7805 стабилизатор схема включения: Страница не найдена | Практическая электроника

Содержание

Стабилизатор напряжения 7805 схема включения

78xx — семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого поколения. Базовое семейство 78xx включает микросхемы на девять фиксированных выходных напряжений от +5 до +24 Вольт, обозначаемых четырёхзначными кодами 7805, 7806 … 7824 (третий и четвёртый знаки — выходное напряжение). ИС μA78G (без цифрового суффикса) — регулируемый четырёхвыводной стабилизатор на напряжения +5…+30 В. Допустимое входное напряжение ограничено +35 В (40 В для 7824), допустимый выходной ток ИС в корпусе TO-220 ограничен 1 А. Схема имеет встроенную защиту от перегрева и встроенную односкатную защиту выходного транзистора от перегрузок.

Существует связанное с данным семейство 79xx для регуляторов отрицательного напряжения. Интегральные схемы 78xx и 79xx могут использоваться вместе, чтобы обеспечить как положительные, так и отрицательные напряжения питания в той же цепи.

Первые ИС этого семейства были выпущены в начале 1970-х годов Fairchild Semiconductor под обозначениями μA7805…μA7824, и представляли собой развитие ИС LM109 Роберта Видлара. Впоследствии выпуск 78хх освоили различные производители. В настоящее время (2012 год), кроме базового семейства 7805, выпускаются его варианты на бо́льшие и меньшие выходные токи (78ххM, 78xxL и другие) в корпусах ТО-220, ТО-92, SOP8L, D2PAK.

Содержание

Внутреннее устройство [ править | править код ]

Биполярные ИС семейства 78xx изготавливаются по планарно-эпитаксиальной технологии, оптимизированной под производство мощных выходных транзисторов. В ИС применяются мощные и слаботочные npn-транзисторы, боковые pnp-транзисторы (в источнике тока), подложечный pnp-транзистор (в усилителе ошибки), поверхностные стабилитроны (диоды Зенера) и сопротивления величиной от 0,2 Ом (датчик выходного тока) до 20 К. Единственный слой алюминия, соединяющего эти компоненты, имеет толщину до 1 мкм. Площадь кристалла зависят от максимального выходного тока: «большие» кристаллы военных серий на токи 1-1,5 А имеют размер 1,6×1,7 мм (67×73 мил) или 2×2 мм (80×80 мил) при толщине 0,3 мм (12 мил) [1]

Все ИС семейства строятся по одной и той же схеме компенсационного стабилизатора. Принципиальные схемы ИС на разные напряжения различаются величиной верхнего резистора в делителе выходного напряжения, принципиальные схемы ИС на разные выходные токи — сопротивлением датчика выходного тока (от 0,2 до 2 Ом). Величины прочих сопротивлений в ИС разных подсемейств разных производителей могут несущественно различаться. Графическое представление принципиальных схем обычно предельно упрощено. Один транзистор схемы может в действительности состоять из множества параллельно включенных транзисторных структур, один резистор — из нескольких последовательно включенных резисторов и включенных параллельно с ними технологических стабилитронных перемычек. На схемах обычно не указывается важнейшие параметры «аналоговых» транзисторов — относительные площади их эмиттерных переходов.

Регулирующим (проходным) элементом схемы служит составной транзистор Дарлингтона npn-структуры (Т15, Т16), включенный эмиттерным повторителем, источником опорного напряжения — бандгап по модифицированной схеме Видлара. Обратная связь по напряжению замыкается через делитель напряжения (R20, R21), подключенный между общим проводом и выходом схемы. Нижнее сопротивление этого делителя (R21) обычно равно 4 кОм, верхнее (R20, от 1 до 21 кОм) зависит от напряжения стабилизации (от 5 до 24 В). Усилитель ошибки сравнивает напряжение на средней точке делителя с напряжением на выходе бандгапа; если напряжение на средней точке отклоняется от искомой величины (+4,0 В, а в маломощных ИС 78Lxx 2,5 В), то усилитель корректирует ток выходного транзистора, шунтируя источник стабильного тока на Т11.

Встроенные схемы защиты [ править | править код ]

В мощных ИС подсемейств 78xx, 78Mxx и им подобным реализована односкатная схема защиты выходных транзисторов от выхода за пределы области безопасной работы (ОБР) по току и напряжению. При малых падениях напряжения между входом и выходом (до 10 В) транзистор Т14 работает в режиме ограничителя тока: если падение напряжения на датчике (R16) превышает примерно 0,6 В (напряжение на открытом переходе база-эмиттер, Uбэ), Т14 плавно открывается и шунтирует (но не прерывает) базовый ток регулирующего транзистора. При больших падениях напряжения между входом и выходом пороговое значение тока линейно снижается. Так как пороговое Uбэ уменьшается с ростом температуры, то и порог срабатывания с ростом температуры снижается. В маломощных ИС подсемейства 78Lxx напряжение вход-выход не учитывается, схема защиты реагирует только на выходной ток.

Схема защиты от перегрева расположена «выше по течению» и работает независимо от защиты по ОБР: при температуре кристалла порядка +125 °С напряжение на последовательно включенных эмиттерных переходах Т2, Т3 падает настолько, что цепь защиты перехватывает управление выходным транзистором, и напряжение на выходе падает.

Встроенный подложечный диод защищает схему от воздействия обратного тока, протекающего от выхода ко входу при нормальном выключении устройства, поэтому обычно защищать микросхему внешним обратным диодом не нужно. Некоторые производители указывают характеристики встроенного обратного диода в явном виде: например, в ИС семейства NCP7800 омическое сопротивление обратной цепи равно 1 Ом, а предельный обратный ток в коротком (несколько мс) импульсе не должен превышать 5 А (протекание постоянного обратного тока не оговаривается). Этого запаса может быть недостаточным при мгновенном закорачивании входной цепи, например, при срабатывании тиристорной защиты блока питания. В схемах, в которых возможно такое закорачивание и в которых к выходу ИС 78хх подключены значительные ёмкости, следует защищать микросхемы внешними обратно включенными диодами.

Защиты от перенапряжения по входу не существует. Излишек входного напряжения можно погасить, включив на входе ИС 78хх балластный резистор — при условии, что минимального тока, протекающего через этот резистор в наихудших условиях, достаточно, чтобы напряжение на входе ИС никогда не поднималось выше допустимого максимума.

Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.

В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т. д.

Серия 79 предназначена для отрицательного выходного напряжения.

Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.

По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Микросхема 7805 схема включения — Морской флот

10шт. L7805CV L7805 7805 к-220 линейный регулятор напряжения 1.5А +5В. US $1.18

Мин. входное напряжение, В:

Макс. входное напряжение, В:35

Выходное напряжение, В:+5

Номинальн выходной ток, А:1.5

Падение напр вх/вых, В:2.5

Число регуляторов в корпусе:1

Ток потребления, mА:6

Точность:4%

Диапазон рабочих температур:0°C … +150°C

Стабилизаторы электрического напряжения это устройства, входящие в состав блока питания и позволяющие держать на выходе блока питания стабильное напряжение. Стабилизаторы электрического напряжения бывают рассчитанные на какое-то фиксированное напряжение на выходе (например 5В, 9В, 12В), а бывают регулируемые стабилизаторы напряжения, у которых есть возможность установить требуемое напряжение в тех пределах, в каких они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить. Превышение этого тока грозит выходом стабилизатора из строя. Современные стабилизаторы обязательно оснащаются защитой по току, которая обеспечивает отключение стабилизатора при превышении максимального тока в нагрузке и защитой по перегреву. Наряду со стабилизаторами положительного напряжения существуют стабилизаторы отрицательного напряжения. В основном они используются в двухполярных источниках питания.

7805 — cтабилизатор, выполненный в корпусе, похожем на транзистор и имеет три вывода. См. рисунок. (+5V стабилизированного напряжения и ток 1A). Так же в корпусе имеется отверстие для крепления стабилизатора напряжения 7805 к радиатору охлаждения. 7805 является стабилизатором положительного напряжения. Его зеркальное отражение — 7905 — аналог 7805 для отрицательного напряжения. Т.е. на общем выводе у него будтет +, а на вход будет подаваться -. С его выхода, соответственно, будет сниматься стабилизированное напряжение -5 вольт.
Так же стоит отметить, что для нормальной работы на вход обоим стабилизаторам необходимо подавать напряжение около 10 вольт.
У этого стабилизатора существует маломощный аналог 78L05.

7805 распиновка

У стабилизатора 7805 распиновка следующая. Если смотреть на корпус 7805 как показано на фото выше, то выводы имеют следующую цоколёвку слева направо: вход, общий, выход. Вывод «общий» имеет контакт на корпус. Это необходимо учитывать при монтаже. Стабилизатор 7905 имеет другую распиновку! Слева направо: общий, вход, выход. И на корпусе у него «вход» !

Ни для кого не секрет, как собрать блок питания на стабилизаторах 7805, 7809, 7812 и тд. Но не все знают, что на этих же стабилизаторах можно собрать приличный источник тока. Схема источника тока и стала героем этой статьи.

Так выглядит стандартная схема стабилизатора напряжения на микросхемах серии 78xx. Эти микросхемы настолько популярны, что их выпускает каждая, уважающая себя контора. Обычно в разговоре или на схеме даже опускают первые буквы, характеризующие производителя, указывая просто 7815. Ибо нефиг захламлять схему и сразу ясно, что речь о стабилизаторе напряжения.

Для тех, кто мало знаком с подобными стабилизаторми небольшое видео по сборке «на коленках»:

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя >

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет Δ I d = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Заключение

Конечно такой источник тока имеет свои ограничения, однако он может пригодиться для подавляющего числа задач, где не требуется особая точность. Простота схемы и доступность компонентов, позволяет на коленке собрать источник тока.

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.

Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

Регулируемый стабилизатор на 7805 схема

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Стабилизированное зарядное устройство

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Измерение мультиметром напряжения на блоке питания

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди, да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0. 33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Схема подключения 7805

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

Схема снижения с 12 вольт до 5

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Автомобильное зарядное устройство в прикуриватель

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Схема автомобильной зарядки на 7805

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Радиатор для стабилизаторов

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Маломощный стабилизатор 78l05 цоколевка

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3. 3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

Схема стабилизатор на 7805 для 5В

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального линейного стабилизатора 78L05.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема лабораторного блока питания отличается своей оригинальностью, из-за нестандартного применения микросхемы TDA2030, источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная схема бестрансформаторного источника питания характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на КТ315. Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

Скачать datasheet на 78L05 (161,0 Kb, скачано: 6 190)

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

L05 схемы самодельных устройств

Регуляторы напряжения имеют разные типы. Это интегральная схема, основной целью которой является регулирование нерегулируемого входного напряжения и обеспечение постоянного регулируемого выходного напряжения. Общим типом классификации является 3 терминальных стабилизатора напряжения и 5 или многопозиционный стабилизатор напряжения.

Эти регуляторы обеспечивают постоянное выходное напряжение. Фиксированный регулятор напряжения может быть положительным регулятором напряжения или отрицательным регулятором напряжения. Положительный стабилизатор напряжения обеспечивает постоянное положительное выходное напряжение.

Описание стабилизатора 78L05

Данный стабилизатор не дорогой () и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Единственное различие заключается в полярности выходных напряжений. Регулируемый стабилизатор напряжения — это своего рода регулятор, регулируемое выходное напряжение которого может варьироваться в диапазоне. Есть два варианта одного и того же; известный как положительный регулируемый регулятор напряжения и отрицательный регулируемый регулятор.

Могут быть определенные условия, в которых может потребоваться переменное напряжение. Схема подключения показана ниже. Требуемое выходное напряжение может быть рассчитано с использованием уравнения. Таким образом, приведенное выше уравнение можно переписать как. Регулировка нагрузки составляет 1 процент, а линейное регулирование — 01% на вольт. Это означает, что выходное напряжение изменяется только на 01% для каждого напряжения входного напряжения. Отверстие пульсации составляет 80 дБ, что эквивалентно 10.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Больше схем на регулируемых регуляторах напряжения

Как показано на блоке-схеме выше, встроенные опорное напряжение. Существует много этапов усиления напряжения для используемого здесь операционного усилителя. Таким образом, ток, протекающий через делитель потенциала, может быть записан как. Таким образом, выходное напряжение можно записать в виде. Это повышение температуры может быть в основном обусловлено чрезмерным внешним напряжением, температурой окружающей среды или даже потерей тепла.

Штырьки 1, 2 и 3 — вход, выход и земля. В противном случае он прекратит регулирование. Кроме того, существует максимальное входное напряжение из-за чрезмерной рассеиваемой мощности. В переключающих регуляторах выходное напряжение регулируется путем управления временем переключения схемы обратной связи; то есть путем регулировки рабочего цикла. Регуляторы, рассмотренные выше, являются линейными регуляторами напряжения, которым необходим последовательный транзистор для регулирования в активной области.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

Стабилизаторы для питания микросхем

Несмотря на то, что они выбраны для разных целей, у них есть недостаток в рассеянии мощных транзисторов серии. Пропускной резистор серии должен выдерживать большую нагрузку при увеличении тока нагрузки. Это приводит к тому, что транзисторы серии проходят громоздкими с более объемным радиатором. Это, в свою очередь, также увеличивает общую стоимость. Такие линейные регуляторы также нуждаются в понижающем трансформаторе, который снова увеличивает размер всей схемы.

Большие ряби, производимые схемой, должны быть устранены, и для этого требуются конденсаторы с большим размером фильтра. Все эти проблемы могут быть решены с помощью регулятора напряжения переключения. Вся операция полностью отличается по сравнению с линейным регулятором напряжения. Здесь транзистор транзистора серии не используется в качестве усилителя, а как переключатель. То есть вместо транзистора, работающего в активной области, происходит переход между областью насыщения или областью отсечения.

Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подачи входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

Типовая схема включения стабилизатора напряжения в техвыводном корпусе с фиксированным выходным напряжением

Таким образом, рассеиваемая мощность уменьшается и, следовательно, может выдерживать большие нагрузки при низком напряжении с менее громоздкими теплоотводами. Таким образом, этот регулятор находит свое широкое применение в персональных компьютерах. Базовый коммутационный регулятор предназначен для работы в трех конфигурациях. Их принципиальные схемы и пояснения приведены ниже.

Продолжаем собирать блок питания своими руками

Регулятор напряжения переключения — Типы. Пошаговый регулятор переключения Как показано на рисунке выше, прямоугольные импульсы подаются на основание транзистора. В течение каждого цикла импульса транзистор изменяется между насыщением и отключением. Компоненты переменного тока входного напряжения для фильтра блокируются, и компонент постоянного тока пропускается через фильтр. По мере переключения транзистора среднее значение всегда будет меньше входного напряжения. Вот почему мы называем это «понижающим» переключающим регулятором.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема отличается своей оригинальностью, из-за нестандартного применения микросхемы , источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Когда транзистор насыщен, ток течет через индуктор. Когда транзистор переключится на отсечку, на катушке индуктора будет индуцировано большое напряжение из-за внезапного коллапса магнитного поля вокруг него. Таким образом, ток продолжает течь в одном направлении. Эта схема называется «ступенчатым» переключающим регулятором, потому что напряжение, индуцированное индуктором, будет больше входного напряжения. Регулятор переключения полярности. Как показано на рисунке выше, когда транзистор насыщен, ток течет через индуктор.

Виды стабилизаторов напряжения

Поскольку транзистор отключен, единственный путь проходит через конденсатор. Если проверяется направление зарядного тока через конденсатор, выходное напряжение оказывается отрицательным. Простой коммутационный регулятор разработан с использованием сочетания схем, которые мы уже знаем. Работа начинается с релаксационного генератора, который генерирует прямоугольную волну. Квадратная волна задается как входной сигнал интегратору и создает выходную треугольную волну. Это задается как вход для положительного вывода треугольника в импульсный преобразователь.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Затем выходной импульс будет управлять базовым транзистором. Рабочий цикл этих импульсов определит выходное напряжение. Когда выходное напряжение увеличивается, схема компаратора создает более высокое выходное напряжение, и поэтому инвертирующий вход треугольника в импульсный преобразователь будет иметь высокое значение. Это уменьшит импульсы на базовом входе транзистора. Поскольку рабочий цикл меньше, отфильтрованное выходное напряжение меньше, что, как правило, отменяет почти все первоначальное увеличение выходного напряжения.

Стабилизатор с плавным выходом на номинальное напряжение

Это означает, что любое попытка увеличения выходного напряжения создает отрицательное напряжение обратной связи, которое почти исключает первоначальное увеличение. Обратное происходит, если выходное напряжение падает. В системе достаточно усиления разомкнутого контура, чтобы обеспечить хорошо отрегулированное выходное напряжение.

Бестрансформаторный блок питания на 5 вольт

данная характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Коммутационные регуляторы доступны в различных конфигурациях, таких как конфигурация обратного хода, подача вперед, двухтактная и неизолированная односторонняя или однополярная. Является регулятором напряжения 5 В, который ограничивает выход напряжения до 5 В и потребляет 5 В регулируемый источник питания. Он поставляется с возможностью добавления радиатора.

Если напряжение около 5 В, то оно не производит никакого тепла и, следовательно, не нуждается в радиаторе. Если вход напряжения больше, то избыточное электричество выделяется как тепло от. Это стандарт, от имени последние две цифры 05 обозначает количество напряжения, которое он регулирует.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на . Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Регулировка выходного напряжения

Сохраните это изображение для справки. Линейные регуляторы экономичны и недороги, что также является еще одним фактором его репутации и почти доступно в любом электронном магазине. Теперь онлайн-продавцы дней предлагают их по гораздо более низкой цене для навальных заказов.

Регулятор напряжения является одним из наиболее важных и часто используемых электрических компонентов. Регуляторы напряжения отвечают за поддержание постоянного напряжения в электронной системе. Колебания напряжения могут привести к нежелательному воздействию на электронную систему, поэтому для поддержания постоянного постоянного напряжения необходимо в соответствии с требованием напряжения в системе.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Предположим, что если простой светодиод может принимать максимум от 3 В до макс, что произойдет, если вход напряжения превысит 3 В?, Конечно, диод будет гореть. Это также характерно для всех электронных компонентов, таких как светодиоды, конденсаторы, диоды и т.д. малейшее увеличение напряжения может привести к отказу всей системы, повредив другие компоненты. Во избежание повреждения в таких ситуациях регулятор напряжения используется для регулируемого источника питания.

Ну так и зачем всё это нужно то?

В зависимости от используемого регулятора напряжения мы можем получить регулируемое положительное или отрицательное напряжение в зависимости от того, какое напряжение мы хотим. Прежде чем мы сможем подключить схему, позвольте нам сначала разобрать схему выводов регулятора напряжения, что жизненно важно для подключения схемы.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4. R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Параллельное включение стабилизаторов

Регулятор напряжения представляет собой трехконтактное устройство. Выходное напряжение любого источника напряжения, который вы хотите отрегулировать вниз, подается на этот вывод. Так, например, если у вас есть 10 вольт от трансформатора, который вы хотите отрегулировать до 5 вольт, выход трансформатора подается на вход регулятора, так что регулятор может регулировать его до желаемого напряжения. Помните, что входное напряжение должно быть больше напряжения, которое регулятор регулирует. Для того, чтобы регулятор выдавал 5 вольт, ввод напряжения должен быть как минимум на 2 вольта выше, поэтому он должен быть не менее 7 вольт. 7 вольт будет работать идеально.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Однако для экспериментальных целей и простоты получения деталей мы будем использовать 9-вольтовую батарею в качестве нашего входного напряжения. Он подключается к земле в нашей цепи. Без заземления схема не могла быть полной, потому что напряжение не имело бы электрического потенциала, и схема не имела бы обратного пути.

Это контакт, который выдает регулируемое напряжение, которое в этом случае составляет 5 вольт. В конце этого эксперимента, когда наша схема подключена, мы будем считывать напряжение с помощью мультиметра, и он должен выдавать близко к 5 вольтам. Хорошо, теперь давайте построим схему.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

(161,0 Kb, скачано: 3 935)

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.

В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.

Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.

Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.

Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.

Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

L7805 трехвыводной стабилизатор напряжения

 Трехвыводной стабилизатор напряжения L7805. Микросхема выпускается в двух видах:  пластик  ТО-220 и металл  ТО-3.

 Три вывода (слева на право)  ввод —  минус — выход. 


Последних две цифры указывают на стабилизированное напряжение микросхемы:  7805  —  5 вольт, 7806  —  6 вольт,  7824  — 24 вольт.
Схема подключения стабилизатора, распространяется на все микросхемы этой серии:

Принципиальная схема стабилизатора:

Output voltage — выходное напряжение.

Input voltage — входное напряжение.

7805  выдает выходное напряжение 5 Вольт.

Рекомендуемое входное напряжение производители установили напряжение в 10 Вольт.

Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для прецизионной  аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 — 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Не стабилизированное постоянное напряжение может варьироваться в диапазоне от 7.5  и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.

При большой нагрузке, а эта микросхема способна отдавать мощность порядка 15 Ватт, стабилизатор лучше оснастить радиатором и по возможности с вентилятором.

Более полная схема стабилизатора:

Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход подаем 7-8 вольт.
Это связано с тем,  что излишнюю мощность стабилизатор будет рассеивать на себе.

Формула мощности P=IU, где U — напряжение, а  I — сила тока.

Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им.

А излишняя мощность — это нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

=================================================================================================================================

      

L7805cv схема регулируемый стабилизатор. Схема подключения стабилизатора L7805

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

Описание стабилизатора 78L05

Данный стабилизатор не дорогой и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.

Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.

С1 на входе необходим для ликвидации ВЧ помех при подаче входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема отличается своей оригинальностью, из-за нестандартного применения микросхемы , источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.

Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.

Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05

Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на . Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.

Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.

Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

(161,0 Kb, скачано: 6 295)


Эта небольшая статья посвящена трехвыводному стабилизатору напряжения L7805 . Микросхема выпускается в двух видах, в пластмассе — ТО-220 и металле — ТО-3. Три вывода, смотреть слева на право — ввод, минус, выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы — 7805-5 вольт соответственно, 7806-6в…. 7824-наверняка уже догадываемся сколько. Также вас могут заинтересовать жилетки для хора мальчиков , подробнее на сайте по ссылке.

Вот схема подключения стабилизатора , которая подходит для всех микросхем этой серии:

На конденсаторы малой емкости не смотрим, желательно поставить побольше.
Ну а это стабилизатор изнутри:


Офигеть, да? И все это помещается…. .Чудо техники.

Итак, нас интересуют вот эти характеристики. Output voltage — выходное напряжение. Input voltage — входное напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презеционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 — 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Нестабилизированное постоянное напряжение может «колыхаться» в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.

При большой нагрузке, а эта микросхема способна дать мощность аж 15 Ватт, стаб лучше снабдить радиатором и по возможности или по хотению, для большего и быстрого охлаждения, прикрутить ему кулер, как в компе.
Вот и нормальная схема стабилизатора:

Технические параметры

Корпус… to-220
Максимальный ток нагрузки, А… 1.5
Диапазон допустимых входных напряжений, В… 40
Выходное напряжение, В… 5
в помощь.

Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход пускаем 7-8 вольт, если 12 — 14-15 вольт.

Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U — напряжение, а I — сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на . Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди , да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.

В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т.д.

Серия 79 предназначена для отрицательного выходного напряжения.

Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.

По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром , если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В, вообще, приведет к отсутствию напряжения на выходе стабилизатора.

, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств , как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Рис.1

Недавно нашел в закромах интересный стабилизатор напряжения 7805UC (аналог UA7805) в корпусе TO-220 рис.1, который когда-то использовался в игровой приставке. Нарыл в Интернете даташит на сей девайс: регулятор обеспечивает стабильное выходное напряжение в пределах 4.8 до 5.2В и ток 1.5А при входном напряжении от 7 до 25В; рабочие температуры от 0 до 125 о С; выходное сопротивление 0.017 Ом. 7805UC может обеспечить пиковые нагрузки по току 2.2А.
В регуляторе реализована возможность управления переменным напряжением (положительное импульсное напряжение) в пределах от 10Гц до 100кГц с малым коэффициентом шумов — 40 мкВ.
Стабилизатор имеет внутренний ограничитель тока при коротком замыкании, а также защиту при тепловой перегрузке. Я думаю это позволит создать хороший лабораторный блок питания (БП), либо стабилизированный блок на напряжение 5В для устройств используемые в условиях в неприемлемых для большинства БП. Особенно если напряжение в сети любит скакать от 150 до 250В. В таких условиях не все БП смогут выдавать рассчитанное напряжение, когда входное напряжение с понижающего трансформатора может плавать от 7 до 20В.


Рис.2

На рис.2 приведена внутренняя архитектура микросхемы. Богатая начинка позволяет обходится скромной обвязкой — это экономит деньги, время и размеры при сборке.


рис.3 типовая схема с фиксированным напряжением и рис.4 регулируемая схема

Типовая схема подключения отображена на рис.3. Регулируемый вариант на рис.4


Рис.5

Блок питание на основе 7805UC рис.5. Необходим понижающий трансформатор ТР1 на 7..25В с выходным током 1-1.5А. Высоковольтный выключатель (1А) и предохранитель 0.5А. Для диодного моста рекомендую использовать 4 диода КД226А, каждый рассчитан на 2А, отказоустойчивые. Конденсаторы С1 и С2 электролитные для напряжения 15В. С1 100мкФх15В первичный фильтр — компенсирует импульсные скачки напряжения от трансформатора. Стабилизатор может сильно греться и необходимо установить радиатор, который будет рассеивать лишнее тепло (чем больше, тем лучше).

Стабилизатор напряжения 7805. Схема подключения стабилизатора L7805CV, описание характеристик

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.

В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.

Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.


Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.

Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.


Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на . Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.


Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди , да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.


Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.


И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.


Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.


Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:


Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:


При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:


Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.


Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:


При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша схема работает от напряжения питания 5 вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

В природе существуют две разновидности 7805 с током нагрузки до 1А и более маломощный 78L05 с током нагрузки до 0,1А. Кроме того промежуточным вариантом является микросхема 78M05 с током нагрузки до 0,5А. Полными отечественными аналогами микросхемы являются для 78L05 КР1157ЕН5 и 7805 для 142ЕН5

Емкость С1 на входе требуется для срезания высокочастотных помех при подачи входного напряжения. Емкость С2 но уже на выходе стабилизатора задает стабильность напряжения при резком изменении тока нагрузки, а так же существенно снижает степень пульсаций.

При проектирование требуется помнить, что для нормальной работы стабилизатора 78L05 напряжение на входе должно быть не ниже 7 и не выше 20 вольт.

Рассмотрим наиболее интересные примеры практического использования интегрального стабилизатора 78L05.

Этак конструкция лабораторного блока питания отличается своей изысканностью, в первую очередь из-за нестандартного использования микросхемы TDA2030, источником стабилизированного напряжения которого является 78L05.


TDA2030 включена как неинвертирующий усилитель. При таком подсоединении коэффициент усиления рассчитывается по формуле 1+R4/R3 и равен 6. Поэтому, напряжение на выходе блока питания, при регулировании номинала сопротивления R2, будет плавно изменятся от 0 и до 30 вольт.

Повышенная стабильность, отсутствие перегрева радиокомпонентов, вот главные достоинства этой конструкции.


Индикатор включения выполнен на светодиоде HL1, вместо трансформатора использована гасящая цепь на компонентах C1 и R1, диодный выпрямительный мост на специализированной сборке, конденсаторы применяются для минимизации пульсаций, стабилитрон на 9 вольт и стабилизатор напряжения 78L05. Необходимость использования стабилитрона обуславливается тем, что напряжение с выхода диодного моста около 100 вольт и это может повредить стабилизатор 78L05.

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:


Технические данные

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.


Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

Блок питания своими руками можно собрать довольно быстро и просто из дешевых и широко распространённых деталей. Он является неотъемлемой частью любого электронного устройства. Без электричества не сможет функционировать ни один компьютер, приемник, мобильный телефон, планшет и т. п. Всем электронным устройствам нужны электроны, источниками которых и являются различные блоки питания.

Начинающему радиолюбителю и электронщику в качестве первой своей самоделки следует собрать именно блок питания. А потом создавать другие устройства, которые будут питаться от уже имеющегося источника, причем выполненного собственноручно.

Различают импульсные блоки питания, еще их называют безтрансформаторные, и трансформаторные. В этой статье мы будем собирать только последние. Здесь лишь заметим, что основным преимуществом импульсных является их значительная мощность при малых габаритах и массе, т. е. высокая удельная мощность, а к недостатку относится сильные электромагнитные помехи, вызваны самой структурой таких блоков питания, поэтому их обязательно нужно экранировать. По этой причине в аудиотехнике высокого класса применяются исключительно трансформаторные источники питания.

Практически все современные электронные устройства выполнены на микросхемах их (или) транзисторах, для питания которых необходимо постоянное напряжение величиной 5, 9 и 12 В. Хотя последним временем осуществляется переход микросхем на питание от 3,3 В. Поскольку напряжение в сети (в розетке) переменное 220 В, 50 Гц, то назначением любого блока питания (БП) есть понижение и преобразование переменного напряжения в постоянное (рис. 1 ). Кроме того выходное напряжение должно быть стабильным, то есть всегда оставаться определенной величины независимо от колебаний входного напряжения.

Рис. 1 – Функциональная схема блока питания

Структура БП включает в себя трансформатора, выпрямитель, фильтра и стабилизатора напряжения или, гораздо реже, стабилизатор тока (рис. 2 ). Также может использоваться светодиод или вольтметр для индикации наличия напряжения.

Рис. 2 – Структура блока питания

Рассмотрим кратко назначение основных элементов БП.

Трансформатор. Назначение

Трансформатор применяется для понижения переменного сетевого напряжения 220 В, частотой 50 Гц до нужной величины, требуемой для питания различных электронный устройств. Также он служит для гальванической развязки высоковольтных цепей с низковольтными, то есть, чтобы напряжение 220 В не попало на микросхемы, транзисторы и другие электронные элементы, которые питаются низким напряжением и не повредили их. Конструктивно трансформатор состоит из одной первичной и одной или более вторичных обмоток (рис. 3 ), которые намотаны на магнитопровод, набранный из тонких стальных пластинок, разделенных нетокопроводящим слоем.


Рис. 3 – Схематическое изображение трансформатора

Когда к первичной обмотке подключен источник переменного напряжения, то в ней, поскольку цепь замкнута, протекает переменный ток. Он, в свою очередь, вызывает магнитное поле, которое также является переменным. Оно будет концентрироваться в сердечнике и протекать по нему в виде магнитного потока. Это поток при пересечении вторичной обмотки наводит в ее витках электродвижущую силу (ЭДС), которая называется ЭДС самоиндукции. Она, помимо прочего, прямопропорциональна количеству витков обмотки. Чем большее количество витков, тем выше значение ЭДС.

Магнитопроводы всех типов трансформаторов разделяют на тороидальные и стержневые (рис. 4 ). На практике удобнее применять тороидальные трансформаторы, так как на их магнитопровод легко намотать нужное количество витков и соответственно получить нужное напряжение.


Рис. 4 – Тороидальный и стержневой трансформатор броневого типа

Для нашем блоке питания нужно применять трансформатор с номинальным током вторичной обмотки не менее 1 А. Меньше не имеет смысла, поскольку мощность БП будет слишком мала. Напряжение вторичной обмотки нужно выбирать исходя из выходного напряжения блока питания. Если оно равно 5 В, то и на обмотке должно быль 5 В, если 12 В – то 12 В и так далее.

Выпрямитель полупроводниковый

Для того, чтобы получить из переменного напряжения постоянного применяют выпрямитель. Напряжение после выпрямителя правильно называть не постоянным, а выпрямленным. В преимущественном большинстве применяется выпрямитель, состоящий из четырех диодов. А схема выпрямления называется мостовой. Принцип действия заключается в следующем. В один полупериод (рис. 5 ) ток во вторичной обмотке протекает в направлении снизу в верх (см. рис. 5 ) и через открытую пару диодов VD1, VD2 и нагрузку в виде светодиода VD5 с последовательно соединенным резистором R5 протекает выпрямленный ток.


Рис. 5 – Работа выпрямителя в первый полупериод

Во второй полупериод ток вторичной обмотки трансформатора протекает в обратном направлении – с верху в низ (рис. 6 ). Теперь открыты диоды VD3, VD4, а диоды VD1, VD2 закрыты. Ток через нагрузку протекает в том же направлении (см. рис. 6 ).


Рис. 6 – Работа выпрямителя во второй полупериод

Выпрямитель можно взять готовый или спаять самому из четырех диодов. Готовый выпрямитель имеет 4 вывода. К двум из них подводится переменное напряжение (такие выводы обозначаются знаком «~»), а с двух остальных снимается постоянное напряжение. Один обозначается знаком плюс «+», а второй знаком минус «-». Определить выводы можно с помощью маркировки, которая наносится на корпус, а также по длине выводов: наиболее длинный вывод – это «+», чуть короче – «минус», два наиболее коротких вывода одинаковой длинны – это выводы для подключения переменного напряжения (рис. 7 ).


Рис. 7 – Мостовой выпрямитель. Внешний вид

Фильтр

После выпрямителя напряжение получается не идеально постоянным, а пульсирующим. Для сглаживание этих пульсаций необходимо применять фильтр (рис. 8 ). Наиболее простой фильтр состоит всего лишь из электролитического конденсатора большой емкости (рис. 9 ). Такой фильтр наш блок питания вполне устроит. Поскольку напряжения на входе конденсатора имеет пульсирующий характер, то в нем присутствуют пики и спады, то есть напряжение нарастает и спадает. В момент нарастания напряжения конденсатор заряжается, а в момент спада он разряжается на нагрузку. В результате этого напряжение на нагрузке остается практически постоянным.


Рис. 8 – Схема подключения конденсатора в качестве фильтра


Рис. 9 – Электролитические конденсаторы фильтра

Стабилизаторы напряжения. LM 7805. LM 7809. LM 7809. LM 7812

Напряжение в сети не всегда равно 220 В, а колеблится в некоторых допустимых, а иногда и недопустимых пределах. Соответственно напряжение и на выходе блока питания будет колебаться, что недопустимо для большинства электронных устройств. Поэтому на выходе выпрямителя после фильтра необходимо стабилизировать напряжение. Для это устанавливаются либо стабилитроны либо интегральные стабилизаторы напряжения .

Наиболее широкое распространение получили стабилизаторы напряжения серии LM 78 XX и LM 79 XX , где буквы LM обозначают производителя, также могут использоваться буквы CM , однако важными являются 4-ри цифры, стоящие за буквами. Первые две цифры указывают полярность выходного напряжения стабилизатора: 78 – положительное напряжение, 79 – отрицательное напряжение. Далее мы рассмотрим их схемы. Вторые две цифры в маркировке стабилизаторов ХХ (рис. 10 ) обозначают величину выходного напряжения, например 05 – 5 В; 08 – 8 В; 12 – 12 В и т. д. Теперь расшифруем несколько стабилизаторов целиком. LM 7805 – это стабилизатор с положительным LM 7908 – стабилизатор с отрицательным выходным напряжением, величиной 5 В; LM 7812 – 12 В, положительное напряжение.


Рис. 10 – Стабилизаторы напряжения: LM 7805, LM 7808, LM 7809

Такие стабилизаторы имеют три вывода: вход, общий и выход. Обозначение выводов показано на рис. 11 .

Рассмотренный тип стабилизаторов напряжения рассчитан на ток 1 А. При протекании такого тока он сильно нагревается, поэтому его нужно устанавливать на радиатор, для этого оно имеет корпус с металлической пластиной и отверстием под установку радиатора.

Рис. 11 – Обозначение выводов стабилизатора напряжения LM 7805

Схема блока питания состоит из трансформатора, четырех диодов, включенных по мостовой схеме, или готового мостового выпрямителя, стабилизатора напряжения и светодиодного индикатора работы блока питания.


Рис. 12 – Схема блока питания

Трансформатор необходимо выбирать исходя из таких соображений, чтобы величина напряжения вторичной обмотки была такой, что после выпрямления и сглаживания, напряжение на входе стабилизатора напряжение было на 2…3 В больше чем на его выходе. Например, нам нужен блок питания на 5 В, тогда мы будем применять стабилизатор напряжения LM7805. Для нормальной работы его напряжение на входе должно быть 7…8 В. Если напряжение будет меньше, то стабилизатор будет работа крайне нестабильно, то есть напряжение на его выходе будет колебаться и он ничего не буде стабилизировать.

Если на вход стабилизатора LM7805 подать напряжение 25 В, то он будет выдавать стабильное напряжение 5 В. Но здесь возникает другая неприятность. Оставшихся 20 В будут гасится на внутреннем сопротивлении стабилизатора и при протекании значительного тока он буде слишком сильно перегреваться. Поэтому не рекомендуется подавать на вход стабилизатора слишком большое напряжение относительно его выходного напряжения. Оптимум является на 2…3 В больше.

Что касается тока, то, как было упомянуто, номинальный ток стабилизатора 1 А, поэтому все элементы блока питания должны выдерживать ток не менее 1 А. Главным образом это касается выпрямителей (либо отдельных диодов) и вторичной обмотки трансформатора (и соответственно первичной с учетом коэффициента трансформации).

Взглянем еще раз на схему блока питания, приведенную на рис. 12 . Вход и выход стабилизатора зашунтированы неполярными конденсаторами малой емкости 0,33 мкФ и 0,1 мкФ соответственно. Их установка рекомендуется производителем для поглощения и защиты от высокочастотных помех. Хотя в 99 % случаях можно обойтись и без этих конденсаторов.

Продолжаем собирать блок питания своими руками

Если необходимо иметь стабилизированный источник напряжения непосредственно на сомом устройстве либо нужен блок питания малой мощности, тогда применяют рассмотренную выше схему (рис. 12 ), но применяют стабилизаторы напряжения серии 78 L 05, 78 L 12, 79 L 05, 79 L 08 и так далее. Внешне они похожи на транзисторы и также имеют три вывода (рис. 13 ). Номинальный ток их 100 мА, поэтому они не нуждаются в установке радиатора и находятся в таком компактном корпусе.

Рис. 13 – Стабилизатор напряжения 78 L 05

Расшифровка маркировки их выполняется точно также, как и рассмотренных выше, только пары цифр разделены буквой L . Первая пара цифр обозначает: 78 – положительное, 79 – отрицательное напряжение. Вторая пара цифр: 05 – 5 В, 08 – 8В, 09 – 9 В, 12 – 12 В и т. д.

Обратите внимание, что рассмотренные типы стабилизаторов отличаются маркировкой выводов (рис. 14 ).


Рис. 14 – Стабилизаторы напряжения LM 7805 и 78 L 05

Схема включения 78L05

Схема включения 78L05 приведена на рис. 15 . Точно по такой же схеме включаются и другие стабилизаторы положительного напряжения серии 78 L ХХ и LM 78ХХ .


Рис. 15 – Схема включения стабилизаторов напряжения 78 L ХХ и LM 78ХХ

Схема включения 79L 05

Схема включения стабилизаторов отрицательного напряжения серии 79 L ХХ и LM 79ХХ показана на рис. 16 . Хотя они используются не часто, но все же нужно знать о их существовании и уметь применять на практике.


Рис. 16 – Схема включения 79 L ХХ и LM 79ХХ

Теперь, я надеюсь, Вы сможете собрать блок питания своими руками на любое напряжение. А главное, научились применять на практике любые стабилизаторы напряжения и увидели, что здесь нет ничего сложного. В следующей статье мы научимся собирать такие же простые блоки питания, но с возможностью плавной регулировки выходного напряжения.

Стабилизатор напряжения 7805 схема. Трехвыводные стабилизаторы напряжения

Отрегулированное напряжение питания очень важно для многих электронных устройств, поскольку полупроводниковые компоненты, применяемые в них, могут быть чувствительны для скачков и шумов нерегулируемого напряжения. Электронные приборы, питаемые от сети сначала преобразуют переменное напряжение в постоянное благодаря диодному мосту или другому подобному элементу. Но это напряжение не стоит использовать в чувствительных схемах.

В данном случае нужен регулятор (или стабилизатор) напряжения. И одним из самых популярных и распространенных регуляторов на сегодняшний день является регулятор серии 7805.

Микросхема 7805 расположена в трехвыводном корпусе TO-220 с выводами вход, выход, земля (GND). Также контакт GND представлен на металлическом основании микросхемы для крепления радиатора. Данный стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки 1.5 А. Внешний вид регулятора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без ощутимых скачков и шумов. Чтобы эффективно минимизировать шумы на выходе и максимально сделать выходное напряжение стабильным, регулятор 7805 нужно правильно «обвязать», то есть подключить к его входу и выходу блокиовочные, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) показана ниже.

Здесь конденсатор C1 представляет собой байпасный или блокировочный конденсатор и используется для гашения на землю очень быстрых по времени входных скачков. C2 является фильтрующим конденсатором, позволяющим стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем больше уровень стабилизации, но не стоит брать это значение слишком большим, если не хотите, чтобы он разряжался дольше после включения. Конденсатор C3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор C4, как и C1, гасит очень быстрые скачки, но уже после регулятора и непосредственно перед нагрузкой.

Типичная схема включения регулятора напряжения 7805 представлена ниже. Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с требуемой обвязкой из конденсаторов для более качественной стабилизации выходного напряжения. В схему также добавлен диод D5, позволяющий избежать короткого замыкания и тем самым обезопасить регулятор. Если бы его не было, то выходной конденсатор имел бы возможность быстро разрядиться во время периода низкого импеданса внутри регулятора.


Таким образом, регулятор напряжения является очень полезным элементом в схеме, способным обеспечить правильное питание вашего устройства.

Широкое применение в электронике нашли интегральные стабилизаторы напряжения и особенно один их вид — стабилизаторы с фиксированным выходным напряжением в трехвыводных корпусах. Они хороши тем что не требуют внешних элементов (кроме конденсаторов фильтров), регулировок и имеют широкий диапазон токов в нагрузках. Не буду приводить здесь их технические характеристики, а приведу только основные данные и схемы возможного применения.

Стандартные линейные стабилизаторы выпускаются многими производителями и имеют не одно обозначение, мы рассмотрим их на примере наиболее характерного типа:

  • серия L78 (для положительных напряжений ),
  • и серия L79 (для отрицательныхнапряжений ).

В свою очередь стандартные регуляторы делятся на:

  • слаботочные с выходным током в районе 0,1 А (L78Lхх) — вид на рис. 1а,
  • со средним значением тока порядка 0,5 А (L78Мхх) — вид на рис. 1б,
  • сильноточные 1…1,5 А (L78хх) — вид на —рис.1в.

Невысокая стоимость, простота применения и большое разнообразие выходных напряжений и корпусов делают эти компоненты весьма популярными при создании простых схем электропитания. Надо отметить, что эти регуляторы обладают рядом дополнительных функций, обеспечивающих безопасность функционирования. К ним относятся защита от перегрузки по току и температурная защита от перегрева микросхемы.

Рисунок 1

Интегральные стабилизаторы используют корпуса типов: КТ-26 , КТ-27, КТ-28-2, ТО-220,
КТ-28-2, КТ-27-2, ТО-92, ТО-126, ТО-202, которые близки к изображенным на рис.1.

Микросхемы серии 78xx

Это серия ИМС линейных стабилизаторов с фиксированным выходным напряжением — 78xx (также известная как LM78xx).

Их популярность связана, как уже говорилось выше, с их простотой использования и относительной дешевизной. При указании определённых микросхем серии, «xx» заменяется на двухзначный номер, обозначающий выходное напряжение стабилизатора (к примеру, микросхема 7805 имеет выходное напряжение в 5 вольт, а 7812 — 12В). Стабилизаторы 78-ой серии имеют положительное относительно земли рабочее напряжение, а серия 79xx отрицательное, имеет аналогичную систему обозначений. Их можно использовать для обеспечения и положительного, и отрицательного напряжений питания нагрузок в одной схеме.

Кроме того, их популярность серии продиктована несколькими преимуществами перед другими стабилизаторами напряжения:

  • Микросхемы серии не нуждаются в дополнительных элементах для обеспечения стабильного питания, что делает их удобными в использовании, экономичными и эффективно использующими место на печатной плате. В отличие от них большинство других стабилизаторов требуют дополнительные компоненты или для установки нужного значения напряжения, или для помощи в стабилизации. Некоторые другие варианты (например, импульсные стабилизаторы) требуют не только большого количества дополнительных компонентов, но могут требовать большой опыт разработки.
  • Устройства серии обладают защитой от превышения максимального тока, а также от перегрева и коротких замыканий, что обеспечивает высокую надёжность в большинстве случаев. Иногда ограничение тока также используется и для защиты других компонентов схемы,
  • Линейные стабилизаторы не создают ВЧ помех, в виде магнитных полей рассеяния и ВЧ пульсаций выходного напряжения.

К недостаткам линейных стабилизаторов можно отнести более низкий КПД по сравнению с импульсными, но при оптимальном расчете он может превышать 60%.

Структура интегрального стабилизатора показана на рис. 2

Рисунок 2

Требование к применению стабилизаторов:

    падение напряжения на нем не должно быть ниже 2 вольт,

    максимальный ток через него, не должен превышать указанного в соотношении:

I max

P — допустимая мощность рассеяния микросхемы, U in-out — падение напряжения на микросхеме (U in-out = U in — U out ).

Типовая схема включения стабилизатора напряжения в техвыводном корпусе


с фиксированным выходным напряжением

Типовая схема включения интегрального стабилизатора напряжения в трехвыводном корпусе с фиксированным выходным напряжением показана на рис. 3.

Рисунок 3

Мы видим, микросхемы подобного типа не требуют дополнительных элементов, кроме конденсаторов фильтрующих напряжение — которые фильтруют питающее напряжение и защищают стабилизатор от помех проникающих с нагрузки и от источника питающего напряжения.

Для обеспечения устойчивой работы микросхем серии 78хх во всем диапазоне допустимых значений входных и выходных напряжений и токов нагрузки рекомендуется применять шунтирующие вход и выход стабилизатора конденсаторы. Это должны быть твердотельные (керамические или танталловые) конденсаторы емкостью до 2 мкф на входе и 1 мкф на выходе. При использовании алюминиевых конденсаторов их емкость должна быть более 10 мкф. Подключать конденсаторы необходимо как можно более короткими проводниками как можно ближе к выводам стабилизатора.

и током делителя I2 (возможно регулирование), в) стабилизатора напряжения.

Варианты применения интегрального стабилизатора с фиксированным напряжением

Микросхемы позволяют создавать множество схем на основе стабилизаторов.

Регулировка выходного напряжения

Как я уже писал выше (см. рис. 5б) линейные стабилизаторы позволяют изменять выходное напряжение. Подробная схема показана на рис. 7.

По той же схеме возможно и функциональное регулирование выходного напряжения.

Например возможно регулирование выходного напряжения в зависимости от температуры для применения в системах стабилизации температуры — термостатах. В зависимости от типа температурного датчика он может включаться вместо резисторов R 1 или R 2 .

Рисунок 7

Параллельное включение стабилизаторов

Рисунок 7

Данный регулятор имеет ту особенность, что (для устойчивой раскрутки вентилятора) в начальный момент времени на вентилятор подается полное напряжение (12В). После того как конденсатор С1 зарядится напряжение на выходе будет определяться резистором R 2.

Стабилизатор с плавным выходом на номинальное напряжение

Рисунок 8

Данная схема отличается тем, что в начальный момент времени напряжение на выходе стабилизатора равно 5В (для данного типа), после чего напряжение плавно поднимается до величины определяемой регулирующими элементами.

Собрал А.Сорокин,

Трехвыводной стабилизатор напряжения L7805. Микросхема выпускается в двух видах: пластик ТО-220 и металл ТО-3.

Три вывода (слева на право) ввод — минус — выход.

Последних две цифры указывают на стабилизированное напряжение микросхемы: 7805 — 5 вольт, 7806 — 6 вольт, 7824 — 24 вольт.
Схема подключения стабилизатора, распространяется на все микросхемы этой серии:

Принципиальная схема стабилизатора:

Output voltage — выходное напряжение.

Input voltage — входное напряжение.

7805 выдает выходное напряжение 5 Вольт.

Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для прецизионной аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4.75 — 5.25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать одного Ампера. Не стабилизированное постоянное напряжение может варьироваться в диапазоне от 7.5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и есть большой плюс стабилизаторов.
При большой нагрузке, а эта микросхема способна отдавать мощность порядка 15 Ватт, стабилизатор лучше оснастить радиатором и по возможности с вентилятором.

Более полная схема стабилизатора:


Для того, чтобы стабилизатор не перегревать, нужно придерживаться нужного минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход подаем 7-8 вольт.
Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе.

Формула мощности P=IU, где U — напряжение, а I — сила тока.

Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им.

А излишняя мощность — это нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Стабилизаторы электрического напряжения это устройства, входящие в состав блока питания и позволяющие держать на выходе блока питания стабильное напряжение. Стабилизаторы электрического напряжения бывают рассчитанные на какое-то фиксированное напряжение на выходе (например 5В, 9В, 12В), а бывают регулируемые стабилизаторы напряжения, у которых есть возможность установить требуемое напряжение в тех пределах, в каких они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить. Превышение этого тока грозит выходом стабилизатора из строя. Современные стабилизаторы обязательно оснащаются защитой по току, которая обеспечивает отключение стабилизатора при превышении максимального тока в нагрузке и защитой по перегреву. Наряду со стабилизаторами положительного напряжения существуют стабилизаторы отрицательного напряжения. В основном они используются в двухполярных источниках питания.

7805 — cтабилизатор

7805 — cтабилизатор , выполненный в корпусе, похожем на транзистор и имеет три вывода. См. рисунок. (+5V стабилизированного напряжения и ток 1A). Так же в корпусе имеется отверстие для крепления стабилизатора напряжения 7805 к радиатору охлаждения. 7805 является стабилизатором положительного напряжения. Его зеркальное отражение — 7905 — аналог 7805 для отрицательного напряжения . Т.е. на общем выводе у него будтет +, а на вход будет подаваться -. С его выхода, соответственно, будет сниматься стабилизированное напряжение -5 вольт.
Так же стоит отметить, что для нормальной работы на вход обоим стабилизаторам необходимо подавать напряжение около 10 вольт.
У этого стабилизатора существует маломощный аналог .

7805 распиновка

У стабилизатора 7805 распиновка следующая. Если смотреть на корпус 7805 как показано на фото выше, то выводы имеют следующую цоколёвку слева направо: вход, общий, выход. Вывод «общий» имеет контакт на корпус. Это необходимо учитывать при монтаже. Стабилизатор 7905 имеет другую распиновку! Слева направо: общий, вход, выход. И на корпусе у него «вход» !

Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.

В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т.д.

Серия 79 предназначена для отрицательного выходного напряжения.

Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.

По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В, вообще, приведет к отсутствию напряжения на выходе стабилизатора.

, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств , как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Применение стабилизатора напряжения в выводном корпусе. Источник питания. Блок питания DIY

Регулируемое напряжение питания очень важно для многих электронных устройств, поскольку используемые в них полупроводниковые компоненты могут быть чувствительны к скачкам и шумам нерегулируемого напряжения. Электронные устройства с питанием от сети сначала постоянно преобразуют переменное напряжение с помощью диодного моста или другого подобного элемента. Но это напряжение нельзя использовать в чувствительных цепях.

В этом случае вам понадобится регулятор (или стабилизатор) напряжения.И одним из самых популярных и распространенных на сегодняшний день регуляторов является регулятор серии 7805.

Микросхема 7805 размещена в трехконтактном корпусе TO-220 с клеммами ввода, вывода и заземления (GND). Также контакт GND присутствует на металлической основе микросхемы для крепления радиатора. Этот стабилизатор поддерживает входное напряжение до 40 В, а на выходе обеспечивает 5 В. Максимальный ток нагрузки составляет 1,5 А. Внешний вид стабилизатора напряжения 7805 с расположением выводов представлен на изображении ниже.

Благодаря стабилизатору напряжения серии 7805 выход фиксируется на определенном уровне без заметных скачков и шумов. Чтобы эффективно минимизировать шум на выходе и сделать выходное напряжение максимально стабильным, регулятор 7805 должен быть правильно «подключен», то есть к его входу и выходу должны быть подключены блокирующие, сглаживающие конденсаторы. Схема подключения конденсаторов к микросхеме 7805 (U1) представлена ​​ниже.

Здесь конденсатор C1 является байпасным или блокирующим конденсатором и используется для демпфирования на землю очень быстрых скачков входа.C2 — конденсатор фильтра, который позволяет стабилизировать медленные изменения напряжения на входе. Чем больше его значение, тем выше уровень стабилизации, но не стоит брать это значение слишком большим, если вы не хотите, чтобы он дольше разряжался после включения. Конденсатор С3 также стабилизирует медленные изменения напряжения, но уже на выходе. Конденсатор С4, как и С1, гасит очень быстрые скачки, но после регулятора и непосредственно перед нагрузкой.

Типовая схема переключения регулятора напряжения 7805 представлена ​​ниже.Здесь переменное напряжение выпрямляется диодным мостом и подается на регулятор с необходимой обвязкой конденсаторов для лучшей стабилизации выходного напряжения. В схему также был добавлен диод D5, чтобы избежать короткого замыкания и тем самым обезопасить стабилизатор. Если бы это было не так, выходной конденсатор мог бы быстро разрядиться в период низкого импеданса внутри регулятора.


Таким образом, регулятор напряжения — очень полезный элемент в схеме, способный обеспечить правильное питание вашего устройства.

В этой статье мы рассмотрим возможности и способы питания цифровых устройств, собранных вручную, в частности, на. Ни для кого не секрет, что залог успеха любого устройства — его правильное питание. Конечно, источник питания должен обеспечивать необходимую мощность для питания устройства, иметь на выходе электролитический конденсатор большой емкости, чтобы сглаживать пульсации, и желательно, чтобы он был стабилизирован.

Последнее, я особо подчеркну, различные нестабилизированные источники питания, такие как зарядные устройства от сотовых телефонов, роутеров и подобного оборудования, не подходят для питания микроконтроллеров и других цифровых устройств напрямую.Поскольку напряжение на выходе таких блоков питания различается в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, например зарядка от смартфонов.


Многие начинающие изучать электронику и просто заинтересовались, думаю, меня шокировал тот факт: на адаптере питания например от приставки Dandy , и любой другой аналогичный нестабилизированный 9 вольт постоянного тока может быть написано (или dC), и при измерении мультиметром щупов, подключенных к контактам штекера БП на экране мультиметра, всего 14 или даже 16.Такой блок питания можно при желании использовать для питания цифровых устройств, но стабилизатор должен быть собран на микросхеме 7805 или КРЕН5. Ниже фото микросхемы L7805CV в корпусе ТО-220.


Такой стабилизатор имеет несложную схему подключения, от чипсета, то есть из тех деталей, которые необходимы для его работы, нам понадобится всего 2 керамических конденсатора по 0,33 мкФ и 0,1 мкФ. Схема подключения многим известна и взята из даташита на микросхему:

Соответственно на вход такого стабилизатора подаем напряжение, либо подключаем к плюсу блока питания.А минус соединяем с минусом микросхемы, и подаем прямо на вывод.


И получаем выход, нам нужны стабильные 5 вольт, к которым при желании, если сделать соответствующий разъем, можно подключить кабель USB и зарядить телефон, мп3 плеер или любое другое устройство с возможностью зарядки от USB-порт.


Понижение стабилизатора с 12 до 5 вольт

Автомобильное зарядное устройство С выходом USB все давно знают.Внутри он устроен по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.


В качестве примера для тех, кто хочет собрать аналогичное зарядное устройство своими руками или отремонтировать уже имеющееся, приведу его схему, дополненную светодиодной индикацией:


Распиновка микросхемы 7805 в корпусе ТО-220 представлена ​​на следующих рисунках. При сборке следует помнить, что распиновка микросхем в разных корпусах разная:


При покупке микросхемы в радиомагазине следует спрашивать стабилизатор как L7805CV в упаковке ТО-220.Эта микросхема может работать без радиатора с током до 1 ампера. Если требуются работы на больших токах, микросхему необходимо установить на радиатор.

Конечно, эта микросхема существует и в других корпусах, например, в привычном всем по маломощным транзисторам ТО-92. Этот стабилизатор работает на токах до 100 мА. Минимальное входное напряжение, при котором стабилизатор начинает работать — 6,7 вольт, стандартное от 7 вольт. Фотография микросхемы в корпусе ТО-92 приведена ниже:

Распиновка микросхемы в корпусе ТО-92, как уже было описано выше, отличается от распиновки микросхемы в корпусе ТО-220.Мы можем видеть это на следующем рисунке, так как становится ясно, что ножки зеркально отражены по отношению к TO-220:

.


Конечно, стабилизаторы выдают другое напряжение, например 12 вольт, 3,3 вольта и другие. Главное не забывать, что входное напряжение должно быть минимум на 1,7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке показана распиновка стабилизатора 7833 в корпусе ТО-92.Такие стабилизаторы используются для питания устройств на микроконтроллерах дисплеев, карт памяти и других периферийных устройств, требующих более низкого напряжения, чем 5 вольт, основного источника питания микроконтроллера.


Стабилизатор для блока питания МК

Использую для питания устройств, собранных и отлаженных на макетной плате на микроконтроллерах, со стабилизатором в корпусе, как на фото выше. Питание от нестабилизированного адаптера осуществляется через разъем на плате устройства.Его принципиальная схема представлена ​​на рисунке ниже:


При подключении микросхемы необходимо строго соблюдать распиновку. Если путаются ножки, достаточно даже одного включения, чтобы стабилизатор отключился, поэтому при его включении нужно быть осторожным. Автор материала AKV.

Стабилизаторы электрического напряжения Это устройства, входящие в состав блока питания и позволяющие поддерживать стабильное напряжение на выходе блока питания.Стабилизаторы напряжения рассчитаны на какое-то фиксированное выходное напряжение (например, 5В, 9В, 12В), и есть регулируемые стабилизаторы напряжения, которые имеют возможность устанавливать желаемое напряжение в пределах, в которых они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить. Превышение этого тока грозит повреждением стабилизатора. Современные стабилизаторы обязательно оснащены защитой от сверхтока, обеспечивающей отключение стабилизатора при превышении максимального тока в нагрузке и защитой от перегрева.Наряду со стабилизаторами положительного напряжения есть стабилизаторы отрицательного напряжения. В основном они используются в биполярных источниках питания.

7805 — стабилизатор

7805 — стабилизатор , выполнен в корпусе, аналогичном транзистору, и имеет три выхода. См. Рисунок. (Стабилизированное напряжение + 5В и ток 1А). Также в корпусе есть отверстие для крепления стабилизатора напряжения 7805 к радиатору охлаждения. 7805 — стабилизатор положительного напряжения. Его зеркальное отображение — 7905 — аналог 7805 по отрицательному напряжению .Те. по общему выводу, он будет иметь budtet +, а на вход будет подаваться -. С его выхода соответственно будет снято стабилизированное напряжение -5 вольт.
Также стоит отметить, что для нормальной работы на оба стабилизатора должно подаваться напряжение на входе около 10 вольт.
У этого стабилизатора есть маломощный аналог.

Распиновка
7805

У стабилизатора 7805 распиновка следующая Если посмотреть на корпус 7805 как показано на фото выше, то выводы слева направо имеют следующую пин-код: вход, общий, выход.Вывод «общий» имеет контакт на корпусе. Это необходимо учитывать при установке. Стабилизатор 7905 имеет другую распиновку! Слева направо: общий, вход, выход. И по делу о его «входе»!

Интегральный стабилизатор L7805 CV — обычный трехвыходный стабилизатор положительного напряжения до 5В. Выпускается компанией STMircoelectronics, ориентировочная цена около $ 1. Он выполнен в стандартном корпусе ТО-220 (см. Рисунок), в котором выполнено много транзисторов, однако его назначение совершенно другое.

В серии 78XX с маркировкой последние две цифры обозначают номинальное напряжение , например:

  1. 7805 — стабилизация на 5 В;
  2. 7812 — стабилизация на 12 В;
  3. 7815 — стабилизация на 15 В и т. Д.

Серия 79 рассчитана на отрицательное выходное напряжение.

Применяется для стабилизации напряжения в различных низковольтных цепях. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, нет необходимости городить сложные схемы стабилизации, и все это можно заменить одной микросхемой и парой конденсаторов.

Схема подключения L7805CV

Схема подключения L 7805 CV достаточно простая, для работы необходимо согласно даташиту на входе подвесить конденсаторы 0,33 мкФ, а на выходе 0,1 мкФ. Важно при установке или проектировании, чтобы конденсаторы располагались как можно ближе к выводам микросхемы. Это сделано для обеспечения максимального уровня стабилизации и уменьшения помех.

По характеристикам Стабилизатор L7805CV исправен при подаче входного постоянного напряжения в диапазоне от 7.От 5 до 25 В. На выходе микросхемы стабильно постоянное давление в 5 вольт. В этом вся прелесть микросхемы L7805CV.

L7805CV Тест производительности

Как проверить работоспособность микросхемы ? Для начала можно просто прозвонить выводы мультиметра, если хоть в одном случае произошло короткое замыкание, то это однозначно свидетельствует о неисправности элемента. При наличии источника питания 7 В и выше можно собрать схему согласно предоставленной выше защите данных и подать питание на вход, зафиксировать мультиметром напряжение 5 В на выходе, соответственно элемент полностью функциональный.Третий способ более трудоемкий, если у вас нет источника питания. Однако в этом случае вы одновременно получите блок питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисунку ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации 18 на 20 и выпрямительный мост, еще стандартный обвес с двумя конденсаторами для стабилизатора и все, блок питания на 5 В готов. Номиналы конденсаторов здесь завышены по отношению к схеме переключения L7805 в даташите, это связано с тем, что после выпрямительного моста лучше сглаживать пульсации напряжения.Для более безопасной работы желательно добавить индикацию для визуализации включения устройства. Тогда схема будет выглядеть так:

Если на нагрузке много конденсаторов или другая емкостная нагрузка, можно защитить стабилизатор обратным диодом, чтобы избежать выгорания элемента при разрядке конденсаторов.

Большим преимуществом микросхемы является достаточно легкий дизайн и простота использования, если вам нужно запитать одно значение. В цепях, чувствительных к напряжению, обязательно должны быть поставлены аналогичные стабилизаторы для защиты элементов, чувствительных к скачкам напряжения.

Характеристики стабилизатора L7805CV, его аналогов

Основные настройки Стабилизатор L7805CV:

  1. Входное напряжение — от 7 до 25;
  2. Мощность рассеиваемая — 15 Вт;
  3. Выходное напряжение 4,75 … 5,25 В;
  4. Выходной ток — до 1,5 А.

IC Характеристика , показанная в таблице ниже, эти значения действительны при определенных условиях. А именно, температура микросхемы находится в диапазоне от 0 до 125 градусов Цельсия, входное напряжение — 10 В, выходной ток — 500 мА (если иное не указано в условиях, столбце Условия тестирования), а стандартный вес конденсаторов на входе 0.33 мкФ и на выходе 0,1 мкФ.

Из таблицы видно, что стабилизатор ведет себя хорошо при питании на входе от 7 до 20 В и на выходе стабильно будет подаваться от 4,75 до 5,25 В. С другой стороны, приводит к питанию более высоких значений. из-за более значительного изменения выходных значений, поэтому не рекомендуется более 25 В, а снижение входного до менее 7 В обычно приводит к отсутствию напряжения на выходе стабилизатора.

, более 5 Вт, на микросхему необходимо установить радиатор во избежание перегрева стабилизатора, конструкция позволяет это сделать без вопросов.Для более точной (прецизионной) методики, естественно, такой стабилизатор не подходит, так как имеет значительное изменение номинального напряжения при изменении входного напряжения.

Поскольку стабилизатор линейный, использовать его в мощных схемах бессмысленно, стабилизация на основе широтно-импульсного моделирования требуется, а вот для питания небольших устройств В качестве телефонов, детских игрушек, магнитофонов и других гаджетов вполне подойдет L7805. Аналог отечественный — КР142ЕН5А или просто «КРЕНКА». По стоимости аналог тоже находится в одной категории.

Опции:

Мин. Входное напряжение, В:

Макс. входное напряжение, В: 35

Выходное напряжение, В: +5

Номинальный выходной ток, А: 1,5

Drop in / out, В: 2,5

Количество регуляторов в корпусе: 1

Ток потребления, мА: 6

Точность: 4%

Диапазон рабочих температур: 0 ° C… + 150 ° C

Это устройства, составляющие блок питания и поддерживающие стабильное напряжение на выходе блока питания.Стабилизаторы напряжения рассчитаны на какое-то фиксированное напряжение на выходе (например, 5В, 9В, 12В), и есть регулируемые регуляторы напряжения, которые имеют возможность устанавливать необходимое напряжение в пределах, в которых они позволяют.

Все стабилизаторы обязательно рассчитаны на какой-то максимальный ток, который они могут обеспечить. Превышение этого тока грозит повреждением стабилизатора. Современные стабилизаторы обязательно оснащены защитой от сверхтока, обеспечивающей отключение стабилизатора при превышении максимального тока в нагрузке и защитой от перегрева.Наряду со стабилизаторами положительного напряжения есть стабилизаторы отрицательного напряжения. В основном они используются в биполярных источниках питания.

7805 — стабилизатор , выполнен в корпусе, аналогичном транзистору, и имеет три выхода. См. Рисунок. (Стабилизированное напряжение + 5В и ток 1А). Также в корпусе есть отверстие для крепления стабилизатора напряжения 7805 к радиатору охлаждения. 7805 — стабилизатор положительного напряжения. Его зеркальное отображение — 7905 — аналог 7805 по отрицательному напряжению .Те. по общему выводу, он будет иметь budtet +, а на вход будет подаваться -. С его выхода соответственно будет снято стабилизированное напряжение -5 вольт.
Также стоит отметить, что для нормальной работы на оба стабилизатора должно подаваться напряжение на входе около 10 вольт.
Этот стабилизатор имеет маломощный аналог 78L05.

7805 распиновка

У стабилизатора распиновка следующая Если посмотреть на корпус 7805 как показано на фото выше, то пины имеют следующую распиновку слева направо: вход, общий, выход.Вывод «общий» имеет контакт на корпусе. Это необходимо учитывать при установке. Стабилизатор 7905 имеет другую распиновку! Слева направо: общий, вход, выход. И по делу о его «входе»!


Схема питания + 5В и -5В с использованием 7805 и 7905

Gadgetronicx> Электроника> Принципиальные и принципиальные схемы> Силовые схемы> Цепи питания +5 В и -5 В с использованием 7805 и 7905