Блок питания на 12 вольт схема. Простая схема блока питания 12В 3А: особенности конструкции и применение

Как работает схема блока питания на 12В и 3А. Из каких основных компонентов она состоит. Для чего используются такие блоки питания. Какие преимущества и недостатки у данной схемы. На что обратить внимание при сборке.

Принцип работы схемы блока питания 12В 3А

Данная схема представляет собой простой регулируемый блок питания, который преобразует переменное напряжение 220В в постоянное напряжение 12В с током до 3А. Основные компоненты схемы:

  • Понижающий трансформатор
  • Диодный мост для выпрямления
  • Фильтрующий конденсатор
  • Стабилизатор напряжения на стабилитроне
  • Усилитель тока на транзисторе 2N3055

Трансформатор понижает входное напряжение до 12-15В переменного тока. Диодный мост выпрямляет его в пульсирующее постоянное. Конденсатор сглаживает пульсации. Стабилитрон задает опорное напряжение 12В. Транзистор работает как усилитель тока, обеспечивая нагрузочную способность до 3А.

Ключевые особенности данной схемы блока питания

Основные характеристики рассматриваемой схемы блока питания:


  • Выходное напряжение: 12В постоянного тока
  • Максимальный выходной ток: 3А
  • Простая конструкция из доступных компонентов
  • Наличие стабилизации выходного напряжения
  • Возможность регулировки выходного напряжения
  • Защита от короткого замыкания и перегрузки

Преимуществами схемы являются простота, невысокая стоимость, надежность. К недостаткам можно отнести относительно низкий КПД и нагрев силового транзистора.

Области применения блоков питания 12В

Блоки питания с выходным напряжением 12В широко используются в различных областях:

  • Питание электронных устройств (компьютерная периферия, роутеры и т.д.)
  • Светодиодное освещение
  • Автомобильная электроника
  • Системы видеонаблюдения
  • Зарядные устройства
  • Радиолюбительские проекты

Благодаря универсальности напряжения 12В и достаточно большому току такие блоки питания находят применение во многих бытовых и промышленных устройствах.

На что обратить внимание при сборке блока питания

При самостоятельной сборке блока питания по данной схеме необходимо учитывать следующие моменты:


  • Использовать трансформатор и диодный мост с запасом по току
  • Обеспечить хорошее охлаждение силового транзистора
  • Применять качественные конденсаторы большой емкости
  • Тщательно изолировать высоковольтную часть схемы
  • Использовать предохранитель на входе для защиты
  • Проверить выходное напряжение и пульсации

При соблюдении этих рекомендаций можно собрать надежный и безопасный блок питания для своих нужд.

Возможные модификации схемы блока питания

Базовую схему блока питания 12В 3А можно модифицировать для улучшения характеристик:

  • Добавить стабилизатор напряжения на микросхеме для уменьшения пульсаций
  • Использовать ШИМ-контроллер вместо линейного стабилизатора для повышения КПД
  • Применить импульсный трансформатор для уменьшения габаритов
  • Добавить защиту от перенапряжения на выходе
  • Установить индикатор выходного напряжения

Такие доработки позволят повысить качество и функциональность блока питания в зависимости от конкретных требований.

Сравнение с готовыми блоками питания

По сравнению с промышленными блоками питания на 12В рассмотренная самодельная схема имеет следующие особенности:


  • Более простая конструкция
  • Меньшая стоимость компонентов
  • Возможность самостоятельной сборки и ремонта
  • Ниже КПД и больше нагрев
  • Больше пульсации выходного напряжения
  • Отсутствие сертификации по безопасности

Самодельный блок питания подойдет для личного использования и обучения. Для ответственных применений лучше использовать сертифицированные промышленные источники питания.

Техника безопасности при работе с блоками питания

При сборке и эксплуатации блока питания необходимо соблюдать следующие меры безопасности:

  • Использовать изолирующий трансформатор при отладке
  • Не прикасаться к схеме под напряжением
  • Применять качественную изоляцию проводов
  • Заземлять металлический корпус устройства
  • Устанавливать предохранители по входу и выходу
  • Не превышать максимальную мощность нагрузки

Соблюдение этих правил позволит избежать поражения электрическим током и выхода блока питания из строя.


Схема простого трансформаторного блока питания с регулировкой напряжения 0—12 вольт. « ЭлектроХобби

Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1. 2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

Видео по этой теме:

P.S. Эту электрическую схему простого регулируемого блока питания я когда-то давно (когда сам начинал заниматься электроникой) собрал для себя. Он меня не разу не подводил, я им проверял устройства, запитывал самодельные схемы, заряжал различные аккумуляторы и т.д. При желании этот блок питания можно доработать и снабдить дополнительными функциональными элементами, такими как внутренний вольтметр, амперметр, защиты от перегрузки и т. д.

Блоки питания 12 Вольт 0.5(1) Ампер. Обзор блока питания, схема и внутреннее устройство блока питания 12В, тестирование

$5.89 (3 шт)

Перейти в магазин

Многие читатели знают, как мне нравится писать обзоры о блоках питания. И вот так случайно сложилось, что я дорвался до некоторого количества данных устройств. Все дело в том, что не так давно в одном известном магазине появились разнообразные блоки питания «с разборки», и об одном я сегодня расскажу.

Еще в прошлом году я написал в комментах, что скоро будут обзоры разных блоков питания и я имел в виду именно эти блоки питания. Заказал я их несколько видов, три мелких «БУ» и один новый, довольно мощный. Рассказывать буду «по старшинству», потому начну с самого мелкого.
Так как блоки питания я использую часто, то заказал лотом в три штуки, но есть лоты и 1 и 5 и 10 штук. Данный блок питания не является исключением и будет использован в одном из обзоров, который я планирую подготовить в относительно скором времени.

Поставляются блоки питания в отдельных больших пакетах, а не три в одном пакете, как я изначально подумал. Т.е. фактически на складе просто ставится отметка, сколько позиций положить в корзинку.
К упаковке претензий не было, все обильно замотано вспененным полиэтиленом.

В заголовке я написал ток 0.5 (1) Ампер. По ходу обзора я поясню что это означает.
На странице товара было написано — 12 Вольт, 1 Ампер, что более чем понятно. Также там написано, что блоки питания disassemble, т.е. не новые, а выковыряны откуда-то. Моя практика показывает, что такие БП чаще имеют лучше качество сборки и схемотехники, чем новые.

Блоки питания довольно компактные, реальные размеры составляют примерно 57х35х19мм.

Компоновка платы довольно плотная, частично залита силиконом, который в некоторых местах потом пришлось срезать.
Так как плата БУ, то заметны обрезанные провода.

Платы имеют разный цвет гетинакса, да и выпущены в разное время, но все три в интервале 2007-2008 годов.

Также на платах была обнаружена и маркировка модели — 3A-064WU12, по которой я нашел их реальные характеристики.

12 Вольт, 0.5 Ампера, 6 Ватт, КПД при 115 Вольт — 74%. Там же есть и название фирмы производителя — Eng Electric Co., LTD. Так что блоки питания вполне себе фирменные.

На странице товара также есть упоминание о токе в 0.5 Ампера, но указанное как-то вскользь. Думаю подразумевалось, что 0.5 номинальный, 1.0 кратковременный. Но в любом случае, данные характеристики правильно и указывать в разделе характеристики, а не в названии товара.

Ладно, вернемся к нашим блокам питания.
1. По входу стоит предохранитель на ток в 1 Ампер. Предохранитель замедленный (T- Trage — медленные нем.), это обусловлено импульсным характером тока при включении блока питания.
2. Также по входу присутствует варистор диаметром 7мм и рассчитанный на амплитудное напряжение в 470 Вольт. Рядом с ним виден помехоподавляющий конденсатор Х типа с емкостью 0.1мкФ
3.

Дальше синфазный дроссель и диодный мост.
4. Первичная и вторичная стороны соединены через конденсатор Y типа с емкостью 2.2нФ.
По большому счету можно было бы поставить пять баллов за фильтр, если бы не два недостатка:
1. Нет термистора, но возможно здесь в нет особого смысла, емкость входных конденсаторов не очень высокая.
2. Параллельно конденсатору Х типа нет разрядного резистора, без него БП может «щипаться» если вынуть вилку из розетки и сразу схватиться за ее контакты.

При этом плюс производителю за наличие помехоподавляющего фильтра и варистор.

1. По входу БП установлены два конденсатора емкостью 6.8мкФ каждый, суммарная емкость 13.6мкФ, что для заявленной мощности в 6 Ватт вполне нормально.
2. Но конденсаторы соединены не просто параллельно, между ними дополнительно включен дроссель. На фото не видно цветовую маркировку — коричневый-черный-красный-золотой.
3. Управляет работой блока питания довольно известный ШИМ контроллер VIPer-12A.


4. Рядом с контроллером находится конденсатор фильтра питания этого контроллера. Часто эти конденсаторы могут незаметно выйти из строя и «попить крови», так как внешне остаются нормальными. Если БП БУ, то рекомендую заменять их в первую очередь.

Силикон, которым залита плата, имеет небольшой желтый оттенок. Сначала я решил что это из-за нагрева компонентов, но цвет одинаков даже около компонентов, которые не греются.

Как я уже писал выше, применен ШИМ контроллер серии VIPer. Это семейство интегрированных ШИМ контроллеров, внутри корпуса микросхемы находится не только сам ШИМ контроллер, а и высоковольтный транзистор, цепи защиты от перегрузки, перегрева и перенапряжения.
Я обычно пользуюсь подобными контроллерами от другой, не менее известной фирмы — Power Integrations, мне они нравятся больше. Но по большому счету они во многом очень похожи.

Заявлено, что для корпуса DIP-8 мощность составляет 13 Ватт в узком диапазоне (230 Вольт) и 8 Ватт в широком (115-230 Вольт). Так как БП заявлен как 115-230, то получается что реальная мощность до 8 Ватт.

На блок схеме виден выходной транзистор, а также цепи защиты. В принципе я мог бы рассказать обо всем этом подробнее, но на мой взгляд это скорее тема отдельной статьи.

Во вторичной части блока питания находятся:
1. Выходной диод Шоттки на ток 2 Ампера, что опять же говорит о максимальном выходном токе не более 650-700мА. На одном из выводов диода присутствует ферритовая бусина.
2. Выходных конденсаторов два, 470 и 220мкФ, как и в случае входных производитель Samxon. Не скажу что конденсаторы высокого класса, скорее среднего, изначально это OEM от фирмы Matsushita продающийся под своим брендом. Лично меня расстроило то, что они рассчитаны на 16 Вольт, а не 25, как положено при таком напряжении.

3. Между конденсаторами есть место под дроссель для уменьшения пульсаций, но вместо него установлена перемычка.
4. Цепь стабилизации стандартна, регулируемый стабилитрон AZ431 (аналог TL431) и оптрон EL817 (аналог PC817).

По выходной цепи не понравились две вещи:
1. Отсутствие выходного дросселя.
2. Конденсаторы на 16 Вольт, а не 25.

В остальном все сделано довольно неплохо.

Качество пайки вполне терпимое. Снизу расположены остальные компоненты, а также пара стабилитронов, о которых я расскажу ниже.
Расстояние между высоковольтной и низковольтной сторонами вполне достаточное. Отсутствуют защитные прорези, но так как БП изначально проектировался под установку в закрытый корпус, то допустимо делать и так.

Схема блока питания в общем-то стандартна и фактически сделана по даташиту ШИМ контроллера. Из дополнительных мелочей, которые весьма полезны в плане безопасности нагрузки я отмечу пару стабилитронов.
ZD1 — Напряжение 14 Вольт, установлен параллельно выходу, задача — не допустить поднятия выходного напряжения выше 14-14,5 Вольт.
ZD2 — Напряжение 16 Вольт, установлен параллельно транзистору оптрона, задача — ограничить выходное напряжение в случае обрыва или выхода из строя цепи обратной связи.

В комментариях мне несколько раз писали, что я не совсем правильно подхожу к тестам уровня пульсаций. Что же, я принял информацию к сведению и попробую в этот, а также в следующие раз делать это более корректно.

Дело в том, что при измерениях я подключаюсь обычно используя «неправильный» способ, как более удобный. В этом случае земляной провод щупа работает отчасти как антенна, на которую наводятся помехи и искажают осциллограмму. Такой способ для общей оценки большого значения не имеет, но действительно является некорректным.
Картинка ниже взята из описания методики тестирования блоков питания.

Для корректного снятия осциллограмм надо подключать щуп без длинных проводов прямо на выход блока питания.

Как можно увидеть по фото, щуп осциллографа помимо земляного провода с крокодилом имеет возможность подключения сразу около самого щупа.
Используя «палки и веревки» я сделал некое подобие специального щупа для проверки блоков питания, наиболее неудобно было подключаться к центральному контакту, так как он имеет коническую форму.
Параллельно входу подключены два конденсатора, электролитический 1мкФ 63 Вольта и керамический 0.1мкФ.

Конечно то, что я показал выше, можно назвать колхозом, но даже довольно известные фирмы (та же Power Integrations) не чураются делать подобное, правда они использую для этого разъем, но у меня его не было :(.
Фото из описания применения ШИМ контроллеров серии TOP от Power Integrations, номиналы элементов взяты оттуда же.

Щуп осциллографа был подключен прямо на выходные контакты блока питания, нагрузка к дополнительно запаянному проводу.
В процессе подготовки я сравнивал осциллограмму на холостом ходу с подключенной нагрузкой и без, разницы не было.

Первое, что меня удивило при включении, напряжение на выходе 12 Вольт с точностью как минимум до второго знака. По большому счету это не имеет значения и даже если бы напряжение было в диапазоне 11.5-12.5 Вольта, то я бы сказал что нормально, но все равно приятно.
1. Холостой ход.
2. 0.25 Ампера
3. 0.5 Ампера
4. 0.75 Ампера
5. 1 Ампер
6. 1.2 Ампера.

Видно что напряжение на выходе стало падать только при токе нагрузки выше 0.75 Ампера, что в полтора раза выше заявленного. До этого напряжение держалось очень точно и снижалось примерно на 0.001 Вольта на каждые 0.25 Ампера нагрузки.

Уровень пульсаций я бы не назвал маленьким, при номинальном токе 0.5 Ампера они составили 100мВ, но даже при перегрузке не были выше чем 140 мВ.

Исследование показало, что максимальный ток, при котором блок питания стабильно держит выходное напряжение, составляет 0.9 Ампера. И это для не нового БП и при почти двукратном выходном токе.

Также мне писали, что неправильно тестировать блоки питания используя электронную нагрузку. В данном случае я несогласен с таким заключением, так как в линейном режиме полевые транзисторы нагрузки по сути представляют собой те же резисторы, но с обратной связью.
В любом случае я ради эксперимента сравнил поведение блока питания при нагрузке обычным резистором с номиналом в 10 Ом (что было под рукой). На фото видно, что плюсовой щуп нагрузки не подключен.
Напряжение конечно просело, так как ток явно выше расчетного.

Слева осциллограмма нагрузки током 1 Ампер при помощи электронной нагрузки, справа 1.08 Ампера и резистор в качестве нагрузки.
Не сказал бы, что имеется какая-то глобальная разница.

Следующий этап, тест на нагрев. Для этого я закрыл блок питания импровизированным «корпусом» и нагружал последовательно током от 0.25 Ампера до 0.9 Ампера. Ток в 0.9 Ампера был выбран исходя из того, что при этом токе БП еще нормально держит выходное напряжение. Каждый тест занимал 20 минут, общее время теста 1 час 20 минут.

Все данные свел в табличку, попутно ввел новую графу и теперь указано напряжение на начало теста (V1) и в конце (V2). Данное дополнение позволяет отследить уход напряжения от прогрева.
Само напряжение сначала может показаться менее стабильным, чем в тесте выше, но там я подключался прямо к контактам БП, здесь же с использованием куска провода, потому и вышла разница. Но могу сказать, что температурной зависимости выходного напряжения практически нет.
Зато выяснилось, что при токе нагрузки в 0.9 Ампера БП примерно через 5-7 минут снизил выходное напряжение.

Максимальная температура компонентов после завершения теста составила около 100 градусов у трансформатора и 118 у ШИМ контроллера. При токе до 0.75 Ампера (1.5 от номинала), перегрева нет.

Так выглядело ограничение выходной мощности. Я провел повторный тест на уже прогретом БП чтобы было более наглядно.
Старт, через 6 минут постепенное снижение напряжения, на отметке 20 минут я снял крышку, напряжение начало потихоньку расти, еще примерно через 15 минут пришлось несколько раз подуть на плату и напряжение быстро вернулось в норму.

Выше я посетовал на отсутствие выходного дросселя и решил эту недоработку сравнить, а заодно сравнить как изменится результат.
Использовал мелкий самодельный дроссель, буквально что было под рукой. Размер небольшой, намотан проводом 0. 68мм.

Результат как говорится — налицо.
1, 2. Ток 0.5 Ампера, слева без дросселя, справа с дросселем.
3, 4. Ток 1.0 Ампера.

Предупрежу сразу, дроссель не должен иметь большую индуктивность, так как при увеличении индуктивности начнут сильно расти пульсации на первом конденсаторе фильтра и это будет вредно как для самого конденсатора, так и для защитного стабилитрона, установленного параллельно ему. Придется менять конденсатор на аналогичный, но с напряжением в 25 Вольт, а стабилитрон переносить на выход БП.

На этом все. Если коротко, то блоки питания хоть и не лишены некоторых недостатков, перечисленных в обзоре, но в целом довольно неплохие и могут быть применены для разных самодельных устройств, где не требуется большая мощность (6-8 Ватт). Блоки питания вполне фирменные и относительно качественные.
Поштучно выходят дороже и потому если покупать, то лотами по 3 или 5 штук.

Надеюсь что обзор был полезен, как всегда буду рад вопросам в комментариях.

$5.89 (3 шт)

Перейти в магазин

Простая схема источника питания 12 В, 3 А

Введение:

Каждое электронное устройство должно питаться от источника переменного или постоянного тока. Чтобы удовлетворить требования к источнику питания постоянного тока, мощность переменного тока преобразуется в постоянный ток с помощью простых схем, что дает на выходе неизменную и полностью контролируемую мощность постоянного тока. Регулируемые источники питания также известны как линейные источники питания.

Простая схема регулируемого источника питания в основном состоит из обычного источника питания с устройством, которое регулирует выходное напряжение в соответствии с требованиями. Здесь мы создадим схему с диапазоном выходного напряжения до 12 В и выходным током до 3 А, которую можно использовать в приложениях, требующих выходного тока до 3 А. Это простая встроенная схема, состоящая из нескольких блоков, подробное объяснение которых приведено ниже.

Купить на Amazon

Аппаратный компонент

Следующие компоненты необходимы для создания цепи питания 12 В

9 0035 12 В
Серийный номер Компоненты Значение Количество 900 24
1. Трансформатор 1
2. Мостовой выпрямитель 5A 1
3. Стабилитрон 1
4. Транзистор 2N3055 1
5. Резистор 680 Ом 1
6. Электролитный конденсатор 5000 мкФ 1
7 . 2Н3055

Цепь источника питания 12 В

Описание работы:

В схеме используются трансформатор, мостовой выпрямитель, транзистор 2N3055, стабилитрон и несколько пассивных компонентов. Схема на выходе даст постоянное напряжение 12В и ток до 3А.

Трансформатор представляет собой электрическое устройство, которое по принципу электромагнитной индукции передает энергию от одной цепи к другой без изменения частоты. Трансформатор является основной частью источника питания, который получает 230 В переменного тока на первичной обмотке и понижает его до 12 В переменного тока на вторичной обмотке. Следующий блок в последовательности представляет собой мостовой выпрямитель, в котором используются диоды для преобразования мощности переменного тока в постоянный посредством однополупериодного или двухполупериодного выпрямления. Выход трансформатора подается на мостовой выпрямитель, который преобразует сигнал переменного тока в пульсирующий сигнал постоянного тока. Выходной сигнал постоянного тока имеет фиксированную полярность, а его величина зависит от времени.

Прежде чем продолжить, пульсирующий сигнал постоянного тока, полученный от выпрямителя, фильтруется с помощью конденсатора, чтобы получить непульсирующий сигнал постоянного тока. Следующий блок известен как регулятор напряжения, который состоит из стабилитрона и резистора. Резистор работает как источник ограничения тока, а стабилитрон работает как источник ограничения напряжения. Стабилитрон не может ограничивать напряжение при малой мощности, поэтому требуется резистор. Далее используется транзистор 2N3055, который работает как усилитель тока, получая опорное напряжение от стабилитрона, работающего в схеме усилителя с общей базой. Последний блок устраняет пульсации непульсирующего сигнала постоянного тока с помощью конденсатора, и, наконец, на выходе достигается постоянное напряжение постоянного тока без пульсаций.

Области применения:

Блок питания 12 В используется во многих приложениях, некоторые из них перечислены ниже:

  • В большинстве цифровых устройств используется питание 12 В, таких как DVD-плееры, аудиоаппаратура, ЖК-экраны, жесткие диски и т. д.
  • Сотовые телефоны , фонари и электромобили также используют источник питания постоянного тока для работы.
  • Электроника В проектах «Сделай сам» используются источники питания 12 В постоянного тока.
  • Для передачи голоса, аналоговых сигналов или данных используется источник питания 12 В постоянного тока.

Таким образом, существует ряд приложений, в которых используются источники питания 12 В постоянного тока.

Похожие сообщения:

Цепь источника питания постоянного тока 12 В

ТЕОРИЯ РАБОТЫ, ПРИНЦИП РАБОТЫ, СХЕМА ПЕЧАТНОЙ ПЛАТЫ

Главная | Справочник | Учебник | Топологии | ИИП дизайн | Тепловой расчет | | Программное обеспечение | дизайн печатной платы | Блок питания компьютера | ИБП | Цепь | Трансформеры | Формулы | Справочник по ЭЭ | инверторы | Генераторы | Солнечная

ОПИСАНИЕ.

На приведенной ниже принципиальной схеме показана простая тривиальная недорогая схема автономного импульсного источника питания 12 В постоянного тока мощностью 50 Вт. Его можно использовать для домашних проектов «сделай сам» или для изучения работы обратноходовых преобразователей. Этот блок питания может работать от универсальной входной сети переменного тока в диапазоне 90–264 В переменного тока. Он обеспечивает номинальное выходное напряжение 12 В постоянного тока при нагрузке более 4 А. Регулировка линии и нагрузки лучше, чем 0,5%.

Устройство имеет защиту от перегрузки по току, перегреву и перенапряжению, а также пассивное ограничение пускового тока. Пульсации на выходе составляют примерно 0,2 В от пика до пика в диапазоне от 0 до 20 МГц. Если вам нужно уменьшить пульсации, вы можете установить дополнительный выходной конденсатор или LC-фильтр вне контура обратной связи. Этот проект представляет собой модификацию схемы на 24 В, которую я разработал много лет назад в качестве консультанта для небольшой компании. Эта компания нуждалась в сменной замене дешевого готового блока питания переменного тока в постоянный, который имел длительный срок поставки. К тому времени, когда я закончил дизайн и построил прототип, они нашли готовую деталь в другом месте на складе. Таким образом, они так и не приступили к производству этого модуля. Соответственно, я не тестировал эту конструкцию, кроме базового ТГВ. Вы можете построить эту схему для личного использования (конечно, на свой страх и риск). Но вам не разрешается переиздавать содержимое этой страницы где бы то ни было или использовать его в коммерческих целях без моего разрешения.

ПРЕДУПРЕЖДЕНИЕ.

Для безопасного тестирования или устранения неполадок в этой цепи рекомендуется питать ее через изолирующий трансформатор или от изолированного источника переменного тока. Также обратите внимание, что автономный однотранзисторный обратноходовой преобразователь генерирует внутреннее напряжение, которое может достигать 600 В. Не пытайтесь играть с этой схемой, если вы не достигли совершеннолетия, не разбираетесь в силовой электронике и не знаете, как безопасно обращаться с высоким напряжением. Возможно, вы захотите пройти наш быстрый тест по безопасности источников питания.

СХЕМА:

РАБОТА ЦЕПИ.

Этот источник питания переменного тока в постоянный использует обратноходовую схему, которая представляет собой простейшую топологию преобразователя SMPS. В качестве коммутационного устройства используется полевой МОП-транзистор 800 В/11 А (Q1) и ШИМ-контроллер UC3844AN (U3). Входная секция включает в себя предохранитель, фильтр электромагнитных помех, резистор R1 ограничения пускового тока NTC, мостовой выпрямитель CR1 и конденсатор фильтра звена постоянного тока C2.
Начальный пусковой ток микросхемы ШИМ обеспечивается «продувочными» резисторами R7, R8, пропускающими небольшой ток, который заряжает конденсатор Vcc C7. Когда вывод Vcc U3 достигает положительного порога блокировки минимального напряжения (обычно 14–16 В), ИС начинает работать и будет включать и выключать переключатель Q1 через резистор управления затвором R4 с фиксированной частотой (в этой схеме это 100 кГц). Когда Q1 включается, напряжение шины постоянного тока подается на первичную обмотку трансформатора T1, ток через первичную обмотку трансформатора увеличивается, и энергия накапливается в магнитном поле трансформатора. Диоды D4 и D7 в течение этого интервала времени находятся в обратном смещении. Когда Q1 выключается, энергия, накопленная в магнитном поле, заставляет напряжения на всех обмотках менять полярность. В результате выходные выпрямители D4 и D7 проводят ток, и накопленная энергия передается на выход и в цепь смещения. Как только преобразователь запускается, смещение для ШИМ управления поступает от обмотки смещения трансформатора.
В контуре управления с обратной связью на вторичной стороне используется прецизионный шунтирующий регулятор D1 TL431 как в качестве опорного сигнала, так и в качестве усилителя ошибки. Он сравнивает разделенное выходное напряжение с внутренним опорным напряжением D1 2,5 В. Оптопара U1 подает ток, пропорциональный сигналу ошибки, через границу гальванической развязки трансформатора обратно на первичный ШИМ. Если точная регулировка выхода не требуется, обратная связь может быть снята с напряжения смещения на С9 и через делитель подан на вывод обратной связи 2.
Первичный ток в Т1 измеряется резистором R6. Это напряжение измерения тока подается через пиковый фильтр на клемму измерения тока U3, где оно сравнивается с уменьшенным сигналом ошибки на компенсационном контакте 1. Когда линейное изменение напряжения измерения тока достигает 1/3×(V , контакт 1 -1 ), импульс прекращается и Q1 выключается.
Стабилитрон D6 с оптопарой U2 обеспечивают нефиксирующую защиту выхода от перенапряжения.
Термовыключатель отключает источник питания, когда температура на радиаторе MOSFET превышает 95-100 оС.

Вот полная спецификация. Отметим, что он был составлен более десяти лет назад. Некоторые номера деталей могут нуждаться в замене.

ПЕЧАТНАЯ ПЛАТА:


СИЛОВОЙ ТРАНСФОРМАТОР



Дизайн трансформера здесь может выглядеть необычно. Обратите внимание, что обратноходовой трансформатор работает как индуктор: он накапливает энергию в магнитном поле в течение периода включения Q1. Затем он передает его (за вычетом потерь) во вторичные цепи в течение периода ВЫКЛ Q1. Для эффективного накопления энергии при минимальных физических размерах необходим немагнитный зазор последовательно с материалом магнитного сердечника с высокой магнитной проницаемостью. В конструкции обратноходового трансформатора обычно используются ферритовые сердечники с физическим зазором или сердечники из порошкового металла с изначально присутствующим распределенным зазором. Ферриты с зазором обычно имеют меньшие потери, но имеют крутую кривую насыщения. Порошковые сердечники имеют более высокие потери, но их кривая B(H) мягкая и они лучше справляются с переходными процессами перегрузки. Среди других форм-факторов тороидальные трансформаторы имеют самую низкую индуктивность рассеяния. В этом блоке питания трансформатор изготовлен из порошкового тороидального сердечника KoolM.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *