Читать электрические схемы: В какой последовательности читают схемы. Как читать монтажные схемы и делать по ним монтаж. Стандартные цепи питания и соединение элементов

Содержание

Как читать электрические схемы


Научиться читать принципиальные электрические схемы, используемые при обустройстве квартир, не так уж и сложно. Для этого не обязательно иметь специальное образование, нужно только знать, что обозначают кружочки и линии, нанесенные на чертежах. Чаще всего на самой схеме есть пояснения по условным графическим обозначениям (УГО), поэтому разобраться, где проложены провода, встроены розетки, выключатели, установлены светильники и прочее оборудование, достаточно просто.

К чертежу отдельным листом может быть приложена спецификация оборудования. Она может находиться и поле листа в виде таблицы с цифровой сортировкой. Перечень элементов в спецификации выполняется в алфавитном порядке.

Самые распространенные условные графические обозначения

Электрокабели на чертежах однофазной сети показаны сплошной линией. Для бытовых условий подают именно однофазный переменный ток напряжением 220 вольт. Его получают из трехфазного с помощью нулевого проводника, поскольку генерировать отдельно однофазный экономически невыгодно.

Кабели прокладывают строго горизонтально или вертикально. Согласно требованиям стандартов пересечения проводов лучше избегать, но если они пересекаются, то только под углом 90 градусов. Жирная точка на отрезке означает спайку или соединение кабелей.

Разделение на линии

Электросеть в квартире разделена на несколько линий. Такое решение наиболее рациональное, поскольку при возникновении неисправностей в сети можно отключить от питания только одну группу, в то время как остальные будут работать в штатном режиме.

Например, если в спальне вышла из строя розетка или там необходимо повесить и подключить новую люстру, вовсе не обязательно отключать от питания кухню или санузлы. Разделение на группы выполняют не только в больших квартирах, но также и в малогабаритных. В каждой современной квартире предусматривают подключение стиральной машины, которая относится к категории мощных бытовых приборов. Для нее нужно отдельное подключение с аппаратом защиты.

Электрическая разводка не зависит от числа помещений в доме, при этом:

  • розеточную осветительную сети делят по количеству комнат;
  • для ванны и туалета предусматривают две группы;
  • для кухни, в том числе совмещенной с гостиной или столовой выделяют три системы снабжения: отдельно для крупной бытовой техники, для осветительных приборов и мелкого кухонного оборудования.

Провода к розеткам, выключателям, светильникам идут от распределительных коробок, которые расположены под потолком. Их прокладывают только параллельно или под прямым углом относительно друг друга.

Розетки

Если в розетка предусматривает подключение только одной вилки, то ее изображают с одним отрезком, идущим вверх, если в нее можно воткнуть одновременно две вилки, то таких отрезков будет два. Устройства на три гнезда, соответственно, изображают с тремя палочками вверх.

Выключатели

На электрических чертежах выключатели изображают в виде кружочков и ответвлений.

Палочки в форме буквы «Г» означают, что прибор установлен открыто, в виде буквы «Т» – устройство скрытого монтажа.

Выключатели могут быть одно-, двух-, трехклавишными. Помимо обычных в коридорах, жилых комнатах, на лоджиях устанавливают проходные модели, удобные тем, что с ними один и тот же источник света можно отключить из нескольких точек.

Светильники

Глядя на эскиз, можно понять под какой тип светильников в ней предусмотрен монтаж. На чертеже указывают даже типоразмер приборов.

Заземление

Защитное заземление для жилых объектов обязательно. Оно выполняется для предупреждения рисков удара электрическим током. В домах, введенных в эксплуатацию после 1998 года применяют системы заземления TN-S и TN-C-S. Его реализуют за счет прокладки трехжильного кабеля, соединения приборов с заземляющим контуром.

Как правильно прочитать электрическую схему

Прежде всего визуально ознакомьтесь с графическим документом, обратите внимание на текстовую информацию, присутствующую в чертеже или приложенную отдельными листами.

Далее:

  1. Найдите на схеме компоненты, указанные в перечне, пересчитайте их и убедитесь в том, что ваше число совпадает с указанным количеством УГО в спецификации.
  2. Определите основные узлы.
  3. Изучите каждый участок электросети, определите основные и вспомогательные элементы, ориентируясь на данные спецификации и чертеж.
  4. Пройдите с чертежом в руках по комнатам, посмотрите, где на схеме указана то или иное функциональное устройство сориентируйтесь, где находятся распределительные коробки, как проложена разводка.

Приобрести все необходимые для ремонта электропроводки товары вы можете в нашем интернет-магазине. Наши менеджеры окажут специализированную помощь и помогут подобрать необходимый для вас товар. Чтобы сделать заказ или узнать стоимость звоните по телефону +7 499 707 14 60 или оставляйте заявку [email protected] и мы Вам перезвоним сами!

Как составить схему электропроводки в квартире или доме

Во время капитального ремонта или первичной отделки помещения часто возникает вопрос прокладки новой проводки. К сожалению, нередки случаи, когда проводка прокладывается «на глазок» без продуманного плана. Это может привести к ряду негативных последствий:

- Розетки и выключатели закрыты после финальной расстановки мебели.

- Лишние затраты на материалы при монтаже электроточек, которые не будут использованы.

- Недостаток розеток и выключателей в необходимых местах.

- Опасность попадания в кабель при сверлении отверстия в стене.

- Отсутствие возможности ремонта электросети при скрытом монтаже.

Правильно составленная схема электропроводки в доме или квартире поможет избежать всех перечисленных выше проблем и сделает использование электроприборов более комфортным.

Какие должны быть обозначения на электрических схемах

Прежде чем изобразить электрическую схему, нужно ознакомиться со схематическими обозначениями всех её элементов. Зная их, вы сможете не только составить собственный план проводки, но и читать электрические схемы, составленные электриками. Все условные обозначения элементов проводки прописаны в ГОСТ 21.210:2014 (для стран СНГ), а также ДСТУ Б А.2.4-19:2008 (Украина). Часто используемые обозначения представлены в таблице:

 

Общее обозначение выключателя

 

Общее обозначение двухполюсной штепсельной розетки

 

Однополюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки со степенью защиты от IP20 до IP23

 

Двухполюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная розетка открытой установки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Сдвоенная двухполюсная штепсельная розетка для открытой проводки со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Штепсельная розетка с защитным контактом со степенью защиты от IP44

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Блок выключателя и штепсельной розетки для открытой проводки со степенью защиты от IP20 до IP23

 

Светильник с лампой накаливания

 

Блок из трех выключателей и штепсельной розетки для скрытой проводки со степенью защиты от IP20 до IP23

 

Светильник с несколькими лампами (люстра)

 

Распределительная коробка

 

Общее обозначение линии проводки

 

Общее обозначение электрощита

 

Обозначение количества проводников в линии проводки

 

Шкаф распределительный

Изучив необходимые элементы электрических схем, можно приступать к созданию схемы проводки.

Этапы построения схемы проводки

Правильное построение схемы состоит из нескольких этапов, которые помогают наиболее точно произвести разметку проводки.

1. Общий план квартиры или дома. 

Для того, чтобы изобразить схему проводки, нам потребуется план всех помещений, в которых предполагается сделать проводку электричества. Для этого можно сделать несколько копий с техпаспорта на квартиру. Также удобно использовать план помещений, перенесенный на лист в клеточку, где одну клеточку можно условно принять за полметра. Очень важно отметить на плане наличие дверей, с указанием в какую сторону они открываются.

Нам потребуется минимум две копии плана помещения – для плановой расстановки мебели и для составления электросхемы.

2. Плановая расстановка мебели.

 На данном этапе определяется, где какие бытовые приборы и элементы мебели будут размещаться и определяются места будущей установки розеток и выключателей. На листе с планом помещения прорисовываем основные элементы мебели.

Желательно это выполнять цветными ручками или карандашами, где цветом выделять приборы, которые потребляют электроэнергию.

3. Определение мест и количества розеток.

 Когда проект расстановки мебели готов и определены точки потребления электричества, можно приступать к нанесению на электросхему розеток. Их нужно размещать в местах установки бытовой техники с учетом количества и мощности потребителей. Планируя размещение розеток, учтите, что они должны находиться в отдалении от нагревательных приборов.

4. Определение типа, размещения и количества осветительных приборов. 

Тщательно продумайте систему освещения помещений и отметьте на электросхеме все точки освещения.

5. Определение места и типа выключателей.

 Когда выбрана система освещения, нужно определить место под выключатели. Для того чтобы выключатели были в доступных местах важно обозначить в какую сторону будут открываться двери. Комфортной считается установка переключателей на расстоянии 10-20 см от дверного проёма.

6. Разбивка потребителей электроэнергии по группам. 

После того как составлен проект расстановки техники и мебели, а также составлена схема размещения электроточек, нужно провести разделение потребителей электроэнергии на группы. Благодаря этому снижается нагрузка на проводку, что способствует стабильности работы электросети. Рекомендуется отдельно выделить линии розеток, освещения, а также для потребителей мощностью свыше 2 кВт: электропечь, духовка, стиральная или посудомоечная машина, теплый пол, электрокотел и пр.

7. Выбор способа монтажа проводки.

 На данном этапе нужно внимательно осмотреть помещение и установить:

- Где находятся перекрытия и несущие стены?

- Есть ли специальные каналы для проводки в плитах, а также, в каком они состоянии?

- Будут ли устанавливаться подвесные или натяжные потолки?

- Есть ли возможность штробирования стен и потолка или готовые штробы?

- Какая будет отделка стен?

- Где будет находиться электрощиток?

Ответив на каждый из перечисленных пунктов можно определить оптимальный вариант прокладки проводки. Так, например, если планируется монтаж подвесных или натяжных конструкций на потолке, то можно значительно сократить расходы на кабель, а также его монтаж, если проложить его в коробе или гофротрубе по наименьшему расстоянию по потолку.

8. Прокладка магистралей и определение места для распределительных коробок. 

Схему разводки электропроводки нужно начинать с самой удаленной от электрощитка точки. Если в помещении находится несколько электроточек, то целесообразно установить распределительную коробку на выходе. Прорисовываем все проводники, идущие от электроточек на схеме по каждой комнате.

9. Соединение распределительных коробок с электрощитом. 

После того, как на чертеж нанесены все проводники по всем комнатам и обозначены распределительные коробки, нужно соединить их с электрощитом. На каждую выделенную группу потребителей нужно провести отдельную линию.

На каждом этапе построения электросхемы квартиры или дома можно указывать расстояние до тех или иных предметов, способ и глубину укладки провода, его сечение, тип и мощность осветительных приборов и пр. Детализация схемы поможет точно определить местонахождение скрытой проводки, а также облегчит расчеты материалов.

ДСТУ Б А.2.4-19:2008 

Оцените новость:

VOLVO как читать электрические схемы - статьи по ремонту автомобилей - статьи полезные о автоэлектрике

VOLVO как читать электрические схемы


Ниже описан оригинал текста,а под текстом дан перевод на русский язык

1- Refer to the list of contents for the designation of the
circuit diagram. If the circuit diagram designation is
boxed in with broken lines this means that the circuit
diagram is not standard on all market or vehicle
models.
ПЕРЕВОД
 1- Обратитесь к списку содержания для обозначения принципиальной схема. Если обозначение принципиальной схемы окруженный с ломаными линиями это означает что схема или диаграмма не стандартная на всей схеме транспортном средстве и зависит от модели.

2- Seek column.
ПЕРЕВОД
2- Ищите колонку.

3- 30 Voltage battery, kl. 30.
15 Voltage with starting key in drive position, kl.15.
61 Voltage when alternator charges, kl.61.
Reference arrow (for circuit diagram EA, seek column 13).
ПЕРЕВОД
3- 30 батарей Напряжения, kl.30.
15 Напряжений со стартовым ключом в положении зажигания, kl.15.
61 Напряжение, когда генератор переменного тока заряжает (вращается двигатель), kl.61.
Справочная стрелка (для ЗЕМЛИ -массы принципиальной схемы, ищите колонку 13).

4- Switch, comp. no. (104).
ПЕРЕВОД
4- выключатель номер 104

5- Single lines, cables.
ПЕРЕВОД
5- Единственная линия, кабель.

 6- Relay, comp. no. (303).
ПЕРЕВОД
6- реле под номером 303

7- Cable area and colour (0.75 mm2 blue).
ПЕРЕВОД
7- провод с обозначением цветовой маркировкою и сечением

8- Connector (CLA terminal 4).
ПЕРЕВОД
8- обозначение разьема и порядкового пина в разьеме

9- Bulb, comp. no. (403)
A broken line box round the component number
shows that the component is not standard on all mar-
kets or vehicle models.
ПЕРЕВОД
9- Лампочка, под номером (403) прямоугольник пунктирной линии вокруг числа означает, что компонент не стандартный и зависит от модели транспорта 

10- If the line is broken this means the cable is not stan-
dard on all markets or vehicle model.
ПЕРЕВОД
10- если линия пунктирная-означает,что присутствие зависит от модели транспорта

11- Earth connection point no: 2. and earth terminal no: 4.
(see diagram Earth Connections).
ПЕРЕВОД
11- номер точки заземления

12- Joint sleeve.
ПЕРЕВОД
12- совмещенная точка подключения массы

условные обозначения на электрических схемах VOLVO

Чтение электрических схем | Электромонтер по монтажу вторичных цепей

Страница 14 из 45

Прочитать схему электрических соединений — это значит получить все данные об аппаратах, приборах и проводниках, составляющих данную схему, определить их назначение и порядок работы.
Чтение схемы какого-либо устройства начинают с определения ее назначения, записанного в угловом штампе, и знакомятся с примечаниями на чертеже.
Читать схему соединений вторичных цепей нужно после предварительного изучения схемы первичной цепи.
Разбирать схему надо начиная от источников питания (от аккумуляторных батарей, вторичных обмоток трансформаторов напряжения и тока и т.п.).
Схема состоит из нескольких электрически не связанных между собой цепей, поэтому поочередно рассматривают каждую цепь в отдельности. Лучше сначала разобрать схемы цепей, питаемых от вторичных обмоток трансформаторов тока, а затем перейти к цепям тока управления.

Рис. 54. Развернутая схема управления асинхронным короткозамкнутым электродвигателем с торможением противовключением

В качестве примера можно прочитать принципиальную схему управления асинхронным короткозамкнутым электродвигателем с торможением противовключением (рис. 54).
На схеме все элементы аппаратов изображены в положении, когда по ним не протекает ток. Включив линейный рубильник, подают напряжение в цепи управления. Запускают двигатель нажав кнопку «пуск», которая замкнет цепь катушки линейного контактора Л.
Проследим эту цепь: фаза Л2, предохранитель, кнопка «стоп», кнопка «пуск», размыкающие блок-контакты контактора торможения Т, катушка контактора Л, контакты тепловых реле 1РТ и 2РТ, фаза Л3. По цепи пройдет ток, и контактор Л включится. Одновременно замкнутся замыкающие блок- контакты Л и разомкнутся размыкающие блок-контакты Л. Двигатель наберет обороты, и индукционное реле скорости РКС, включенное в цепь катушки контактора торможения Т, замкнет свои контакты.
При отключении двигателя кнопкой «стоп» или автоматически замыкающие блок-контакты Л размыкаются, а размыкающие блок-контакты Л замкнутся и включат в цепь катушку контактора торможения Т. Контактор торможения будет включен до тех пор, пока скорость двигателя не приблизится к нулю и реле РКС разомкнет свои контакты и тем самым разорвет цепь катушки Т.
Можно рассмотреть более сложную принципиальную схему управления, блокировки и сигнализации электропривода трехсекционного конвейера (рис. 55). Блокировка здесь применена для предотвращения завала механизмов транспортируемым материалом в случае остановки первого или второго конвейера.
Схема работает так, что остановка любого из приводных электродвигателей влечет автоматическую остановку всех предыдущих электродвигателей (по ходу движения материала). Для этого в цепь управления магнитного пускателя каждого электродвигателя последовательно включают замыкающие 3 блок-контакты магнитного пускателя последующего электродвигателя.

Рис. 55. Развернутая схема управления, блокировки и сигнализации электропривода трехсекционного конвейера

Таким образом, магнитный пускатель 3К электродвигателя М3 третьего конвейера можно включить только тогда, когда замкнутся блок-контакты 2К3 магнитного пускателя 2К электродвигателя М2. В свою очередь магнитный пускатель 2К может быть включен после включения магнитного пускателя 1К электродвигателя M1 первого конвейера.
В схеме имеется также световая сигнализация положения пускателя, необходимая при диспетчерском управлении конвейерами. В выключенном состоянии каждого магнитного пускателя размыкающие Р контакты 1К2, 2К2, ЗК2 замкнуты и светятся зеленые лампы ЛЗ. При включении любого из магнитных пускателей указанные выше контакты размыкаются и разрывают цепь соответствующей зеленой лампы, а красная лампа ЛK через один из замыкающих 3 блок-контактов (1К1, 2К1, ЗК1) включается.

Как составить схему электропроводки в квартире или доме

Во время капитального ремонта или первичной отделки помещения часто возникает вопрос прокладки новой проводки. К сожалению, нередки случаи, когда проводка прокладывается «на глазок» без продуманного плана. Это может привести к ряду негативных последствий:

- Розетки и выключатели закрыты после финальной расстановки мебели.

- Лишние затраты на материалы при монтаже электроточек, которые не будут использованы.

- Недостаток розеток и выключателей в необходимых местах.

- Опасность попадания в кабель при сверлении отверстия в стене.

- Отсутствие возможности ремонта электросети при скрытом монтаже.

Правильно составленная схема электропроводки в доме или квартире поможет избежать всех перечисленных выше проблем и сделает использование электроприборов более комфортным.

Какие должны быть обозначения на электрических схемах

Прежде чем изобразить электрическую схему, нужно ознакомиться со схематическими обозначениями всех её элементов. Зная их, вы сможете не только составить собственный план проводки, но и читать электрические схемы, составленные электриками. Все условные обозначения элементов проводки прописаны в ГОСТ 21.210:2014 (для стран СНГ), а также ДСТУ Б А.2.4-19:2008 (Украина). Часто используемые обозначения представлены в таблице:

 

Общее обозначение выключателя

 

Общее обозначение двухполюсной штепсельной розетки

 

Однополюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки со степенью защиты от IP20 до IP23

 

Двухполюсный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная розетка открытой установки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Двухполюсная штепсельная розетка для скрытой проводки с защитным контактом со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Сдвоенная двухполюсная штепсельная розетка для открытой проводки со степенью защиты от IP20 до IP23

 

Однополюсный сдвоенный выключатель скрытой установки со степенью защиты от IP20 до IP23

 

Штепсельная розетка с защитным контактом со степенью защиты от IP44

 

Однополюсный сдвоенный выключатель открытой установки со степенью защиты от IP20 до IP23

 

Блок выключателя и штепсельной розетки для открытой проводки со степенью защиты от IP20 до IP23

 

Светильник с лампой накаливания

 

Блок из трех выключателей и штепсельной розетки для скрытой проводки со степенью защиты от IP20 до IP23

 

Светильник с несколькими лампами (люстра)

 

Распределительная коробка

 

Общее обозначение линии проводки

 

Общее обозначение электрощита

 

Обозначение количества проводников в линии проводки

 

Шкаф распределительный

Изучив необходимые элементы электрических схем, можно приступать к созданию схемы проводки.

Этапы построения схемы проводки

Правильное построение схемы состоит из нескольких этапов, которые помогают наиболее точно произвести разметку проводки.

1. Общий план квартиры или дома. 

Для того, чтобы изобразить схему проводки, нам потребуется план всех помещений, в которых предполагается сделать проводку электричества. Для этого можно сделать несколько копий с техпаспорта на квартиру. Также удобно использовать план помещений, перенесенный на лист в клеточку, где одну клеточку можно условно принять за полметра. Очень важно отметить на плане наличие дверей, с указанием в какую сторону они открываются.

Нам потребуется минимум две копии плана помещения – для плановой расстановки мебели и для составления электросхемы.

2. Плановая расстановка мебели.

 На данном этапе определяется, где какие бытовые приборы и элементы мебели будут размещаться и определяются места будущей установки розеток и выключателей. На листе с планом помещения прорисовываем основные элементы мебели. Желательно это выполнять цветными ручками или карандашами, где цветом выделять приборы, которые потребляют электроэнергию.

3. Определение мест и количества розеток.

 Когда проект расстановки мебели готов и определены точки потребления электричества, можно приступать к нанесению на электросхему розеток. Их нужно размещать в местах установки бытовой техники с учетом количества и мощности потребителей. Планируя размещение розеток, учтите, что они должны находиться в отдалении от нагревательных приборов.

4. Определение типа, размещения и количества осветительных приборов. 

Тщательно продумайте систему освещения помещений и отметьте на электросхеме все точки освещения.

5. Определение места и типа выключателей.

 Когда выбрана система освещения, нужно определить место под выключатели. Для того чтобы выключатели были в доступных местах важно обозначить в какую сторону будут открываться двери. Комфортной считается установка переключателей на расстоянии 10-20 см от дверного проёма.

6. Разбивка потребителей электроэнергии по группам. 

После того как составлен проект расстановки техники и мебели, а также составлена схема размещения электроточек, нужно провести разделение потребителей электроэнергии на группы. Благодаря этому снижается нагрузка на проводку, что способствует стабильности работы электросети. Рекомендуется отдельно выделить линии розеток, освещения, а также для потребителей мощностью свыше 2 кВт: электропечь, духовка, стиральная или посудомоечная машина, теплый пол, электрокотел и пр.

7. Выбор способа монтажа проводки.

 На данном этапе нужно внимательно осмотреть помещение и установить:

- Где находятся перекрытия и несущие стены?

- Есть ли специальные каналы для проводки в плитах, а также, в каком они состоянии?

- Будут ли устанавливаться подвесные или натяжные потолки?

- Есть ли возможность штробирования стен и потолка или готовые штробы?

- Какая будет отделка стен?

- Где будет находиться электрощиток?

Ответив на каждый из перечисленных пунктов можно определить оптимальный вариант прокладки проводки. Так, например, если планируется монтаж подвесных или натяжных конструкций на потолке, то можно значительно сократить расходы на кабель, а также его монтаж, если проложить его в коробе или гофротрубе по наименьшему расстоянию по потолку.

8. Прокладка магистралей и определение места для распределительных коробок. 

Схему разводки электропроводки нужно начинать с самой удаленной от электрощитка точки. Если в помещении находится несколько электроточек, то целесообразно установить распределительную коробку на выходе. Прорисовываем все проводники, идущие от электроточек на схеме по каждой комнате.

9. Соединение распределительных коробок с электрощитом. 

После того, как на чертеж нанесены все проводники по всем комнатам и обозначены распределительные коробки, нужно соединить их с электрощитом. На каждую выделенную группу потребителей нужно провести отдельную линию.

На каждом этапе построения электросхемы квартиры или дома можно указывать расстояние до тех или иных предметов, способ и глубину укладки провода, его сечение, тип и мощность осветительных приборов и пр. Детализация схемы поможет точно определить местонахождение скрытой проводки, а также облегчит расчеты материалов.

ГОСТ 21.210:2014

Оцените новость:

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ЭЛЕКТРОСХЕМЫ ЛИФТОВ

ГЛАВА 2 ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ЛИФТОВ
 

Выявление неисправностей в электрических схемах лифтов я причин, вызвавших эти неисправности, возможно только при условии четкого знания электросхем и свободного чтения их.

В электрических схемах лифтов различают следующие основные цепи: силовые, управляющие непосредственно электроприводом, и цепи управления, включающие электроаппараты.

В настоящей книге приведены принципиальные электрические схемы управления пассажирскими лифтами наиболее распространенных типов.

При описании электрических схем приняты следующие допущения:

опускаются отдельные участки цепей в тех случаях, если они уже рассматривались;

в обозначениях н. з. (нормально закрытый) или н. о (нормально открытый) слово контакт опускают;

при срабатывании (включении) реле или контактора замыкаются их и.о. контакты и размыкаются н. з. При отпускании якоря реле или контактора (выключении), наоборот, размыкаются н. о. и замыкаются н. з. контакты;

реле времени при отключении катушки от источника питания отпускают свой якорь, предварительно отработав выдержку времени. Н. з. контакты таких реле замыкаются, а н. о. размыкаются по истечении установленной выдержки времени. Выдержка времени может регулироваться в заданных пределах;

реле, катушки которых шунтированы последовательно соединенными сопротивлением и емкостью, отпускают свой якорь при отключении катушки от источника питания после отработки выдержки времени. Выдержка времени зависит от параметров шунтирующей цепи, катушки реле и регулировке не подлежит;

для кнопок с удерживающими электромагнитами в описании под выражением «Кнопка залипает» следует понимать «Кнопка удерживается во включенном положении»;

попутными считают остановки, которые делают кабины при ее движении к ранее заданному этажу.

В табл. 2.1, 2.2 приведены буквенные и графические обозначения в электрических схемах.
 

Таблица 2.1
Перечень элементов электросхем, их обозначение, назначение н местонахождение

Обозначение

схемы

Н «именование

Ничначение

Место­

нахождение

дз

Блок-контакт замка две- ри

Контролирует запирание замка двери шахты

Шахта

В КВ

Конечный включатель переподъема

Выключает цепь управ­ления при прохожде­нии кабиной уровня точной остановки верх­него этажа свыше 150 мм

То же

вкн

Конечный выключатель перепуска

Выключает цепь управле­ния при прохождении кабины уровня точной остановки нижней этажной площадки свыше 150 мм

»

ДС

Датчик селекции

Контроль положения кабины в шахте, вы­бор направления и по­дачи импульса на за­медление

»

эп

Этажный переключа­тель

Контроль положения ка­бины, выбор направле­ния и подачи импульса на замедление

»

вп

Выключатель цепи уп­равления

Выключение цепи управ­ления при работах в приямке

Приямок

шахты

КНУ

Контакт натяжного устройства

Отключение цепи управ­ления при ослаблении или обрыве каната ог­раничителя скорости

То же

звп

Звонок вызова обслу­живающего персонала

Вызов обслуживающего персонала

»

2АД

Трехфазный асинхрон­ный электродвига­тель привода дверей, с короткозамкнутым ротором

Для привода открытия и закрьпия дверей

Кабина

дто

Датчик точной останов­ки

Дает импульс на останов­ку кабины при прохо­ждении его на малой скорости мимо шунта расположенного в шах- те

То же

кл

Контакт ловителей

Отключает цепь управле­ния при срабатывании ловителей

9

СП к

Контакт слабины подъ­емных канатов

Предотвращение воз­можности работы лиф­та, если один или не­сколько канатов недо­пустимо ослабли или оборвались

»

49

Обозначение

схемы

Наименование

Назначение

Место- н а хождение

«Стоп»

Кнопка «Стоп»

Остановка кабины из ее купе

Кабина

дк

Блокировочный кон­такт дверей кабины

Контроль закрытия кя- бинных дверей

То же

1ПК—4ПК

Подпольные контакты

Контролируют нахожде­ние пассажира в каби­не

а

в ко

Выключатель конеч­ный открытия дверей

Отключение приводного двигателя прииода две­рей в момент их полно­го открытия

»

В КЗ

Выключатель конечный закрытия дверей

Отключение двигателя привода дверей в мо­мент их полного за­крытия

ВКР

МП

Выключатель конеч­ный реверса дверей

При защемлении пасса­жира дверями в момент их закрытия, отклю­чает реле ЗД и вклю­чает реле ОД

а

КТО

Контакт точной оста­новки

Удержание во включен­ном состоянии контак­торов В или Н, при переключении элек­тродвигателя с боль­шой на малую скорость и для остановки каби­ны иа уровне точной остановки

и

КОГ-90

Контакт ограничителя грузоподъемности

Исключает остановки ка­бины по попутным вы­зовам при полной ее загрузке

 

ког-но

Контакт ограничителя грузоподъемности

Исключает закрытие две­рей и пуск лифта при перегрузке кабины

I

ШРР

ШРН

Штепсельные разъемы режимов работ

Перевод лифта g режим ревизии или нормаль­ной работы

»

«Подъем»

«Спуск»

Кнопки двухкнопочно­го поста управления

Управление лифтом с крыши кабины в режи­ме ревизии

д

кп

Кнопки приказа

Регистрация приказа, закрытия дверей и пус­ка лифта из купе каби­ны

Я

сдп

Сопротивление добавоч­ное

Снижение рабочего тока иа катушке электро­магнита кнопки КП

»

Обозначение

схемы

Наименование

Назначение

Место­

нахождение

ЛОГ

Световой сигнал «Лифт перегружен»

Загорается в случае пе­регрузки кабины при нажатии кнопки при­каза

Кабина

ок

Лампа освещения ка­бины

Включается при откры­тии двери шахты или нахождении пассажи­ра в кабине

То же

АО

Лампа аварийного ос­вещения

Обеспечивает необходи­мую освещенность в купе кабины при вы­ключении лампы ОК

»

КВП

Кнопка вызова обслу­живающего персона­ла

Включение электриче­ского звонка ЗВП

>

ШРК

Штепсельная розетка кабины

Подключение электроин­струмента

S

ВК

Выключатель цепи уп­равлении

Отключение цепи управ­ления с первого этажа

Лестничная площадка пер* вого этажа

ПРР

Переключатель режима работ

Перевод лифта в погру­зочный режим

То же

вкл.

откл.

Кнопка включения и от­ключения

Включение и отключе­ние лифта с первого этажа

>

ЛП

Световой указатель о местонахождении ка­бины

 

»

КВ, квв, квн

Кнопка вызова

Вызов кабины и откры­тие дверей при нахо­ждении кабины иа том же этаже, где нажата кнопка

 

СВД

Сопротивление добавоч­ное

Снижение рабочего то­ка иа катушке электро­магнита кнопки КВ

»

ЛЗ

Лампы «Занято»

Включаютси при движе­нии кабины, при от­крытии двери шахты и нахождении пассажи­ра в кабине

 

сВверх»

(Вниз»

Световые сигналы «Вверх» и «Вниз»

Указывают направле­ние движения кабины

*

Таблице 2. 2
Условные графические обозначения в электрических схемах в соответствии с действующими государственными стандартами

Как читать электронные схемы

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть.

— значит питание переменным током.

Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» — цоколевка.

2. «Название элемента» — распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните.

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому "-" выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем "общий провод" или "корпус" указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и "земля". "Земля" — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите "Далее".

Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. Наиболее ярким примером служат бытовые приборы. Даже обычный утюг состоит из нагревательного элемента, температурного регулятора, контрольной лампочки, предохранителя, провода и штепсельной вилки. Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями. Между ними создается электрическое соединение, обеспечивающее полное взаимодействие всех элементов и выполнение каждым устройством своего предназначения.

В связи с этим очень часто возникает вопрос, как научится читать электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Данная проблема имеет большое значение для тех, кто регулярно сталкивается с электромонтажом. Правильное чтение схем дает возможность понять, каким образом элементы взаимодействуют между собой и как протекают все рабочие процессы.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению. В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые. Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию. Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования. Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования. Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети. К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Обозначения в электрических схемах

В каждой электрической цепи имеются устройства, элементы и детали, которые все вместе образуют путь для электрического тока. Они отличаются наличием электромагнитных процессов, связанных с электродвижущей силой, током и напряжением, и описанных в физических законах.

В электрических цепях все составные части можно условно разделить на несколько групп:

  1. В первую группу входят устройства, вырабатывающие электроэнергию или источники питания.
  2. Вторая группа элементов преобразует электричество в другие виды энергии. Они выполняют функцию приемников или потребителей.
  3. Составляющие третьей группы обеспечивают передачу электричества от одних элементов к другим, то есть, от источника питания – к электроприемникам. Сюда же входят трансформаторы, стабилизаторы и другие устройства, обеспечивающие необходимое качество и уровень напряжения.

Каждому устройству, элементу или детали соответствует условное обозначение, применяющееся в графических изображениях электрических цепей, называемых электрическими схемами. Кроме основных обозначений, в них отображаются линии электропередачи, соединяющие все эти элементы. Участки цепи, вдоль которых протекают одни и те же токи, называются ветвями. Места их соединений представляют собой узлы, обозначаемые на электрических схемах в виде точек. Существуют замкнутые пути движения тока, охватывающие сразу несколько ветвей и называемые контурами электрических цепей. Самая простая схема электрической цепи является одноконтурной, а сложные цепи состоят из нескольких контуров.

Большинство цепей состоят из различных электротехнических устройств, отличающихся различными режимами работы, в зависимости от значения тока и напряжения. В режиме холостого хода ток в цепи вообще отсутствует. Иногда такие ситуации возникают при разрыве соединений. В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства.

Все составные части и условные обозначения элементов электрической цепи отображаются графически. На рисунках видно, что каждому элементу или прибору соответствует свой условный значок. Например, электрические машины могут изображаться упрощенным или развернутым способом. В зависимости от этого строятся и условные графические схемы. Для показа выводов обмоток используются однолинейные и многолинейные изображения. Количество линий зависит от количества выводов, которые будут разными у различных типов машин. В некоторых случаях для удобства чтения схем могут использоваться смешанные изображения, когда обмотка статора показывается в развернутом виде, а обмотка ротора – в упрощенном. Таким же образом выполняются и другие условные обозначения электрических схем.

Изображения трансформаторов также осуществляются упрощенным и развернутым, однолинейным и многолинейным способами. От этого зависит способ отображения самих устройств, их выводов, соединений обмоток и других составных элементов. Например, в трансформаторах тока для изображения первичной обмотки применяется утолщенная линия, выделенная точками. Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Графические изображения других элементов:

  • Контакты. Применяются в коммутационных устройствах и контактных соединениях, преимущественно в выключателях, контакторах и реле. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок. В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Основание подвижной части отмечается специальной незаштрихованной точкой.
  • Выключатели. Могут быть однополюсными и многополюсными. Основание подвижного контакта отмечается точкой. У автоматических выключателей на изображении указывается тип расцепителя. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.
  • Плавкие предохранители, резисторы, конденсаторы. Каждому из них соответствуют определенные значки. Плавкие предохранители изображаются в виде прямоугольника с отводами. У постоянных резисторов значок может быть с отводами или без отводов. Подвижный контакт переменного резистора обозначается в виде стрелки. На рисунках конденсаторов отображается постоянная и переменная емкость. Существуют отдельные изображения для полярных и неполярных электролитических конденсаторов.
  • Полупроводниковые приборы. Простейшими из них являются диоды с р-п-переходом и односторонней проводимостью. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Треугольник является анодом, а черточка – катодом. Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. Знание этих графических рисунков существенно облегчает чтение электрических схем для чайников.
  • Источники света. Имеются практически на всех электрических схемах. В зависимости от назначения, они отображаются как осветительные и сигнальные лампы с помощью соответствующих значков. При изображении сигнальных ламп возможна заштриховка определенного сектора, соответствующего невысокой мощности и небольшому световому потоку. В системах сигнализации вместе с лампочками применяются акустические устройства – электросирены, электрозвонки, электрогудки и другие аналогичные приборы.

Как правильно читать электрические схемы

Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников. Она является основой разработок любых электронных устройств и электрических цепей. Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем.

Именно правильное чтение электрических схем для новичков, позволяет хорошо усвоить, каким образом необходимо выполнять соединение всех деталей, чтобы получился ожидаемый конечный результат. То есть устройство или цепь должны в полном объеме выполнять назначенные им функции. Для правильного чтения принципиальной схемы необходимо, прежде всего, ознакомиться с условными обозначениями всех ее составных частей. Каждая деталь отмечена собственным условно-графическим обозначением – УГО. Обычно такие условные знаки отображают общую конструкцию, характерные особенности и назначение того или иного элемента. Наиболее ярким примером служат конденсаторы, резисторы, динамики и другие простейшие детали.

Гораздо сложнее работать с полупроводниковыми электронными компонентами, представленными транзисторами, симисторами, микросхемами и т.д. Сложная конструкция таких элементов предполагает и более сложное отображение их на электрических схемах.

Например, в каждом биполярном транзисторе имеется минимум три вывода – база, коллектор и эмиттер. Поэтому для их условного изображения требуются особые графические условные знаки. Это помогает различить между собой детали с индивидуальными базовыми свойствами и характеристиками. Каждое условное обозначение несет в себе определенную зашифрованную информацию. Например, у биполярных транзисторов может быть совершенно разная структура – п-р-п или р-п-р, поэтому изображения на схемах также будут заметно отличаться. Рекомендуется перед тем как читать принципиальные электрические схемы, внимательно ознакомиться со всеми элементами.

Условные изображения очень часто дополняются уточняющей информацией. При внимательном рассмотрении, можно увидеть возле каждого значка латинские буквенные символы. Таким образом обозначается та или иная деталь. Это важно знать, особенно, когда мы только учимся читать электрические схемы. Возле буквенных обозначений расположены еще и цифры. Они указывают на соответствующую нумерацию или технические характеристики элементов.

Как читать электрические схемы

Электрические схемы

Электрические схемы читаются слева направо или сверху вниз.

Это важно сделать правильно, так как направление сигнала указывает на протекание тока в цепи. Таким образом, пользователю легко понять, когда происходит изменение в схеме.

Вернуться к содержанию

Знания в области электротехники

Существует ряд разновидностей схематических символов для представления реальных устройств или проводов в цепи.Умение понимать эти электрические схемы и уметь их читать является ключевым моментом, поскольку неправильное прочтение этих деталей приводит к неправильной интерпретации.

Прямые линии представляют собой провода, провода используются для соединения различных периферийных устройств в цепи. Это могут быть лампочки, переключатели и т. Д. Треугольник обозначает заземление или обслуживание, он указывает зону действия цепи. Зигзагообразная диаграмма представляет резисторы. Они действуют, чтобы предотвратить чрезмерное протекание тока в цепи.

Сопротивление определяется значением, используемым в текущей шкале.На электрических схемах конденсаторы представлены параллельными линиями, присоединенными к главной цепи. Конденсаторы используются для отвода звука и быстрого изменения сигнала и отвода его на землю.

Вернуться к содержанию

Соотношение к реальной схеме частей

Обратитесь к материалу, чтобы понять фактические значения конденсаторов, а также резисторов.

Также рекомендуется обращаться к руководству производителя для любого электрического устройства.Это поможет вам узнать фактическое значение на любом активном устройстве.

Вернуться к содержанию

Функция цепи

У каждого устройства есть руководство с данными производителя. Электрика и электроника применяют закон Ома для расчета таких величин, как сопротивление, ток и напряжение. Ток определяется как электродвижущая сила (поток электронов в замкнутой цепи) по формулам для расчета тока, напряжения и сопротивления V = IR.

Вернуться к содержанию

Ознакомление с единицами СИ

Каждая научная дисциплина использует стандартную таблицу единиц СИ, эти единицы признаны во всем мире.Однако многие электрики не понимают важности этих устройств. Каждый электрик обязан уметь читать таблицу. Это полезно для понимания единицы измерения каждой электрической величины.

Электрические величины измеряются в единицах СИ. Таким образом, каждая единица уникальна для отдельного количества.

Вернуться к содержанию

Полярность

Некоторые цепи имеют полярность. Они несут положительный заряд и отрицательный заряд.Важно понимать полярность. Вы всегда должны соблюдать закон «одинаковые обвинения отталкивают» и «разные обвинения привлекают». Итак, от отрицательного к положительному и наоборот. Большинство символов имеют знаки полярности, поэтому любой терминал легко идентифицировать.

Вернуться к содержанию

Навыки чтения и обучение электронной печати

Курс 1 - Электрические схемы

Предварительные требования : Этот урок разработан таким образом, что никаких предварительных знаний не требуется.

Описание : Этот урок показывает и объясняет, как читать и интерпретировать символы на электрической схеме, функции входных, логических и выходных элементов схемы управления. В этом уроке определяются устройства, которые обычно используются в качестве этих элементов, и представлены их схематические обозначения. В этом уроке также описываются шаги по интерпретации отношений между входными, логическими и выходными компонентами электрической схемы.

Цели :

  • Объясните функции входных, логических и выходных элементов схемы управления
  • Определите символы для различных устройств ввода, управляемых вручную, и обозначьте символы для различных устройств ввода, управляемых процессом, и укажите, как они используются.
  • Обозначьте символ реле и связанных контактов
  • Определите различные логические символы, символ для пускателя двигателя и различные выходные символы и укажите, как они используются.
  • Опишите макет типичной электрической схемы и опишите различные условные обозначения для маркировки схем
  • Интерпретировать электрическую схему и уметь определять функции ее различных устройств

Курс 2 - Электрические схемы

Предварительные требования : Этот урок предназначен для участников, знакомых со схемами и базовой электрической терминологией.

Описание : В этом уроке представлена ​​информация о трех типах электрических схем: строительные схемы, однолинейные схемы и электрические схемы. В этом уроке объясняется, как определять компоненты, оборудование, провода и кабели на этих схемах, как соотносить схемы с установленным оборудованием и как использовать схемы для обслуживания и устранения неполадок.

Цели :

  • Разъяснить назначение чертежей и виды чертежей
  • Описывать макеты схем и знать, как вносить изменения в чертежи, а также описывать план этажа и схемы вертикального вида
  • Обозначьте компоненты, кабели и кабелепроводы, а также схему кабелей на электрической схеме здания
  • Обозначить условные обозначения напряжения, символы, нагрузки и разъединители на однолинейной схеме
  • Обозначить компоненты, условные обозначения клемм, условные обозначения проводки и связки на схеме проводки
  • Свяжите электрическую схему с реальным оборудованием и фактическими проводами и устраните неисправность цепи, используя этот тип схемы

Как читать схемы подключения панели управления

Большая часть устранения неисправностей, ремонта и построения электрической системы начинается с умения техника прочитать схему подключения.На схемах подключения показаны компоненты системы, а также их соединения.


Блог по теме: Идентификация и объяснение ключевых компонентов вашей промышленной панели управления

Будь то простой бытовой прибор или электрическая схема панели управления, большинство систем и устройств будут включать источники питания, заземление и переключатели. Однако на схемах панели управления будут показаны реле, пускатели двигателей, аварийные сигналы, реле и контрольные устройства.

Как читать электрические схемы

Хотя неопытному глазу они могут показаться чуждыми, символы на диаграммах должны напоминать физический объект, который они представляют.Антенна на схеме очень похожа на антенну, которую можно увидеть на старых телевизорах. Провода обычно обозначаются основными черными вертикальными линиями, идущими к каждому компоненту. Понятную схему будет довольно просто прочитать, если вы определите основные компоненты системы. Для целей статьи будет использоваться лестничная диаграмма:

Определите источник питания - частыми источниками питания являются коммерческие линии электропередач, генераторы и батареи. Источник питания переменного или постоянного тока зависит от конструкции и применения системы.Помимо хороших мер безопасности, лучше всего найти источник напряжения до начала работы с системой.

Линии - Вертикальные линии (шины) образуют границы цепи и подают напряжение на компоненты. Пунктирными линиями показано внешнее оборудование (двигатели, пилотные устройства), которое все еще является частью системы. Горизонтальные линии (ступеньки лестницы) - это пути, по которым подается ток. Постоянные провода в системах управления пронумерованы так, чтобы каждый провод в электрически непрерывной точке имел один и тот же номер независимо от размера.

Выключатели и индикаторы

- индикаторы и выключатели являются важной частью быстрого поиска и устранения неисправностей. Световые индикаторы являются индикаторами состояния системы (независимо от того, работают ли двигатели и активированы ли аварийные сигналы). Селекторные и испытательные переключатели позволяют техническим специалистам изолировать часть системы, минуя пилотные устройства, и избежать нарушения проводки.

Другие типы переключателей, обычно встречающиеся в системе промышленных панелей управления, включают:

  • Поплавковые переключатели - размыкает и замыкает переключатель в зависимости от уровня жидкости в резервуарах
  • Реле потока - контролирует уровни газов или жидкостей в трубах или трубопроводах

Схемы подключения дают общее представление о проводке и устройствах в системе.Возможность правильно читать диаграммы позволяет средствам промышленного управления обслуживать, эксплуатировать и устранять неисправности по мере необходимости.

Как читать схемы

Как читать схемы

В этой статье рассматриваются основы схематических диаграмм.

Принципиальная схема

Принципиальные схемы (часто называемые просто схемами) - это способ выразить, как части соединяются вместе. Символы используются для обозначения каждого деталь, а линии используются для представления соединений между частями.Это важно Следует отметить, что не во всех схемах используются одни и те же символы или соединения.

Обозначения

Это символы, обычно используемые на схемах, и части, которые они представлять.

Подключения

Важно отметить, что соединения, показанные на принципиальной схеме представляют собой идеальные связи. В реальном мире нет такой вещи, как идеальный дирижер. Таким образом, схема - это приближение схемы.Обычно сопротивление провода, емкость или индуктивность конкретный путь цепи незначительно влияет на работу схемы и может безопасно игнорировать.

Линии используются для отображения соединений между частями. Когда несколько подключений существуют, они обычно представлены в виде точки, где две линии пересекаются. Многие линии могут сходиться в одно соединение, но для ясности, большинство точек соединяют только две линии.

Когда две линии пересекаются, но на них нет точки пересечение, это просто означает, что между этими двумя схемы. Иногда люди изо всех сил стараются подчеркнуть, что есть нет связи, нарисовав небольшой "горб" над первой строкой, чтобы показать, что вторая линия находится над ней, не касаясь ее. Это не обязательно, да и то метод приемлем.

Узлы

Важным понятием в электронике является понятие «узел».Узел - это просто точка, в которой соединяются две или более частей. Запутанная часть об узле что линии не представляют собой провода. Они просто представляют собой связь. А очень длинная линия не подразумевает очень длинный провод, а короткая линия не подразумевает короткий провод.

В следующей схеме есть 3 узла, обозначенных A, B и C. Обратите внимание, что нет независимо от того, как нарисована схема, одни и те же части всегда соединяются с одним и тем же узлы. Другими словами, узел A всегда подключен к положительной стороне 9 источник напряжения и одна сторона резистора R1, узел B всегда подключен к R1, R2, и R3, а узел C всегда подключает R2, R3 и отрицательную сторону 9 вольт поставлять.Неважно, где на бумаге нарисованы детали и в каком направлении. они ориентированы. Важно только то, чтобы линии были нарисованы таким образом, чтобы узловые отношения сохраняются. Опять же, чтобы подчеркнуть эту мысль, все диаграммы на следующем рисунке описывают точно такую ​​же схему.

Питание и заземление

«Питание» и «земля» обычно сокращаются для экономии места на схеме. Земли (означающие возврат сигнала) обычно обозначаются одним из символов. показано выше.Мощность постоянного тока часто обозначается цифрой и знаком плюс или минус. Можно использовать стрелку, но на многих схемах стрелка отсутствует. Следующие пример показывает источник питания постоянного тока на 5 В, подключенный к резистору (остальная часть схема не показана).

Земля - ​​это, к сожалению, очень сбивающий с толку термин, которым часто злоупотребляют. электроника. В схемах мы обычно связываем все возвратные сигналы вместе в единая плоскость напряжения. Затем этот план часто соединяется с физической землей. заземление (скажем, медный стержень, вбитый в землю) из-за шума и т. д.Однако, даже если соединение с физической землей может отсутствовать, оно имеет стали обычным явлением в электронике называть возврат сигнала заземлением. Это может привести к некоторой путанице в схемах, когда вы увидите символы земли. Часто подключение к заземлению подразумевается, и, поскольку предполагается, это не упоминается на схеме. В других случаях заземление означает только что возвращаемые сигналы связаны вместе, а связь с физическим земля не предназначена.Чтобы иногда определять, что на самом деле означает символ земли, но, к сожалению, это приходит только с опытом работы с схемами.

Схемы нарисованы так, чтобы четко показать схемы с использованием наименьшего количества линий необходимо (если вырвать известную цитату Эйнштейна из контекста, "это так же сложно, как это должно быть, но не более того "). Подключение питания и заземления к ИС часто предполагается, поскольку без них ИС не будет работать.Также, если плюс и минус питания, это обычно означает, что двойной источник питания с присутствует общая нулевая ссылка. Обычно предполагается, что общая ссылка быть заземленным, даже если нет подключения от источника питания к любому из могут быть показаны наземные символы.

Куда пропал этот сигнал?

Часто линия заходит в тупик, и на ней будет написано имя сигнала, или под этим. Это означает, что сигнал продолжается в другом месте.Для больших, сложные схемы, сигнал может быть на другой странице (и если они хорошие, они перечисляют все сигналы и страницы, на которых они появляются, но наиболее схематично производители не такие добрые). Когда это произойдет, просто обращайтесь с цепью как с линией. был проведен между двумя точками, где сигнал «тупик». Сложная часть Иногда сигнал будет использоваться во многих местах. Например, предположим, что мы есть схема компьютера с тактовой частотой 8 МГц.Eсть схема на одной странице схемы, которая показывает кварцевый генератор (который генерирует часы), и отсюда строка просто заканчивается названием сигнал, SYSCLK. На странице, где показан ЦП и связанные с ним схемы, мы снова видим SYSCLK, который используется в качестве основных часов для управления процессором. SYSCLK также проходит по системной шине, что снова отображается на отдельной странице. с именем SYSCLK, нарисованным над линией. Все сигналы с названием SYSCLK, нет независимо от того, сколько раз они появляются на схеме, электрически связаны все вместе.Все они просто не могут быть показаны на одной странице, потому что схема слишком большой и сложный.

Как читать электрические схемы судов

Существуют различные типы диаграмм, которые пытаются показать, как электрическая цепь работает на корабле. Символы используются для обозначения различных элементов оборудования.

Судостроитель предоставляет полный комплект судовых электрических схем.

Важно, чтобы вы изучили эти схемы, чтобы иметь возможность читать и понимать их со знанием дела, а также использовать их в качестве помощи при обнаружении электрических неисправностей.

Как читать блок-схему корабля

Судовая электрическая блок-схема в упрощенной форме показывает основные взаимосвязи элементов в системе, а также то, как судовая система работает или может эксплуатироваться. Такие диаграммы часто используются для изображения систем управления и других сложных взаимосвязей.

На рисунке показаны основные функции реле максимального тока (OCR), используемого для защиты. Его принципиальная схема показывает один из способов реализации общей функции распознавания текста.

Диаграммы, подобные этой, показывают функцию каждого блока, но обычно не дают никакой информации о компонентах в каждом блоке или о том, как блоки на самом деле связаны между собой.

Как читать схему судовой системы

Судовая диаграмма Системная диаграмма показывает основные особенности судовой системы и ее границы, не обязательно показывая причинно-следственные связи. Основное использование - это иллюстрация способов работы с системой. Детали опущены, чтобы сделать схему как можно более ясной и, таким образом, легкой для понимания.

Как читать и понимать принципиальные схемы корабля

Принципиальная схема полностью показывает функционирование цепи.

Все основные части и соединения изображены с помощью графических символов, расположенных так, чтобы максимально ясно показать работу, но без учета физического расположения различных элементов, их частей или соединений.

Электрические соединения для пускателя двигателя наглядно показаны в простейшем виде.

Наиболее важным моментом является то, что не предпринимается попыток показать подвижные контакты реле или контактора вдоль катушки, которая их управляет (там, где они фактически физически расположены). Вместо этого катушка и связанные с ней контакты обозначаются общим номером или буквой.

Несмотря на то, что существуют международные соглашения относительно символа, который будет использоваться для обозначения электрических компонентов, вы должны быть готовы встретить различные символы, представляющие один и тот же компонент.

Использование судовой принципиальной схемы должно позволить читателю понять работу схемы, проследить каждую последовательность в операции с момента запуска операции (например,грамм. нажатием кнопки пуска) до финального действия (д.9. запуск двигателя).

Если оборудование работает неправильно, считыватель может проследить последовательность операций, пока не дойдет до операции, которая не удалась.

Компоненты, участвующие в этой неисправной операции, затем могут быть исследованы, чтобы найти подозрительный элемент.

Нет необходимости проверять другие компоненты, о которых известно, что они работают правильно и не влияют на неисправность, поэтому работа упрощается.

Принципиальная электрическая схема является важным инструментом для поиска неисправностей в бортовой электросистеме.

Руководство для начинающих - Как читать электрические схемы

Часть 1: Распознавание основных символов электрических схем

Электрические схемы - это карты для проектирования, построения и устранения неисправностей схем. Научиться читать и понимать схемы будет легко для новичков благодаря распознаванию основных условных обозначений.

Вот некоторые из стандартных и основных символов для различных компонентов электрических схем.

1. Резисторы являются основными компонентами электрической схемы. Обычно они представлены зигзагообразными линиями с двумя выводами, выходящими наружу. Но вы также можете использовать на чертеже альтернативный прямоугольник.

2. Конденсаторы бывают разных типов.Это устройство, которое накапливает электрическую энергию и обычно имеет два вывода, которые можно подключить к остальной части цепи.

3. Катушки индуктивности обычно представлены серией изогнутых выступов или нескольких петлевых катушек.

4. Переключатели: SPST (однополюсный / одноходовой) - самый простой переключатель. Он имеет две клеммы с полусоединенной линией, представляющей привод.Переключатели с более чем одним ходом могут добавить больше посадочных мест для привода.

5. Источники питания в основном бывают двух типов: источники постоянного или переменного напряжения. Они представляют собой источник, подающий постоянный ток (DC) или переменный ток (AC).

6. Цифровые логические вентили: Стандартные логические функции имеют уникальные схематические символы, такие как AND, OR и XOR. Добавление пузыря к выходу отменяет функцию, и вы получите NAND и XOR.

Несомненно, есть много символов электрических схем, не упомянутых в этом списке. Но и этого должно хватить новичку в схематическом чтении. Затем мы поговорим о том, как эти символы связаны на схемах.

Часть 2: Распознавание имен и значений условных обозначений

Название: В дополнение к символам каждый компонент на электрических схемах имеет уникальное имя и значение, которые в дальнейшем помогают идентифицировать, что он представляет.Названия компонентов обычно представляют собой комбинацию одной или двух букв, а иногда и числа. Сообщение в имени определяет тип компонента, каждое имя компонента на электрической схеме должно быть уникальным. Если у вас в электрической схеме более одного резистора, назовите их R1, R2, R3 и так далее.

Значение: Значения могут помочь точно определить, что представляет собой компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом или фарад.Но для интегральных схем значением может быть название микросхемы.

Часть 3: Распознавание соединений и линий в электрических схемах

Понимание представления символов и компонентов - это лишь первый этап чтения электрических схем. Затем вам нужно определить, как связаны символы и как определить их связи.

1. Цепи - это линии, которые показывают, как компоненты соединены.

2. Соединение - это когда провод разделяется на два или более направления и образует соединение. Но соединение означает только провода, проходящие мимо, но не соединенные.

3. Узлы показывают, что провода, пересекающие это соединение, также подключены.

Часть 4: Создайте электрическую схему самостоятельно

После того, как вы научились читать и понимать электрическую схему, теперь вы можете найти и использовать мощный, но простой в использовании конструктор схем и создать электрическую схему для представления физических соединений и компоновки электрической цепи.

Как читать электрическую схему? - Энергид

Принципиальная электрическая схема дает ясный обзор всей электрической системы дома. Вот почему он должен быть представлен как часть проверки и сертификации вашей электроустановки. Он состоит из двух документов: однолинейной схемы и диаграммы положения .

Хотя для непосвященных это может показаться довольно загадочным, стоит приложить усилия, чтобы разобраться в электрических схемах.Это окажется ценным источником информации, например, если вы выполняете работу по дому или покупаете новый дом.

Что означают символы на электрической схеме?

Символы, используемые на однолинейной схеме и диаграмме положения, представляют:

НЕ пробуйте и будьте умны, изобретая свои собственные символы: RGIE (Règlement Général des Installations Électriques, т. Е. Общие правила Бельгии для электрических установок) точно определяет, какие символы должны использоваться.

Однолинейная схема: план вашего электрооборудования

В отличие от схемы расположения, на этой схеме не учитывается расположение электрического оборудования в вашем доме.

Буква = электрическая схема

Буквы обозначают основные электрические цепи, из которых состоит ваша установка.

Проще говоря, электрическая цепь - это часть электроустановки, которая находится между двумя автоматическими выключателями (за исключением самой последней цепи после последнего автоматического выключателя).

На рисунках показаны точки ветвления

Внутри каждой цепи точки ветвления пронумерованы. Символы обозначают тип соответствующих точек разветвления (розетки, электроприборы и т. Д.).

Символы

На линиях символы, такие как, например, наклонные линии, используются для включения информации о типе кабельных муфт (утопленные или устанавливаемые на поверхность), количестве проводов для каждой ответвительной линии, способе их установки и т. Д. .Защитные устройства, переключатели и распределительные коробки также представлены символами.

Чтобы дать вам представление, посмотрите этот пример однолинейной диаграммы на веб-сайте FPS Economy (на французском языке)

Схема расположения: расположение электрических компонентов в вашем доме

Диаграмму расположения легче понять: это план с символами, несущими ваш дом, которые позволяют вам точно определить каждый компонент вашей электрической установки:

  • распределительный щит
  • распределительные или распределительные коробки
  • розетки
  • световые точки
  • переключатели
  • электрические приборы

Чтобы дать вам представление, посмотрите этот пример диаграммы положения на веб-сайте FPS Economy (на французском языке)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *