Как развивались батареи и аккумуляторы с момента их изобретения. Какие типы элементов питания существуют сегодня. Как выбрать оптимальный источник энергии для различных устройств. Каковы перспективы развития технологий автономного питания.
История развития элементов питания
Первые источники электрического тока были созданы еще в конце 18 века итальянским физиком Алессандро Вольта. С тех пор технология прошла долгий путь развития, но базовые принципы работы батарей остались неизменными. Основные вехи в истории элементов питания:
- 1800 г. — создание «вольтова столба» Алессандро Вольта
- 1836 г. — изобретение элемента Даниэля
- 1859 г. — создание свинцового аккумулятора Гастоном Планте
- 1899 г. — изобретение никель-кадмиевого аккумулятора
- 1970-е гг. — разработка литий-ионных аккумуляторов
- 1990-е гг. — начало массового производства Li-ion батарей
Несмотря на почтенный возраст технологии, исследования в этой области продолжаются. Современные элементы питания существенно превосходят своих предшественников по емкости, компактности и другим характеристикам.

Основные типы современных элементов питания
На сегодняшний день существует несколько основных типов батарей и аккумуляторов, каждый из которых имеет свои преимущества и недостатки:
Гальванические элементы (батарейки)
- Щелочные (алкалиновые)
- Солевые
- Литиевые
Аккумуляторы
- Никель-кадмиевые (Ni-Cd)
- Никель-металлгидридные (Ni-MH)
- Литий-ионные (Li-ion)
- Литий-полимерные (Li-pol)
- Свинцово-кислотные
Каждый тип имеет свою область применения в зависимости от требований к мощности, емкости, габаритам и стоимости.
Какие характеристики важны при выборе элементов питания?
При выборе батарей или аккумуляторов следует учитывать следующие ключевые параметры:
- Напряжение (В)
- Емкость (мАч)
- Типоразмер
- Максимальный ток разряда
- Саморазряд
- Количество циклов заряд-разряд (для аккумуляторов)
- Рабочий температурный диапазон
Оптимальный выбор зависит от конкретного устройства и условий эксплуатации. Например, для цифровых фотоаппаратов хорошо подходят литий-ионные аккумуляторы, а для пультов ДУ — щелочные батарейки.

Особенности применения элементов питания в современной электронике
Современные мобильные устройства предъявляют повышенные требования к источникам питания:
- Способность выдерживать импульсные нагрузки при включении/выключении
- Стабильность напряжения при разных режимах работы
- Минимальные размеры и вес
- Большая емкость
- Безопасность эксплуатации
Производители элементов питания постоянно работают над улучшением этих характеристик. Например, современные Li-ion аккумуляторы имеют емкость в несколько раз выше, чем 10-15 лет назад, при тех же габаритах.
Как правильно эксплуатировать батареи и аккумуляторы?
Для максимального срока службы элементов питания следует соблюдать ряд правил:
- Использовать зарядные устройства, рекомендованные производителем
- Не допускать глубокого разряда аккумуляторов
- Избегать перезаряда
- Хранить при оптимальной температуре (обычно 0-25°C)
- Периодически проводить полный цикл разряд-заряд
- Не смешивать батареи разных типов и производителей
Соблюдение этих рекомендаций позволит существенно продлить срок службы элементов питания и сохранить их характеристики.

Перспективные разработки в области автономных источников питания
Исследователи ведут работу над созданием новых типов батарей и аккумуляторов с улучшенными характеристиками:
- Литий-воздушные аккумуляторы с рекордной теоретической емкостью
- Графеновые суперконденсаторы для сверхбыстрой зарядки
- Твердотельные литиевые аккумуляторы повышенной безопасности
- Натрий-ионные аккумуляторы как альтернатива литиевым
- Проточные редокс-батареи большой емкости
Эти технологии находятся на разных стадиях разработки. Некоторые из них могут появиться на рынке уже в ближайшие годы.
Экологические аспекты использования элементов питания
Широкое распространение батарей и аккумуляторов создает определенные экологические проблемы:
- Загрязнение окружающей среды при неправильной утилизации
- Истощение запасов лития и других редких металлов
- Высокий углеродный след при производстве
Для решения этих проблем предпринимаются следующие меры:
- Создание пунктов сбора и переработки использованных батарей
- Разработка технологий вторичного использования аккумуляторов
- Поиск альтернативных материалов для производства
- Повышение энергоэффективности производства
Ответственный подход к утилизации элементов питания поможет минимизировать их негативное влияние на экологию.

Заключение
Несмотря на свой почтенный возраст, технология элементов питания продолжает активно развиваться. Современные батареи и аккумуляторы обеспечивают работу множества портативных устройств, от мобильных телефонов до электромобилей. Дальнейшие исследования в этой области позволят создать еще более эффективные и экологичные источники автономного питания.
Аккумулятор на схеме электрической цепи
Полярность цилиндрической батарейки Условное графическое обозначение
и условное графическое обозначение. батарейки на схеме в соответствии с ГОСТ.
Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.
Примеры использования обозначения батареек в схемах.
Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс. ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.
Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.
Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.
При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.
Подключение батареек к пульту дистанционного управления телевизором.
Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.
Параллельное включение батареек.
Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
В этой статье мы рассмотрим обозначение радиоэлементов на схемах.
С чего начать чтение схем?
Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.
До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов
Изучаем простую схему
Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.
Как соединяются радиоэлементы в схеме
Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.
Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводников
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А – это различные устройства (например, усилители)
В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
D – схемы интегральные и различные модули
E – разные элементы, которые не попадают ни в одну группу
F – разрядники, предохранители, защитные устройства
G – генераторы, источники питания, кварцевые генераторы
H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K – реле и пускатели
M – двигатели
Р – приборы и измерительное оборудование
Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока
R – резисторы
S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения
U – преобразователи электрических величин в электрические, устройства связи
V – полупроводниковые приборы
W – линии и элементы сверхвысокой частоты, антенны
X – контактные соединения
Y – механические устройства с электромагнитным приводом
Z – оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD – детектор ионизирующих излучений
BE – сельсин-приемник
BL – фотоэлемент
BQ – пьезоэлемент
BR – датчик частоты вращения
BS – звукосниматель
BV – датчик скорости
BA – громкоговоритель
BB – магнитострикционный элемент
BK – тепловой датчик
BM – микрофон
BP – датчик давления
BC – сельсин датчик
DA – схема интегральная аналоговая
DD – схема интегральная цифровая, логический элемент
DS – устройство хранения информации
DT – устройство задержки
EL – лампа осветительная
EK – нагревательный элемент
FA – элемент защиты по току мгновенного действия
FP – элемент защиты по току инерционнго действия
FU – плавкий предохранитель
FV – элемент защиты по напряжению
GB – батарея
HG – символьный индикатор
HL – прибор световой сигнализации
HA – прибор звуковой сигнализации
KV – реле напряжения
KA – реле токовое
KK – реле электротепловое
KM – магнитный пускатель
KT – реле времени
PC – счетчик импульсов
PF – частотомер
PI – счетчик активной энергии
PR – омметр
PS – регистрирующий прибор
PV – вольтметр
PW – ваттметр
PA – амперметр
PK – счетчик реактивной энергии
PT – часы
QF – выключатель автоматический
QS – разъединитель
RK – терморезистор
RP – потенциометр
RU – варистор
SA – выключатель или переключатель
SB – выключатель кнопочный
SF – выключатель автоматический
SK – выключатели, срабатывающие от температуры
SL – выключатели, срабатывающие от уровня
SP – выключатели, срабатывающие от давления
SQ – выключатели, срабатывающие от положения
SR – выключатели, срабатывающие от частоты вращения
TV – трансформатор напряжения
TA – трансформатор тока
UB – модулятор
UI – дискриминатор
UR – демодулятор
UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель
VL – прибор электровакуумный
VS – тиристор
WA – антенна
WT – фазовращатель
WU – аттенюатор
XA – токосъемник, скользящий контакт
XP – штырь
XS – гнездо
XT – разборное соединение
XW – высокочастотный соединитель
YA – электромагнит
YB – тормоз с электромагнитным приводом
YC – муфта с электромагнитным приводом
YH – электромагнитная плита
ZQ – кварцевый фильтр
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Обозначение батареи на схеме
Электроемкость, конденсаторы: параллельное.
Схема подключения солнечных батарей energystock. Батарея (электротехника) — википедия. Скачать гост 2. 768-90 ескд. Обозначения условные.Химические источники тока. Схема подключения солнечных батарей (между собой и в.Обозначения буквенно-цифровые в электрических схемах. Гост.
1. Обозначения буквенно-цифровые в электрических схемах.Батареи статических конденсаторов (бск) | тоо «уккз».
Графическое обозначение радиоэлементов на схеме. Основные.
Тяговые аккумуляторные батареи. Акб тяговые. Условное обозначение источников питания, предохранителей.Схема и принцип работы контроллера заряда солнечной батареи.
Схема контроллера литий-ионного аккумулятора.
Схемы монтажа и способы подключения солнечных батарей. Схемы включения батарей конденсаторов для компенсации.Условные графические обозначения на электрических схемах.
Условные графические обозначения отопительного.
Литий-полимерные батареи (li-po). Что означают буквы s и p в.
Сингуляр таблетки инструкция Митя фомин скачать садовник Продавая незримое скачать Метформин инструкция цена Муген игры наруто скачатьЭлементы питания
О. Курапов
Взгляните на свой сотовый телефон, КПК или ноутбук: благодаря стремительному технологическому прогрессу широко доступными стали устройства, которые еще лет десять-пятнадцать назад можно было увидеть лишь в фантастических фильмах. Среди этого расцветшего буйным цветом хайтека совершеннейшим анахронизмом представляется обычная батарейка. Подумать только, принципы, лежащие в основе всех современных элементов питания, были открыты даже не в прошлом веке, а гораздо раньше. И с тех пор они претерпели не столь большие изменения, которые в основном заключались в уменьшении размеров и применении более совершенных материалов.
Казалось бы, в мире гигагерц и нанотехнологий такое «старье» должно отойти на задний план. Но с появлением большого количества современных мобильных устройств (плееров, КПК, фото- и видеокамер, ноутбуков etc.) мы наблюдаем обратную тенденцию – аккумуляторы и батарейки стали не менее важной деталью, чем процессоры. Все зависит именно от емкости источника питания. А без него даже самый навороченный гэджет будет абсолютно бесполезен.
Вообще-то солидный возраст технологии – это даже хорошо. За этот срок ученые и исследователи изучили проблему во всех подробностях. Современные «дураселлы» далеко ушли от батарей Вольты двухвековой давности. И теперь производители тратят очень большие деньги на улучшение параметров своих изделий и уменьшение их размеров. А двигателем этого процесса является постоянное стремление производителей электроники к миниатюризации.
Все последние разработки в этой сфере пытаются удовлетворить потребности современной мобильной техники. Дело в том, что они даже работают по-новому, совсем не так, как радиоприемники или фонарики. Всем этим цифровым камерам, карманным компьютерам и CD-MD-MMC-MP3-плеерам необходимы батарейки, которые выдерживают резкие скачки напряжения, возникающие во время включения экранов, раскручивания дисков и выхода устройств из «спячки».
В отличие от компьютерных компаний, свято чтящих закон Мура, у фирм, выпускающих элементы питания, нет иллюзий по поводу ближайшего (и даже не очень) будущего. Предыдущие десятилетия научили их не ждать чудесного появления новых технологий, которые увеличат емкость батарей вдвое. Напротив, надо кропотливо работать, постепенно улучшая имеющиеся. Достаточно сказать, что за десять лет существования литий-полимерных батарей ресурс этой технологии еще исчерпан не полностью, и лучшие умы отрасли продолжают по проценту, по полпроцента увеличивать их удельную емкость.
Батареи прошли долгий путь развития, но им предстоит еще немало послужить людям. Далее мы расскажем вам об истории создания батареек, а также попытаемся понять, что ждет их впереди. Ну а для начала разберемся, как они работают и что у них внутри.
Батареи – это устройства, накапливающие энергию, которую они потом отдают потребляющему эту самую энергию устройству. Впрочем, под такое определение подпадают также маховики или, скажем, часовые пружины. К сожалению, на данный момент на российском рынке заводные модели сотовых телефонов или КПК не представлены совсем, поэтому оставим эту интересную тему до лучших времен. Опустим также рассказ про свинцовые аккумуляторные батареи – несмотря на то, что они имеют огромную емкость, их мобильность (не путайте с автомобильностью) оставляет желать лучшего.
То, что мы обычно подразумеваем под словом «батарея», можно описать следующими словами: изолированная система, в которой протекают химические процессы, в результате которых вырабатывается электрическая энергия.
Появление переносных компьютеров, а также множества других мобильных «штучек» дало новый толчок к развитию технологий автономного питания. Обычные компьютеры питаются от сети, а потому практически не используют батареи. В качестве исключений можно назвать CMOS-батарейку на материнской плате, аккумуляторы устройств бесперебойного питания (UPS), ну и «пальчики», которые вставляются в разного рода беспроводные мыши, клавиатуры и т. п. То ли дело мобильные устройства: тут даже спорить не о чем, трудно назвать хотя бы одно, в котором бы не стояла батарейка (или аккумулятор).
При всем разнообразии форм и размеров устройств, все они используют практически одинаковые элементы питания. То есть, скажем, и мобильный телефон, и ноутбук оснащаются одними и теми же Li-Ion-аккумуляторами, хотя по форме и емкости их сравнивать трудно.
Принципиальная схема всех батарей, производимых для массового потребителя, практически одинакова. Два электрода – катод и анод – изготавливаются из двух разных металлов (строго говоря, они должны иметь различную степень окисления). Пространство между ними заполнено третьим материалом, называемым электролитом. Широкий выбор компонентов позволяет создавать по единой схеме множество типов батарей, имеющих порой диаметрально противоположные свойства, различную удельную емкость (отношение максимального заряда батареи к ее объему) и номинальное напряжение.
История
Принято считать, что основные принципы работы батарей, использующиеся и по сей день, были открыты в конце XVIII века итальянским физиком и естествоиспытателем Алессандро Вольтой (1745-1827). Именно тогда, работая в университете города Павия, он заинтересовался «животным электричеством», открытым несколькими годами ранее его соотечественником Луиджи Гальвани (в его честь электрохимические элементы питания часто называют гальваническими). Вольта доказал, что именно ток, вырабатываемый при контакте двух различных металлов, вызывает наблюдавшееся сокращение мышц в лягушачьих лапках. Этим он опроверг предположение Гальвани о том, что электричество вырабатывается в самих мышцах. Для того, чтобы доказать свою точку зрения, он наполнил соляным раствором две чаши и соединил их металлическими дугами. Один конец этих дуг был медным, а другой цинковым. Они были установлены так, что в каждой чаше было по одному электроду каждого типа. Эта конструкция и стала первой батареей, вырабатывающей электричество за счет химического взаимодействия двух металлов в растворе. В 1800 г. он усовершенствовал ее, создав свой знаменитый «вольтов столб», первый источник постоянного тока. Он представлял собой 20 пар кружочков, изготовленных из двух различных металлов, проложенных кусочками кожи или ткани, смоченными в соляном растворе. В знак признания заслуг итальянского ученого, его именем была названа единица электрического напряжения – вольт.
Электрохимический элемент
На полученные результаты обратили внимание другие экспериментаторы. Они усовершенствовали вольтов столб, создав новые типы батарей. К примеру, в 1836 г. английский химик Джон Дэниелл поместил медные и цинковые электроды в емкость с серной кислотой. Эта батарея получила название «плоскостной элемент» или «элемент Дэниела». Три года спустя другой англичанин, Уильям Р. Гроув, добавил окислитель для предотвращения накопления водорода около катода, что приводило к снижению напряжения на выходе. Были и другие попытки улучшить первоначальную конструкцию, но ни одно из этих примитивных устройств не используется в наши дни.
Первый значительный прорыв был совершен французом Гастоном Плантэ. В 1859 г. он провел интересный опыт, внешне похожий на то, что проделал Вольта. В его гальваническом элементе в качестве электродов использовались свинцовые пластины, а электролитом являлась разбавленная серная кислота. Плантэ подключил к элементам источник постоянного тока и некоторое время заряжал батарею. После этого прибор стал сам вырабатывать электричество, выдавая почти всю энергию, потраченную на зарядку. Причем подзаряжать его можно было много раз. Именно так и появился тот самый свинцовый аккумулятор, который еще долго будет использоваться во всех производимых автомобилях.
Еще один прибор-долгожитель был разработан и запатентован другим французским изобретателем Жоржем Лекланше в 1866 году. Названный в его честь элемент послужил прообразом современных «сухих» батарей, правда, изначально он такому названию не соответствовал. Дело в том, что в варианте, предложенном Лекланше, электролит был жидким. В производимых же сейчас батарейках он заменен на желеобразный для того, чтобы не допустить вытекания содержимого и порчи оборудования, которое эта батарея питает. В остальном же за это время технология почти не изменилась. Как и полтора века назад, сухие элементы представляют собой цинковый стаканчик (анод), в который вставлен графитовый стержень (катод), а внутреннее пространство заполнено электролитом. По такой технологии выпускают самые дешевые и массовые источники питания, которые вставляют в фонарики, плееры, детские игрушки и т. п.
Впрочем, в своем оригинальном «мокром» виде элементы Лекланше не были ни компактными, ни надежными. Поэтому многочисленные рационализаторы многократно пытались улучшить его потребительские качества, например, помещая в герметичную упаковку, не допускающую утечки электролита.
Типы батарей
Большинство современных аккумуляторных батарей – никель-кадмиевые, никель-металл-гидридные, а также все литиевые – были разработаны уже в 20-ом веке в лабораториях крупных компаний или университетов. Новые химические системы не изобретаются энтузиастами-одиночками, основывающимися на их собственной интуиции. Основные принципы, на которых основано функционирование батарей, уже досконально изучены и описаны точными формулами. Сегодня основные задачи, которые стоят перед разработчиками – это подбор оптимальных компонентов.
Химики различают гальванические элементы двух родов: первого и второго. Разница между ними заключается в том, как производится энергия, которую они вырабатывают.
– это одноразовые батареи, которые производят электроэнергию за счет химических реакций, в результате которых анод, катод и электролит претерпевают необратимые изменения. Это делает перезарядку таких батарей невозможной или очень нерациональной (к примеру, для зарядки некоторых типов батарей придется потратить в десятки раз больше энергии, чем они могут сохранить, а другие виды могут накопить только малую часть своего первоначального заряда). После этого батарею останется только выкинуть в мусорный ящик, откуда, как хотелось бы надеяться, она попадет в переработку (а скорее всего – на свалку).
чаще называют аккумуляторами. Это значит, что они могут заряжаться, если к электродам подключить источник постоянного тока. Химические реакции, протекающие в них, являются обратимыми. Таким образом, батареи второго рода не производят, а лишь сохраняют энергию.
При прочих равных аккумуляторы кажутся лучшим выбором по сравнению с одноразовыми батареями. Используя их, мы не наносим столько вреда окружающей среде, ведь после разрядки их не нужно выбрасывать. Один аккумулятор можно использовать около года, а обычных батареек на этот же срок понадобилось бы штук 100-200, и в каждом элементе содержатся токсичные вещества. Но не все так просто. На деле аккумуляторы имеют несколько серьезных недостатков, которые не позволяют им вытеснить все остальные батареи. В случае срочной необходимости одноразовые батарейки являются лучшим выбором. Они дешевы и всегда готовы к работе. Но для мобильных устройств, используемых регулярно, аккумуляторы продолжают оставаться наиболее выгодным вариантом.
Ни одна батарея не может хранить энергию вечно. Химические вещества внутри реагируют между собой и постепенно разлагаются. В результате снижается заряд батареи. У этой постепенной разрядки есть две основные причины.
Некоторые химические реакции влияют на способность хранить энергию. Через некоторое время батарея потеряет весь свой заряд. Этот промежуток времени, называемый сроком хранения, обычно указывается на ее корпусе. Он зависит от типа и конструкции батарей, но условия хранения также влияют на продолжительность их жизни. Современные литиевые батареи могут храниться более десяти лет, в то же время элементы других типов могут разрядиться за пару недель (к примеру, цинк-воздушные батареи после начала использования). Но даже самые «долгоиграющие» образцы могут прийти в негодность гораздо раньше, если они будут храниться в неблагоприятных условиях. Особенно сильно сказывается влияние высоких температур. Если же их, наоборот, охладить (а некоторые типы даже заморозить), то это часто помогает сохранить их в лучшем виде на время, значительно большее указанного срока годности.
Обратимые химические реакции в аккумуляторах протекают даже тогда, когда они не используются. Этот процесс называется саморазрядкой. Он является обратимым, также как и обычная разрядка. На скорость саморазрядки влияют те же факторы, что и на срок хранения, поэтому она также может сильно отличаться у разных типов батарей: одни теряют до 10% заряда в день, а другие лишь 1%.
Еще один показатель, который важно знать для каждого типа батарей, это удельная емкость. Она определяется как отношение энергии элемента к его массе или объему и выражается в Ватт-часах на единицу массы или объема. Чем выше этот коэффициент, тем больше энергии может храниться в единице веса, и тем более привлекательна она для использования в переносных устройствах. В этой таблице приведены отношения для различных типов аккумуляторов, выраженные в Вт-ч/кг.
Тип | Вольтаж | Уд. емкость |
---|---|---|
Ni-Cad | 1,2 | 40 – 60 |
NiMH | 1,2 | 60 – 80 |
Li-Ion | 3,6 | 90 – 110 |
Li-Polymer | 3,6 | 130 – 150 |
Химические системы
Одним из важнейших факторов при разработке батарей (а также любого устройства, питающегося от них) является достижение максимальной удельной емкости для элемента заданного (минимального) размера и веса. Химические реакции, протекающие внутри элемента, определяют и его емкость, и физические размеры. В принципе вся история разработки батарей сводится к нахождению новых химических систем и упаковке их в корпуса как можно меньших размеров.
Сегодня производится множество разных типов элементов питания, некоторые из которых были разработаны еще в 19-ом веке, а другие едва отметили десятилетие. Такое разнообразие объясняется тем, что каждая технология имеет свои сильные стороны. Мы расскажем о самых распространенных из тех, что используются в мобильных устройствах.
Сухие батареи
Первыми серийно выпускаемыми элементами питания стали именно сухие. Наследники изобретения Лекланше, они являются самыми распространенными в мире. Одна лишь компания Energizer продает более 6 миллиардов таких батарей ежегодно. В общем, «говорим – батарейка, подразумеваем – сухой элемент». И это несмотря на то, что они имеют самую низкую удельную емкость из всех «массовых» типов. Объясняется такая популярность, во-первых, их дешевизной, а во-вторых, тем, что этим именем называют сразу три разных химических системы: хлорно-цинковые, щелочные и марганцево-цинковые батареи (элементы Лекланше). Их имена дают представление о химических системах, на базе которых они созданы.
В сухих элементах по оси батарейки расположен угольный стержень токосъемника катода. Сам катод – это целая система, в которую входят диоксид марганца, уголь электрода и электролит. Цинковый «стаканчик» служит анодом и образует металлический корпус элемента. Электролит, в свою очередь, также представляет собой смесь, в которую входят нашатырь, диоксид марганца и хлорид цинка.
Марганцево-цинковые и хлорно-цинковые элементы отличаются, по сути, электролитом. Первые содержат в себе смесь нашатыря и хлорида цинка, разбавленную водой. Во вторых электролит почти на 100% представляет собой хлорид цинка. Различие в номинальном напряжении у них минимально: 1,55 В и 1,6 В соответственно.
Несмотря на то, что хлорно-цинковые имеют большую емкость по сравнению с элементами Лекланше, это преимущество пропадает при малой нагрузке. Поэтому на них часто пишут «heavy-duty», то есть элементы с повышенной мощностью. Как бы то ни было, эффективность всех сухих элементов сильно падает при увеличении нагрузки. Именно поэтому в современные фотоаппараты их ставить не стоит, они просто для этого не предназначены.
Сколько бы не бегали розовые зайчики в рекламе, щелочные батарейки – это все те же угольно-цинковые ископаемые родом из 19-го века. Единственное отличие заключается в специально подобранной смеси электролита, позволяющей добиться увеличения емкости и срока хранения таких батареек. В чем секрет? Эта смесь является несколько более щелочной, чем у двух других типов.
Если химический состав у щелочных батареек мало отличается от оного у элемента Лекланше, то в конструкции различия существенны. Можно сказать, что щелочная батарея – это сухой элемент, вывернутый наизнанку. Внешний корпус у них не является анодом, это просто защитная оболочка. Анодом здесь является желеобразная смесь цинкового порошка вперемешку с электролитом (который в свою очередь является водным раствором гидроксида калия). Катод, смесь угля и диоксида марганца, окружает анод и электролит. Он отделяется слоем нетканого материала, например полиэстера.
В зависимости от области применения щелочные батарейки могут прослужить в 4-5 раз дольше, чем обычные угольно-цинковые. Особенно заметна эта разница при таком режиме использования, когда короткие периоды высокой нагрузки перемежаются длительными периодами бездействия.
Важно помнить, что щелочные батарейки не являются перезаряжаемыми, потому что химические процессы, на которых они основаны, не являются обратимыми. Если ее поставить в зарядное устройство, то она будет вести себя не как аккумулятор, а скорее как резистор – начнет нагреваться. Если ее оттуда вовремя не вынуть, то она нагреется достаточно сильно, чтобы взорваться.
Никель-кадмиевые аккумуляторы
Название подсказывает нам, что батареи этого типа имеют никелевый анод и кадмиевый катод. Никель-кадмиевые аккумуляторы (обозначаются Ni-Cad) пользуются заслуженной популярностью у потребителей во всем мире. Не в последнюю очередь это объясняется тем, что они выдерживают большое количество циклов зарядки-разрядки – 500 и даже 1000 – без существенного ухудшения характеристик. Кроме того они, относительно легкие и энергоемкие (хотя их удельная емкость приблизительно в два раза меньше, чем у щелочных батареек). С другой стороны, они содержат токсичный кадмий, так что с ними надо быть поаккуратнее, как во время использования, так и после, при утилизации.
Напряжение на выходе у большинства батарей падает по мере разрядки, потому что в результате химических реакций увеличивается их внутреннее сопротивление. Никель-кадмиевые батареи характеризуются очень низким внутренним сопротивлением, а потому могут подать на выход достаточно сильный ток, который к тому же практически не изменяется по мере разрядки. Следовательно, напряжение на выходе также остается почти неизменным до тех пор, пока заряд почти совсем не иссякнет. Тогда напряжение на выходе резко падает практически до нуля.
Постоянный уровень выходного напряжения является преимуществом при проектировании электрических схем, но это же делает определение текущего уровня заряда практически невозможным. Из-за такой особенности остаток энергии вычисляется на основе времени работы и известной емкости конкретного типа батарей, а потому является величиной приблизительной.
Гораздо более серьезным недостатком является «эффект памяти». Если такую батарею разрядить не полностью, а потом поставить заряжаться, то их емкость может уменьшиться. Дело в том, что при такой «неправильной» зарядке на аноде образуются кристаллы кадмия. Они и играют роль химической «памяти» батарейки, запоминая этот промежуточный уровень. Когда во время следующей разрядки заряд батареи упадет до этого уровня, выходное напряжение понизится так же, как если бы батарейка была полностью разряжена. «Злопамятные» кристаллы будут продолжать формироваться на аноде, усиливая влияние этого неприятного эффекта. Чтобы избавиться от него, нужно продолжить разрядку после достижения этого промежуточного уровня. Только таким образом можно «стереть» память и восстановить полную емкость батареи.
Этот прием обычно называют глубокой разрядкой. Но глубокая не значит полная, «до нуля». Это лишь укоротит срок службы элемента. Если в процессе использования напряжение на выходе упадет ниже отметки 1 В (при номинальном напряжении 1,2 В), то это уже может привести к порче батарейки. Сложная техника, например КПК или ноутбуки, настроены таким образом, чтобы они отключались прежде чем заряд аккумулятора упадет ниже предельного уровня. Для глубокой разрядки батарей нужно использовать специальные приборы, которые выпускают многие известные фирмы.
Некоторые компании-производители заявляют, что новые никель-кадмиевые аккумуляторы не подвержены влиянию эффекта памяти. Впрочем, на практике это не было доказано.
Что бы там не обещали производители, для достижения максимальной отдачи батареи следует каждый раз полностью заряжать, а потом дожидаться нормальной разрядки, чтобы они не испортились и прослужили весь срок.
Предотвращение электролиза
В результате электролиза внутри никель-кадмиевых аккумуляторов могут накапливаться потенциально взрывоопасные газы: водород и кислород. Чтобы не допустить этого, батареи помещаются в герметичную оболочку. В ней имеются специальные микроклапаны, предназначенные для автоматического стравливания накопившихся газов. Они настолько малы, что заметить их очень сложно. Важно, чтобы эти клапаны не оказались закрыты, поэтому батареи не стоит заворачивать, склеивать или обматывать скотчем.
Никель-металл-гидридные аккумуляторы
С точки зрения химии идеальным материалом для катода был бы водород. Но в обычных условиях использовать его для этого невозможно. При комнатной температуре и атмосферном давлении он является газом, и его проще использовать для наполнения аэростатов, чем в качестве материала для батарей.
Впрочем, еще в конце 60-х годов XX века ученые открыли ряд сплавов, способных связывать атомарный водород в объеме, в 1000 раз превышающем их собственный. Они получили название гидриды, а химически они обычно представляют соединения таких металлов, как цинк, литий и никель. При грамотном использовании с помощью гидридов можно хранить достаточно водорода, чтобы использовать его в обратимых реакциях внутри аккумуляторов.
Наибольшее распространение получили никель-металл-гидридные (NiMH) батареи, имеющие гидридный катод и никелевый анод.
Использование гидридов имеет несколько преимуществ. Наиболее очевидным является то, что в производстве не используется токсичный кадмий. Отсутствие этого материала также означает, что такие батареи должны быть свободны от эффекта памяти. Кроме того, благодаря использованию водорода в качестве катода, удалось добиться 50-процентного увеличения удельной емкости (по сравнению с никель-кадмиевыми батареями). На практике это значит, что с никель-металл-гидридными аккумуляторами плеер или другое подобное устройство будет работать на 50% дольше.
Но применение водорода приносит не только положительные, но и отрицательные результаты. Главным недостатком является то, что эти батареи существенно сильнее подвержены саморазрядке. Некоторые из них теряют до 5% заряда за день, хотя в последних моделях этот показателей удалось снизить.
График разрядки никель-металл-гидридных аккумуляторов под нагрузкой немного отличается от никель-кадмиевых. По номинальному напряжению они не различаются (все те же 1,2 В). Но если батарея была полностью заряжена, то в течение некоторого времени напряжение на выходе составляет 1,4 В. После этого короткого промежутка оно падает до уровня 1,2 В, и дальше NiMH-батареи ведут себя так же, как и NiCad.
Оба типа вообще имеют достаточно похожие свойства. NiMh-батареи также могут вырабатывать ток большой силы, выдерживают много циклов зарядки/разрядки (обычно около 500). Но все же это две разные технологии.
Если во время разрядки батареи двух этих типов ведут себя почти одинаково, то при зарядке сходства не наблюдается. Говоря конкретно, никель-кадмиевые батареи при зарядке практически не изменяют свою температуру. Никель-металл-гидридные вырабатывают тепло, причем при достижении полного заряда они могут нагреться весьма значительно. Из-за этого для разных батарей нужны разные зарядные устройства. И хотя на рынке присутствуют универсальные приборы, обычно единовременно в них можно заряжать аккумуляторы только одного типа.
Литий-ионные аккумуляторы
Литий является самым химически активным металлом и используется именно в компактных системах, обеспечивающих энергией современную мобильную технику. Литиевые катоды используются практически во всех батареях с большой емкостью. Но благодаря активности этого металла батареи получаются не только очень емкими, они также имеют самое высокое номинальное напряжение. В зависимости от анода литий-содержащие элементы имеют выходное напряжение от 1,5 В до 3,6 В!
Основной проблемой при использовании лития опять-таки является его высокая активность. Он даже может вспыхнуть – что говорить, не самая приятная особенность, когда речь идет о батареях. Из-за этих проблем элементы на базе металлического лития, которые начали появляться еще в 70х-80х годах XX века, «прославились» своей низкой надежностью.
Чтобы избавиться от этих трудностей, производители батарей постарались использовать литий в виде ионов. Таким образом им удалось получить все полезные электрохимические качества, не связываясь с капризной металлической формой.
В литий-ионных элементах ионы лития связаны молекулами других материалов. Типичный Li-Ion-аккумулятор имеет угольный анод и катод из литийкобальтдиоксида. Электролит в своей основе имеет раствор солей лития.
Литиевые батареи имеют большую плотность, нежели никель-металл-гидридные. Скажем, в ноутбуках такие аккумуляторы могут работать в полтора раза дольше никель-металл-гидридных. Кроме того, литий-ионные элементы избавлены от эффектов памяти, которыми страдали ранние никель-кадмиевые батареи.
С другой стороны, внутреннее сопротивление у современных литиевых элементов выше, чем у никель-кадмиевых. Соответственно, они не могут обеспечить такие сильные токи. Если никель-кадмиевые элементы способны расплавить монету, то литиевые на это не способны. Но все равно мощности таких батареек вполне хватит для работы ноутбука, если это не связано со скачкообразными нагрузками (это значит, что некоторые устройства, например, винчестер или CD-ROM, не должны вызывать высоких скачков на предельных режимах – например, при начальной раскрутке или выходе из спящего режима). Более того, даже несмотря на то, что литий-ионные батарейки выдержат не одну сотню подзарядок, они живут меньше, чем те, в которых используется никель.
Из-за того, что в литий-ионных элементах используется жидкий электролит (пусть даже отделенный слоем ткани), по форме они почти всегда являются цилиндром. Хотя такая форма ничуть не хуже форм других элементов, с появлением полимеризованных электролитов литий-ионные батареи становятся компактнее.
Литий-полимерные аккумуляторы
Наиболее продвинутой технологией, используемой сегодня при создании аккумуляторов, является литий-полимерная. Уже сейчас среди производителей как батарей, так и компьютерных устройств наметилась тенденция постепенного перехода к этому типу элементов. Главным преимуществом литий-полимерных батарей является отсутствие жидкого электролита. Нет, это не значит, что ученые нашли способ обходиться совсем без электролита. Анод отделен от катода полимерной перегородкой, композитным материалом, таким, как полиакрилонитрит, который содержит литиевую соль.
Благодаря отсутствию жидких компонентов литий-полимерные элементы могут иметь практически любую форму, в отличие от цилиндрических батарей других типов. Обычными формами упаковки для них являются плоские пластины или бруски. В таком виде они лучше заполняют пространство батарейного отсека. В результате при одинаковой удельной плотности, литий-полимерные батареи оптимальной формы могут хранить на 22% больше энергии, чем аналогичные литий-ионные. Это достигается за счет заполнения «мертвых» объемов в углах отсека, которые остались бы неиспользованными в случае применения цилиндрической батареи.
Кроме этих очевидных преимуществ, литий-полимерные элементы являются экологически безопасными и более легкими за счет отсутствия внешнего металлического корпуса.
Литий-железодисульфидные батареи
В отличие от других литий-содержащих батарей, которые имеют выходное напряжение более 3 В, у литий-железодисульфидных оно в два раза меньше. Кроме того, их нельзя перезаряжать. Эта технология представляет собой некий компромисс, на который разработчики пошли, чтобы обеспечить совместимость литиевых источников питания с техникой, разработанной для использования щелочных батареек.
Химический состав батарей был специальным образом изменен. В них литиевый анод отделен от железодисульфидного катода прослойкой электролита. Этот сэндвич упаковывается в герметичный корпус с микроклапанами для вентиляции, как и никель-кадмиевые батареи.
Этот тип элементов был задуман как конкурент щелочным батарейкам. По сравнению с ними литий-железодисульфидные весят на треть меньше, имеют большую емкость, а, кроме того, еще и хранятся дольше. Даже после десяти лет хранения они сохраняют почти весь свой заряд.
Превосходство над конкурентами проявляется наилучшим образом при большой нагрузке. В случае высоких токов нагрузки литий-железодисульфидные элементы могут работать в 2,5 раза дольше, чем алкалиновые батареи того же размера. Если же на выходе не требуется высокая сила тока, то разница заметна гораздо меньше. К примеру, один из производителей элементов питания заявил следующие характеристики двух типов своих батарей размера AA: при нагрузке 20 мА щелочная батарейка проработает 122 часа против 135 часов у литий-железодисульфидной. Если же нагрузку увеличить до 1А, то продолжительность работы составит 0,8 и 2,1 часа соответственно. Как говорится, результат налицо.
Такие мощные батареи нет смысла ставить в устройства, потребляющие относительно немного энергии в течение длительного времени. Они были специально созданы для использования в фотоаппаратах, мощных фонарях, а в будильник или радиоприемник лучше поставить щелочные батарейки.
Зарядные устройства
Современные устройства для подзарядки – это сложные электронные приборы, оснащенные различными системами защиты – как вашей, так и ваших батареек. В большинстве случаев каждому типа элементов нужно своё собственное зарядное устройство. При неправильном использовании можно испортить не только батарейки, но и сам зарядник.
Существует два режима работы зарядных устройств – с постоянным напряжением и с постоянным током.
Устройства, работающие только с постоянным напряжением, являются самыми простыми. Они всегда подают одно и то же напряжение, но сила тока зависит от уровня заряда батарейки и других факторов. По мере накопления энергии напряжение батареи увеличивается, а значит, уменьшается разница потенциалов зарядного устройства и батареи. В результате сила тока в цепи уменьшается.
Устроены они несложно, все, что нужно – трансформатор (для уменьшения напряжения в сети до нужного уровня) и выпрямитель (для преобразования переменного тока в постоянный). Такими устройствами комплектуются некоторые литий-ионные батареи, правда, в них обычно добавляют системы защиты от перезарядки.
Второй вид зарядных устройств обеспечивает постоянную силу тока и изменяет напряжение для обеспечения требуемой величины тока. Зарядка прекращается, когда напряжение батарейки достигает уровня полного заряда. Обычно такие устройства применяются для никель-кадмиевых и никель-металл-гидридных элементов. Чтобы не испортить батарейку, нужно остановить зарядку после достижения нужного уровня. В зависимости от вида батареи и «навороченности» зарядного устройства для определения необходимого времени подзарядки используются различные технологии.
В самых простых случаях измеряется напряжение, вырабатываемое батарейкой. Система следит за напряжением и разрывает цепь в тот момент, когда оно достигает порогового уровня. Но такой способ подходит далеко не для всех элементов. К примеру, этого никогда не встретишь в зарядных устройствах для никель-кадмиевых аккумуляторов, у которых кривая разряда является практически прямой большую часть времени. Это делает определение порогового напряжения невозможным.
Более сложные зарядные устройства выбирают режим работы, основываясь на измерении температуры элемента. Когда батарея начинает нагреваться, они уменьшают силу тока. Обычно в такие элементы питания встраиваются термометры, которые следят за температурой элемента и передают зарядному устройству соответствующий сигнал.
Наиболее продвинутые устройства используют оба метода сразу. Они начинают с большого тока, а потом, обрабатывая данные с датчиков напряжения и температуры, могут переключиться на малый. Если батарея уже заряжена, то они переходят в режим поддержания заряда. В этом случае батарейка подзаряжается лишь слегка, чтобы компенсировать процесс саморазряда. Ток заряда при этом составляет лишь одну двадцатую, одну тридцатую номинального тока разряда батарейки. Но для этого батарея должна поддерживать режим зарядки малым током (к примеру, никель-кадмиевые так заряжать нельзя). Большинство зарядных устройств для ноутбуков и сотовых телефонов специально разработаны таким образом, что могут постоянно быть подключены к элементам.
Хранение
Если вы хотите, чтобы ваши батареи служили как можно дольше, то о них надо заботиться. С элементами первого рода, то есть с одноразовыми батареями, попроще, их важно лишь правильно хранить, а после использования их все равно выбрасывают. Аккумуляторы, элементы второго рода, требуют больше внимания, потому что их нужно регулярно заряжать.
Все аккумуляторы при перегреве портятся. Причем губительной может стать даже зарядка, если ее во время не остановить. Ничего страшного нет в том, что ваш аккумулятор слегка нагревается, когда он подключен к зарядному устройству. Но при излишней зарядке температура поднимается значительно, батарея становится горячей, а это верный знак того, что больше ее зарядить не удастся.
Аккумулятор также может прийти в негодность, если его полностью разрядить. Это может быть вызвано коротким замыканием. Кстати, интересный факт: некоторые батареи после разрядки ниже рекомендуемого уровня могут поменять полярность! В общем, если ваш ноутбук предупреждает вас о том, что его батареи почти полностью разряжены, не пытайтесь продолжить работу – дороже выйдет.
Большинство перезаряжаемых батарей лучше хранятся в разряженном состоянии. Особенно это относится к никель-кадмиевым элементам. Поэтому те батареи, которые долго лежат на складе, обычно продаются незаряженными.
Устройства
Большая часть устройств предполагает использование батарей одного из стандартных размеров, например, AA, AAA и тому подобное. Поэтому у покупателей есть выбор, элементы какого типа предпочесть.
Надпись»Heavy-duty» (высокая нагрузка), которую можно увидеть на некоторых угольно-цинковых батарейках – не просто рекламный ход. Это означает, что они предназначены для использования в устройствах, нуждающихся в токе большой силы. Пример таких устройств – фонари, электромоторы и все приборы, в которых они применяются, например детские игрушки. Там эти батареи прослужат гораздо дольше, чем обычные. Если же прибор потребляет мало электроэнергии, то преимущество почти будет почти незаметно.
Разные литий-содержащие батарейки сильно отличаются друг от друга в том, что касается области применения. Литий-железодисульфидные являются рекордсменами при работе с большими нагрузками. Другие типы, например литиевые часовые батарейки, применяются там, где нагрузки, наоборот, не велики. Литий-ионные и литий-полимерные находятся где-то посередине, а потому являются наиболее универсальными.
Там, где могут быть использованы и аккумуляторы, и одноразовые батарейки, предпочтительнее обычно оказываются первые. Но в некоторых случаях их преимущества бывают не востребованы. Возьмем, к примеру, пульт дистанционного управления, который потребляет очень мало энергии, но используется постоянно и на протяжении длительного времени. Обычные батарейки могут прослужить в нем несколько лет, а аккумуляторы вообще столько не живут, к тому же на таких длительных промежутках времени дает о себе знать гораздо более высокая скорость саморазрядки этих элементов. На другом полюсе находятся устройства, которые используются редко, но должны быть всегда готовы к работе в случае необходимости. В них тоже лучше поставить что-нибудь одноразовое, но «долгоиграющее». В общем, принцип понятен – нет самой лучшей батареи или аккумулятора, для каждого конкретного применения что-то будет хорошо, а что-то плохо.
Напоследок повторим несколько важных правил:
- Если какой-то металлический предмет закоротит контакты батареи, то она начнет нагреваться. Это может вызвать порчу вашего имущества и даже пожар.
- Большинство аккумуляторов вырабатывает водород в процессе электролиза, вызванного перезарядкой. Герметизация корпусов современных батарей значительно уменьшает риск утечек и возгорания газа, но полной гарантии никто дать не может, потому что встроенные клапаны периодически выпускают излишки скопившегося водорода.
- Гораздо большую опасность несет газ, который не может покинуть корпус. Если по какой-то причине автоматические клапаны оказались заблокированы, при повышении температуры давлении внутри может вырасти настолько, что батарея взорвется. Поэтому корпус аккумуляторов никогда не должен заклеиваться, запаиваться в пластик и тому подобное.
- Почти все батареи содержат опасные химические соединения: токсичные, ядовитые, легковоспламеняющиеся – это зависит от технологии. Поэтому важно, чтобы они были правильно утилизированы после использования. Понятное дело, что все равно все это окажется на ближайшей свалке, но уж лучше пусть они лежат где-нибудь далеко, чем валяются на улице.
Статья опубликована на сайте HPC.RU.
Перепечатывается с разрешения редакции.
Схемы соединений | Комплектные конденсаторные установки | Архивы
Страница 2 из 13
2. Схемы соединений конденсаторных установок
В зависимости от назначения, напряжения и мощности схемы соединений конденсаторных установок выполняют однофазными и трехфазными с параллельным или параллельно-последовательным соединением конденсаторов.
На рис. 1 приведены схемы присоединения конденсаторных установок.
В осветительных и силовых сетях 220 и 380 в применяют главным образом трехфазные конденсаторные
Рис. 1. Схемы присоединения конденсаторных установок.
а — о общим выключателем; б —с рубильником и предохранителем; в — с предохранителями и контактором: г — с автоматическим выключателем; д — выключателем высокого напряжения. е — в виде двойной звезды с выключателем высокого напряжения.
установки с параллельным соединением конденсаторов, последние соединены по схеме треугольника.
Однофазные конденсаторные батареи на напряжение 220 и 380 в применяют для индивидуальных однофазных электроприемников (электрические печи и др.).
В осветительных сетях трехфазные конденсаторные батареи обычно подключают непосредственно (без выключателя) к групповым линиям этих сетей после выключателя.
В силовых сетях трехфазные конденсаторные батареи могут подключаться как непосредственно под общий выключатель с электроприемником, так и через отдельный выключатель к шинам распределительных щитов напряжением 380 в (рис. 1,а—г).
При необходимости комплектования конденсаторной установки напряжением 380 в большой мощности применяются секционированные схемы, состоящие из нескольких отдельных конденсаторных установок, которые через свой выключатель подключаются к шинам распределительного щита напряжением 380 в.
Основной схемой соединения конденсаторных установок напряжением 3—10 кВ является параллельное соединение однофазных конденсаторов в каждой фазе батареи с соединением фаз треугольником (рис. 1,<3). В этой схеме номинальное напряжение конденсаторов соответствует номинальному напряжению сети.
Шкала номинальных напряжений 3,15; 6,3 и 10,5 кВ существующих однофазных конденсаторов не позволяет комплектовать конденсаторные батареи по схеме в звезду, так как при стандартном напряжении сети напряжение в фазе батареи составляет соответственно 1,73 кВ для линейного напряжения 3 кВ; 3.47 кВ для С кВ и 5,78 кВ для 10,5 кВ. В настоящее время ведется разработка конденсаторов, позволяющая соединять их по схеме в звезду.
Комплектование конденсаторных батарей 3—10 кВ из однофазных конденсаторов напряжением 660 и 1 050 в с параллельно-последовательным соединением их в фазы батареи, схемы соединений батарей обычно выполняют в виде одной или двойной звезды, при этом напряжение конденсаторов будет в 1,73 раза меньше линейного напряжения сети (рис. 1,е).
Поскольку один из изоляторов каждого конденсатора при соединении батареи в звезду может соединяться с землей, то для этой цели могут применяться однофазные конденсаторы с одним изолирующим выводом.
Для более мощных конденсаторных батарей на напряжение 3—10 кВ или при необходимости регулирования их мощности применяются секционированные схемы, состоящие из нескольких отдельных конденсаторных установок.
Схемы соединении таких отдельных секций конденсаторных установок при их автоматическом регулировании могут быть с индивидуальным выключателем на каждой установке либо с одним главным выключателем для нескольких конденсаторных установок, каждая из которых оборудована своим выключателем-переключателем (рис. 2).
Рис. 2. Схемы ККУ 6(10) кВ с тремя конденсаторными установками на двух секциях.
В — главный выключатель: BR — переключатель (вакуумный) секций.
ГИ — трансформатор напряжения для разряда батареи.
Выключатель-переключатель применяют облегченного типа, так как он предназначен только для переключения батарей при автоматическом регулировании, а главный выключатель — для отключения коротких замыканий внутри любой или всех секций батареи.
В первом случае схема несколько дороже из-за стоимости выключателей на каждой секции, но в эксплуатации проста, и действие релейной защиты упрощается.
Во втором случае схема усложняется коммутационными переключениями главною выключателя, который
должен отключаться только при аварии в любой секции установки, подавать импульс в бестоковую паузу па отключение переключателя аварийной секции установки и затем снова включаться. В то же время переключатели секций, предназначенные только для переключений при автоматическом регулировании, будут работать в специфических условиях, т. е. включать отдельные секции конденсаторных установок на параллельную работу с незаряженной секцией, отключать работающие секции и т. д. В качестве переключателя в этом случае целесообразно применять вакуумный выключатель.
Схемы соединения конденсаторных батарей на напряжение 35 кВ и выше могут выполняться но схемам звезды и треугольника.
Каждая фаза батареи в этом случае составляется из параллельно-последовательных групп однофазных конденсаторов для получения необходимого напряжения и мощности. При этом номинальное напряжение конденсаторов следует выбирать таким, чтобы иметь минимальное количество последовательных групп и максимальное количество параллельных конденсаторов в группе. Такая схема снижает величину напряжения на конденсаторах после выхода из работы одного или нескольких конденсаторов в какой-нибудь из последовательных групп.
И наоборот, чем больше последовательных групп, тем труднее получить равномерное распределение напряжения па отдельных группах и избежать перегрузки их по напряжению, а также обеспечить надежную защиту установки от повреждения отдельных конденсаторов или последовательных групп.
Схемы соединения конденсаторных батарей могут выполняться и для специального назначения.
Основным недостатком косинусных конденсаторных батарей по сравнению с синхронными компенсаторами является уменьшение выдачи реактивной мощности при снижении напряжения сети. Для устранения этого недостатка применяют форсировку мощности конденсаторной батареи автоматическим изменением схемы батареи, которая обеспечивает на определенное время при снижении напряжения неизменную или даже повышенную выдачу реактивной мощности
Такие схемы форсировки мощности батарей выполняются переключением из треугольника в двойную звезду 1для сетей с изолированной нейтралью), шунтироёанием части конденсаторов со стороны нейтрали (для батарей, выполненных по схеме звезды) и др.
Форсировка мощности батарей может применяться и для резервирования при выходе из строя других источников реактивной мощности, а также для увеличения выдачи реактивной мощности в часы максимума нагрузки и др.
Включение батареи производится от пусковых органов схемы форсировки, которые обеспечивают включение основного выключателя и переключающего или шунтирующего переключателей. Например, при наличии нескольких регулируемых ККУ, обычно управляемых разновременно по определенному графику, при резком изменении напряжения или реактивной мощности включаемых или отключаемых одновременно всех ККУ простейший вид форсировки мощности конденсаторных установок может быть осуществлен специальными реле. В этом случае представляется возможность поддерживать напряжение до необходимой величины и не допускать, например, отключения пускателей двигателей и т. и.
Как подключить аккумулятор к ИБП – схема и способы подключения
Источники бесперебойного питания (ИБП) используются для обеспечения беспрерывной работы важного оборудования благодаря наличию в конструкции аккумуляторных батарей. В стандартном варианте – это АКБ напряжением 12 В. Производители выпускают модели с возможностью подключения внешних батарей, что позволяет увеличивать требуемую мощность и период автономного функционирования. Характер соединения и количество АКБ зависят от параметров ИБП и указаны в спецификации.
Существует три схемы подключения внешних аккумуляторов к ИБП: последовательное, параллельное и комбинированное, при котором цепи батарей, подключенных в последовательном порядке, соединяют параллельно.
При таком способе соединения через каждую АКБ протекает ток, равный единому току в цепи. Напряжение батарей суммируется, а емкость равна емкости одной батареи, поэтому такой вариант не позволяет увеличить период автономной работы потребителей.
При последовательном подсоединении рекомендуется использовать АКБ с одинаковыми напряжением, емкостью и оптимально одной фирмы-изготовителя из одной партии. Длина проводников, соединяющих компоненты цепи, и их сопротивление должны быть идентичными. Если эти требования не соблюдаются, то батареи с меньшим уровнем заряда быстро разряжаются, а высокозарядные аккумуляторы при использовании в режиме от электросети получают перезаряд, который приводит к сокращению рабочего периода.
Специалисты предлагают распределить подключаемых потребителей по разным АКБ. Например, к одной подключают системный блок компьютера, к другой – монитор, к третьей – роутер. Такое решение позволяет равномерно распределить нагрузку на все аккумуляторы.
Параллельное подключение АКБ и ИБП
При этом способе подключения емкости соединяемых аккумуляторов суммируются, а напряжение в цепи равно напряжению одного аккумулятора. Увеличение емкости батарей позволяет повысить период автономной работы ИБП.
Как подключить аккумулятор к ИБП комбинированным способом
Этот способ позволяет увеличить напряжение последовательным подключением нескольких аккумуляторов в одной цепи и емкость путем параллельного соединения нескольких цепей. Емкость получившейся цепи не должна быть выше, чем ее допустимая величина для конкретного оборудования.
Пример расчета емкости и напряжения для сборки, состоящей из двух параллельных цепей, в каждой из которых – по 3 батареи. Параметры одной АКБ: напряжение постоянного тока – 12 В, емкость – 100 мА*ч.
- Общее напряжение. Напряжение каждой АКБ 12 В – умножают на количество батарей в одной цепи: 12 х 3 = 36 В. Это напряжение актуально и для сборки из двух параллельных цепей.
- Общая емкость сборки. Емкость каждой цепи умножают на количество цепей: 100 х 2 = 200 мА*ч.
При необходимости составления сложных цепей из аккумуляторных батарей рекомендуется обратиться к специалисту, который определит, какие аккумуляторы и способы их соединения оптимальны для конкретного ИБП.
Какие моменты учитывают при подсоединении нескольких аккумуляторов
- Чем длиннее цепь АКБ, тем медленнее они включаются в работу.
- Наличие длинных проводов провоцирует значительные потери мощности.
- Батареи большой емкости нуждаются в длительной зарядке.
Почему ИБП не держит нагрузку в режиме переключения на батарею
При наличии электропитания в централизованной сети неисправность бесперебойника можно не заметить, но она сразу же проявит себя в момент его исчезновения или выхода характеристик тока за допустимые пределы. Причиной невозможности обеспечить подачу напряжения на нагрузку чаще всего является поломка АКБ.
Как проверить исправность аккумулятора для ИБП:
- Проверка напряжения на клеммах прибора, подключенного к сети. При одной АКБ его величина должна составлять 13-14 В. Меньшие показатели свидетельствуют о необходимости заменить аккумулятор.
- Для тестирования аккумулятора ИБП можно использовать лампочку мощностью 20 Вт. Исправная АКБ должна обеспечить работу лампочки в течение 20 минут.
Еще одна вероятная причина неспособности бесперебойника держать нагрузку при отсутствии централизованного питания – нарушение контактов в АКБ. Для проверки целостности соединений прибор разбирают, осматривают соединения, удаляют пыль.
Калибровка аккумулятора для ИБП
Если после замены старого аккумулятора на новый время работы АКБ остается недостаточным, а заряд источника автономного питания – низкий, рекомендуется осуществить калибровку. Это связано с тем, что при работе на старых батареях уровень заряда постепенно снижался и данные об этом сохранились в памяти ИБП в так называемом нулевом регистре. Поэтому после установки новой АКБ необходимо очистить этот участок памяти. Для этого:
- Аккумулятор полностью заряжают.
- Подключают нагрузку, например, лампы накаливания, по которым можно проверить, не выключился ли бесперебойник в процессе калибровки.
- Источник бесперебойного питания подключают к компьютеру.
- Осуществляют калибровку, для чего используют штатную программу, которую можно скачать с сайта-производителя ИБП.
Калибровка обычно занимает примерно час-полтора. После ее окончания бесперебойник заряжают на 100%.
Использование/Зарядка резервной батареи в схеме на 12 В постоянного тока
ОТРЕДАКТИРУЙТЕ: я пересмотрел схему в ответ на комментарии от Энди иначе. Я также обновил свои вопросы сделать его более ясным, что я спрашиваю. Я оставляю главные параграфы для пользы полноты.
Я пытаюсь проектировать схему, используя Ардуино (U2), который обнаружит поступающее напряжение от моего автомобиля (V1) в дополнение к обнаружению напряжения на резервной батарее (V2) в схеме. Я написал весь код Ардуино для этого прежде даже понять, что схематический дизайн для этой схемы был вне знания моего новичка. Я взял трещину при производстве схематической из моей системы, ниже.
Код Ардуино приводит в действие реле, которое возбуждает мой груз (компьютер пи малины с некоторыми другими аксессуарами), когда автомобиль обеспечивает напряжение (моя зажигалка включается с дополнительным выключателем), и когда система потеряет власть, это будет бежать от батареи в течение 30 минут прежде изящно закрыть пи малины. Это примерно сделано за исключением схемы на этой почте. В то время как система работает, я надеюсь, что входной ток от автомобильной электрической системы завершит батарею (это — 12-вольтовый глубокий цикл SLA.)
Когда я управляю симулятором на этой схеме, напряжение в VBat не составляет 12 или 13.8 В, поскольку я ожидал, таким образом, я надеюсь, что кто-то еще может пролить некоторый свет. Мне также любопытно на предмет того, как я могу предотвратить напряжение от резервной батареи в этой схеме от просачивания назад в автомобиль электрическая система (я предполагаю, что мне нужен диод, однако я был неспособен заставить диод вести себя, как я ожидал бы в ниже схемы),
Что надлежащий путь состоит в том, чтобы соединить резервную батарею в этом сценарии так, чтобы батарея не только была соответственно изолирована от отправки заднего напряжения к автомобилю, но также и получила зарядное напряжение от автомобиля?
simulate this circuit – Schematic created using CircuitLab
После пересмотра схемы Энди Акы у меня есть теперь правильно операционная схема согласно circuitlab. Единственная проблема, для которой я должен решить, состоит в том, как правильно зарядить 12-вольтовую батарею от 13.8-вольтовой линии. Ответ aka’s Энди ниже ссылается на Диод Шотки, но я не уверен, как я обеспечил бы электричеством это, чтобы предоставить зарядное напряжение батарее.
моделируйте эту схему
Три схемы соединения аккумуляторных батарей для электропитания
Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения
аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии
Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.
Повышение рабочего напряжения батареи
Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.
Схемы и формулы при последовательном соединении батарей
При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.
Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.
Увеличение емкости источника питания
Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.
Параллельное соединение батарей с формулами
Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.
В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.
Повышение напряжения с одновременным увеличением емкости АКБ
Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.
ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.
Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:
Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:
1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.
2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.
Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В
Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.
Особенности комплектования батарей аккумуляторов
Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.
Последовательно-параллельная схема подключения на примере литий-ионных батарей
Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:
- электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
- рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
- эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
- сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.
Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.
% PDF-1.5 % 89 0 obj> эндобдж xref 89 76 0000000016 00000 н. 0000002452 00000 н. 0000001816 00000 н. 0000002530 00000 н. 0000002654 00000 н. 0000003177 00000 н. 0000003526 00000 н. 0000004058 00000 н. 0000004584 00000 н. 0000005115 00000 н. 0000005400 00000 н. 0000006025 00000 н. 0000006090 00000 н. 0000006295 00000 н. 0000006622 00000 н. 0000006686 00000 н. 0000006846 00000 н. 0000006893 00000 н. 0000006957 00000 н. 0000007004 00000 н. 0000007288 00000 н. 0000007374 00000 н. 0000007876 00000 н. 0000013412 00000 п. 0000013798 00000 п. 0000014167 00000 п. 0000014455 00000 п. 0000014830 00000 п. 0000020351 00000 п. 0000020768 00000 п. 0000020882 00000 п. 0000021224 00000 п. 0000022475 00000 п. 0000022733 00000 п. 0000022934 00000 п. 0000023287 00000 п. 0000026956 00000 п. 0000027571 00000 п. 0000032829 00000 п. 0000038520 00000 п. 0000043730 00000 п. 0000048792 00000 п. 0000053797 00000 п. 0000058856 00000 п. 0000059151 00000 п. 0000060917 00000 п. 0000061282 00000 п. 0000061436 00000 п. 0000061661 00000 п. 0000062031 00000 п. 0000065753 00000 п. 0000066124 00000 п. 0000066193 00000 п. 0000066257 00000 п. 0000066982 00000 п. 0000067609 00000 п. 0000069621 00000 п. 0000069908 00000 н. 0000069976 00000 п. 0000070495 00000 п. 0000070588 00000 п. 0000075741 00000 п. 0000081716 00000 п. 0000082560 00000 п. 0000083366 00000 п. 0000084220 00000 п. 0000085167 00000 п. 0000085730 00000 п. 0000086082 00000 п. 0000086173 00000 п. 0000086492 00000 п. 0000087091 00000 п. 0000087328 00000 п. 0000087489 00000 п. 0000087852 00000 п. 0000089428 00000 п. трейлер ] >> startxref 0 %% EOF 91 0 obj> поток xb«b«Oc`g`cdd @
Как работают батарейки?
Как работают батарейки?Как работают батарейки?
Электричество, как вы, наверное, уже знаете, — это поток электронов. через токопроводящую дорожку, как провод.Этот путь называется цепью .
Батареисостоят из трех частей: анода (-), катода (+), и электролит . Катод и анод (положительный и отрицательный стороны на обоих концах традиционной батареи) подключены к электрическому схема.
Химические реакции в батарее вызывают накопление электронов. на аноде. Это приводит к электрической разнице между анодом и катод.Вы можете думать об этой разнице как о нестабильном накоплении электроны. Электроны хотят перестроиться, чтобы избавиться от этой разницы. Но они делают это определенным образом. Электроны отталкиваются и пытаются уйти в место с меньшим количеством электронов.
В батарее единственное место, куда можно подойти, — это катод. Но электролит не позволяет электронам идти прямо от анода к катоду внутри батареи. Когда цепь замкнута (провод соединяет катод и анод) электроны смогут попасть на катод.На картинке выше электроны проходят по проводу, зажигая лампочку вдоль способ. Это один из способов описания того, как электрический потенциал вызывает появление электронов. протекать по контуру.
Однако эти электрохимические процессы изменяют химические вещества. в аноде и катоде, чтобы они перестали подавать электроны. Итак, есть ограниченное количество энергии, доступной в батарее.
Когда вы перезаряжаете батарею, вы меняете направление потока электронов с помощью другого источника энергии, например солнечных батарей.В электрохимические процессы происходят в обратном порядке, и анод и катод восстанавливаются в исходное состояние и снова может обеспечить полную мощность.
Что есть батареи?
Что это энергия?
Что такое схема?
Что такое электрон?
Что такое поток электронов?
Что такое DS1 срок службы батареи?
Что значит электрически заряженный?
Как атомы заряжены?
Где энергия приходит и уходит?
Простая английская Википедия, бесплатная энциклопедия
Схематический символ батареи Эта статья про электрические батареи.О преступлении, связанном с нанесением побоев, см. Побои (правонарушение).Батарея преобразует химическую энергию в электрическую с помощью химической реакции. Обычно химические вещества хранятся внутри батареи. Он используется в цепи для питания других компонентов. Батарея производит электричество постоянного тока (DC) (электричество, которое течет в одном направлении и не переключается туда и обратно).
Использование электричества из розетки в здании дешевле и эффективнее, но аккумулятор может обеспечивать электричеством в районах, где нет распределения электроэнергии.Это также полезно для движущихся вещей, например электромобилей и мобильных телефонов.
Батареи могут быть первичными или вторичными. Первичная обмотка выбрасывается, когда она больше не может обеспечивать электричество. Вторичный аккумулятор можно заряжать и использовать повторно.
Батарея может состоять из одной ячейки или нескольких элементов . Каждая ячейка имеет анод, катод и электролит. Электролит — это основной материал внутри батареи. Часто это кислота, к которой прикасаться опасно.Анод реагирует с электролитом с образованием электронов (это отрицательный конец или конец —). Катод реагирует с электролитом и забирает электроны (это положительный конец или + ). [1] Электрический ток возникает, когда провод соединяет анод с катодом, а электроны перемещаются от одного конца к другому. (Но аккумулятор может быть поврежден просто проводом, соединяющим два конца, поэтому нагрузка также необходима между двумя концами.Нагрузка — это то, что замедляет электроны и обычно делает что-то полезное, например, лампочка в фонарике или электроника в калькуляторе). [2]
Батареи, подключенные параллельно — показаны на схеме и на чертежеЭлектролит может быть жидким или твердым. Батарея называется аккумуляторной батареей с влажным или сухим элементом, в зависимости от типа электролита.
Химические реакции, происходящие в батарее, являются экзотермическими реакциями. Этот тип реакции вызывает тепло.Например, если вы оставите свой ноутбук включенным на долгое время, а затем коснетесь аккумулятора, он будет теплым или горячим.
Аккумуляторная батарея заряжается путем обращения вспять химической реакции, происходящей внутри батареи. Но перезаряжаемый аккумулятор можно заряжать только определенное количество раз (время перезарядки). Даже встроенные батареи нельзя заряжать вечно. Более того, каждый раз, когда батарея заряжается, ее способность удерживать заряд немного снижается. Неперезаряжаемые батареи не следует заряжать, так как могут вытечь различные вредные вещества, например гидроксид калия.
Элементы могут быть подключены, чтобы сделать батарею большего размера. Соединение плюса одной ячейки с минусом следующей ячейки называется соединением их последовательно . Напряжение каждой батареи складывается. Две батареи по шесть вольт, соединенные последовательно, будут составлять 12 вольт. [3]
Соединение плюса одной ячейки с плюсом другой, а минус с минусом называется соединением их параллельно . Напряжение остается прежним, но ток складывается.Напряжение — это давление, проталкивающее электроны по проводам, оно измеряется в вольтах. Ток — это то, сколько электронов может пройти одновременно, он измеряется в амперах. Комбинация тока и напряжения — это мощность (ватты = вольт x ампер) батареи.
Батареи бывают разных форм, размеров и напряжений.
Элементы AA, AAA, C и D, включая щелочные батареи, имеют стандартные размеры и форму и имеют напряжение около 1,5 В. Напряжение ячейки зависит от используемых химикатов.Электрический заряд, который он может передать, зависит от размера ячейки, а также от того, какие химические вещества. Заряд аккумулятора обычно измеряется в ампер-часах. Поскольку напряжение остается неизменным, больший заряд означает, что более крупный элемент может подавать больше ампер или работать в течение более длительного времени.
Первая батарея была изобретена в 1800 году Алессандро Вольта. В наши дни его аккумулятор называют гальваническим. [4]
В современных небольших батареях жидкость иммобилизируется в виде пасты, и все это помещается в герметичный корпус.Из-за этого из аккумулятора ничего не может вылиться. В более крупных аккумуляторах, таких как автомобильные, все еще есть жидкость, и они не герметичны. Разновидность батареи, в которой в качестве электролита используются расплавленные соли, была изобретена во время Второй мировой войны.
- Сухие элементы, элементы, не содержащие жидкости (или содержащие иммобилизованную жидкость, такую как паста или гель) в качестве электролита
- Первичная ячейка, ячейки, которые нельзя перезарядить
- Щелочная батарея, «щелочная», неперезаряжаемая
- Батарея ртутная, неперезаряжаемая
- Аккумулятор Leclanche, «сверхмощный», неперезаряжаемый
- Литиевая батарея неперезаряжаемая, «таблетка»
- Батарея из оксида серебра, неперезаряжаемая, батарейка для часов
- Гальваническая свая, первая батарея Аллесандро Вольтаса
- Вторичный элемент, элементы, которые можно перезаряжать
- Первичная ячейка, ячейки, которые нельзя перезарядить
- Влажные элементы, элементы, содержащие жидкость в качестве электролита
- Топливный элемент, перезаряжаемый за счет добавления топлива
Топливные элементы и солнечные элементы не являются батареями, потому что они не накапливают энергию внутри себя.
Конденсатор не является батареей, потому что он не накапливает энергию в химической реакции. Конденсатор может накапливать электричество и производить электричество намного быстрее, чем батарея, но обычно он стоит слишком дорого, чтобы сделать его настолько большим, насколько может быть батарея. Ученые и инженеры-химики работают над улучшением конденсаторов и аккумуляторов для электромобилей.
Небольшие электрические генераторы, приводимые в действие руками и ногами, могут обеспечивать питание небольших электрических устройств. Радиоприемники с часовым механизмом, факелы с часовым механизмом и подобные устройства также имеют заводную пружину для хранения механической энергии.
Общие сведения о конфигурациях батарей | Аккумулятор
Что такое банк батарей? Нет, аккумуляторные банки — это не какие-то финансовые учреждения. Блок батарей — это результат соединения двух или более батарей вместе для одного приложения. Что это дает? Ну, подключив батареи, вы можете увеличить напряжение, силу тока или и то, и другое. Когда вам нужно больше мощности, вместо того, чтобы обзавестись огромным супертанкером с батареей для дома на колесах.Например, вы можете построить аккумуляторную батарею, используя мощную аккумуляторную батарею AGM для автофургона, кемпинга или прицепа.
Первое, что вам нужно знать, это то, что существует два основных способа успешного соединения двух или более батарей: первый — через серию, а второй — параллельный. Начнем с метода серий, сравнивая серию и параллель.
Как подключить батареи последовательно: При последовательном подключении батарей добавляется напряжение двух батарей, но сохраняется одинаковая сила тока (также известная как ампер-часы).Например, эти две 6-вольтовые батареи, соединенные последовательно, теперь вырабатывают 12 вольт, но их общая емкость по-прежнему составляет 10 ампер.
Для последовательного соединения батарей используйте перемычку для соединения отрицательной клеммы первой батареи с положительной клеммой второй батареи. Используйте другой набор кабелей для подключения открытых положительных и отрицательных клемм к вашему приложению.
При подключении аккумуляторов: Никогда не перекрещивайте оставшиеся разомкнутые положительный и открытый отрицательный полюсы друг с другом, так как это приведет к короткому замыканию аккумуляторов и вызовет повреждение или травму.
Убедитесь, что подключаемые батареи имеют одинаковое напряжение и емкость. В противном случае у вас могут возникнуть проблемы с зарядкой и сокращение срока службы батареи.
Как подключить батареи параллельно: Другой тип подключения — параллельно. Параллельное соединение увеличит ваш номинальный ток, но напряжение останется прежним. На «параллельной» диаграмме мы вернулись к 6 вольт, но ампер увеличился до 20 Ач. Важно отметить, что из-за увеличения силы тока аккумуляторов вам может потребоваться более прочный кабель, чтобы кабели не перегорели.
Чтобы соединить батареи параллельно, используйте перемычку для соединения положительных клемм и другую перемычку для соединения отрицательных клемм обеих батарей друг с другом. Отрицательный к отрицательному и положительный к положительному. Вы МОЖЕТЕ подключить нагрузку к ОДНОЙ из батарей, и она будет разряжать обе батареи одинаково. Тем не менее, предпочтительный метод поддержания уровня заряда аккумуляторов заключается в подключении к плюсу на одном конце аккумуляторного блока и к минусу на другом конце блока.
Также возможно подключение аккумуляторов последовательно и параллельно. Это может показаться запутанным, но мы объясним это ниже. Таким образом вы можете увеличить выходное напряжение и номинальный ток в ампер / час. Чтобы сделать это успешно, вам понадобится как минимум 4 батареи.
Если у вас есть два набора батарей, уже подключенных параллельно, вы можете соединить их вместе, чтобы сформировать серию. На диаграмме выше у нас есть аккумуляторная батарея, которая выдает 12 вольт и рассчитана на 20 ампер-часов.
Не теряйся сейчас. Помните, что электричество проходит через параллельное соединение так же, как и в одиночной батарее. Он не заметит разницы. Таким образом, вы можете последовательно соединить два параллельных соединения, как две батареи. Требуется только один кабель; мост между положительной клеммой одного параллельного банка и отрицательной клеммой другого параллельного банка.
Это нормально, если к терминалу подключено более одного кабеля. Необходимо успешно построить такие аккумуляторные батареи.
Теоретически вы можете подключить столько батарей, сколько захотите. Но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбивать с толку, а путаница может быть опасной. Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи той же мощности. По возможности избегайте смешивания и соответствия размеров батарей.
Всегда помните о безопасности и следите за своими связями. Если это поможет, сделайте схему ваших батарейных блоков, прежде чем пытаться их построить.Удачи!
Краткий справочник по словарю:
Ампер-час — это единица измерения электрической емкости аккумулятора. Стандартный номинал усилителя рассчитан на 20 часов.
Напряжение представляет собой давление электричества. Некоторые приложения требуют большего «давления», что означает более высокое напряжение.
Выберите более мощный аккумулятор
Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.
Как работает аккумулятор — Любопытно
Представьте себе мир без батарей. Все портативные устройства, от которых мы так зависим, были бы настолько ограничены! Мы сможем доставить наши ноутбуки и телефоны настолько далеко, насколько доступны их кабели, что сделает это новое работающее приложение, которое вы только что загрузили на свой телефон, практически бесполезным.
К счастью, у нас есть батарейки. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой.Археологи считают, что на самом деле это не были батареи, а использовались в основном для религиозных церемоний.
Изобретение батареи в том виде, в котором мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать свою точку зрения другому итальянскому ученому Луиджи Гальвани. В 1780 году Гальвани показал, что лапки лягушек, подвешенных на железных или латунных крючках, подергиваются при прикосновении к зонду из другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».
Луиджи Гальвани обнаружил, что лапки лягушек, подвешенные на латунных крючках, дергались, когда их ткнули зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.Вольта, первоначально впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит от двух разных типов металла (крючки, на которых висели лягушки, и другой металл зонда) и просто передается через них, а не через них. из тканей лягушек.Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанной соленой водой, и обнаружил, что электрический ток действительно протекает через провод, приложенный к обоим концам стопки.
Батарея Алессандро Вольта: куча цинковых и серебряных листов, перемеженных тканью или бумагой, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.Volta также обнаружил, что, используя различные металлы в сваях, можно увеличить количество напряжения.Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. Это было довольно большое дело (Наполеон был весьма впечатлен!), И его изобретение принесло ему устойчивое признание в честь «вольта». ‘(мера электрического потенциала), названная в его честь.
Я сам, шутя в сторону, поражен тем, как мои старые и новые открытия … чистого и простого электричества, вызванного контактом металлов, могли вызвать такое волнение.Алессандро Вольта
Так что же именно происходило с этими слоями цинка и серебра и с дрожащими лягушачьими лапами?
Химия батареи
Батарея — это устройство, которое накапливает химическую энергию и преобразует ее в электричество.Это известно как электрохимия, а система, лежащая в основе батареи, называется электрохимическим элементом. Батарея может состоять из одного или нескольких (как в оригинальной кучке Вольты) электрохимических ячеек. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.
Итак, откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов.В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), А затем они перетекают на другой электрод, где расходуются. Чтобы понять это правильно, нам нужно внимательнее изучить компоненты клетки и то, как они устроены вместе.
Электроды
Чтобы создать поток электронов, вам нужно где-то, чтобы электроны текли из , а где-то электроны текли с по .Это электроды ячейки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Обычно это разные типы металлов или другие химические соединения.
В котле Вольта анодом служил цинк, от которого электроны текли по проволоке (при соединении) с серебром, которое было катодом батареи. Он сложил много этих ячеек вместе, чтобы получилась общая куча, и поднял напряжение.
Но откуда анод вообще берет все эти электроны? И почему они так счастливы, что их отправили в веселый путь к катоду? Все сводится к химии, происходящей внутри клетки.
Нам нужно понять несколько химических реакций. На аноде электрод вступает в реакцию с электролитом, в результате чего образуются электроны. Эти электроны накапливаются на аноде. Между тем, на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.
Технический химический термин, обозначающий реакцию, которая включает обмен электронами, — это реакция окисления-восстановления, обычно называемая окислительно-восстановительной реакцией. Вся реакция может быть разделена на две половинные реакции, и в случае электрохимической ячейки одна полуреакция происходит на аноде, а другая — на катоде. Уменьшение — это усиление электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается во время реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.
Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности / эффективности реакции либо производить, либо поглощать электроны — ее силу в электронном перетягивании каната.
- Стандартные потенциалы полуреакций
Ниже приведен список половинных реакций, которые включают высвобождение электронов из чистого элемента или химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой готовности водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородная полуреакция имеет нулевое значение E 0 ).E 0 измеряется в вольтах.
Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их в электрохимическую ячейку, значения E 0 скажут вам, в каком направлении будет протекать общая реакция: реакция с более отрицательной реакцией. Значение E 0 отдает свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном представляет собой напряжение ячейки.
Итак, если вы возьмете литий и фторид и сумеете объединить их, чтобы сделать элемент батареи, у вас будет самое высокое напряжение, теоретически достижимое для электрохимического элемента. Этот список также объясняет, почему в котле Вольта цинк был анодом, а серебро — катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .
Источник: UC Davis ChemWiki
Любые два проводящих материала, которые вступают в реакцию с разными стандартными потенциалами, могут образовывать электрохимическую ячейку, потому что более сильный из них сможет забирать электроны у более слабого.Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбираете для своего катода. В итоге мы получаем электроны, притягивающиеся к катоду от анода (и анод не очень сильно пытается бороться), и, когда у нас есть легкий путь, чтобы добраться туда — проводящий провод, мы можем использовать их энергию для обеспечения электрического питание нашего фонарика, телефона или чего-то еще.
Разница в стандартном потенциале между электродами как бы равна силе, с которой электроны перемещаются между двумя электродами.Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.
Чтобы увеличить напряжение аккумулятора, у нас есть два варианта. Мы могли бы выбрать для наших электродов другие материалы, которые придадут ячейке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединяются определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи.По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда они движутся от анода первого элемента на всем пути, сколько бы ячеек ни содержала батарея, к катоду последнего элемента.
Когда элементы объединяются другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через элементы, но не ее напряжение.
Электролит
Но электроды — это всего лишь часть батареи.Помните обрывки бумаги Вольты, пропитанные соленой водой? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.
Электронов имеют отрицательный заряд, и поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ уравновесить это движение заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.
Поскольку химическая реакция на аноде производит электроны, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не проходят по внешнему проводу (только для электронов!), А попадают в электролит.
В то же время катод должен также уравновешивать отрицательный заряд электронов, которые он принимает, поэтому реакция, которая здесь происходит, должна втягивать положительно заряженные ионы из электролита (альтернативно, он также может высвобождать отрицательно заряженные ионы из электрода в электролит. электролит).
Итак, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для переноса положительно заряженных ионов, чтобы уравновесить отрицательный поток. Этот поток положительно заряженных ионов так же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания протекания всей реакции.
Итак, если бы все ионы, высвобожденные в электролит, могли полностью свободно перемещаться через электролит, они в конечном итоге покрыли бы поверхности электродов и забили бы всю систему.Таким образом, в клетке обычно есть какой-то барьер, чтобы этого не произошло.
Когда аккумулятор используется, мы имеем дело с непрерывным потоком электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановлен. Заряды будут накапливаться, и химические реакции, приводящие в движение аккумулятор, прекратятся.
По мере использования батареи и протекания реакций на обоих электродах возникают новые химические продукты.Эти продукты реакции могут создавать своего рода сопротивление, которое может помешать продолжению реакции с такой же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и электроны перестают течь. Аккумулятор медленно разряжается.
Зарядка аккумулятора
Некоторые распространенные батареи предназначены только для одноразового использования (так называемые первичные или одноразовые батареи).Электроны перемещаются от анода к катоду в одну сторону. Либо их электроды истощаются по мере того, как они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и это делается и вытирается пыль. Батарея оказывается в мусорном ведре (или, надеюсь, на переработку, но это уже другая тема Nova).
Но. Изящная вещь в этом потоке ионов и электронов, который имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. .Подобно тому, как батареи изменили способ использования различных электрических устройств, аккумуляторные батареи еще больше изменили полезность этих устройств и их продолжительность жизни.
Когда мы подключаем почти разряженную батарею к внешнему источнику электричества и отправляем энергию обратно в батарею, происходит обратная химическая реакция, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода, в электролит, обратно к аноду, а электроны, которые катод принимает, также обратно к аноду.Возврат как положительных ионов, так и электронов обратно в анод подготавливает систему, так что она снова готова к работе: ваша батарея заряжена.
Однако процесс не идеален. Замена отрицательных и положительных ионов электролита обратно на соответствующий электрод при перезарядке батареи не такая аккуратная и не такая хорошо структурированная, как электрод вначале. Каждый цикл зарядки еще больше ухудшает состояние электродов, а это означает, что батарея со временем теряет производительность, поэтому даже аккумуляторные батареи не работают вечно.
В течение нескольких циклов зарядки и разрядки форма кристаллов аккумулятора становится менее упорядоченной. Это усугубляется, когда аккумулятор разряжается / заряжается с высокой скоростью — например, если вы едете на электромобиле с большой скоростью, а не с постоянной скоростью. Высокоскоростное переключение приводит к тому, что кристаллическая структура становится более неупорядоченной, что приводит к менее эффективной батарее.
Эффект памяти и саморазряд
Почти, но не полностью обратимые реакции разряда и перезарядки также способствуют так называемому «эффекту памяти».Когда вы заряжаете некоторые типы аккумуляторных батарей, не разрядив их сначала, они «запоминают», где находились в предыдущих циклах разрядки, и не перезаряжаются должным образом.
В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как эта соль затем снова растворяется и металл заменяется на электродах при перезарядке). Мы хотим, чтобы наши клетки имели красивые, однородные, маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Некоторые кристаллы образуются очень сложно, а некоторые металлы откладываются во время перезарядки, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие.Дефекты в основном зависят от первоначального состояния заряда батареи, температуры, напряжения заряда и тока зарядки. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и так далее, и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на никелевой основе. Другие типы, такие как литий-ионные, не страдают этой проблемой.
Другой аспект аккумуляторных батарей заключается в том, что химический состав, делающий их перезаряжаемыми, также означает, что они имеют более высокую тенденцию к саморазряду.Это когда внутренние реакции происходят внутри аккумуляторного элемента, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы аккумуляторов — и приводит к их разрядке во время хранения.
Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда около 2–3 процентов в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они, как правило, теряют 4–6 процентов. месяц.Никелевые батареи теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарик в течение всего сезона, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет около 2–3% своего заряда в год.
Напряжение, ток, мощность, емкость… в чем разница?
Все эти слова в основном описывают мощность батареи, не так ли? Ну вроде как.Но все они несколько разные.
Напряжение = сила, при которой реакция, приводящая в действие аккумулятор, проталкивает электроны через элемент. Это также известно как электрический потенциал и зависит от разницы потенциалов между реакциями, которые происходят на каждом из электродов, то есть от того, насколько сильно катод оттянет электроны (через цепь) от анода. Чем выше напряжение, тем больше работы может совершить то же количество электронов.
Ток = количество электронов, которые проходят через любую точку цепи в данный момент времени.Чем выше ток, тем больше работы он может выполнять при том же напряжении. Внутри ячейки ток можно также рассматривать как количество ионов, проходящих через электролит, умноженное на заряд этих ионов.
Мощность = напряжение x ток. Чем выше мощность, тем быстрее батарея может работать — это соотношение показывает, как напряжение и ток важны для определения того, для чего подходит батарея.
Емкость = мощность батареи как функция времени, которая используется для описания продолжительности времени, в течение которого батарея может обеспечивать питание устройства.Аккумулятор большой емкости сможет проработать более длительный период, прежде чем разрядится / разрядится. У некоторых батарей есть небольшая печальная особенность: если вы слишком быстро попытаетесь извлечь из них слишком много энергии, химические реакции не успеют поспеть, и емкость станет меньше! Итак, мы всегда должны быть осторожны, когда говорим о емкости аккумулятора, и помнить, для чего он будет использоваться.
Еще один популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, сколько энергии вы получите за свои деньги с точки зрения мощности по сравнению сразмер. С батареей, как правило, чем выше плотность энергии, тем лучше, поскольку это означает, что батарея может быть меньше и компактнее, что всегда является плюсом, когда вам нужно, чтобы она питала то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!
Для некоторых приложений, таких как хранение электроэнергии на возобновляемых электростанциях, таких как ветряная или солнечная ферма, высокая плотность энергии не является большой проблемой, поскольку в них, скорее всего, будет достаточно места для хранения батарей.Основная цель такого использования — просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.
Почему так много типов?
Ряд материалов (раньше это были просто металлы) можно использовать в качестве электродов в батарее. За прошедшие годы было опробовано много-много различных комбинаций, но лишь немногие из них действительно прошли дистанцию.Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?
Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы соединяете их в аккумуляторном элементе. Например, некоторые комбинации будут производить высокое напряжение очень быстро, но затем быстро падают, не в состоянии поддерживать это напряжение в течение длительного времени. Это хорошо, если вам нужно произвести, скажем, внезапную вспышку света, такую как вспышка фотоаппарата.
Другие комбинации будут производить только тонкую струйку тока, но они будут поддерживать эту струю на века. Например, нам не нужен большой ток для питания детектора дыма, но мы хотим, чтобы наши детекторы дыма работали долгое время.
Еще одна причина для использования различных комбинаций металлов заключается в том, что часто два или более аккумуляторных элемента необходимо уложить в стопку для получения необходимого напряжения, и оказывается, что некоторые комбинации электродов складываются вместе намного удобнее, чем другие комбинации.Например, литий-железо-фосфатные батареи (тип литий-ионных батарей), используемые в электромобилях, складываются вместе для создания систем высокого напряжения (100 или даже более вольт), но вы никогда не сделаете этого с теми батареями NiCad Walkman, которые имеют горячий!
Наши различные потребности с течением времени привели к разработке огромного количества типов батарей. Чтобы узнать больше о них и о том, что ждет аккумулятор в будущем, ознакомьтесь с другими нашими темами о Nova.
Эта тема является частью нашей серии из четырех статей об аккумуляторах.Для дальнейшего чтения ознакомьтесь с типами аккумуляторов, литий-ионных аккумуляторов и аккумуляторов будущего.Расположение батарей и мощность | HowStuffWorks
Во многих устройствах, в которых используются батареи, таких как портативные радиоприемники и фонарики, вы не используете только одну ячейку за раз. Обычно вы группируете их вместе в последовательном порядке для увеличения напряжения или в параллельном для увеличения тока .На схеме показаны эти две схемы.
Верхняя диаграмма показывает параллельное расположение . Четыре батареи, включенные параллельно, вместе будут производить напряжение одного элемента, но подаваемый ими ток будет в четыре раза больше, чем у одного элемента. Ток — это скорость, с которой электрический заряд проходит через цепь, измеряется в амперах. Батареи измеряются в ампер-часах или, в случае небольших бытовых батарей, в миллиампер-часах (мАч). Типичный бытовой элемент, рассчитанный на 500 миллиампер-часов, должен обеспечивать ток 500 миллиампер на нагрузку в течение одного часа.Вы можете сократить количество миллиампер-часов разными способами. Батарея на 500 миллиампер-час может также производить 5 миллиампер в течение 100 часов, 10 миллиампер в течение 50 часов или, теоретически, 1000 миллиампер в течение 30 минут. Вообще говоря, батареи с более высокими значениями ампер-часов имеют большую емкость.
На нижней диаграмме изображена последовательная установка . Четыре батареи, соединенные последовательно, вместе будут производить ток одной ячейки, но напряжение, которое они подают, будет в четыре раза больше, чем у одной ячейки. Напряжение — это количество энергии на единицу заряда, которое измеряется в вольтах. В батарее напряжение определяет, насколько сильно электроны проталкиваются через цепь, так же как давление определяет, насколько сильно вода проталкивается через шланг. Большинство батареек AAA, AA, C и D имеют напряжение около 1,5 В.
Представьте, что батареи, показанные на диаграмме, рассчитаны на 1,5 вольта и 500 миллиампер-часов. Четыре батареи, подключенные параллельно, будут вырабатывать 1,5 вольта при 2000 миллиампер-часах. Четыре батареи, расположенные в ряд, будут вырабатывать 6 вольт при 500 миллиампер-часах.
Аккумуляторные технологии значительно продвинулись вперед со времен вольтова сваи. Эти разработки четко отражаются в нашем быстро меняющемся портативном мире, который больше, чем когда-либо, зависит от портативного источника питания, предоставляемого батареями. Можно только представить, что принесет следующее поколение меньших, более мощных и долговечных батарей.
Для получения дополнительной информации о батареях и связанных темах перейдите по ссылкам ниже.
Часто задаваемые вопросы об аккумуляторах
Что такое энергия аккумулятора?
Энергия в батарее выражается в ватт-часах (символ Wh), которые представляют собой напряжение (В), которое обеспечивает батарея, умноженное на то, какой ток (амперы) она может обеспечить в течение заданного времени (обычно в часах). ).
Какие бывают типы батарей?
Обычный химический состав (или типы) батарей включает: цинк-углеродные, щелочные, литий-ионные (перезаряжаемые) и свинцово-кислотные (также перезаряжаемые). Исследователи также в настоящее время разрабатывают «воздушную» батарею, в которой электроды будут состоять из лития и кислорода из воздуха.
Сколько стоит автомобильный аккумулятор?
Ожидайте, что вы заплатите от 50 до 120 долларов за типичный автомобильный аккумулятор и от 90 до 200 долларов или больше за аккумулятор с более длительной гарантией, лучшими характеристиками в холодную погоду или за использование в роскошном автомобиле.
Какой источник энергии у аккумулятора?
Батареи вырабатывают энергию в результате электрохимической реакции. Проще говоря, реакция на аноде создает электроны, а реакция на катоде их поглощает. Чистый продукт — электричество.
Какие бывают аккумуляторные батареи?
Самыми распространенными перезаряжаемыми батареями на рынке являются литий-ионные (LiOn), хотя раньше довольно широко использовались никель-металлогидридные (NiMH) и никель-кадмиевые (NiCd) батареи.
Первоначально опубликовано: 1 апреля 2000 г.
Статьи по теме
Дополнительные ссылки
Источники
- Американское химическое общество. «История батареи». Национальные исторические химические достопримечательности. 2005 г. (23 июня 2011 г.) http://acswebcontent.acs.org/landmarks/drycell/history.html
- «Батареи». Введение в физические вычисления, Нью-Йоркский университет. 19 апреля 2011 г. (23 июня 2011 г.) http://itp.nyu.edu/physcomp/Notes/Batteries
- Брэнд, Майк, Шеннон Нивс и Эмили Смит.«Музей электричества и магнетизма». Национальная лаборатория сильного магнитного поля. 2011 г. (25 июня 2011 г.) http://www.magnet.fsu.edu/education/tutorials/museum/index.html
- Buckle, Kenneth. «Как аккумуляторы хранят и разряжают электричество?» Scientific American. 29 мая 2006 г. (23 июня 2011 г.) http://www.scientificamerican.com/article.cfm?id=how-do-batteries-store-an
- CalRecycle. «Аккумуляторы и зарядные устройства: личная перспектива». 9 сентября 2009 г. (25 июня 2011 г.) http: // www.calrecycle.ca.gov/ReduceWaste/power/rechbattinfo.htm
- Энергетическая комиссия Калифорнии. «Лимонная сила». 2006. (22 июня 2011 г.) http://www.energyquest.ca.gov/projects/lemon.html
- Койн, Кристен Элиза. «Интерактивные учебники». Национальная лаборатория сильного магнитного поля. 2011. (23 июня 2011 г.) http://www.magnet.fsu.edu/education/tutorials/java/index.html
- Дэвидсон, Майкл В. «Электричество и магнетизм: батареи». 28 января 2003 г. (22 июня 2011 г.) http://micro.magnet.fsu.edu/electromag/electricity/batteries/index.html
- Decker, Franco. «Вольта и« куча »». Энциклопедия электрохимии. Январь 2005 г. (23 июня 2011 г.) http://electrochem.cwru.edu/encycl/art-v01-volta.htm
- Duracell. «Энергетическое образование». 2010. (23 июня 2011 г.) http://www.duracell.com.au/en-AU/power-education/index.jspx
- Energizer. «Центр обучения.» 2011. (22 июня 2011 г.) http://www.energizer.com/learning-center/Pages/facts-history-care.aspx
- Агентство по охране окружающей среды. «Батареи». 1 декабря 2010 г.(22 июня 2011 г.) http://www.epa.gov/osw/conserve/materials/battery.htm
- Frood, Arran. «Загадка« Багдадских батарей »». BBC News. 27 февраля 2003 г. (23 июня 2011 г.) http://news.bbc.co.uk/2/hi/science/nature/2804257.stm
- GreenBatteries. «Информация об экологически чистых аккумуляторных батареях». 2011 г. (25 июня 2011 г.) http://www.greenbatteries.com/faqs.html
- Общественное телевидение Айдахо. «Факты об электричестве». 2011 г. (25 июня 2011 г.) http://idahoptv.org/dialogue4kids/season6/electricity/facts.cfm
- Iggulden, Hal. «Опасная книга для мальчиков». Нью-Йорк: HarperCollins Publishers, Inc., 2007.
- Komando, Kim. «Узнайте, как увеличить производительность батареи». USA Today. 7 августа 2005 г. (25 июня 2011 г.) http://www.usatoday.com/tech/columnist/kimkomando/2005-08-07-battery-life_x.htm
- Манджу, Фархад. «Лучшие батареи спасут мир». Шифер. 21 июня 2011 г. (23 июня 2011 г.) http://www.slate.com/id/2297125/
- Рахим, Сакиб. «Спасет ли литий-воздушная батарея водителей электромобилей от« беспокойства о дальности полета »?» The New York Times.7 мая 2010 г. (22 июня 2011 г.) http://www.nytimes.com/cwire/2010/05/07/07climatewire-will-lithium-air-battery-rescue-electric-car-37498.html?pagewanted = 1
- Сэвидж, Нил. «Батареи, которые дышат». DiscoveryNews. 8 февраля 2011 г. (22 июня 2011 г.) http://news.discovery.com/tech/batteries-that-breathe-110208.html
- Гавайский университет HAM Club. «Батареи в фактах и вымыслах». Август 1999 г. (22 июня 2011 г.) http://www.chem.hawaii.edu/uham/bat.html
Соглашения об электрохимических элементах — Chemistry LibreTexts
Использование химических реакций для производства электричества сейчас является приоритетом для многих исследователей.Возможность адекватно использовать химические реакции в качестве источника энергии очень поможет решить наши проблемы с загрязнением окружающей среды. В этом разделе электрохимии мы узнаем, как использовать химические реакции для производства этого чистого электричества и даже использовать электричество для генерации химических реакций. Чтобы вызвать поток электрических зарядов, мы помещаем полоску металла (электрод) в раствор, содержащий тот же металл, который находится в водном состоянии. Комбинация электрода и его раствора называется полуэлементом .Внутри полуячейки ионы металлов из раствора могут получать электроны от электрода и становиться атомами металлов; или атомы металлов от электрода могут терять электроны и становиться ионами металлов в растворе.
Введение
Мы используем две разные полуячейки, чтобы измерить, насколько легко электроны могут перетекать от одного электрода к другому, и устройство, используемое для измерения, называется вольтметром. Вольтметр измеряет потенциал ячейки, обозначенный E cell , (в единицах вольт, 1 В = 1 Дж / Кл), который представляет собой разность потенциалов между двумя половинными ячейками.{+} (Водн.) | Ag (s)}} _ {\ text {полуреакция восстановления}} \ nonumber \]
Там, где мы размещаем анод слева и катод справа, «\ (| \)» представляет границу между двумя фазами, а «\ (|| \)» представляет солевой мостик. Электрохимические ячейки бывают двух типов:
Гальванический элемент (также известный как гальванический элемент) вызывает спонтанную окислительно-восстановительную реакцию для создания потока электрических зарядов или электричества. Неперезаряжаемые батареи являются примерами гальванических элементов.
- A Реакция является спонтанной, когда изменение энергии Гибба \ (∆G \) отрицательно.
- Электроны текут от анода (отрицательно, поскольку здесь накапливаются электроны) к катоду (положительно, поскольку он набирает электроны).
Электролитическая ячейка — это один из видов батарей, для которых требуется внешний источник электричества для запуска неспонтанной окислительно-восстановительной реакции. При перезарядке аккумуляторные батареи действуют как электролитические ячейки.
- Реакция не является спонтанной, если ∆G> 0.
- Должен подавать электроны на катод для восстановления, поэтому катод отрицательный.
- Должен удалить электроны с анода, чтобы вызвать окисление, чтобы анод был положительным.
Сходства между Galvanci и электролитическими ячейками
Гальванические и электролитические ячейки содержат:
- Два электрода: анод, на котором происходит окисление, и катод, на котором происходит восстановление (обратите внимание, что Катод не означает +, а Анод не означает -)
- Вольтметр: измеряет электрический ток. В гальванических элементах это показывает, сколько напряжения вырабатывается, а в электролитических ячейках это показывает, сколько напряжения приложено к системе.
- Электролит
- проводящая среда
- имеет контакт с электродами
- обычно в водном растворе ионных соединений
- Соляной мост
- соединяет две половины электрохимической ячейки
- с раствором соли или гелем
- сохраняет решение отдельно
- Замыкает контур
Базовая терминология
В электрохимических ячейках используется обширная терминология.Вот краткое определение некоторых наиболее распространенных терминов:
- Напряжение: разность потенциалов между двумя половинками ячеек, а также количество энергии, которое вызывает реакцию. Напряжение — это интенсивное свойство (величина напряжения имеет значение).
- Ток: поток электрических зарядов (в электронах в секунду). Это обширная собственность (значение тока имеет значение). ПРИМЕЧАНИЕ. Высокое напряжение не означает большой ток.
- Основная батарея: неперезаряжаемые батареи.AA, AAA и т. Д.
- Secondary Battery: Аккумуляторные батареи. Литиевые, батарейки для сотовых телефонов и т. Д.
- Третичная батарея, также называемая топливными элементами. Хотя они не всегда считаются батареями, они часто требуют постоянного потока реагентов.
Гальванический элемент (он же гальванический элемент)
Рисунок \ (\ PageIndex {1} \): В этом стандартном гальваническом элементе полуэлементы разделены; электроны могут течь по внешнему проводу и становиться доступными для выполнения электрических работ.{2 +} (водн.) + 2Ag (s)} \ nonumber \]Это спонтанная реакция, которая высвобождает энергию, поэтому эта система воздействует на окружающую среду.
Гальванические элементы довольно распространены. Батареи A, AA, AAA, D, C и т. Д. Являются гальваническими элементами. Любая неперезаряжаемая батарея, не зависящая от внешнего источника электроэнергии, является гальваническим элементом.
Электролитическая ячейка
Электролитическая ячейка — это ячейка, которая требует внешнего источника электричества для инициирования окислительно-восстановительной реакции.Процесс того, как электрическая энергия вызывает несамопроизвольную реакцию, называется электролизом . В то время как гальванический элемент использовал окислительно-восстановительную реакцию, чтобы заставить электроны течь, электролитическая ячейка использует движение электронов (в источнике электричества), чтобы вызвать окислительно-восстановительную реакцию. В электролитической ячейке электроны вынуждены течь в противоположном направлении. o_ {cell} \).{+} (водн.)} \ nonumber \]
- Гальваника: превращает химическую энергию в электрическую
- Электролитическая ячейка: превращает электрическую энергию в химическую энергию
Наиболее распространенной формой электролитической ячейки является аккумуляторная батарея (сотовые телефоны, mp3 и т. Д.) Или гальваника. Пока в устройстве используется аккумулятор, он выполняет функцию гальванического элемента (используя окислительно-восстановительную энергию для производства электричества). Пока аккумулятор заряжается, он выполняет функцию электролитической ячейки (используя внешнее электричество для обращения вспять завершенной окислительно-восстановительной реакции).
Список литературы
- Петруччи, Харвуд, Сельдь и Мадура. Общая химия: принципы и современные приложения: девятое издание. Нью-Джерси: Пирсон, 2007.
- Профессор Дельмар Ларсен. Лекции 2, 3 и 6. Весна 2010 г.
- Ригер, Филипп.