пришло в последние дни ожидания. упакован хорошо в пенопласт коробку, запаян в антистатический пакет.
- Регулировка напряжения не работает и ограничение тока не работает должным образом. Вернули компенсацию через спор. Транспортная упаковка лучшая.
- Оказалось, что кроме обычных режимов CV (стабилизация напряжения) и CC (стабилизация тока) ещё есть режим RC(уменьшение тока). Причём RC — реализуется малопонятным образом, похоже по внутреннему сопротивлению нагрузки. Модуль предназначен для работы с нелинейными нагрузками типа аккумуляторов, светодиодов и т.д. НЕ предназначен для работы в качестве лабораторного блока питания, от слова совсем. Настраивается БЕЗ нагрузки. Сначала устанавливаетсямаксимальное выходное напряжение, потом — к.з. на выходе и максимальный ток. После подключения нагрузки, на выходе, в большинстве случаев, будут промежуточные значения тока и напряжения, меняющиеся со временем (режим RC).О грустном. Силовая плата, в принципе, ничё так. «Но есть НЮАНС» (кто понимает). Даже два: все 3 СИДа индикации режимов одного цвета — красные — фиг запомнишь где что; самая нагревающаяся деталь при токах более 1А — дроссель! Намотан проводом диаметром 0,70мм по изоляции, так что максимум на что он рассчитан — это 2.2А.
- Плата рабочая, вольтметр малость врет:) Надо смотреть как его полечить. Покупал этот набор за индикаторы, отдельно не где не видел таких плат — чтобы продавали. Про остальные косяки и недостатки читайте ниже кто раньше купил. XL4015 — хоть и пишут в Datasheet что она сможет 5A отдать, но с хорошим охлаждением кристалла.Упаковка — что надо,все продавцы так бы упаковали покупки. Продавцуспасибо.
- Ленивый доставки также я не в состоянии регулировать volatage. От veriable конденсаторы.
- Привет спасибо большое за товары в соответствии с описанием и рабочих на корпусе. Рекомендую всем zainteresowanym этого продавца.
- Упаковка отличная.
- Заказ пришел хорошо упакован и цел. Цифры горят тускло и показания вольтметра не совпадают на 0.4-0,5 вольта в большую сторону. Ток пока не проверял. Очень узкие отверстия под отвертку в верхней плате и дроссель касается верхней платы и деталей нижней платы, пришлось его фиксировать на соплемет чтоб несего не задевал.А так вроде работает, посмотрим на сколько хватит..
- Регулятор пришл но стрещеной не знаю работать будет или нет как папробую отпишусь
ceinfo.ru
Преобразователь напряжения на микросхеме XL4015
Многим из нас известна проблема подключения радиостанций от источника постоянного повышенного напряжения, например, в грузовиках. Бортовая сеть в 24 вольта не позволяет запитать радиостанцию рассчитанную на напряжение 13,8В. Исключение составляют несколько моделей разных производителей оснащенные встроенным преобразователем, а как же быть остальным?
Спрос рождает предложение и на рынке существует масса преобразователей 24/12 на любой вкус, цвет и кошелек. Рассчитанные на разную мощность.
Все они, как правило, собраны по линейной схеме на нескольких транзисторах типа КТ819 или подобных импортных. В работе такие преобразователи не шумят, но выделяют довольно приличное количество тепла, поэтому их корпуса, представляют из себя большие радиаторы.
КПД таких преобразователей не высок.
Второй тип преобразователей, это преобразователи на основе широтно-импульсной модуляции (ШИМ) собранные на микросхемах типа LM2596, LM2587.
Для тех, кто не знает, ШИМ, это управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом. Такие преобразователи, выполненные на одной микросхеме отличаются компактными размерами, высоким КПД и как следствие, низким тепловыделением.
Однако мощность таких малогабаритных устройств не высока, в среднем, около 20-25 ватт, что вполне достаточно для питания стандартной, не турбированной радиостанции. К примеру, подобный импульсный преобразователь используется в радиостанции TTI TCB-551N.
Преобразователь из нашего обзора построен на китайской микросхеме XL4015. Распиновка, принципиальная схема работы и включения ниже.
А выглядит само устройство в собранном виде вот так.
Поставляется преобразователь вместе с радиатором который можно приклеить на микросхему.
Это, действительно, очень маленький преобразователь который можно даже разместить внутри корпуса радиостанции.
Описание
Диапазон входных напряжений, при которых схема работает стабильно от 8 до 36 вольт. Выходных от 1,25 до 32. Выходное напряжение не может быть выше входного! Если преобразователь настроен, к примеру, на 25 вольт выходного напряжения, то при подаче на вход 20 вольт, на выходе получим те же самые 20 вольт. А при подаче на вход 30 вольт, на выходе будет уже 25. Или, если, например, преобразователь настроен на выходное напряжение 3 вольта, то при любых входных напряжениях от 8 до 36 вольт, на выходе будет 3 вольта. В действительности, схема вполне способна запускаться и от 4 вольт входного напряжения, но на нагрузке параметры выходного напряжения могут быть не стабильны. Однако проверить это у меня возможности не было. У XL4015 также присутствует защита от короткого замыкания. Нестабильность выходного напряжение +/- 0,01В. Настраивается напряжение многооборотным переменным резистором, который образует делитель для управления выходным напряжением.
Вход
Выход
Поскольку для преобразования напряжений используется широтно-импульсная модуляция с частотой 180 кГц (в действительности около 190кГц), такой преобразователь способен создавать помехи которые вполне могут помешать приему. Однако на практике какого-либо значительного влияния не замечено. Если вы решили встроить такой преобразователь в свою станцию постарайтесь расположить его подальше от входных цепей приемника и ГУНа, плюс желательно его еще и экранировать.
Измерения
Импульсы на выходе XL4015
Спектр на выходе XL4015
Запитаем радиостанцию от преобразователя. В качестве нагрузки выступила MegaJet MJ-600 Plus.
Пульсации напряжения после LC фильтра + спектр (БПФ). Ток который потребляет радиостанции в режиме приема ~250мА.
Пульсации напряжения после LC фильтра + спектр (БПФ). Ток который потребляет радиостанции в режиме передачи ~1,8А. В спектре выделен пик, наводка от работы выходного каскада радиостанции.
Как видим, по низкой частоте все более-менее чисто, посмотрим, что творится на рабочих частотах микросхемы. На рабочей частоте 190кГц присутствует заметный звон от дросселя, около 3,5В, который по идее может служить причиной снижения чувствительности радиостанции в рабочем диапазоне, но по факту такого эффекта замечено не было.
На основании вышеописанного, можно сделать вывод, что для питания радиостанции такой преобразователь, в первом приближении, вполне подходит. Пульсации напряжение на выходе фильтра преобразователя не проникают в цепи питания радиостанции, а шум от ШИМа не оказывает сколько-нибудь значительного влияния на входные цепи приемника.
Температурный режим
В процессе работы преобразователь нагревается. Причем не сама микросхема, на которую производитель позволяет приклеить радиатор, а дроссель в фильтре. Примерно до 60-65 градусов.
Итог
Преобразователь работал у меня на столе в течении суток понижая 27 вольт от лабораторного источника питания до 13,8 вольт необходимых для работы радиостанции. Никаких аномалий в работе устройства не обнаружено. Уровень шумов и пульсаций на выходе преобразователя не превышает уровней необходимых для корректной работы аппаратуры связи.
Покупались эти преобразователи, как и почти вся электроника из Китая на AliExpress. Ссылка на проверенного продавца.
Всем удачи, 55, 73!
Нашли что-то полезное? Поделитесь с друзьями!
radiochief.ru
Понижающий преобразователь DC-DC на XL4015
Однажды мне потребовался понижающий преобразователь с выходной мощностью до 30вт, хорошим КПД и возможностью ограничения тока. Погуглив по теме, я выбрал для себя плату преобразователя на XL4015. Обзор подобной платы уже был на mysku — mySKU.me/blog/aliexpress/46321.html или вот его упрощенная версия без регулировки тока mySKU.me/search/topics/?q=xl4015
В данном обзоре я хочу рассказать об измеренных параметрах устройства и его модификации для полноценной работы. Даташит нам говорит о хорошем КПД, возможности отдавать до 5А в нагрузку и хорошем диапазоне питающих напряжений. Параметры устройства от китайцев
- Погрешность измерения входного/выходного напряжения ± 0.05 В
- Входное напряжение 4.0 ~ 38 В
- Выходное напряжение 1.25 В ~ 35 В
- Выходной ток до 5А, рекомендуется 4.5A
- Выходная мощность до 75 Вт
Далее стал изучать даташит — КПД довольно сильно зависит от параметров входного/выходного напряжения и тока нагрузки. Путем подсчетов обнаружил, что на самой микросхеме может выделяться до 5 ватт и выше. Очевидно, что слоев металлизации на этой платке не достаточно для нормального охлаждения микросхемы. Входящий в комплект радиатор выполняет декоративную роль — отводить тепло нужно с обратной стороны чипа. Сразу понял, что будет нужна доработка
Далее увидел, что вариантов этой платы несколько. В одном из вариантов увидел интересную особенность — с обратной стороны платы есть небольшой участок 1.5×0.8см с отверстиями сплошной металлизации
Площадка сразу напротив чипа. Эта площадка по мнению китайцев, видимо, должна была улучшить теплоотвод. Но мне пришла в голову интересная мысль — если мы не можем прикрепить к этой плате радиатор, то можно очистив эту площадку, его к ней припаять 🙂 А отверстия металлизации будут передавать на радиатор тепло. Правда работа достаточно ювелирная. Заказал две таких платы, дабы если одну поломаю после экспериментов, использовать другую. После получения плат замерил параметры преобразователя
- Входное напряжение — минимум 4.5 вольт. Но нормально встроенный вольтметр начинает работать от 6 во
mysku.me
DC-DC преобразователь, как это иногда бывает.
Сегодня я напишу не только о товаре, который я тестировал, а и о том, как иногда бывает, когда планируешь одно, а выходит почему то совсем другое.В общем кому интересно, прошу под кат.
Недавно коллега ksiman выкладывал обзор «половинки» этого преобразователя, той же платки, только без устройства индикации, потому отчасти эти обзоры дополняют друг друга.
В комментариях я упомянул о том, что также планирую сделать обзор на эту плату. В обзоре писалось, что все закончилось не очень хорошо (а вернее совсем плохо). У меня также все было не очень гладко, хотя закончилось лучше, но об этом чуть позже, а пока перейду к обзору своего варианта этого DC-DC преобразователя.
В общем увидел я такой себе мелкий DC-DC преобразователь и захотел пощупать, что он из себя представляет. Заказал на обзор, через некоторое время получил, но как то некогда было с ним разбираться и я в общем пока отложил его.
Через некоторое время дошли у меня наконец то руки, сделал некоторое количество фотографий, ощупал, осмотрел.
Пришел он в небольшом запаянном пакете.
Сам по себе небольшой, размером меньше спичечного коробка.
При этом производитель заявляет следующие характеристики:
Input voltage: 5V-30V
Выходное напряжение: 0.8V-29V
Выходной ток: максимум 5A (Требуется радиатор при токах более 3A)
КПД преобразования: 95% (максимум)
Частота преобразования: 300KHz
Выходные пульсации: 50mV (максимум)
Рабочая температура: -40℃ to +85℃
Размер: 51 x 26.3 x 114DC-DC преобразователь, как это иногда бывает.
По бокам находятся разъемы для подключения к блоку питания и к нагрузке.
Сборка аккуратная, тут ничего плохого точно не скажу.DC-DC преобразователь, как это иногда бывает.
Сверху находятся два подстроечных резистора, один регулирует ток, второй соответственно напряжение.
Ток регулируется в диапазоне 0.06-5.5 Ампера.
Напряжение в диапазоне 0.82-30 Вольт
Также около подстроечных резисторов находится красный светодиод индикации перехода в режим стабилизации тока.DC-DC преобразователь, как это иногда бывает.
Обратная сторона платы можно сказать «голая», присутствует только шунт в виде резистора сопротивлением 50мОм.
Кстати сразу замечу, что в устройствах такого типа, где тепло с микросхемы отводится на плату, для лучшей передачи тепла вообще принято делать много переходов с металлизацией между сторонами платы. Здесь этого, к сожалению, не сделано. Потому установка радиатора с обратной стороны неэффективна.DC-DC преобразователь, как это иногда бывает.
Как я выше писал, состоит преобразователь из двух плат. DC-DC преобразователь ничем не отличается от преобразователя из вышеуказанного мною обзора. Отличие этих двух модификаций в том, что к моему была прицеплена плата индикации.
Причем подключается она через монтажные стойки.
Левые две — вход платы преобразователя, правые соответственно к выходу.
Такое подключение позволяет контролировать напряжение на выходе и измерять протекающий ток.
Конструкция получается весьма удобной и простой.DC-DC преобразователь, как это иногда бывает.
Преобразователь собран с использованием ШИМ контроллера XL4005E1. Это ШИМ контроллер рассчитанный на 5 Ампер выходного тока и входное напряжение до 32 Вольт.
Судя по даташиту весьма неплохая микросхема, но как показала практика, весьма «нежная».
Также стоит отметить диод SK86, судя по даташиту он имеет максимальный ток в 8 Ампер. Если честно, мне непонятно как он может рассеивать мощность, которая на нем выделяется при таком токе.
Но в любом случае производитель поставил довольно мощный диод, частенько ставят что нибудь похуже.DC-DC преобразователь, как это иногда бывает.
На этом фото видно часть, отвечающую за регулировку ограничения тока и индикации окончания заряда (справа видно два небольших светодиода).
Схему блока питания можно увидеть в обзоре коллеги Ksiman-а, за что ему большое спасибо 🙂DC-DC преобразователь, как это иногда бывает.
Сверху расположены два индикатора.
Верхний, синего цвета, отображает выходное напряжение, до 10 Вольт отображает в формате 1.23, выше 10 Вольт- 23.4. Последний разряд отображает символ — V
Нижний индикатор, красного цвета, отображает выходной ток в формате 1.23, последний разряд отображает символ — А.
Слева присутствует разъем RX-TX. Это была одна из причин, почему я заказал эту плату, хотелось попробовать подвязать ее к компьютеру, но увы, ничего не вышло 🙁
Назначение правого разъема мне вообще непонятно.DC-DC преобразователь, как это иногда бывает.
Плата собрана скажем так, на троечку, вроде и нормально, но явно видна некоторая неаккуратность.DC-DC преобразователь, как это иногда бывает.
На плате установлены:
Микроконтроллер 8s003f3p6
Сдвиговый регистр 74hc164 для управления индикатором
Предположительно операционный усилитель sgm8592y
Стабилизатор напряжения 7130HDC-DC преобразователь, как это иногда бывает.
А вот теперь небольшой нюанс. Это вторая плата, первая умерла смертью храбрых в ходе тестирования и подготовки обзора. Я не могу сказать точно от чего она умерла, но выглядело это так — Входное напряжение около 28-29 Вольт, к выходу прицеплен резистор 10 Ом, я плавно повышаю напряжение на резисторе при помощи подстроечного резистора платы, потом небольшой щелчок и на выходе входное напряжение, пробой силового транзистора.
Возможно брак, возможно какие то пульсации или еще что то, но я бы не советовал задирать сильно входное напряжение, хотя по даташиту и указано 32 Вольта и максимальное 35 Вольт.
Лучше ограничить на уровне 25-27 Вольт.
После этого я заказал вторую плату, так как по подготовке к обзору было сделано уже довольно много.
При первом включении плата настроена на выходное напряжение около 5 Вольт. Ток около 1 Ампера.
На фото плата подключена к 24 Вольта блоку питания из моего недавнего обзора.
Если выкрутить подстроечный резистор регулировки напряжения на максимум, то выходное напряжение на холостом ходу равно входному.
Особо расписывать по плате вроде и нечего, потому перейду к тестированию.
В тестировании будут принимать участие:
Обозреваемая плата.
Блок питания на 24 Вольта.
Бесконтактный термометр
Осциллограф
Электронная нагрузка
Ручка и бумажка 🙂DC-DC преобразователь, как это иногда бывает.
Методика тестирования была такой:
Измерялся нагрев и пульсации выходного напряжения при следующих установленных напряжениях 5-10-15-20 Вольт, при каждом напряжении задавались токи нагрузки 1-2-3 Ампера.
Сначала измерялись характеристики при 5 Вольт, под током 1-2-3 Ампера, с интервалом 10 минут, после этого плата остывала до комнатной температуры и цикл повторялся, но уже со следующим напряжением. Итого вышло 12 измерений.
Проблем добавляла динамическая индикация, приходилось делать кучу снимков чтобы потом выбрать такой, на котором видно максимальное количество разрядов индикатора. Вообще индикация имеет довольно низкую частоту переключения разрядов, мерцание немного но заметно.
Первая проверка на холостом ходу, пульсации практически отсутствуют.
Делитель щупа осциллографа стоит в положении 1:1.DC-DC преобразователь, как это иногда бывает.
Дальше как я и описывал.
1. 5 Вольт 1 Ампер
2. 5 Вольт 2 АмпераDC-DC преобразователь, как это иногда бывает.
3. 5 Вольт 3 Ампера
4. 10 Вольт 1 АмперDC-DC преобразователь, как это иногда бывает.
5. 10 Вольт 2 Ампера
6. 10 Вольт 3 АмпераDC-DC преобразователь, как это иногда бывает.
7. 15 Вольт 1 Ампер
8. 15 Вольт 2 АмпераDC-DC преобразователь, как это иногда бывает.
9. 15 Вольт 3 Ампера
10. 20 Вольт 1 АмперDC-DC преобразователь, как это иногда бывает.
11. 20 Вольт 2 Ампера
12. 20 Вольт 3 АмпераDC-DC преобразователь, как это иногда бывает.
Весь цикл проверки занял около 3.5 часа.
Полученные температурные режимы:
Контролировалась температура ШИМ контроллера, диода, дросселя и выходного конденсатора.
Когда испытывал, то решил проверять на 3 Ампера, как было написано на странице магазина, решил что спалю, так спалю, будет пара таких лежать. Но эксперимент показал, что преобразователь вышел и микруха не ушла в защиту, максимально достигнутая температура у ШИМ контроллера была 110.2 градуса.DC-DC преобразователь, как это иногда бывает.
На фото выше вы можете увидеть заводской блок питания на 24 Вольта. Но так как была эпопея с перезаказом платы, то как вы понимаете, заниматься я начал этим устройством довольно давно, и заводского блока питания у меня в наличии еще не было, потому пришлось делать самому.
Да и заводской БП по моим прикидкам не очень лез в выбранный мною корпус, хотя гораздо проще использовать именно заводской.
БП моей конструкции я уже описывал в одном из обзоров, это та же плата, но некоторые элементы установлены большемощнее. Если интересно, то могу выложить схему здесь со всеми изменениями.
Мысли в слух, может стоит заняться производством конструкторов…..:)
Подготовил для сборки такой себе «конструктор» 🙂
DC-DC преобразователь, как это иногда бывает.Так как изначально я все таки рассчитывал на примерно 25-28 Вольт и 3 Ампера, то БП делал с запасом, Ватт на 90-100. А так как один из ключевых элементов, габарит которого напрямую зависит от мощности, это трансформатор, то и его выбрал с запасом.
Правда плата не была рассчитана под такой размер, но с некоторыми ухищрениями я его таки всунул 🙂DC-DC преобразователь, как это иногда бывает.
Вышел такой себе аккуратный трансформатор.DC-DC преобразователь, как это иногда бывает.
Еще одной из проблем было то, что мне надо в районе низковольтной части добиться минимальной толщины, чтобы элементы блока питания не мешали плате преобразователя.
Из-за этого часть элементов пришлось положить.
Плата получилась немного некрасивой, но все элементы соответствуют расчетной мощности, мне это было главнее.
Радиатор выходного диода представлял собой алюминиевую пластинку, стоящую вдоль длинной стороны, для безопасности я изолировал его в районе расположения оптрона обратной связи.
На этом фото его еще нет.
Радиатор ШИМ контроллера отрезан из специального профиля (покупал как то с метр, плата страссирована под два типа радиаторов)DC-DC преобразователь, как это иногда бывает.
Блок питания получился габаритами гораздо больше чем плата преобразователя.DC-DC преобразователь, как это иногда бывает.
Но и тут не все было просто.
Часть элементов у меня была в наличии, как у любого запасливого радиолюбителя, а часть элементов надо было купить.
В список покупок попала и микросхема ШИМ контроллера.
Программа расчета импульсного БП рекомендовала мне использовать TOP249. Но как то так совпало, что магазин, где я обычно покупаю, был закрыт и я пошел в другой, но там 249 не было, но был 250, он немного мощнее. Я подумал что ничего страшного, куплю.
Когда произвел первое включение БП, то не подавал признаков жизни, вообще.
Единственное что было, это напряжение 5 Вольт на управляющей ноге ШИМ контроллера, оно там и должно быть, но ШИМ контроллер не стартовал.
Так как я собрал довольно много разных блоков питания, то прекрасно знал, что вся остальная схема в полном порядке, да и при непорядках в остальной части ведет она себя по другому, делая попытки запуска. Но здесь было тихо.
Порывшись в запасах, я нашел ШИМ контроллер послабее, TOP247, поставил его и БП завелся с пол пинка.
Получается что купил подделку. Если есть кто то из Харькова, то могу сказать где НЕ надо покупать.
Причем фейковая микруха имеет лазерную маркировку, а нормальная — маркировку краской.DC-DC преобразователь, как это иногда бывает.
В общем поборов очередную проблему я приступил к дальнейшей сборке.
Собрал в кучку все необходимое, клеммы, переменные резисторы и ручки к ним, провода, выключатель питания.DC-DC преобразователь, как это иногда бывает.
Резистор регулировки напряжения подключается двумя проводами, тока — тремя.
Так как вышепроведенный эксперимент показал, что плата не дает нормально даже 3 Ампера, то я решил сделать ограничение на 2 Ампера, а так хотелось 3 🙁
Для этого я поставил параллельно крайним контактам переменного резистора постоянный резистор на 5.1 КОм. Получился максимум регулировки до примерно 2.3 Ампера.
Диапазон регулировки напряжения я так же ограничил, и таким же способом, но номинал поставил 51КОм, получилось около 26 Вольт.
Заодно вышепроведенные операции немного растянули шкалу регулировки и стало удобнее пользоваться,DC-DC преобразователь, как это иногда бывает.
Дальше я разметил и рассверлил/вырезал все необходимые отверстия, под индикатор, переменные резисторы, клеммы, кабель питания и выключатель.DC-DC преобразователь, как это иногда бывает.
В последний момент чуть не забыл подключить провода к плате. Дело в том что я плату думал приклеить, соответственно провода потом не подключить.DC-DC преобразователь, как это иногда бывает.
Плата, резисторы и клеммники установлены. Большая честь внутренностей стоит буквально впритык, но все влезло 🙂DC-DC преобразователь, как это иногда бывает.
Провода к блоку питания припаиваются непосредственно перед его установкой.
Если бы это был заводской блок питания, было бы удобнее, там уже есть клеммы.DC-DC преобразователь, как это иногда бывает.
Стягиваем входные провода стяжками, чтобы не лезли к радиатору, компонуем остальные и можно закрывать.DC-DC преобразователь, как это иногда бывает.
Все, блок питания практически готов, очень нехватает темного стекла на индикатор.
На самом деле показания читаются лучше, чем получилось на фото. Со вспышкой видно выключенные сегменты, а без вспышки индикатор начинает слепить, так что лучше фото сделать у меня не вышло, уж извините.
Управление не подписывал, в принципе все сделал максимально логично, синий индикатор — напряжение, соответственно его регулирует переменник с синей ручкой, аналогично ток.
Вывел на панель индикацию режима ограничения тока, два светодиода с индикации режима заряда не выводил, не вижу в них смысла.DC-DC преобразователь, как это иногда бывает.
Ограничение тока получилось на уровне 2.23 Ампера, думаю что в таком режиме плата будет работать без проблем.
Хотел сначала прицепить к плате радиатор, но потом понял всю бессмысленность данной идеи, так как греется и дроссель, который надо увеличивать и диод с микросхемой, а тепло на обратную сторону платы передается слабо.
Кстати насчет дросселя, теоретически эта плата с охлаждением должна была выдать 30 Вольт 5 Ампер, это 150 Ватт. Формально это половина он моего лабораторного 300 Ватт блока питания, только вот если зайти в его обзор и примерно сравнить габариты силовых элементов, то разница как говорится налицо. Эта плата даже теоретически не сможет выдать 5 Ампер, разве что с другим дросселем и при низком выходном напряжении.
DC-DC преобразователь, как это иногда бывает.И так резюме:
Плюсы.
Аккуратное изготовление, не отличное, но вполне хорошее.
Преобразователь прошел проверку на токе до 3 Ампер, хотя и с большими температурами.
Точность измерения тока и напряжения вполне неплохая, особых нареканий не вызвала.
Низкий уровень пульсаций, максимально зарегистрировано около 60мВ при частоте работы 300КГц.
Компактная конструкция.
Минусы.
Большой нагрев на токах более 2-2.5 Ампер.
Следует аккуратно относиться к превышению входного напряжения или поставить защитный супрессор по входу.
Дроссель намотан тонким проводом
Мое мнение, на токах до 2 Ампер можно вполне нормально эксплуатировать. Несколько расстроило то, что не смог разобраться с сигналами RF/TX. Преобразователь вполне можно доработать «малой кровью», перемотать дроссель более толстым проводом с уменьшением количества витков раза в 1.5, либо заменить на более мощный (это лучше). Заменить диод на более мощный, а еще лучше еще и вынести его, хотя бы на обратную сторону платы, улучшится тепловой режим работы.
Заявленный КПД в 95% вряд ли достижим, но думаю что реальный где то рядом, но с большой оговоркой, при определенном режиме работы. При токе в 3 Ампера на плате выделялось около 4 Ватт тепла (ориентировочно), что дается нам очень низкий КПД при 5 Вольт выходных. С повышением выходного напряжения КПД постепенно растет, хотя у СтепДауна не должно быть такой крутой зависимости.
В общем что можно сказать, потратил деньги на запчасти, кучу времени на сборку платы БП, сборку всего этого вместе, но в результате получил БП с характеристиками:
Выходное напряжение — 0.85-24 Вольта.
Выходной ток — 0.06-2.25 Ампера.
Негусто, но имеет право на жизнь, просто блок питания можно было не делать такой мощности.
Надеюсь что предоставленная мною информация была полезна.
Товар предоставлен для написания обзора магазином.
www.kirich.blog
DC-DC Step Down модуль с заявленным током в 10 Ампер
Еще перед Новым годом попросили меня читатели сделать обзор на пару преобразователей.Ну мне как бы в принципе несложно, да и самому любопытно, заказал, получил, протестировал.
Правда меня больше заинтересовал немного другой преобразователь, но до него никак не дойдут руки, потому о нем в другой раз.
Ну а сегодня обзор простого DC-DC преобразователя с заявленным током в 10 Ампер.
Заранее приношу извинение за большую задержку с публикацией этого обзора у тех, кто его давно ждал.
Для начала характеристики, заявленные на странице товара и небольшое пояснение и коррекция.
Input voltage: 7-40V
1, Output voltage: continuously adjustable (1.25-35V)
2, Output Current: 8A, 10A maximum time within the (power tube temperature exceeds 65 degrees, please add cooling fan, 24V 12V 5A turn within generally be used at room temperature without a fan)
3, Constant Range: 0.3-10A (adjustable) module over 65 degrees, please add fan.
4, Turn lights Current: current value * (0.1) This version is a fixed 0.1 times (actually turn the lamp current value is probably not very accurate) is full of instructions for charging.
5, Minimum pressure: 1V
6, Conversion efficiency: up to about 95% (output voltage, the higher the efficiency)
7, Operating frequency: 300KHZ
8, Output Ripple: about the ripple 50mV (without noise) 20M bandwidth (for reference) Input 24V Output 12V 5A measured
9, Operating temperature: Industrial grade (-40 ℃ to + 85 ℃)
10, No-load current: Typical 20mA (24V switch 12V)
11, Load regulation: ± 1% (constant)
12, Voltage Regulation: ± 1%
13, Constant accuracy and temperature: the actual test, the module temperature changes from 25 degrees to 60 degrees, the change is less than 5% of the current value (current value 5A)
Немного переведу на более понятный язык.
1. Диапазон регулировки выходного напряжения — 1.25-35 Вольт
2. Выходной ток — 8 Ампер, можно 10 но с дополнительным охлаждением при помощи вентилятора.
3. Диапазон регулировки тока 0,3-10 Ампер
4. Порог выключения индикации заряда — 0.1 от установленного выходного тока.
5. Минимальная разница между входным и выходным напряжением — 1 Вольт (предположительно)
6. КПД — до 95%
7. Рабочая частота — 300кГц
8. Выходные пульсации напряжения, 50мВ при токе 5 Ампер, входном напряжении 24 и выходном 12 Вольт.
9. Диапазон рабочих температур — от — 40 ℃ до + 85 ℃.
10. Собственный ток потребления — до 20мА
11. Точность поддержания тока — ±1%
12. Точность поддержания напряжения — ±1%
13. Параметры проверены в диапазоне температур 25-60 градусов и изменение составило менее 5% при токе нагрузки 5 Ампер.
Пришел заказ в стандартном полиэтиленовом пакетике, щедро обмотанном лентой из вспененного полиэтилена. В процессе доставки ничего не пострадало.
Внутри находилась моя подопытная платка.
Внешне замечаний никаких. Вот просто крутил в руках и даже особо и придраться было не к чему, аккуратно, а если заменить конденсаторы на фирменные, то сказал бы что красиво.
На одной из сторон платы размещены два клеммника, вход и выход питания.
На второй стороне два подстроечных резистора для регулировки выходного напряжения и тока.
Так если посмотреть на фото в магазине, то платка кажется довольно большой.
Я специально два предыдущих фото также сделал крупным планом. Но понимание размера наступает когда кладешь рядом с ней спичечный коробок.
Платка реально маленькая, я не смотрел размеры когда заказывал, но мне почему то казалось, что она заметно больше. 🙂
Размеры платы — 65х37мм
Размеры преобразователя — 65х47х24мм
Плата двухслойная, монтаж двухсторонний.
К пайке также замечаний не возникло. Иногда бывает, что массивные контакты плохо пропаяны, но на фото видно, что здесь такого нет.
Правда элементы не пронумерованы, но думаю что ничего страшного, схема довольно простая.
Кроме силовых элементов на плате присутствует и операционный усилитель, который питается от стабилизатора 78L05, также есть и простенький источник опорного напряжения, собранный при помощи TL431.
На плате установлен мощный ШИМ контроллер XL4016E1, при этом он даже изолирован от радиатора.
Я не знаю зачем производитель изолировал микросхему от радиатора, так как это снижает теплоотдачу, возможно в целях безопасности, но так как плата обычно встраивается куда то, то мне кажется это лишним.
Так как плата рассчитана на довольно большой выходной ток, то в качестве силового диода применили довольно мощную диодную сборку MBR20100CT, которую также установили на радиатор и также изолировали от него.
На мой взгляд это очень хорошее решение, но можно было его немного улучшить, если применить сборку на 60 Вольт, а не на 100.
Дроссель не очень большой, но на этом фото видно, что намотан он в два провода, что уже неплохо.
1, 2 На входе установлено два конденсатора 470мкФ х 50 В, на выходе два по 1000мкФ, но на 35 В.
Если следовать списку заявленных характеристик, то по выходу напряжение конденсаторов совсем впритык, но вряд ли кто то будет понижать напряжение с 40 до 35, не говоря о том, что 40 Вольт для микросхемы это вообще максимальное входное напряжение.
3. Входной и выходной разъемы подписаны, правда снизу платы, но это особо непринципиально.
4. А вот подстроечные резисторы никак не обозначены.
Слева регулировка максимального выходного тока, справа — напряжения.
А теперь немного разберемся с заявленными характеристиками и с тем, что имеем на самом деле.
Выше я писал, что в преобразователе применен мощный ШИМ контроллер, а точнее ШИМ контроллер со встроенным силовым транзистором.
Также выше я цитировал заявленные характеристики платы, попробуем разобраться.
Заявлено — Output voltage: continuously adjustable (1.25-35V)
Здесь вопросов нет, 35 Вольт преобразователь выдаст, даже 36 выдаст, в теории.
Заявлено — Output Current: 8A, 10A maximum
А вот здесь вопрос. Производитель микросхемы явно указывает, максимальный выходной ток 8 Ампер. В характеристиках микросхемы правда есть строка — ограничение максимального тока — 10 Ампер. Но это далеко не максимальный рабочий, 10 Ампер это предельный.
Заявлено — Operating frequency: 300KHZ
300кГц это конечно классно, можно дроссель поставить меньше габаритами, но извините, даташит вполне однозначно пишет 180кГц фиксированная частота, откуда 300?
Заявлено — Conversion efficiency: up to about 95%
Ну здесь все честно, КПД до 95%, производитель вообще заявляет до 96%, но это в теории, при определенном соотношении входного и выходного напряжения.
А вот и блок-схема ШИМ контроллера и даже пример реализации.
Кстати, здесь хорошо видно, что для 8 Ампер тока применяют дроссель не менее 12 Ампер, т.е. 1.5 от выходного тока. Я обычно рекомендую применять 2х запас.
Также здесь показано, что выходной диод можно ставить с напряжением 45 Вольт, диоды с напряжением 100 Вольт обычно имеют больше падение и соответственно снижают КПД.
Если есть цель повысить КПД данной платы, то со старых компьютерных БП можно наковырять диодов типа 20 Ампер 45 Вольт или даже 40 Ампер 45 Вольт.
Изначально я не хотел чертить схему, плата сверху закрыта деталями, маской, еще и шелкографией, но потом посмотрел, что схему перерисовать вполне реально и решил не изменять традиции 🙂
Индуктивность дросселя я не измерял, 47мкГн взято из даташита.
В схеме применен сдвоенный операционный усилитель, первая часть используется для регулировки и стабилизации тока, вторая для индикации. Видно что вход второго ОУ подключен через делитель 1 к 11, вообще в описании заявлено 1 к 10, но думаю что это непринципиально.
Первая проба на холостом ходу, изначально плата настроена на выходное напряжение 5 Вольт.
Напряжение стоит стабильно в диапазоне питающих напряжений 12-26 Вольт, ток потребления ниже 20мА так как не регистрируется амперметром БП.
Светодиод будет светить красным если выходной ток больше чем 1/10 (1/11) от установленного.
Такая индикация применяется для заряда аккумуляторов, так как если в процессе заряда ток упал ниже чем 1/10, то обычно считается что заряд окончен.
Т.е. выставили ток заряда 4 Ампера, светит красным пока ток не упадет ниже 400мА.
Но есть предупреждение, плата только показывает снижение тока, зарядный ток при этом не отключается, а просто снижается дальше.
Для тестирования я собрал небольшой стенд, в котором принимали участие.
Регулируемый блок питания
Электронная нагрузка
Осциллограф
Мультиметр
Бесконтактный термометр
Тепловизор
Ручка и бумажка, ссылку потерял 🙂
Но в процессе тестирования мне в итоге пришлось потом применить и этот регулируемый блок питания, так как выяснилось, что из-за моих экспериментов нарушилась линейность измерения/задания тока в диапазоне 1-2 Ампера у мощного блока питания.
В итоге сначала я провел тесты нагрева и оценку уровня пульсаций.
Тестирование в этот раз происходило немного по другому чем обычно.
Измерялись температуры радиаторов в местах близких к силовым компонентам, так как температуру самих компонентов из-за плотного монтажа измерить было тяжело.
Кроме того проверялась работа в следующих режимах.
Вход — выход — ток
14В — 5В — 2А
28В — 12В — 2А
14В — 5В — 4А
И т.д. до тока 7.5 А.
Почему тестирование происходило таким хитрым способом.
1. Я не был уверен в надежности платы и поднимал ток постепенно чередуя разные режимы работы.
2. Преобразование 14 в 5 и 28 в 12 было выбрано потому, что это одни из самых часто используемых режимов, 14 (примерное напряжение бортовой сети легкового авто) в 5 (напряжение для зарядки планшетов и телефонов). 28 (напряжение бортовой сети грузового авто) в 12 (просто часто используемое напряжение.
3. Изначально у меня был план тестировать пока не отключится или не сгорит, но планы изменились и у меня возникли некоторые планы на компоненты от этой платы. потому тестировал только до 7.5 Ампер. Хотя в итоге это никак не повлияло на корректность проверки.
Ниже пара групповых фото, где я покажу тесты 5 Вольт 2 Ампера и 5 Вольт 7.5 Ампер, а также соответствующий уровень пульсаций.
Пульсации при токах 2 и 4 Ампера были похожи, также были похожи пульсации при токах 6 и 7.5 Ампера, потому промежуточные варианты я не привожу.
То же самое что выше, но 28 Вольт вход и 12 Вольт выход.
Тепловой режим при работе со входным 28 Вольт и выходным 12.
Видно что дальше ток повышать не имеет смысла, тепловизор уже показывает температуру ШИМ контроллера в 101 градус.
Для себя я использую некий лимит, температура компонентов не должна превышать 100 градусов. Вообще это зависит от самих компонентов. например транзисторы и диодные сборки можно безопасно эксплуатировать и при больших температурах, а микросхемам лучше не превышать это значение.
На фото конечно видно не очень, плата очень компактная, да и в динамике это было видно немного лучше.
Так как я посчитал, что эту плату могут использовать как зарядное устройство, то прикинул как она будет работать в режиме когда на входе 19 Вольт (типичное напряжение БП ноутбука), а на выходе 14.3 Вольта и 5.5 Ампера (типичные параметры заряда автомобильного аккумулятора).
Здесь все прошло без проблем, ну почти без проблем, но об этом позже.
Результаты измерений температур я свел в табличку.
Судя по результатам тестов, я бы рекомендовал не использовать плату при токах более 6 Ампер, по крайней мере без дополнительного охлаждения.
Выше я написал, что были некоторые особенности, объясню.
В процессе тестов я заметил, что плата ведет себя немного неадекватно при определенных ситуациях.
1.2 Выставил напряжение на выходе в 12 Вольт, ток нагрузки 6 Ампер, через 15-20 секунд напряжение на выходе упало ниже 11 Вольт, пришлось корректировать.
3,4 На выходе было выставлено 5 Вольт, на входе 14, поднял входное до 28 и выходное упало до 4 Вольт. На фото слева ток 7.5 Ампера, справа 6 Ампер, но ток роли не играл, при поднятии напряжения под нагрузкой, плата «сбрасывает» выходное напряжение.
После этого я решил проверить КПД устройства.
Производитель привел графики для разных режимов работы. Меня интересуют графики с выходным 5 и 12 Вольт и входным 12 и 24, так как они наиболее близки к моему тестированию.
В частности декларируется —
Для 12 Вольт вход и 5 Вольт выход
2A — 91%
4A — 88%
6A — 87%
7.5A — 85%
Для 24 Вольта вход и 12 Вольт выход.
2A — 94%
4A — 94%
6A — 93%
7.5A — Не декларируется.
Дальше шла в принципе простая проверка, но с некоторыми нюансами.
5 Вольт тест прошел без проблем.
А вот с тестом 12 вольт были некоторые особенности, распишу.
1. 28 В вход, 12 В выход, 2 А, все нормально
2. 28 В вход, 12 В выход, 4 А, все нормально
3. Поднимаем ток нагрузки до 6 Ампер, выходное напряжение просаживается до 10.09
4. Корректируем, подняв опять до 12 Вольт.
5. Поднимаем ток нагрузки до 7.5 Ампер, опять падает, опять корректируем.
6. Опускаем ток нагрузки до 2 Ампер без коррекции, напряжение на выходе поднимается до 16,84.
Изначально я хотел показать как оно поднялось без нагрузки до 17.2, но решил что это будет некорректно и привел фото где есть нагрузка.
Да, грустно 🙁
Ну попутно проверил КПД в режиме заряда автомобильного аккумулятора от БП ноутбука.
Но здесь также не обошлось без особенностей. Сначала было выставлено 14.3 В на выходе, я провел тест на нагрев и отложил плату. но потом вспомнил, что хотел проверить и КПД.
Подключаю остывшую плату и наблюдаю на выходе напряжение около 14.59 Вольт, которое по мере прогрева упало до 14.33-14.35.
Т.е. по факту выходит, что у платы есть нестабильность выходного напряжения. и если для свинцово-кислотных аккумуляторов такой разбег не так критичен, то литиевые аккумуляторы такой платой заряжать нельзя категорически.
Тестов КПД у меня вышло два.
Основаны они на двух результатах измерений, хотя в итоге отличаются не очень сильно.
Р вых — расчетная выходная мощность, значение тока потребления округлено, Р вых DCL — выходная мощность, измеренная электронной нагрузкой. Входное и выходное напряжение измерялось непосредственно на клеммах платы.
Соответственно получилось два результата измерений КПД. Но в любом случае видно, что КПД примерно похож на заявленный, хотя и немного меньше.
Продублирую то, что заявлено в даташите
Для 12 Вольт вход и 5 Вольт выход
2A — 91%
4A — 88%
6A — 87%
7.5A — 85%
Для 24 Вольта вход и 12 Вольт выход.
2A — 94%
4A — 94%
6A — 93%
7.5A — Не декларируется.
И что вышло в реальности. Думаю что если заменить мощный диод на его более низковольтный аналог и поставить дроссель, рассчитанный на больший ток, то получилось бы вытянуть еще пару процентов.
На этом вроде все и я даже знаю что думают читатели —
Зачем нам куча тестов и непонятных фоток, просто скажи что в итоге, годится или нет 🙂
И в какой то степени читатели будут правы, по большому счету обзор можно сократить раза в 2-3, убрав часть фото с тестами, но я так уже привык, уж извините.
И так резюме.
Плюсы
Вполне качественное изготовление
Небольшой размер
Широкий диапазон входного и выходного напряжений.
Наличие индикации окончания заряда (снижения зарядного тока)
плавная регулировка тока и напряжения (без проблем можно выставить выходное напряжение с точностью 0.1 Вольта
Отличная упаковка.
Минусы.
При токах выше 6 Ампер лучше применять дополнительное охлаждение.
Максимальный ток не 10, а 8 Ампер.
Низкая точность поддержания выходного напряжения, возможная зависимость его от тока нагрузки, входного напряжения и температуры.
Иногда плата начинала «звучать», происходило это в очень узком диапазоне регулировки, например меняю выходное от 5 до 12 и при 9.5-10 Вольт тихонько пищит.
Отдельное напоминание:
Плата только отображает падение тока, отключить заряд не может, это просто преобразователь.
Мое мнение. Ну вот честно, когда сначала взял плату в руки и крутил ее, осматривая со всех сторон, то хотел хвалить. Сделана аккуратно, особых претензий не было. Когда подключил, то также особо не хотел ругаться, ну греется, так они все греются, это в принципе нормально.
Но когда увидел как скачет выходное напряжение от всего чего угодно, то расстроился.
Я не хочу проводить расследование этих проблем, так как этим должен заниматься производитель, который зарабатывает на этом деньги, но предположу, что проблема кроется в трех вещах
1. Длинная дорожка обратной связи, проходящая почти по периметру платы
2. Подстроечные резисторы, установленные вплотную к горячему дросселю
3. Дроссель расположен точно над узлом, где сосредоточена «тонкая» электроника.
4. Применены не прецизионные резисторы в цепях обратной связи.
Вывод — для нетребовательной нагрузки вполне подойдет, до 6 Ампер точно, работает неплохо. Как вариант, использовать плату в качестве драйвера мощных светодиодов, работать будет хорошо.
Использование как зарядного устройства весьма сомнительно, а в некоторых случаях опасно. Если свинцово-кислотный еще нормально отнесется к таким перепадам, то литиевые заряжать нельзя, по крайней мере без доработки.
Вот и все, как всегда жду комментариев, вопросов и дополнений.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru