Активное сопротивление схема. Активное сопротивление в цепи переменного тока: особенности и характеристики

Какие факторы влияют на активное сопротивление в цепи переменного тока. Как рассчитать активное сопротивление. Чем отличается активное сопротивление от реактивного. Какие потери энергии связаны с активным сопротивлением.

Содержание

Что такое активное сопротивление в цепи переменного тока

Активное сопротивление в цепи переменного тока — это сопротивление, на котором происходит необратимое преобразование электрической энергии в другие виды энергии, например, в тепловую. Основные характеристики активного сопротивления:

  • Вызывает потери электрической энергии
  • Не зависит от частоты переменного тока
  • Измеряется в Омах
  • Обозначается буквой R
  • На элементах с активным сопротивлением ток и напряжение совпадают по фазе

Факторы, влияющие на величину активного сопротивления

На величину активного сопротивления проводника влияют следующие факторы:

  • Материал проводника
  • Длина проводника
  • Площадь поперечного сечения
  • Температура
  • Частота переменного тока (при высоких частотах)

Рассмотрим подробнее, как эти факторы влияют на активное сопротивление.


Влияние материала проводника

Разные материалы обладают разным удельным сопротивлением. Например:

  • Серебро: 0,016 Ом·мм²/м
  • Медь: 0,0175 Ом·мм²/м
  • Алюминий: 0,028 Ом·мм²/м
  • Вольфрам: 0,055 Ом·мм²/м

Чем меньше удельное сопротивление материала, тем меньше будет активное сопротивление проводника из этого материала при прочих равных условиях.

Зависимость от длины и сечения проводника

Активное сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади поперечного сечения:

R = ρ * l / S

где:

  • R — активное сопротивление
  • ρ — удельное сопротивление материала
  • l — длина проводника
  • S — площадь поперечного сечения

Влияние температуры

С повышением температуры активное сопротивление металлов увеличивается. Это связано с усилением колебаний атомов в кристаллической решетке, что затрудняет движение свободных электронов. Зависимость описывается формулой:

R = R₀(1 + αΔT)

где:

  • R — сопротивление при температуре T
  • R₀ — сопротивление при начальной температуре
  • α — температурный коэффициент сопротивления
  • ΔT — изменение температуры

Особенности активного сопротивления в цепи переменного тока

В цепи переменного тока активное сопротивление имеет некоторые особенности по сравнению с цепью постоянного тока:


  • Возникает поверхностный эффект
  • Появляются дополнительные потери энергии
  • При очень высоких частотах активное сопротивление может значительно возрастать

Поверхностный эффект

При протекании переменного тока высокой частоты плотность тока становится неравномерной по сечению проводника — она выше у поверхности и ниже в центре. Это явление называется поверхностным эффектом или скин-эффектом. Оно приводит к увеличению активного сопротивления проводника.

Дополнительные потери энергии

В цепи переменного тока возникают дополнительные потери энергии, увеличивающие активное сопротивление:

  • Потери на вихревые токи
  • Потери на гистерезис в магнитных материалах
  • Диэлектрические потери в изоляции
  • Потери на излучение при высоких частотах

Расчет активного сопротивления в цепи переменного тока

Для расчета активного сопротивления в цепи переменного тока используются следующие формулы:

Закон Ома для участка цепи

R = U / I

где:

  • R — активное сопротивление
  • U — действующее значение напряжения
  • I — действующее значение тока

Через активную мощность

R = P / I²


где:

  • P — активная мощность
  • I — действующее значение тока

Через коэффициент мощности

R = Z * cos φ

где:

  • Z — полное сопротивление цепи
  • cos φ — коэффициент мощности

Отличие активного сопротивления от реактивного

Основные отличия активного сопротивления от реактивного:

ХарактеристикаАктивное сопротивлениеРеактивное сопротивление
Преобразование энергииНеобратимое в теплоОбратимое накопление в магнитном или электрическом поле
Зависимость от частотыНе зависитЗависит
Сдвиг фазНет сдвига между током и напряжениемЕсть сдвиг на 90°
Потребление мощностиПотребляет активную мощностьПотребляет реактивную мощность

Способы уменьшения активного сопротивления

Для уменьшения активного сопротивления в цепях переменного тока применяются следующие методы:

  • Использование проводников из материалов с низким удельным сопротивлением (медь, серебро)
  • Увеличение сечения проводников
  • Применение многожильных проводов (литцендрат) для уменьшения поверхностного эффекта
  • Охлаждение проводников
  • Использование сверхпроводников при низких температурах

Потери энергии на активном сопротивлении

Потери энергии на активном сопротивлении определяются законом Джоуля-Ленца:


Q = I² * R * t

где:

  • Q — количество теплоты
  • I — действующее значение тока
  • R — активное сопротивление
  • t — время

Эти потери являются необратимыми и приводят к нагреву проводников. Для уменьшения потерь необходимо снижать активное сопротивление проводников и применять эффективные системы охлаждения.

Применение активного сопротивления в электротехнике

Активное сопротивление широко применяется в различных областях электротехники:

  • Нагревательные элементы (ТЭНы, электроплиты, обогреватели)
  • Осветительные приборы (лампы накаливания)
  • Измерительные приборы (шунты, добавочные сопротивления)
  • Балластные сопротивления в цепях с газоразрядными лампами
  • Резисторы в электронных схемах

Понимание особенностей активного сопротивления в цепях переменного тока позволяет правильно проектировать и эксплуатировать электрические и электронные устройства, минимизируя потери энергии и обеспечивая их эффективную работу.


Формула активного сопротивления в цепи переменного тока

В электротехнике активное сопротивление в цепи переменного тока, так же как и реактивная нагрузка, относится к разряду труднодоступных для понимания тем. Только немногие специалисты могут понятно объяснить, какие процессы происходят на участке электрической схемы. Для начала понимания нужно обратиться к словарю и узнать, что означает слово «активный». Это деятельный, инициативный и энергичный элемент или объект. В электротехнике под сопротивлением с активным свойством понимают элемент, способный потреблять электроэнергию и превращать ее в иной вид энергии (свет, тепло или химические реакции). Специалисты его называют еще ваттным сопротивлением. К активным элементам в электрической схеме тока с переменной характеристикой относят различные накаливаемые элементы и, конечно же, лампы с нитью накаливания. Графически активное сопротивление рисуют в виде резистора.

Графическое обозначение элемента с активным свойством в электротехнике

Сопротивление с активным свойством в цепи с переменной характеристикой

Если в цепь с переменной характеристикой тока подключить активную нагрузку, то по проводнику начнет протекать электрический ток по синусоидальной траектории. Это происходит за счет видоизменения напряжения по синусоиде:

u = Um sin ωt.

Отсюда и силу тока можно выразить формулой:

i = Im sin ωt,

где максимальная амплитуда силы тока считается по формуле:

Im =Um/R.

Важно знать! Сила тока в цепи с переменной характеристикой переменяется по тому закону, что и напряжение. То есть прохождение нулевой отметки у них происходит синхронно, так же как и достижение пиковой вершины.

Графика видоизменения силы тока и напряжения

Из графика видно, что за счет идеального активного в цепи сопротивления ток и напряжение совмещаются по фазе. Если в формуле:

i = Im sin ωt

каждую сторону поделить на √2, то получим формулу, выражающую закон Ома:

I=U/R.

Отсюда следует вывод, что для электрической схемы с переменной характеристикой, имеющей активное сопротивление, основополагающим законом является закон Ома.

Характеристики потерь

Причиной потерь с активной нагрузкой в схеме с переменной характеристикой тока являются:

  1. Омическое сопротивление самого материала проводника;
  2. Кроме этого, нельзя не обращать внимания на другие причины, как, например, наличие конденсатора (в электротехнике под ним можно подразумевать, например, кабель в изоляции).В такой схеме энергия теряется за счет постоянно изменяющего поляризацию диэлектрика такой изоляции. Это происходит за счет систематического «переворачивания» парных зарядов молекул, в свою очередь, приводящее к нагреву диэлектрического слоя. Такие потери в электротехнике называют диэлектрическими утечками;
  3. Кроме диэлектрических потерь в конденсаторном элементе, в схеме переменного тока присутствует потеря утечки. Она возникает за счет несовершенства материала изоляции;
  4. Также нельзя исключать потери на гистерезис, за счет постоянного присутствия переменного магнитного поля. Это приводит к нагреванию металлических частей схемы, так как наличествует систематическое переворачивание в такт с частотой переменного тока магнитиков;
  5. Токи Фуко также порождают высокие утраты в электрической цепи с переменной характеристикой. Они представляют собой индуктивные круговые токи и подвергают нагреванию все элементы схемы.

Присутствие всех перечисленных потерь значительно увеличивает активное сопротивление в схеме с переменным током.

Мощность в схеме с активной нагрузкой

Когда схема функционирует на переменном напряжении и токе, то напряженность преобразования электрической энергии в иной вид энергии изменяется. Отсюда получается, что такое изменение меняет мощность. Из формулы:

p  = Umsinωt * Imsinωt = UmImsin2ωt

следует, что мгновенная мощность равноправна произведению мгновенного напряжения на мгновенную составляющую силы тока.

Генерация активной составляющей мощности

После тригонометрических переустройств видим, что мгновенная мощность одинакова по сумме с мгновенной и постоянной составляющими:

р = Р + р’, где Р = UmIm√2.

Важно знать! Под понятием активная мощность следует понимать, что она представляет собой среднее арифметическое мгновенных составляющих за определенный период времени.

На простом языке активная мощность – это положительная характеристика электрической схемы с переменным током. Она относится к разряду основных свойств в ходе выбора электрических нагрузок и учета потребления электрической энергии.

Взгляд на эффект с поверхностным влиянием

Активное сопротивление электрической цепи, функционирующей от переменного напряжения, постоянно больше от сопротивления с активной функцией в цепи постоянного напряжения. Основанием этому является то, что переменный ток по равноправному уровню разделяется по всей поперечной плоскости проводника. От этого полезная плоскость значительно убавляется, а сопротивление растет. Этот физический процесс называется эффектом поверхностного действия.

При поверхностном эффекте заряженные частицы в основном двигаются по внешней оболочке проводника, так как поверхность проводника становится полезным сечением. С увеличением частоты электроны двигаются, максимально приближаясь к внешним границам. Для понижения данного явления изготавливают провода специального устройства. Их делают с трубчатыми жилами или покрывают жилы металлами, имеющими идеальную проводимость. Схемы с серебряными выводами очень хорошо знакомы многим специалистам.

Понижение поверхностного эффекта

На практике для повышения активной мощности в электрических схемах применяют специальные устройства и технологии, позволяющие снизить потери и уменьшить реактивную характеристику мощности. Самыми распространенными являются компенсирующие конденсаторные установки, а в быту – это индивидуальные блоки питания. Также перед созданием электрической сети в проекты закладываются проводники с наибольшей проводимостью и требуемым от нагрузок сечением. Кроме этого, в сложных схемах немаловажным является равномерное распределение активных нагрузок потребителей.

Видео

Оцените статью:

Активное и реактивное сопротивление.

Треугольник сопротивлений

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

Активное и реактивное сопротивление

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, пропорционально активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Активное и реактивное сопротивление в цепи переменного тока

В электрической цепи переменного тока существует два вида сопротивлений: активное и реактивное. Это является существенным отличием от цепей постоянного тока.

Активное сопротивление

При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя.

Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле 

Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура.

Реактивное сопротивление

При прохождении переменного тока через реактивные элементы возникает реактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт.

Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки 

Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока.

Сопротивление конденсатора можно рассчитать по формуле 

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений 

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:

На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.

  • Просмотров: 30991
  • Активное сопротивление цепи переменного тока

    Активным или ваттным сопротивлением называется всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую.

    Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.

    Рассмотрим некоторые из этих.

    Так, например, наличие конденсатора в цепи переменного тока связано с дополнительными потерями энергии в результате периодического (с частотой переменного тока) изменения поляризации диэлектрика или, попросту говоря, в результате непрерывного переворачивания взад и вперед молекулярных парных зарядов. При этом происходит нагревание диэлектрика, т. е. электрическая энергия превращается в тепловую. Эти потери энергии называются

    диэлектрическими потерями.

    Кроме диэлектрических потерь, как уже говорилось раньше, происходят потери энергии из-за утечки тока вследствие несовершенства изоляции между пластинами конденсаторов. Эти потери называются потерями утечки.

    Вокруг всякого переменного тока существует переменное магнитное поле. Следовательно, во всех окружающих железных предметах происходит непрерывное переворачивание молекулярных магнитиков в такт с частотой переменного тока. В результате железные предметы, находящиеся в поле переменного тока, нагреваются, т.

    е электрическая энергия превращается в тепловую. Эти потери называются потерями на гистерезис.

    Благодаря электромагнитной индукции переменный электрический ток наводит в близлежащих замкнутых электрических цепях индукционные токи, что связано с нагреванием этих цепей, т. е. с дополнительными потерями энергии.

    Кроме того, такие же индукционные круговые токи возникают не только в замкнутых электрических цепях, но и в близлежащих металлических предметах и нагревают их. Эти токи называются токами Фуко. Возникновение токов Фуко также сопряжено с потерями электрической энергии.

    Токи Фуко не всегда являются вредными. Например, на принципе токов Фуко основана защита радиоприборов медными или алюминиевыми экранами от переменных магнитных полей высокой частоты.

    Наконец, при очень высоких частотах цепь переменного тока может излучать электромагнитные волны (радиоволны), что связано с потерями на излучение.

    Наличие всех этих потерь увеличивает активное сопротивление цепи переменному току.

    Опыт показывает, что при высоких частотах и омическое сопротивление проводника оказывается значительно большим, чем при постоянном токе.

    Для объяснения этого явления увеличим мысленно сечение проводника (рис. 1) и посмотрим, что происходит в нем при прохождении по нему переменного тока. Вдоль проводника взад и вперед с частотой переменного тока движется огромное количество электронов.

    Рисунок 1. Поверхностный эффект, как фактрор увеличения активного сопротивления в цепи переменного тока. Ток вытесняется магнитным полем на поверхность проводника (а), поэтому у поверхности проводника плотность тока больше, чем внутри проводника (б).

    До сих пор нам было известно, что движущийся по проводнику переменный поток электронов создает вокруг него переменное магнитное поле. Теперь же, когда мы заглянем внутрь проводника, мы увидим, что магнитное поле имеется и внутри проводника. Это вызвано тем, что каждый электрон при движении создает вокруг себя магнитное поле, а так как часть электронов движется вблизи оси проводника, то они создают магнитное поле не только во вне, но и внутри проводника.

    Продолжая присматриваться к происходящему внутри проводника, мы заметим, что наиболее быстро движутся электроны, находящиеся у поверхности проводника, а по мере приближения к середине проводника амплитуда (размах) колебаний электронов становится все меньше и меньше.

    Почему же электроны колеблются с различными амплитудами в разных точках сечения проводника?

    Это явление также имеет свое объяснение. Вспомним, что при всяком изменении скорости движения электрона на него действует ЭДС самоиндукции, противодействующая этому изменению. Вспомним также, что ЭДС самоиндукции зависит от числа магнитных силовых линий вокруг движущегося электрона. Чем большим числом магнитных силовых линий охватывается электрон, тем труднее ему совершать колебательное движение.

    Теперь становится ясным, почему электроны, находящиеся у поверхности проводника, колеблются с большой амплитудой, а электроны, находящиеся глубоко внутри проводника, — с малой. Ведь первые охватываются только теми магнитными силовыми линиями, которые расположены вне проводника, а вторые охватываются и внешними и внутренними магнитными силовыми линиями.

    Таким образом, плотность переменного тока получается большей у поверхности проводника и меньшей внутри его.

    На рис. 1,б плотность тока характеризуется количеством красных точек. Как видим, наибольшая плотность тока получается около самой поверхности проводника.

    При очень высоких частотах противодействие ЭДС самоиндукции внутри проводника становится настолько сильным, что все электроны движутся только по поверхности проводника. Это явление и называется поверхностным эффектом. Так как активное сопротивление проводника зависит от его сечения, а полезным сечением при токе высокой частоты оказывается только тонкий наружный слой проводника, то вполне понятно, что его активное сопротивление увеличивается с повышением частоты переменного тока.

    Для уменьшения поверхностного эффекта проводники, по которым протекают токи высокой частоты, делают трубчатыми и покрывают их слоем хорошо проводящего металла, например серебра.

    В целях борьбы с явлением поверхностного эффекта применяют также провода специальной конструкции, так называемый литцендрат.

    Такой проводник свивают из отдельных тонких медных жилок, имеющих эмалевую изоляцию, причем скрутка жилок производится таким образом, чтобы каждая из них проходила поочередно то внутри проводника, то снаружи его.

    Явление поверхностного эффекта особенно сильно сказывается в железных проводах, в которых вследствие большой магнитной проницаемости железа внутренний магнитный поток оказывается особенно большим и поэтому явление поверхностного эффекта становится очень заметным даже при сравнительно низких (звуковых) частотах.

     

    ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

    Похожие материалы:

    Добавить комментарий

    Однофазные цепи переменного тока (страница 2)

    Решение:
    Полное сопротивление схемы

    Полная мощность на входе схемы

    Потери мощности в обмотке катушки

    Активная мощность схемы

    Коэффициент мощности схемы

    Из таблиц тригонометрических величин .
    Активное сопротивление схемы

    сопротивление дуги

    Индуктивное сопротивление цепи представлено индуктивным сопротивлением катушки:

    Эту же величину можно определить из треугольника сопротивлении (рис. 25, масштаб )

    Искомая индуктивность катушки

    Если бы вместо катушки был включен реостат, то сопротивление схемы имело бы ту же величину 6 Ом, но было бы чисто активным:

    откуда

    Потери мощности в катушке

    Потери мощности в реостате

    Отсюда ясно, что к. п. д. схемы выше при «погашении» избытка напряжения индуктивной катушкой. Действительно, к. п. д. при наличии катушки

    к. п. д. при наличии реостата

    Не следует забывать, что «погашение» избытка напряжения катушкой (или конденсатором) ухудшает коэффициент мощности (в данном примере при наличии катушки и при наличии реостата).

    22. Последовательно с катушкой, параметры которой и L=15,92 мГн, включен реостат сопротивлением, . Цепь включена на напряжение U=130 В при частоте f=50 Гц.
    Определить ток в цепи; напряжение на катушке и реостате; коэффициент мощности цепи и катушки.

    Решение:
    Индуктивное сопротивление катушки

    Полное сопротивление катушки

    Активное сопротивление цепи, состоящей из последовательно соединенных катушки и реостата,

    Полное сопротивление цепи

    На основании закона Ома ток в цепи

    Напряжение на катушке

    Напряжение на реостате

    Арифметическая сумма много больше приложенного напряжения U=130 В. Коэффициент мощности цепи

    Коэффициент мощности катушки

    Следовательно, реостат увеличивает коэффициент мощности и сопротивление цепи, но уменьшает ток, увеличивает потребление энергии схемой.
    Действительно, активная мощность катушки

    активная мощность реостата

    Так как цепь неразветвленная и ток один, то с него целесообразно начать построение векторной диаграммы (рис. 26).
    Напряжение на реостате, представляющем собой чисто активное сопротивление, совпадает по фазе с током; на диаграмме вектор этого напряжения совпадает по направлению с вектором тока. Из конца вектора в сторону опережения вектора тока I, под углом в сторону, противоположную вращению стрелки часов, откладываем вектор напряжения на катушке . Векторы построены так с целью сложения по правилу многоугольника.

    23. Неразветвленная цепь составлена из двух катушек: у первой катушки индуктивность и сопротивление , у второй катушки индуктивность и сопротивление .
    Определить ток в цепи и напряжения на каждой катушке, а также построить в масштабе векторную диаграмму, если частота f=50 Гц и приложенное напряжение U=12,6 В.

    Решение:
    Индуктивное сопротивление первой катушки

    т. е. оно численно равно активному сопротивлению , что обусловливает отставание тока по фазе от напряжения на 1/8 периода (на 45°).
    Действительно, тангенс угла сдвига фаз

    Индуктивное сопротивление второй катушки

    Так как ее активное сопротивление то тангенс угла сдвига фаз

    Построим в масштабе треугольник сопротивлений для рассматриваемой цепи. Для этого зададимся масштабом сопротивлений . Тогда на диаграмме сопротивление 1,57 Ом будет изображено отрезком 15,7 мм, сопротивление 2,7 Ом — отрезком 27 мм и т. д. На рис. 27 отрезок, изображающий активное сопротивление , отложен в горизонтальном направлении, а отрезок, изображающий индуктивное сопротивление , — в вертикальном направлении под прямым углом к .

    Полное сопротивление первой катушки является гипотенузой прямоугольного треугольника. Из вершины с этого треугольника в горизонтальном направлении отложен отрезок, изображающий сопротивление , и под прямым углом к нему вверх — отрезок, изображающий сопротивление . Гипотенуза се прямоугольного треугольника означает полное сопротивление второй катушки.
    Из рис. 27 видно, что отрезок ае, изображающий полное сопротивление z неразветвленной цепи из двух катушек, не равен сумме отрезков ас и се, т. е. . Чтобы определить полное сопротивление z рассматриваемой цепи, следует сложить отдельно активные (, отрезок аf) и индуктивные (, отрезок ef) сопротивления катушек.
    Гипотенуза ае, означающая полное сопротивление z цепи, определяется по теореме Пифагора:

    Ток в цепи определяется по закону Ома:

    Напряжение на первой катушке

    Напряжение на второй катушке

    Строим векторную диаграмму (рис. 28), приняв масштабы:
    а) для тока ; тогда вектор тока изобразится отрезком длиной 25 мм;
    б) для напряжения ; при этом вектор напряжения будет иметь длину 55,2 мм, вектор напряжения — длину 71 мм, а вектор приложенного напряжения — длину 126 мм.
    Начало вектора совмещено с концом вектора для возможности сложения векторов напряжений но правилу многоугольника (напряжение, приложенное к неразветвленной цепи катушек, равно геометрической сумме напряжений отдельных катушек).

     

    Формула активного сопротивления в цепи переменного тока

    Различные факторы играют важную роль для вычисления потерь в линиях транспортировки электрической энергии. Для постоянного тока вполне хватает стандартных данных об омическом сопротивлении. А вот для цепей переменной разновидности необходимо учитывать активное и индуктивное сопротивление в сочетании с емкостной проводимостью токопроводников.

    Можно воспользоваться для вычислений специальными таблицами. В них представлены с большой точностью различные варианты для выполнения расчетов в сетях переменного тока. Но, чтобы быстро разобраться в специфике представленных характеристик, желательно знать природу подобного явления и его основные характеристики.

    Особенности активного сопротивления

    Важно! Это явление наблюдается исключительно в ситуациях с переменным током. Только он способен образовывать в кабелях оба вида противодействия.

    Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.

    Обратим внимание на такой момент:

    1. Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
    2. А вот в стальных изделиях данный показатель намного выше. Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными. При этом, само явление ослабевает в проводниках многопроволочного типа.

    Индуктивное сопротивление

    Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.

    Само сопротивление обычно классифицируют следующим образом:

    • зависящее от параметров тока и материала — внутреннее;
    • обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.

    Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.

    Данный параметр обычно определяется следующим выражением:

    в котором индуктивный показатель для 1 км провода – , а L – протяженность.

    Х километрового участка рассчитывается по следующей формуле:

    Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.

    Принцип действия индуктивного сопротивления линий

    Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.

    Емкостная проводимость

    Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.

    Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.

    Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.

    Данный показатель будет объективным только при полностью обесточенных приемниках электричества.

    Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.

    Для кабельных магистралей:

    Источник: https://uelektrika.ru/osnovy-yelektrotekhniki/aktivnoe-i-induktivnoe-soprotivleni/

    Активное сопротивление: формула, от чего зависит, в чем измеряется реактивное сопротивление

    Сопротивлением в электротехнике называют такую величину, которая характеризует противодействие отдельность части электрической сети или ее элементов электрическому току.

    Это основано на том, что сопротивление изменяет электрическую энергию и конвертирует ее в другие типы.

    Например, в сетях с переменных электротоком происходят необратимые изменения энергии и ее передача между участниками этой электроцепи.

    Сопротивление как физическую величину трудно переоценить, так как она является одной из ключевых характеристик электричества в сети и прямо или пропорционально определяет силу тока и напряжение. Этот материал познакомит с такими понятиями как: активное сопротивление и реактивное сопротивление в цепи переменного тока, как проявляется зависимость активного сопротивления от частоты.

    Векторное изображение полного импеданса

    Какое сопротивление называется реактивным, какое активным

    Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

    Типы рассматриваемой величины и формулы ее расчета

    Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

    Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сети

    Какие отличия

    Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.

    Индуктивная величина и ее формулы

    Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.

    Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

    Комплексная сопротивляемость отдельного элетроэлемента сети R

    В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.

    Активная сопротивляемость в цепи переменного синусоидального тока

    От чего зависит активное сопротивление

    Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.

    Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.

    Схема косвенного метода амперметра, вольтметра и ваттметра

    В чем измеряется реактивное сопротивление

    Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах.

    В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения.

    Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

    Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2.

    Примером активной сопротивляемости — линия электропередач

    Как правильно измерять сопротивление

    При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

    Активом сопротивляемости может выступать любой резистор

    Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра.

    Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I  После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

    Обмотка трансформатора — один из примеров актива по превращению электроэнергии

    Области проявления

    Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.

    Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя.

    Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление.

    Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.

    Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.

    Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.

    Индукция ЭДС может наблюдаться в дросселе

    Таким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.

    Источник: https://rusenergetics.ru/polezno-znat/aktivnoe-soprotivlenie

    Активное сопротивление. Действующие значения силы тока и напряжения — Класс!ная физика

    «Физика — 11 класс»

    Активное сопротивление

    Сила тока в цепи с резистором

    Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

    Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

    • Напряжение на зажимах цепи меняется по гармоническому закону:
    • u = Um cos ωt
    • Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. По закону Ома мгновенное значение силы тока:

    В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

    Мощность в цепи с резистором

    В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются. При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

    1. Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой
    2. Р = I2R
    3. Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой
    4. Р = i2R

    График зависимости мгновенной мощности от времени (рис.а):

    Согласно графику (рис.б) среднее за период значение cos 2ωt равно нулю, а значит равно нулю второе слагаемое в формуле для среднего значения мощности за период.

    Действующие значения силы тока и напряжения

    Среднее за период значение квадрата силы тока:

    Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока. Действующее значение силы переменного тока обозначается через I:

    Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

    Действующее значение переменного напряжения определяется аналогично:

    Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

    В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

    • Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:
    • р = I2R = UI.
    • Итак: Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.
    • Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

    Следующая страница «Конденсатор в цепи переменного тока» Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

    Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

    Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре.

    Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление.

    Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы

    Источник: http://class-fizika.ru/11_27.html

    Цепь переменного тока с активным сопротивлением

    Когда в электрическую цепь переменного тока подключается активное сопротивление R, то под воздействием разницы потенциалов источника в цепи начинает течь ток I. В тех случаях, когда изменение напряжения происходит по синусоидальному закону, который выражается, как u = Um sin ωt, то изменение тока i также идет по синусоиде:

    Активное сопротивление

    i = Im sin ωt

    При этом

    Так что получается, что изменение напряжения и тока происходят по одинаковым законам. При этом через нулевое значение они проходят одновременно и своих максимальных значений также достигают одновременно. Из этого следует, что когда в электрическую цепь переменного тока подключается активное сопротивление R, то напряжение и ток совпадают по фазе.

    Мощность, ток, напряжение

    Если взять равенство Im = Um / R и каждую из его частей разделить на √2, то в итоге получится ни что иное, как закон Ома, применимый для той цепи, которая рассматривается: I = U/R.

    Таким образом, получается, что это основополагающий закон для той цепи, которая имеет в своем составе только активное сопротивление, с точки зрения математики имеет такую же форму, что и для цепи тока постоянного.

    Такой показатель, как электрическая мощность P для цепи, имеющей в своем составе активное сопротивление, равняется произведению мгновенного значения напряжения U на мгновенное значение силы тока i в любой момент времени.

    Из этого следует, что в цепях переменного тока, в отличие от цепей тока постоянного, мгновенная мощность P – величина непостоянная, а ее изменение происходит по кривой. Для того чтобы получить ее графическое представление, необходимо ординаты кривых напряжения U и силы тока i перемножить при разных углах ωt.

    Мощность изменяется по отношению к изменению тока с двойной частотой ωt. Это означает, что половине периода изменения напряжения и тока соответствует один период изменения мощности. Следует заметить, что абсолютно все значения, которые может принимать мощность, являются положительными величинами.

    С точки зрения физики это означает, что от источника к приемнику передается энергия. Своих максимальных значений мощность достигает тогда, когда ωt = 270° и ωt = 90°.

    В практическом отношении о той энергии W, которую создает электрический ток, принято судить по средней мощности, выражаемой формулой Рср = Р, а не по мощности максимальной. Ее можно определить, перемножив на время протекания тока среднее значение мощности W = Pt.

    • Относительно линии АБ, соответствующей среднему значению мощности P, кривая мгновенной мощности симметрична. По этой причине
    • P = Pmax / 2 = UI
    • Если использовать закон Ома, то можно выразить активную мощность в следующем виде:
    • P = I2R или P = U2/R.
    • Специалисты в области электротехники ту среднюю мощность, которую потребляет активное сопротивление, чаще всего именуют или просто мощностью, или активной мощностью, а для ее обозначения используется буква P.

    Необходимо особо отметить такую особенность проводников, включенных в сеть переменного тока: их активное сопротивление во всех случаях оказывается больше, чем если бы они были включены в сеть тока постоянного.

    Причина этого состоит в том, что переменный ток не протекает равномерно распределяясь по всему поперечному сечению проводника, как ведёт себя постоянный ток, а выводится на его поверхность.

    Таким образом, получается, что при включении проводника в цепь переменного тока его полезное сечение оказывается значительно меньшим, чем при включении в цепь тока постоянного. Именно поэтому его сопротивление возрастает. В физике и электротехнике это явление называется поверхностным эффектом.

    То, что переменный ток распределяется по сечению проводника неравномерно, объясняется действием электродвижущей силы самоиндукции. Она индуцируется в проводнике тем магнитным полем, которое создается током, проходящим по нему.

    Необходимо заметить, что действие этого магнитного поля распространяется не только на окружающее проводник пространство, но и на внутреннюю его часть. По этой простой причине те слои проводника, которые располагаются ближе к его центру, находятся под воздействием большего магнитного потока, чем те слои, что располагаются ближе к его поверхности.

    Соответственно, электродвижущая сила самоиндукции, которая возникает во внутренних слоях, существенно больше, чем та, что образуется в слоях внешних.

    Электродвижущая сила самоиндукции является существенным препятствием для изменения тока, и поэтому он будет следовать преимущественно по поверхностным слоям проводника.

    Необходимо также отметить, что сопротивление активных проводников в цепях переменного тока существенно зависит от частоты: чем она больше, тем выше ЭДС самоиндукции, и поэтому ток в большей степени подвергается вытеснению на поверхность.

    Источник: http://selectelement.ru/basic-concepts/ac-active-resistance.php

    Активное и реактивное сопротивление

    В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние.

    Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи.

    В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

    Основные различия между активным и реактивным сопротивлением

    Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

    Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью.

    Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции.

    В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

    Закон Ома для участка цепи

    Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

    В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

    Индуктивное сопротивление

    Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

    При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока.

    В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении.

    Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

    Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

    В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

    Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток.

    При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь.

    От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

    Конденсатор в цепи переменного тока

    Емкостное сопротивление

    В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

    В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

    Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды.

    Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами.

    Чем выше емкость устройства, тем больше времени требуется на зарядку.

    В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются.

    За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла.

    Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90.

    Компенсация реактивной мощности

    С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния.

    В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную.

    В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

    Сколько миллиампер в ампере

    Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

    Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

    Источник: https://electric-220.ru/news/aktivnoe_i_reaktivnoe_soprotivlenie/2017-12-23-1414

    Активное сопротивление в цепи переменного тока

    Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R. Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

    u = Umsinωt

    Найдём ток и мощность в цепи.

    Ток в цепи переменного тока с активным сопротивлением

    По закону Ома найдем выражение для мгновенного тока:

    где Im = Um/R — амплитуда тока

    Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).

    Действующий ток найдем, разделив амплитуду на √ 2:

    Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.

     Мгновенная мощность в цепи переменного тока с активным сопротивлением

    При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p  = Umsinωt * Imsinωt = UmImsin2ωt

    Из тригонометрии найдём 

    Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t.

     Зависимость мощности от времени — периодическая кривая (рис. 13.2).

    Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:

    Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:

    р = Р + р’

    Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.

    Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.

    Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.

    Активная мощность для цепи переменного тока с активным сопротивлением

    Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.

    Активная мощность — среднее арифметическое мгновенной мощности за период.

    Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).

    • Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.
    • В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:
    • P = UI
    • Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:
    • P = UI = I2R = U2R

    С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].

    Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:

    Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.

    Источник: https://electrikam.com/aktivnoe-soprotivlenie-v-cepi-peremennogo-toka/

    Активное и реактивное сопротивление. Треугольник сопротивлений

    Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

    При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

    В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

    В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

    С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

    Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

    В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

    После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

    Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

    Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока

    Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

    Активное сопротивление

    В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

    При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

    • Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:
    • R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.
    • На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

    Реактивное сопротивление

    Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

    Активное и реактивное сопротивление, свойства и разновидности

    Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

    Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

    Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

    Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

    Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

    На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

    Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

    Треугольник сопротивлений

    Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

    Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

    По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

    Похожие темы:

    Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnoe-i-reaktivnoe-soprotivlenie/

    Активное и реактивное сопротивление это

    В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние. Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи.

    В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным.

    Основные различия между активным и реактивным сопротивлением

    Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

    Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

    Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

    Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

    Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

    В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:

    В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

    Индуктивное сопротивление

    Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

    При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

    Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

    В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

    Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток. При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь. От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

    Емкостное сопротивление

    В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

    В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

    Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку.

    В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90 0 .

    Компенсация реактивной мощности

    С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

    Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

    Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

    Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

    При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

    В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т. д.

    В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

    С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

    Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

    В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

    После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

    Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

    Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.

    Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

    Активное сопротивление

    В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

    При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

    Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

    R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

    На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

    Реактивное сопротивление

    Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

    Активное и реактивное сопротивление, свойства и разновидности

    Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

    Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

    Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

    Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

    Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

    На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

    Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

    Треугольник сопротивлений

    Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

    Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

    По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

    Сопротивлением в электротехнике называют такую величину, которая характеризует противодействие отдельность части электрической сети или ее элементов электрическому току. Это основано на том, что сопротивление изменяет электрическую энергию и конвертирует ее в другие типы. Например, в сетях с переменных электротоком происходят необратимые изменения энергии и ее передача между участниками этой электроцепи.

    Сопротивление как физическую величину трудно переоценить, так как она является одной из ключевых характеристик электричества в сети и прямо или пропорционально определяет силу тока и напряжение. Этот материал познакомит с такими понятиями как: активное сопротивление и реактивное сопротивление в цепи переменного тока, как проявляется зависимость активного сопротивления от частоты.

    Какое сопротивление называется реактивным, какое активным

    Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

    Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

    Какие отличия

    Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.

    Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть.

    Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

    В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.

    От чего зависит активное сопротивление

    Активное электросопротивление зависит от сечения проводника. Это значит, что полезным сечением при электротоке с высокой частотой будет только тонкий наружный слой проводника. Из этого исходит также то, что активностное электросопротивление только возрастает с увеличением частоты электротока переменного типа.

    Для того чтобы уменьшить поверхностный эффект проводника, по которому течет электроток высокой частоты, его изготавливают трубчатым и покрывают напылением металла, хорошо проводящего электрический ток, например, серебром.

    В чем измеряется реактивное сопротивление

    Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

    Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2.

    Как правильно измерять сопротивление

    При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

    Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

    Области проявления

    Реактанс электросопротивления проявляется в емкости и индукции. Первое обуславливается наличием емкости проводниках и обмотках или включением в электрическую цепь переменного тока различных конденсаторов. Чем выше емкость потребителя и угловой частоты сигнала электротока, тем меньше емкостная характеристика.

    Сопротивляемость, которую оказывает проводник переменному току и электродвижущей силе самоиндукции, называется индуктивным. Оно зависит от индуктивности потребителя. Чем выше его индуктивность и выше частота переменного электротока, тем выше индуктивное электросопротивление. Выражается оно формулой: xl = ωL, где xl — это электросопротивление индукции, L — индуктивность, а ω — угловая частота тока.

    Емкостный реактанс электросопротивление проявляется, например, в конденсаторе, который накапливает электроэнергию в виде электромагнитного поля между своими обкладками. Индуктивное электросопротивление можно наблюдать в дросселе, который накапливает энергию в виде магнитного поля внутри своей обмотки.

    Активностным же электросопротивлением может обладать любой резистор, линии электропередач, обмотки трансформатора или электрического двигателя.

    Таким образом, активный резист и реактанс во многом отличаются друг от друга не только разницей по названию, но и по физическим свойствам. Первый вид превращает электроэнергию в другой вид и отдает ее в окружающую среду. Второй же — возвращает ее обратно в электросеть.

    Что такое сопротивление? | Fluke

    Сопротивление — это мера сопротивления току в электрической цепи.

    Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом). Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением. Ему приписывают формулировку закона Ома.

    Все материалы в некоторой степени сопротивляются току. Они попадают в одну из двух широких категорий:

    • Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться.Примеры: серебро, медь, золото и алюминий.
    • Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.
    Золотая проволока служит отличным проводником.

    Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.

    • Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии.Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
    • Чем меньше сопротивление, тем больше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.

    Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления. Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.

    Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления.Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.

    «Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.

    Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выработки тепла, которое подрумянивает хлеб. Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.

    Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:

    E = I x R

    То есть, вольт = амперы x Ом.R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, деленный на амперы).

    Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.

    Пример нормального сопротивления цепи Пример повышенного сопротивления цепи

    В первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом). Сопротивление 60 Ом может помочь определить состояние цепи.

    Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом). Увеличение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции разомкнутой катушки увеличивают общее сопротивление цепи, что снижает ток.

    Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

    Что такое сопротивление — Основные понятия »Электроника

    Электрическое сопротивление является одним из ключевых атрибутов электрической цепи — оно определяет ток, протекающий при заданном напряжении.


    Resistance Tutorial:
    Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


    Есть три основных измерения, которые могут быть выполнены в электрической цепи.Первые два — напряжение и ток, а третье — сопротивление.

    Поскольку электрическое сопротивление является основным понятием в электрических и электронных цепях, необходимо ответить на несколько вопросов: что такое сопротивление, что такое резисторы и как сопротивление влияет на цепи.

    Подборка резисторов с постоянными выводами

    Что такое сопротивление?

    Прежде чем посмотреть, что такое сопротивление, необходимо немного понять, что такое ток и что это такое. По сути, ток в материале состоит из движения электронов в одном направлении.Во многих материалах есть свободные электроны, беспорядочно перемещающиеся внутри структуры. Хотя они перемещаются случайным образом, текущего потока нет, потому что число, движущееся в одном направлении, будет равно количеству, движущемуся в другом. Только когда потенциал вызывает дрейф в определенном направлении, можно сказать, что ток течет.

    Что такое сопротивление

    Сопротивление — это препятствие для потока электронов в материале. В то время как разность потенциалов в проводнике способствует потоку электронов, сопротивление препятствует этому.Скорость прохождения заряда между двумя терминалами является комбинацией этих двух факторов.

    Если в цепь помещены два разных проводника, то величина тока, протекающего в каждом из них, может быть разной. На это есть ряд причин:

    1. Во-первых, это легкость, с которой электроны могут перемещаться внутри структуры материала. Если электроны прочно связаны с кристаллической решеткой, их будет нелегко вытащить, чтобы электроны могли дрейфовать в определенном направлении.В других материалах очень много свободных электронов, беспорядочно дрейфующих по решетке. Именно эти материалы позволяют легче течь току.
    2. Еще одним фактором, влияющим на электрическое сопротивление предмета, является его длина. Чем короче материал, тем ниже его общее сопротивление.
    3. Третье — это площадь поперечного сечения. Чем шире площадь поперечного сечения, тем меньше сопротивление, так как больше площади, через которую может протекать ток.

    В большинстве случаев требуется, чтобы проводники пропускали ток с минимально возможным сопротивлением.В результате медь получила широкое распространение, поскольку в ее структуре легко протекает ток. Кроме того, его площадь поперечного сечения сделана достаточно широкой, чтобы пропускать ток без чрезмерного сопротивления.

    В некоторых случаях необходимы элементы, препятствующие прохождению тока. Эти элементы называются резисторами, и они сделаны из материалов, которые не проводят электричество, а также из таких материалов, как медь или другие металлы.

    Аналогия сопротивления

    Понятие сопротивления не всегда легко понять, потому что невозможно визуально увидеть задействованные величины: напряжение, ток и сопротивление сами по себе являются довольно невидимыми величинами для невооруженного глаза, хотя их можно обнаружить и измерить различными способами. способами.

    Одна аналогия, которая помогает ввести понятие сопротивления, — это резервуар для воды с трубой, ведущей от него вниз. Хотя мы не хотим заходить слишком далеко в этой аналогии, она помогает объяснить основную концепцию.

    Аналогия с резервуаром для воды и трубой для иллюстрации концепции сопротивления

    В этой аналогии создаваемое давление воды, но высота воды аналогична напряжению, поток воды аналогичен току, а ограничение воды поток, вызываемый трубой, аналогичен сопротивлению.

    Добавление крана уменьшает поток воды, и это аналогично увеличению сопротивления.

    Видно, что если труба была сужена или добавлен кран, поток воды будет еще больше ограничен, и будет течь меньше воды. Это было бы аналогично увеличению сопротивления в электрической цепи, и это уменьшило бы ток.

    Простая схема, показывающая напряжение и сопротивление

    В простой схеме, состоящей из батареи или источника напряжения и резистора, если предположить, что соединительные провода не имеют сопротивления, то чем выше сопротивление, тем меньше будет протекать ток.

    Кран в аналоге водопровода соответствует изменению сопротивления резистора. Когда ответвление выключено, это эквивалентно выключению любого тока, протекающего в электрическую цепь.

    Соотношение между сопротивлением, напряжением и током

    Из аналогии с системой резервуаров для воды можно представить, что увеличение напряжения в электрической цепи увеличивает уровень протекающего тока.

    Аналогичным образом уменьшение сопротивления также увеличивает уровень тока.

    На самом деле существует взаимосвязь между напряжением, сопротивлением и током. Зная две переменные, можно вычислить третью.

    Связь между сопротивлением, напряжением и током известна как закон Ома и является одним из фундаментальных соотношений в электротехнике и электронике.


    Обозначение сопротивления

    Как уже упоминалось, основной единицей электрического сопротивления является Ом. Это часто обозначается греческим символом Ω.

    В дополнение к этому к базовой единице можно добавить множители. Это связано с тем, что диапазон значений электрического сопротивления может охватывать многие десятилетия, и необходимо иметь простую запись, которая не полагается на подсчет количества нулей в числе, поскольку это легко может привести к ошибкам.

    Множитель Значение Имя
    R шт. Ом, Ом
    к тыс. кОм, кОм
    M миллионов МОм, МОм

    Иногда встречаются сопротивления менее одного ома, они измеряются в миллиомах (м) тысячных долях ома.

    Обычно, когда сопротивления указываются на электронной схеме, они обозначаются как 10R для резистора на десять Ом, 10 кОм для резистора на десять тысяч Ом и 10 МОм для резистора на десять МОм. Причина этого в том, что греческая буква омега не так проста в использовании, как префиксы R, k и M.

    Что такое резисторы?

    Для ограничения тока в конкретной цепи может использоваться компонент, известный как резистор. Резисторы бывают самых разных форм: от крупных проводных компонентов или даже с использованием клемм до очень маленьких компонентов для поверхностного монтажа, используемых сегодня во многих электронных схемах.

    Резисторы

    могут быть изготовлены из различных материалов, включая углерод, оксид металла, металлическую пленку, резистивный провод и тому подобное. Резисторы могут быть разных форматов — разные типы резисторов имеют немного разные характеристики, а это означает, что они могут использоваться в разных схемах.

    Выбор правильного типа резистора может помочь схеме работать так, как она задумана. Хотя резистор с сопротивлением 10 кОм будет иметь одинаковое сопротивление независимо от того, из чего он сделан, такие характеристики, как температурная стабильность, шум, долговременная стабильность, паразитная индуктивность и тому подобное, могут быть разными для разных типов, и это может повлиять на производительность в некоторых схемах. .

    Примечание по резисторам и типам резисторов:
    Резисторы

    используются в электрических и электронных схемах для различных целей, но в каждом случае они препятствуют прохождению тока. Существует много различных типов резисторов — их параметры означают, что некоторые типы более подходят для конкретных приложений, чем другие.

    Подробнее о Резисторы и типы резисторов

    Сводка сопротивления

    При работе с любыми электрическими и электронными цепями необходимо знать, что такое сопротивление и как сопротивление влияет на цепь.Ввиду важности сопротивления в схемах широко используются резисторы, возможно, наиболее часто используемые компоненты в электронных схемах. Эти компоненты очень просты в использовании, и связанные с ними вычисления обычно просты.

    Другие основные концепции электроники:
    Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
    Вернуться в меню «Основные понятия электроники».. .

    Закон Ома

    : сопротивление и простые цепи

    Цели обучения

    К концу этого раздела вы сможете:

    • Объясните происхождение закона Ома.
    • Рассчитывайте напряжения, токи или сопротивления по закону Ома.
    • Объясните, что такое омический материал.
    • Опишите простую схему.

    Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

    [латекс] I \ propto {V} \\ [/ латекс].

    Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

    Сопротивление и простые схемы

    Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R .Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

    .

    [латекс] I \ propto \ frac {1} {R} \\ [/ latex].

    Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

    [латекс] I = \ frac {V} {R} \\ [/ латекс].

    Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления — Ом, и обозначается символом Ω (заглавная греческая омега). Перестановка I = V / R дает R = V / I , поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

    [латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ latex].

    На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

    Рис. 1. Простая электрическая цепь, в которой замкнутый путь прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Пример 1. Расчет сопротивления: автомобильная фара

    Какое сопротивление проходит у автомобильной фары? 2.50 А течет при подаче на него 12,0 В?

    Стратегия

    Мы можем изменить закон Ома в соответствии с формулой I = V / R и использовать его для определения сопротивления.

    Решение

    Перестановка I = V / R и замена известных значений дает

    [латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

    Обсуждение

    Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с повышением температуры, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

    Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительное понимание можно получить, решив I = V / R для V , что дает

    В = ИК

    Это выражение для В, можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Фраза IR drop часто используется для этого напряжения. Например, фара в Примере 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и то же самое q протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

    Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

    Подключение: сохранение энергии

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним только резистором. Мы обнаружим, что сохранение энергии имеет другие важные применения в схемах и является мощным инструментом анализа схем.

    Исследования PhET: закон Ома

    Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

    Щелкните, чтобы запустить моделирование.

    Сводка раздела

    • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
    • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
    • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
    • Существует падение напряжения IR на резисторе, вызванное протекающим через него током, равным V = IR .

    Концептуальные вопросы

    1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
    2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

    Задачи и упражнения

    1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

    2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

    3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

    4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

    5. (a) Найдите падение напряжения на удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

    6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

    Глоссарий

    Закон Ома:
    — эмпирическое соотношение, указывающее, что ток I пропорционален разности потенциалов V , V ; его часто записывают как I = V / R , где R — сопротивление
    сопротивление:
    электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
    Ом:
    единица сопротивления, равная 1Ω = 1 В / A
    омическое:
    вид материала, для которого действует закон Ома
    простая схема:
    схема с одним источником напряжения и одним резистором

    Избранные решения проблем и упражнения

    1.0,833 А

    3. 7,33 × 10 −2 Ом

    5. (а) 0,300 В

    (б) 1,50 В

    (c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечного выхода прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

    Что такое сопротивление? — Основы схемотехники

    В предыдущих статьях мы обсуждали напряжение и ток. На этот раз мы поговорим о третьем фундаментальном понятии в электронике — сопротивлении. В самом простом определении сопротивление — это мера сопротивления току в электрической цепи. Но давайте подробнее рассмотрим, что это значит!

    Немного из истории

    В 1827 году Джордж Ом открыл и ввел термин электрическое сопротивление.Эта концепция имеет сходные параллели с механическим термином «трение». После того, как Алессандро Вольта изобрел первую электрохимическую батарею, Ом использовал ее в качестве основы для многих своих экспериментов, которые включали установление взаимосвязи между разностью потенциалов и током. Он обнаружил, что ток и напряжение прямо пропорциональны, и это соотношение было названо законом Ома. Он обнаружил, что сопротивление — это соотношение между напряжением и током, как показано в его уравнении ниже:

    Факторы, определяющие сопротивление

    Сопротивление возникает, когда электроны не могут свободно перемещаться по проводнику.Обычно это происходит из-за отсутствия свободных валентных электронов во многих структурах. Это приводит к увеличению столкновений между электронами и ионами в материале. Когда происходят эти столкновения, кинетическая энергия электронов преобразуется в тепловую, поэтому, когда большие токи сталкиваются с высоким сопротивлением, выделяется много тепла.

    На сопротивление проводника влияют три фактора:

    • Длина проводника (L)
    • Площадь поперечного сечения проводника (A)
    • Удельное сопротивление материала проводника (ρ)

    Это уравнение ниже показывает взаимосвязь между этими факторами:

    Длина

    Длина проводника влияет на значение его сопротивления.Чем длиннее проводник, тем больше сопротивление. Это потому, что электроны сталкиваются с большим количеством ионов по мере прохождения. Следовательно, длина проводника пропорциональна сопротивлению проводника.

    Площадь поперечного сечения

    Диаметр или площадь поперечного сечения проводника также влияет на значение его сопротивления. Чем больше диаметр провода или CSA проводника, тем меньше сопротивление проводника. Сопротивление возникает из-за столкновения ионов / электронов, и если CSA проводника увеличивается, зазор между электронами также увеличивается.Теперь это уменьшает количество происходящих столкновений, тем самым уменьшая сопротивление проводника.

    Удельное сопротивление

    Третий фактор, влияющий на сопротивление проводника, — это удельное сопротивление материала при прохождении тока (проводника). У разных материалов разные значения удельного сопротивления. Как показано в приведенном выше уравнении, сопротивление прямо пропорционально удельному сопротивлению.

    Резистор с Типичный резистор, используемый в схемах DIY

    Резистор — это пассивный электрический компонент, который добавляет определенное значение сопротивления электрической цепи.Резисторы используются, среди прочего, для уменьшения протекания тока, регулировки напряжений. Резистор преобразует электрическую энергию в тепло и обычно состоит из нескольких медных витков. Толщина и длина этой медной катушки определяют фактическое значение сопротивления. Поэтому резисторы используются почти во всех электронных устройствах и гаджетах, поскольку они служат одним из самых фундаментальных компонентов электрических цепей.

    Рассеиваемая мощность

    Как упоминалось ранее, резисторы работают за счет рассеивания мощности путем преобразования электрической энергии в тепловую.Используйте следующее уравнение для расчета потерь мощности:

    Определение потерь мощности резистора также важно, поскольку разные резисторы имеют разную номинальную мощность. Если расчетная потеря мощности резистора в цепи превышает номинальную мощность резистора, резистор, скорее всего, выйдет из строя из-за перегрева.

    Пример задачи

    Чтобы рассчитать мощность, рассеиваемую резистором в приведенной выше схеме, нам нужно определить величину тока, протекающего по цепи.Это можно рассчитать с помощью закона Ома, где I = V / R. Следовательно, 9/50 = 0,18 А. Используя уравнение P = IV, мы получаем, что мощность, рассеиваемая указанным выше резистором, составляет 1,62 Вт. Это означает, что номинальная мощность резистора должна быть больше 1,62 Вт, чтобы избежать перегрева.

    Резисторы в схемах

    Когда дело доходит до установки резисторов в цепи, существует две основные конфигурации: последовательно или параллельно.

    Последовательная цепь

    В последовательной цепи резисторы выстроены один за другим.В этой конфигурации ток по всей цепи остается постоянным. Однако разность потенциалов между каждым резистором может варьироваться в зависимости от номинала каждого резистора.

    Используйте это уравнение, чтобы получить полное сопротивление в последовательной цепи:

    Параллельные схемы

    В параллельной цепи резисторы выстроены «параллельно» один за другим. В этой конфигурации падение напряжения на каждом резисторе остается постоянным.Однако ток на каждом резисторе может варьироваться в зависимости от номинала каждого резистора.

    Используйте это уравнение, чтобы получить полное сопротивление в параллельной цепи:


    6.2 Последовательные и параллельные резисторы — Введение в электричество, магнетизм и схемы

    ЦЕЛИ ОБУЧЕНИЯ

    По окончании раздела вы сможете:
    • Определите термин эквивалентное сопротивление
    • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
    • Вычислить эквивалентное сопротивление резисторов, включенных параллельно

    В статье «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где. В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

    Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (рисунок 6.2.1). В последовательной схеме выходной ток первого резистора течет на вход второго резистора; следовательно, ток в каждом резисторе одинаков. В параллельной цепи все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными, в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

    (рисунок 6.2.1)

    Рисунок 6.2.1. (a) При последовательном соединении резисторов ток одинаков в каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое.

    Резисторы серии

    Считается, что резисторы

    включены последовательно, если ток течет через резисторы последовательно. Рассмотрим рисунок 6.2.2, на котором показаны три последовательно включенных резистора с приложенным напряжением, равным.Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

    (рисунок 6.2.2)

    Рисунок 6.2.2 (a) Три резистора, подключенные последовательно к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    На рисунке 6.2.2 ток, идущий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии при прохождении тока через каждый резистор. Согласно закону Ома падение потенциала на резисторе при протекании через него тока рассчитывается по формуле, где — ток в амперах (), а — сопротивление в омах (). Поскольку энергия сохраняется, а напряжение равно потенциальной энергии на заряд, сумма напряжения, приложенного к цепи источником, и падения потенциала на отдельных резисторах вокруг контура должны быть равны нулю:

    Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе.На рисунке 6.2.2 сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

    Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления, которое представляет собой просто сумму сопротивлений отдельных резисторов.

    Любое количество резисторов может быть подключено последовательно. Если резисторы соединены последовательно, эквивалентное сопротивление равно

    .

    (6.2.1)

    Одним из результатов включения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

    ПРИМЕР 6.2.1


    Эквивалентное сопротивление, ток и мощность в последовательной цепи

    Батарея с напряжением на клеммах подключена к цепи, состоящей из четырех и одного последовательно соединенных резисторов (рисунок 6.2.3). Предположим, что батарея имеет незначительное внутреннее сопротивление. (а) Рассчитайте эквивалентное сопротивление цепи. (b) Рассчитайте ток через каждый резистор. (c) Рассчитайте падение потенциала на каждом резисторе. (d) Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.

    (рисунок 6.2.3)

    Рисунок 6.2.3 Простая последовательная схема с пятью резисторами.
    Стратегия

    В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.Ток в цепи можно найти из закона Ома и равен напряжению, деленному на эквивалентное сопротивление. Падение потенциала на каждом резисторе можно найти с помощью закона Ома. Мощность, рассеиваемая каждым резистором, может быть найдена с помощью, а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, обеспечиваемую аккумулятором, можно найти с помощью.

    Решение

    а. Эквивалентное сопротивление — это алгебраическая сумма сопротивлений:

    .

    г.Ток в цепи одинаков для каждого резистора в последовательной цепи и равен приложенному напряжению, деленному на эквивалентное сопротивление:

    г. Падение потенциала на каждом резисторе можно найти с помощью закона Ома:

    Обратите внимание, что сумма падений потенциала на каждом резисторе равна напряжению, подаваемому батареей.

    г. Мощность, рассеиваемая резистором, равна, а мощность, отдаваемая аккумулятором, равна:

    Значение

    Есть несколько причин, по которым мы использовали бы несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи.Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов. Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 6.2

    Некоторые гирлянды миниатюрных праздничных огней закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи.«Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серию по девять луковиц. Если перегорает слишком много лампочек, в конце концов открываются шунты. Что вызывает это?

    Кратко обозначим основные характеристики последовательно соединенных резисторов:

    Сопротивления серии
    1. суммируются, чтобы получить эквивалентное сопротивление:

    2. Одинаковый ток протекает последовательно через каждый резистор.
    3. Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.

    Параллельные резисторы

    На рисунке 6.2.4 показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома, где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

    (рисунок 6.2.4)

    Рисунок 6.2.4 (a) Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    Ток, протекающий от источника напряжения на рисунке 6.2.4, зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в переход или узел, где цепь разделяется, протекая через резисторы и. По мере того, как заряды проходят от батареи, некоторые проходят через резистор, а некоторые — через резистор. Сумма токов, протекающих в переходе, должна быть равна сумме токов, текущих из перехода:

    Это уравнение называется правилом соединения Кирхгофа и будет подробно обсуждено в следующем разделе.На рисунке 6.2.4 показано правило соединения. В этой схеме есть две петли, что приводит к уравнениям и Обратите внимание, что напряжение на резисторах, включенных параллельно, одинаковое (), а ток является аддитивным:

    Если обобщить на любое количество резисторов, эквивалентное сопротивление параллельного соединения связано с отдельными сопротивлениями соотношением

    .

    (6.2.2)

    Это соотношение приводит к эквивалентному сопротивлению, которое меньше наименьшего из отдельных сопротивлений.Когда резисторы соединены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

    ПРИМЕР 6.2.2


    Анализ параллельной цепи

    Три резистора, и соединены параллельно. Параллельное соединение подключается к источнику напряжения. а) Какое эквивалентное сопротивление? (б) Найдите ток, подаваемый источником в параллельную цепь. (c) Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.(d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия

    (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью.
    (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)

    (b) Ток, подаваемый источником, можно найти из закона Ома, заменив полное сопротивление.

    (c) Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение.Полный ток — это сумма отдельных токов:.

    (d) Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. Давайте использовать, так как каждый резистор получает полное напряжение.

    (e) Общую мощность также можно рассчитать несколькими способами, используйте.

    Решение

    а. Общее сопротивление для параллельной комбинации резисторов находится с помощью уравнения 6.2.2.Ввод известных значений дает

    Общее сопротивление с правильным количеством значащих цифр составляет. Как и предполагалось, меньше минимального индивидуального сопротивления.

    г. Полный ток можно найти из закона Ома, заменив полное сопротивление. Это дает

    Ток для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример). Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.

    г. Отдельные токи легко вычислить по закону Ома, поскольку на каждый резистор подается полное напряжение. Таким образом,

    Аналогично

    и

    Общий ток складывается из отдельных токов:

    г. Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны.Давайте использовать, так как каждый резистор получает полное напряжение. Таким образом,

    Аналогично

    и

    e. Суммарную мощность также можно рассчитать несколькими способами. Выбор и ввод общей текущей доходности

    Значение

    Общая мощность, рассеиваемая резисторами, также составляет:

    Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой источником.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 6.3


    Рассмотрим одну и ту же разность потенциалов, приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно подключенными резисторами, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

    ПРОВЕРЬТЕ ПОНИМАНИЕ 6.4


    Как бы вы использовали реку и два водопада, чтобы смоделировать параллельную конфигурацию двух резисторов? Как разрушается эта аналогия?

    Суммируем основные характеристики резисторов параллельно:

    1. Эквивалентное сопротивление находится из

      и меньше любого отдельного сопротивления в комбинации.

    2. Падение потенциала на каждом параллельном резисторе одинаковое.
    3. Параллельные резисторы не получают суммарный ток каждый; они делят это.Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

    В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Вы можете вспомнить, что в разделе «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. В таблице 6.2.1 приведены уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.

    (таблица 6.2.1)

    Комбинация серии Параллельная комбинация
    Эквивалентная емкость
    Эквивалентное сопротивление

    Таблица 10.1 Сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях

    Сочетания последовательного и параллельного

    Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения.Такие комбинации обычны, особенно если учесть сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинации последовательного и параллельного соединения можно уменьшить до одного эквивалентного сопротивления, используя метод, показанный на Рисунке 6.2.5. Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс более трудоемкий, чем трудный.Здесь мы отмечаем эквивалентное сопротивление как.

    (рисунок 6.2.5)

    Обратите внимание, что резисторы и включены последовательно. Их можно объединить в одно эквивалентное сопротивление. Один из методов отслеживания процесса — включить резисторы в индексы. Здесь эквивалентное сопротивление и равно

    .

    Теперь схема сокращается до трех резисторов, показанных на Рисунке 6.2.5 (c). Перерисовывая, мы теперь видим, что резисторы и составляют параллельную цепь.Эти два резистора можно уменьшить до эквивалентного сопротивления:

    .

    Этот шаг процесса сокращает схему до двух резисторов, показанных на Рисунке 6.2.5 (d). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

    Основная цель этого анализа схемы достигнута, и теперь схема сводится к одному резистору и одному источнику напряжения.

    Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен. Этот ток проходит через резистор и обозначен как. Падение потенциала можно найти с помощью закона Ома:

    Глядя на рис. 6.2.5 (c), остается отбросить параллельную комбинацию и. Проходной ток можно найти с помощью закона Ома:

    Резисторы и включены последовательно, поэтому токи и равны

    .

    Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах.Потенциальные падения — и. Окончательный анализ заключается в рассмотрении мощности, подаваемой источником напряжения, и мощности, рассеиваемой резисторами. Мощность, рассеиваемая резисторами

    Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, равна. Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

    ПРОВЕРЬТЕ ПОНИМАНИЕ 6.5


    Рассмотрите электрические цепи в вашем доме. Приведите по крайней мере два примера схем, которые должны использовать комбинацию последовательных и параллельных схем для эффективной работы.

    Практическое применение

    Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если протекает большой ток, провал в проводах также может быть значительным и проявляться в виде тепла, выделяемого в шнуре.

    Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    Что происходит в этих сильноточных ситуациях, показано на Рисунке 6.2.7. Устройство, представленное значком, имеет очень низкое сопротивление, поэтому при его включении протекает большой ток.Этот увеличенный ток вызывает большее падение в проводах, представленных значком, уменьшая напряжение на лампочке (которая есть), которое затем заметно гаснет.

    (рисунок 6.2.7)

    Рисунок 6.2.7 Почему свет тускнеет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.

    Стратегия решения проблем: последовательные и параллельные резисторы


    1. Нарисуйте четкую принципиальную схему, обозначив все резисторы и источники напряжения.Этот шаг включает список известных значений проблемы, поскольку они отмечены на вашей принципиальной схеме.
    2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
    3. Определите, подключены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно. Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные.Есть один список для серий, а другой — для параллелей.
    5. Проверьте, являются ли ответы разумными и последовательными.

    ПРИМЕР 6.2.4


    Объединение последовательных и параллельных цепей

    Два резистора, соединенных последовательно, подключены к двум резисторам, включенным параллельно. Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление.Ток проходит через резистор. Какое напряжение подается от источника напряжения?

    Стратегия

    Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

    Решение
    1. Нарисуйте четкую принципиальную схему (рисунок 6.2.8).

      (рисунок 6.2.8)

      Рисунок 6.2.8 Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.
    2. Неизвестно напряжение аккумулятора.Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
    3. В этой схеме мы уже знаем, что резисторы и включены последовательно, а резисторы и включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов и последовательно с последовательной конфигурацией резисторов и.
    4. Напряжение, подаваемое батареей, можно найти, умножив ток от батареи на эквивалентное сопротивление цепи.Ток от батареи равен току через и равен. Нам нужно найти эквивалентное сопротивление, уменьшив схему. Чтобы уменьшить схему, сначала рассмотрите два резистора, включенных параллельно. Эквивалентное сопротивление составляет. Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление цепи равно. Таким образом, напряжение, подаваемое батареей, составляет.
    5. Один из способов проверить соответствие ваших результатов — это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами.Мощность, подаваемая аккумулятором, составляет

      Поскольку они включены последовательно, сквозной ток равен сквозному току. Т.к. ток через каждый будет. Мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором:


      Поскольку мощность, рассеиваемая резисторами, равна мощности, выделяемой батареей, наше решение кажется последовательным.

    Значение

    Если проблема имеет комбинацию последовательного и параллельного соединения, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При поиске параллельного подключения необходимо соблюдать осторожность. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и т. Д.

    Кандела Цитаты

    Лицензионный контент CC, особая атрибуция

    • Загрузите бесплатно по адресу http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution
    Цепи серии

    — базовое электричество

    Три закона для последовательных цепей

    Существует три основных соотношения, касающихся сопротивления, тока и напряжения для всех последовательных цепей. Важно, чтобы вы усвоили три основных закона для последовательных цепей.

    Сопротивление

    Когда отдельные сопротивления соединяются последовательно, они действуют так же, как одно большое комбинированное сопротивление. Поскольку существует только один путь для протекания тока в последовательной цепи, и поскольку каждый из резисторов находится в линии, чтобы действовать как противодействие этому протеканию тока, общее сопротивление представляет собой комбинированное противодействие всех линейных резисторов.

    Общее сопротивление последовательной цепи равно сумме всех отдельных сопротивлений в цепи .

    Rt = R1 + R2 + R3…

    Используя эту формулу, вы обнаружите, что полное сопротивление цепи равно:

    RT = 15 Ом + 5 Ом + 20 Ом = 40 Ом

    Рисунок 16. Последовательная схема

    Текущая

    Поскольку существует только один путь для потока электронов в последовательной цепи, ток имеет одинаковую величину в любой точке цепи.

    Полный ток в последовательной цепи такой же, как ток через любое сопротивление цепи.

    IT = I1 = I2 = I3…

    Учитывая 120 В в качестве общего напряжения и определив общее сопротивление цепи как 40 Ом, теперь вы можете применить закон Ома для определения общего тока в этой цепи:

    IT = 120 В / 40 Ом = 3 А

    Этот общий ток цепи останется неизменным для всех отдельных резисторов цепи.

    Напряжение

    Прежде чем какой-либо ток будет протекать через сопротивление, должна быть доступна разность потенциалов или напряжение. Когда резисторы соединены последовательно, они должны «делить» общее напряжение источника.

    Общее напряжение в последовательной цепи равно сумме всех отдельных падений напряжения в цепи.

    Когда ток проходит через каждый резистор в последовательной цепи, он устанавливает разность потенциалов на каждом отдельном сопротивлении.Это обычно называется падением напряжения, и его величина прямо пропорциональна величине сопротивления. Чем больше значение сопротивления, тем выше падение напряжения на этом резисторе.

    ET = E1 + E2 + E3…

    Используя закон Ома, вы можете определить напряжение на каждом резисторе.

    3 А × 15 Ом = 45 В

    3 А × 5 Ом = 15 В

    3 А × 20 Ом = 60 В

    Общее напряжение источника равно сумме отдельных падений напряжения:

    45 В + 15 В + 60 В = 120 В

    Обрыв в последовательной цепи

    При появлении обрыва ток в цепи прерывается.Если нет тока, падение напряжения на каждом из резистивных элементов равно нулю. Однако разность потенциалов источника очевидна. Если вольтметр подключен через разрыв, показания такие же, как если бы он был подключен непосредственно к клеммам источника питания.

    Рисунок 17. Обрыв цепи

    Влияние обрыва линии и потери линии

    Медь и алюминий используются в качестве проводников, потому что они мало препятствуют прохождению тока.Хотя сопротивлением часто пренебрегают при простом анализе цепей, в практических приложениях может возникнуть необходимость учитывать сопротивление линий.

    Line Drop

    Рисунок 18. Падение напряжения

    Когда ток 10 А протекает через каждую линию с сопротивлением 0,15 Ом, на каждой линии появляется небольшое падение напряжения. Это падение напряжения на линейных проводниках обычно обозначается как падение на линии .

    Поскольку есть две линии, общее падение составляет 2 × 1.5 В = 3 В. Напряжение сети на нагрузке (117 В) меньше напряжения источника.

    В некоторых ситуациях может потребоваться использование более крупных проводов с меньшим сопротивлением, чтобы падение напряжения в линии не слишком сильно уменьшало напряжение нагрузки.

    Потеря линии

    Другой термин, связанный с проводниками, — потери в линии. Это потеря мощности, выраженная в ваттах, и связана с рассеянием тепловой энергии, когда ток течет через сопротивление проводов линии.Потери в линии рассчитываются с использованием одного из уравнений мощности.

    Используя предыдущий пример:

    P = I 2 × R

    P = (10A) 2 × 0,3 Ом

    P = 30 Вт

    * Помните:

    • Падение напряжения в линии выражается в вольтах.
    • Потери в линии выражаются в ваттах.

    Атрибуция

    Сопротивление

    — Элементы схемы — Содержание MCAT

    В соответствии с законом Ома падение напряжения V на резисторе, когда через него протекает ток, рассчитывается по формуле V = IR, где I — ток в амперах (A), а R — сопротивление в Ом (Ом).

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I.Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

    Резисторы серии

    Резисторы

    включены последовательно всякий раз, когда поток заряда или ток должен проходить через компоненты последовательно.

    Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    Параллельные резисторы

    Резисторы

    включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением.Таким образом, к каждому резистору приложено полное напряжение источника.

    На каждый резистор в цепи подается полное напряжение. По закону Ома токи, протекающие через отдельные резисторы, равны I1 = VR1

    .

    Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    Удельное сопротивление — это свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток.Низкое удельное сопротивление указывает на материал, который легко пропускает электрический ток, и наоборот. Рассчитывается как:

    ρ = R • A / L

    R — электрическое сопротивление однородного образца материала

    л — длина экземпляра

    А — площадь поперечного сечения образца


    Практические вопросы

    Академия Хана

    Анализ сигналов напряжения электрокардиограммы


    Официальная подготовка MCAT (AAMC)

    Physics online Flashcards Вопрос 1

    Physics Question Pack Отрывок 9 Вопрос 54

    Physics Question Pack Отрывок 9, вопрос 56

    Пакет вопросов по физике, вопрос 117

    Секция банка C / P Вопрос 15 секции

    Секция банка C / P Вопрос 17 секции

    Образец теста C / P Раздел Отрывок 7 Вопрос 35

    Практический экзамен 1 Секция C / P Отрывок 10 Вопрос 52

    Практический экзамен 2 Раздел C / P, вопрос 59

    Практический экзамен 3 Раздел C / P Отрывок 7 Вопрос 39


    Ключевые точки

    • Падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR

    • Общее сопротивление в цепи равно сумме отдельных сопротивлений.

    • Общее сопротивление в параллельной цепи равно сумме обратных величин каждого отдельного сопротивления.

    • Удельное сопротивление измеряет, насколько сильно материал сопротивляется или проводит электрический ток.


    Ключевые термины

    ток : количество заряда, перемещающегося через поперечное сечение за период времени.

    напряжение : Разность электрических потенциалов, выраженная в вольтах

    сопротивление : Сопротивление — это мера сопротивления току, протекающему в электрической цепи.

    удельное сопротивление: свойство материала, которое количественно определяет, насколько сильно он сопротивляется или проводит электрический ток

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *