Что такое электрическая схема. Виды и типы электрических схем: полный обзор

Какие бывают типы электрических схем. Как отличаются структурные, функциональные и принципиальные схемы. Для чего используются схемы соединений и подключения. Как читать и понимать различные виды электрических схем.

Содержание

Основные виды и типы электрических схем

Электрические схемы являются важнейшими техническими документами, используемыми при проектировании, производстве, эксплуатации и ремонте электрооборудования. Существует несколько основных видов и типов электрических схем, каждый из которых имеет свое назначение и особенности:

  • Структурные схемы
  • Функциональные схемы
  • Принципиальные схемы
  • Схемы соединений (монтажные)
  • Схемы подключения
  • Общие схемы

Рассмотрим подробнее каждый из этих типов электрических схем.

Структурные электрические схемы

Структурная схема является наиболее общим типом электрической схемы. Она определяет основные функциональные части изделия, их назначение и взаимосвязи.

Основные особенности структурных схем:

  • Изображают общую структуру изделия
  • Показывают взаимосвязи между функциональными частями
  • Не раскрывают принцип работы отдельных элементов
  • Используют обобщенное графическое изображение элементов

Структурные схемы применяются на ранних этапах проектирования для определения состава и структуры сложных систем. Они дают общее представление о работе изделия без детализации.


Функциональные электрические схемы

Функциональная схема поясняет определенные процессы, протекающие в отдельных функциональных цепях изделия или в изделии в целом.

Ключевые характеристики функциональных схем:

  • Раскрывают принцип работы изделия
  • Иллюстрируют функциональные процессы
  • Используют условные графические обозначения элементов
  • Могут содержать поясняющие надписи

Функциональные схемы позволяют понять работу устройства и взаимодействие его частей. Они более подробные, чем структурные, но менее детальны, чем принципиальные схемы.

Принципиальные электрические схемы

Принципиальная схема (полная схема) определяет полный состав элементов и связей между ними и дает детальное представление о принципах работы изделия.

Особенности принципиальных схем:

  • Содержат все электрические элементы устройства
  • Показывают все электрические связи между элементами
  • Используют стандартные условные графические обозначения
  • Включают буквенно-цифровые обозначения элементов

Принципиальные схемы наиболее сложны для чтения, но дают полное представление о работе электрической части изделия. На их основе выполняется проектирование и анализ работы устройств.


Схемы соединений (монтажные схемы)

Схема соединений показывает соединения составных частей изделия и определяет провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения.

Основные черты схем соединений:

  • Отображают реальное расположение элементов в изделии
  • Показывают соединения между элементами
  • Содержат сведения о проводах и кабелях
  • Используются для выполнения монтажных работ

Монтажные схемы наиболее востребованы при сборке, монтаже и ремонте электрооборудования. Они позволяют понять, как физически соединены элементы в устройстве.

Схемы подключения

Схема подключения показывает внешние подключения изделия.

Характерные особенности схем подключения:

  • Отображают внешние соединения изделия
  • Показывают разъемы, зажимы и другие элементы для подключения
  • Содержат необходимые данные о подключениях
  • Используются при монтаже изделия на месте эксплуатации

Схемы подключения необходимы для правильного подсоединения изделия к внешним цепям, источникам питания и другим устройствам.


Общие электрические схемы

Общая схема определяет составные части комплекса и соединения между ними на месте эксплуатации.

Основные черты общих схем:

  • Охватывают несколько самостоятельных устройств
  • Показывают соединения между устройствами
  • Содержат элементы принципиальных схем каждого устройства
  • Используются для понимания работы комплекса в целом

Общие схемы дают представление о взаимодействии нескольких устройств в составе сложного комплекса или системы.

Как правильно читать электрические схемы

Чтение электрических схем требует определенных навыков и знаний. Вот несколько советов, которые помогут освоить этот процесс:

  • Изучите условные графические обозначения элементов
  • Определите тип схемы и ее назначение
  • Выделите основные функциональные блоки
  • Проследите пути прохождения сигналов и токов
  • Обращайте внимание на маркировку элементов и цепей
  • Сопоставляйте схему с реальным устройством

При регулярной практике навык чтения электрических схем совершенствуется, позволяя быстро разбираться даже в сложных схемах.


Заключение

Электрические схемы являются универсальным языком для описания электрических и электронных устройств. Понимание различных типов схем и умение их читать — важный навык для инженеров, техников и всех, кто работает с электрооборудованием. Каждый тип схемы имеет свое назначение и особенности, но все они служат общей цели — наглядно представить структуру и принцип действия электрических устройств и систем.


Схемы электрические | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.1 Виды и типы схем, основные термины

6.1.1 Схема – документ, на котором показаны в виде условных графиче-ских изображений или обозначений составные части изделия и связи между ними. Схемы в зависимости от видов элементов и связей, входящих в состав изделия, подразделяют на виды. В зависимости от основного назначения схемы подразделяют на типы. Наименования видов и типов схем и их кодовое обозначение приведены в таблицах 6.1 и 6.2.

Таблица 6.1 – Виды схем
Наименование вида схемКод
ЭлектрическиеЭ
ГидравлическиеГ
ПневматическиеП
ГазовыеХ
КинематическиеК
ВакуумныеВ
ОптическиеЛ
ЭнергетическиеР
ДеленияЕ
КомбинированныеС
Таблица 6.2 – Типы схем
Наименование типа схемКод
Структурные1
Функциональные2
Принципиальные (полные)3
Соединений (монтажные)4
Подключения5
Общие6
Расположения7
Объединенные0

В таблице 6.2 в скобках приведены наименования для схем электрических энергетических сооружений.

Код схемы должен состоять из буквенной части, определяющей вид схе-мы, и цифровой части, определяющей тип схемы, например, схема электрическая принципиальная будет иметь код Э3.

6.1.2 Для изделия, состоящего из элементов разных видов, разрабатывают несколько схем соответствующих видов одного типа, например, схема электрическая принципиальная и схема гидравлическая принципиальная для передающего устройство с жидкостным охлаждением. Вместо двух схем возможна разработка одной схемы комбинированной, например, электрогидравлической для приведенного выше примера.

6.1.3 На схемах одного вида допускается изображать элементы схем другого вида, которые непосредственно влияют на работу изделия, а также элементы и устройства, не входящие в изделие, на которое разработана схема, но необходимые для разъяснения принципов работы изделия. Графическое обозначение таких элементов и устройств отделяют (или обводят) на схеме штрих-пунктирными линиями, равными по толщине линиям связи, и помещают надписи, указывающие местонахождение этих элементов и необходимые данные.

6.1.4 Схему деления изделия на составные части выпускают только для определения состава изделия.

6.1.5 К схемам или взамен схем в случаях, установленных правилами выполнения конкретных схем, выпускают в виде самостоятельных документов таблицы, которые содержат сведения о расположении устройств, соединениях, местах подключения и другую необходимую информацию. Таким документам присваивают код соответствующей схемы, перед которым проставляют букву Т. Например, код таблицы соединений к электрической схеме соединений будет иметь код ТЭ4.

В основной надписи (графа 1) данного документа после наименования изделия приводят наименование документа «Таблица соединений».

Таблицы соединений записывают в спецификацию изделия после схем, к которым они выпущены, или вместо них.

 

6.1.6 В необходимых случаях допускается выпускать схемы совмещенные, когда на схемах одного типа помещают сведения, характерные для схем другого типа. Например, на схеме расположения изделия показывают соединения его частей. При выполнении схем совмещенных должны быть соблюдены все правила, установленные для схем соответствующих типов.

Номенклатура, наименования и коды совмещенных схем устанавливаются отраслевыми стандартами.

6.1.7 В тех случаях, когда схемы установленных типов и видов не обеспечивают передачу необходимых сведений об изделии (в связи с его особенностями), допускается разрабатывать схемы прочих видов и типов, номенклатура, наименования и коды которых устанавливаются отраслевыми стандартами.

6.1.8 Допускается вместо схемы определенного вида и типа, выполненного на нескольких листах, выполнять совокупность схем того же вида и типа, но при этом каждая схема должна быть оформлена как самостоятельный документ.

В данном случае в наименовании схемы с целью наглядности допускается указывать наименование функциональной группы, например, схема электрическая принципиальная подмодулятора, схема электрическая принципиальная модулятора. Каждой схеме в этом случае присваивают обозначение как самостоятельному документу и, начиная со второй схемы, к коду схемы в обозначении добавляют через точку порядковый номер, например ХХХХ.ХХХХХХ.007Э3, ХХХХ.ХХХХХХ.007Э3.1, ХХХХ.ХХХХХХ.007Э3.2 и т.д.

6.1.9 В стандартах по правилам разработки схем использованы термины, пояснения которых приведены ниже.

Элемент схемы – составная часть схемы, которая выполняет определен-ную функцию в изделии и не может быть разделена на части, имеющие самостоятельное назначение и собственные условные графические и буквенно-цифровые обозначения (резистор, транзистор и т.п.).

Устройство – совокупность элементов, представляющая единую конструкцию (набор транзисторов, блок, плата и т.п.).

Функциональная группа – совокупность элементов, выполняющих в изделии определенную функцию и не объединенных в единую конструкцию.

Функциональная часть – элемент, устройство, функциональная группа.

Функциональная цепь – линия, канал, тракт определенного назначения (канал звука, видеоканал и т. п.).

Линия взаимосвязи – отрезок линии, указывающий на наличие связи между функциональными частями изделия.

Буквенные коды элементов схем электрических приведены в приложении Л, примеры выполнения схем – в приложении М данного пособия.

Разработка принципиальных электрических схем в ElectriCS Pro 7

Михаил Чуйков
Ведущий специалист, команда разработчиков ElectriCS Pro
Светлана Капитанова
Специалист по маркетингу, команда разработчиков ElectriCS Pro

При разработке систем управления одним из основных документов проектной документации является принципиальная схема. Именно она определяет основной состав компонентов электрооборудования и взаимосвязей между ними. Принципиальная схема — фундамент электротехнического проекта, и от правильного ее выполнения зависит дальнейшее выполнение монтажных схем, схем соединений и всей сопроводительной документации. Рассмотрим выполнение принципиальных схем в системе ElectriCS Pro 7.

Для проектирования схем ElectriCS Pro использует графический редактор AutoCAD или nanoCAD. При этом удачно совмещается вся мощь инструментов графического редактора и дополнительные специализированные команды проектирования схем. Следует отметить, что для пользователей, которые привыкли работать в «чистом» AutoCAD, переход на проектирование в ElectriCS Pro происходит достаточно легко: свою коллекцию элементов пользователь может сохранить в библиотеке ElectriCS Pro и сразу же использовать на схеме.

Документ «Схема электрическая принципиальная»

В дереве проектной документации папка с принципиальными схемами имеет набор атрибутов, которые используются в основной надписи на листах схемы. Количество атрибутов и правила их заполнения являются настраиваемыми (рис. 1).

Рис. 1. Атрибуты схемы электрической принципиальной

Листы принципиальной схемы представлены в виде списка с указанием формата листа с возможностью функции предварительного просмотра. В списке можно создать новый лист схемы, открыть его или удалить (рис. 2).

Рис. 2. Перечень листов схемы принципиальной

Если вы дважды щелкнете мышкой по номеру листа, он откроется в окне графического редактора. В графическом редакторе справа от схемы добавлена панель менеджера, на закладках которой представлены все объекты проекта. Также добавлены дополнительные панели инструментов и меню ElectriCS Pro (рис. 3).

Рис. 3. Лист схемы в графическом редакторе

Создание и размещение на схеме электрических устройств

В диалоге создания электрического устройства указываются: его буквенно­позиционное обозначение, шкаф, в котором оно расположено, система. Если в диалоге указать тип по базе изделий, то у устройства будет сформирован элементный состав, автоматически подставится префикс обозначения и следующий свободный порядковый номер (например, у автоматического выключателя сформируется QF3, если в проекте уже были QF1 и QF2). При создании устройства проверяется уникальность его обозначения, в проекте не может быть двух устройств с одинаковым обозначением1 (рис. 4).

Рис. 4. Диалог создания электрического устройства

После создания устройство отобразится в менеджере. Для каждого устройства выводится элементный состав в виде условно­графических обозначений (УГО), при этом УГО, которые еще не размещены на схеме, помечаются зелеными маркерами в левом верхнем углу. Размещение элемента на схеме производится стягиванием соответствующего УГО с панели менеджера на поле схемы. Автоматически проставляется маркировка контактов и обозначение элемента. Контакты, не имеющие подключения, отмечаются маркером на схеме в виде сиреневых квадратов (рис. 5).

Рис. 5. Размещение элемента (УГО) устройства на схеме

В ElectriCS Pro используются УГО двух типов: статические и динамические. Статические УГО содержатся в библиотеке УГО и представляют собой элементы, графика которых не отличается от проекта к проекту, от листа к листу: катушки, контакты реле, двигатели и т. д. Но есть и другой вид электрических устройств, которые на схемах отображаются в виде таблиц контактов и имеют переменный внешний вид: разъемы, блоки управления, контроллеры, частотные преобразователи и т.д. Как правило, при использовании динамических УГО на схему выводятся только задействованные контакты (рис. 6).

Рис. 6. Пример статического (слева) и динамического УГО

Работа с электрическими связями (ЭС)

Удобный инструмент отрисовки позволяет задавать связи между контактами буквально двумя щелчками мыши, связь выстраивается с изломом. Номер связи присваивается автоматически, по порядку следующий из свободных (рис. 7).

Рис. 7. Электрическая связь

Когда же на принципиальную схему наносится элемент устройства, который уже размещен на другом листе схемы и имеет подключения, то от его выводов автоматически отрисуются уже подключенные электрические связи в виде отрезков.

Если пользователь при создании новой связи указал номер уже существующей электрической связи, то программа покажет сообщение­предупреждение, что ЭС с указанным обозначением уже существует, и предложит объединить связи. Так могут объединяться электрические связи, графически разнесенные на одном листе схемы или расположенные на разных листах схемы.

При «подтягивании» одной связи к другой они автоматически объединяются. Существует также обратная операция — разделения электрической связи (рис. 8).

Рис. 8. Пересечение связей и их объединение. На пересечении связей можно установить разрыв

Следует отметить, что ElectriCS Pro позволяет при необходимости на один вывод устройства подключать две электрические связи с разными номерами (рис. 9).

Рис. 9. Возможность подключения на один контакт двух (и более) электрических связей

При перемещении элементов подключенных устройств связи от контактов не отрываются, а вытягиваются, то есть если была задана связь между контактами, то программа обеспечивает целостность связей независимо от расположения элементов на листе схемы (рис. 10).

Рис. 10. Перемещение УГО с подключенными контактами

Для удобства работы с электрическими связями программа ElectriCS Pro предоставляет возможность отрисовки групповых линий связи, в том числе соединение линиями связи сопоставленных друг с другом контактов, создания изломов на линиях и другие полезные команды.

Для отображения перехода электрической связи на другой лист схемы используется несколько типов переходов:

  • на следующий (или предыдущий) лист схемы, где отображается данная связь;
  • на заданный лист схемы;
  • на контакт электрического устройства и т.д.

Для каждого типа перехода можно задать УГО и набор атрибутов. При изменении нумерации листов или обозначения устройства, на контакт которого ссылается переход, атрибуты перехода пересчитываются автоматически (рис. 11).

Рис. 11. Переходы линий электрической связи

Копирование фрагментов схем

Копирование фрагмента схемы применяется при наличии в схеме повторяющихся типовых фрагментов. Достаточно выделить любую часть схемы и скопировать ее для вставки на данный лист либо на другой лист схемы. Также фрагмент может быть вставлен в другой проект. При вставке фрагмента автоматически создаются новые электрические устройства такого же типа, что и исходные, а также новые связи (рис. 12).

Рис. 12. Копирование фрагмента схемы

Перечень элементов схемы электрической принципиальной

Табличный отчет «Перечень элементов» генерируется программой ElectriCS Pro автоматически по данным с принципиальной схемы. Отчет можно получить отдельным документом в формате PDF, RTF, XLS, HTML, DWG, TXT или разместить на листе принципиальной схемы.

В комплект поставки ElectriCS Pro включено несколько вариантов перечня элементов: с зонами и без зон, с основной надписью по ЕСКД или СПДС. Модуль «Мастер отчетов» позволяет пользователю самостоятельно модифицировать отчет (рис. 13).

Рис. 13. Перечень элементов

В заключение следует отметить, что в статье рассматривались только основные моменты отрисовки принципиальных схем в среде ElectriCS Pro. Программа является многофункциональной и гибкой как в плане настроек, так и в последовательности разработки схемы. ElectriCS Pro предоставляет пользователю достаточный набор инструментов для создания любых многолинейных принципиальных схем. При этом качество проектирования существенно повышается за счет сокращения числа ошибок проектировщика. 


1 ElectriCS Pro содержит настраиваемую систему обозначений электротехнических компонентов, использование которой позволяет выпускать схемы практически под любой стандарт проектирования. Например, если в одном проекте в разных шкафах допускается наличие одинаковых обозначений у электрических устройств и связей (то есть шкафы являются идентичными), то в этом случае в настройках указывается, что на уникальность обозначения компонента также влияет обозначение шкафа, где расположены данные элементы.

САПР и графика 12`2012

Электрические схемы – виды, назначение.Статья vse-e.com / Новости

Определение электрической схемы звучит примерно так: это принципиальная схема, графическое изображение, с помощью которого отображаются связи между отдельными элементами электрического устройства, которые работают за счет протекания электротока, используя условные графические, а также цифровые и буквенные обозначения. В данном случае работают правила ГОСТ. Проще говоря, в такой схеме электрик обозначает места установки розеток, выключателей, силового кабеля и провода. Разберемся, какие же бывают виды электрических схем и каковы их основные характеристики.

Виды электрических схем, классификация

Данные чертежи можно разделить по видам и типам.
Так, согласно правилам, выделяют электросхемы таких видов: пневматические, электрические схемы, газовые, гидравлические, комбинированные, вакуумные, кинематические, оптические, энергетические.
Основные типы электрических схем представлены:
— Схемы структурные;
— Схемы функциональные;
— Схемы принципиальные;
— Схемы общие;
— Схемы подключения и расположения;
— Схемы объединенные.
В общем-то, уже исходя из названия, становится понятным основное назначение документов. Дополнительно разберем каждый вид по отдельности для того, чтобы иметь общее представление и понимание.

Электросхемы. Виды электрических схем. Назначение.

Схема структурная. Проста и понятна для восприятия, удобна для работы. Это основной источник информации для ознакомления с основными составными частями электроустановки. Такой документ обязательно пригодится в доме при проведении ремонта.

Схема функциональная. Назначение этого чертежа практически не отличается от вышеописанного. Только одно существенное различие состоит в том, что в ней описываются более подробно все составные цепи.


 
Схема принципиальная. Такие электросхемы применяются там, где присутствуют сложные распределительные сети и есть необходимость составить полную картину работы того или иного оборудования. При этом, данные чертежи могут быть двух видов: однолинейными и полными.
Однолинейные дают понимание работы силовых первичных сетей.

Полные же схемы могут быть развернутыми или элементарными. Как правило, к таким сложным схемам всегда прилагаются пояснения.


 
Схемы монтажные. Самый популярный вид документа, который подсказывает, как провести монтаж проводки в помещении, а также указывает на то, где находятся провода. Основные правила обозначения схем: наличие расположения элементов цепи, виды соединений, цветовая маркировка. Главная задача – облегчить человеку проведение ремонта и предупредить повреждение уже существующей проводки.


 
Схема объединенная. Как говорит уже само название, данный вид документа соединяет в себе несколько. Используется там, где есть необходимость обозначения всех важных особенностей электроцепи. Так, это важно, например, на больших предприятиях при работе профессиональных электриков.


 
Вот таким образом представлены основные виды электрических схем. Конечно, любой из документов имеет свои особенности и для правильного составления требует наличия дополнительных знаний.

Автор: МЕГА КАБЕЛЬ

Назначение и классификация электрических схем

Категория:

   Остальное о мостовых кранах

Публикация:

   Назначение и классификация электрических схем

Читать далее:



Назначение и классификация электрических схем

Электрическая схема — это чертеж, на котором с помощью ус­ловных обозначений изображены электрические м-ашины, аппара­ты, приборы и связывающие их цепи. В зависимости от назначения и способов изображения электрических устройств существуют раз­личные типы электрических схем. При эксплуатации кранов кра­новщику необходимо знать символику обозначений, уметь читать и разбирать принципиальные и монтажные схемы кранов.

Принципиальная электрическая схема — основ­ной документ по электрооборудованию крана. Она определяет пол­ный состав оборудования, указывает электрические связи между ним и дает полное представление о принципах работы. Электро­оборудование и связывающие цепи показывают на схеме в виде условных графических обозначений (символов). Каждый элемент оборудования имеет на схеме буквенно-цифровое обозначение, по­ясняющее его назначение и порядковый номер. Коммутирующие устройства (выключатели, контакты, кнопки, реле и т. п.) изобра­жают р отключенном положении, т. е. при отсутствии тока во всех цепях схемы. При этом разомкнутые в отключенном положении контакты называют замыкающими (нормально разомкнуты­ми), в отличие от замкнутых, которые называют размыкаю- щ и м и (нормально замкнутыми).

На принципиальной электросхеме каждый аппарат, например контактор, изображают разделенным на составные элементы: ка­тушку, главные контакты, блок-контакты и др. , а каждый элемент включают в соответствующую цепь.

Рекламные предложения на основе ваших интересов:

Монтажная электрическая схема (соединения) предназначена для выполнения электромонтажных работ в процес­се монтажа (демонтажа) крана и проведения капитальных ремон­тов. На схеме указывают соединения отдельных элементов элект­рооборудования, типы, сечения, число жил и длины проводов, а также способ их прокладывания. В отличие от принципиальной схемы на монтажной электрическую проводку крана изображают в соответствии с расположением оборудования. Многожильные провода и группы проводов, размещенные в защитных рукавах, показывают одной линией, разветвляющейся по концам на отдель­ные маркированные жилы.

Рекламные предложения:


Читать далее: Основные требования к крановым электросхемам

Категория: — Остальное о мостовых кранах

Главная → Справочник → Статьи → Форум


Электросхемы автомобилей — как правильно читать обозначения + Видео

Все больше и больше современных автомобилей становятся настоящим сбором электронных устройств. Ведь с увеличением комфорта и улучшением характеристик двигателя, в автомобилях применяется большое количество различных приборов и аппаратов управления. Все это усложняет обслуживание электрической части автомобиля и требует необходимости умения читать электрические схемы. В этой статье мы расскажем вам, что такое электрические схемы, для чего нужно уметь читать их, и расскажем вам об основных обозначения.

Что такое электрическая схема?

Электрическая схема представляет собой графическое (на бумаге) изображение специальных символов и пиктограмм, которые имеют параллельное или последовательное соединение. Схема никогда не показывает действительное изображение совокупности предметов, а лишь показывает их связь между собой. Таким образом, если знать, как правильно читать схемы, можно разобраться в принципе действия того или иного устройства или системы устройств.

Практически на всех электрических схемах располагаются следующие предметы:

  • Источник питания. Таковым является аккумуляторная батарея или генератор.
  • Проводники – провода, с помощью которых осуществляется передача электрической энергии по цепи.
  • Аппаратура управления – это устройства, предназначенные для замыкания или размыкания электрической цепи, которые могут присутствовать или отсутствовать в схеме.
  • Потребители электрической энергии – это все приборы или устройства, которые осуществляют преобразование электрического тока в другой вид энергии. Например, прикуриватель преобразует электрический ток в тепловую энергию.

Для чего нужно уметь читать электрические схемы?

Такие знания не нужны были владельцам первых автомобилей. Дело в том, что их электрооборудование было ограниченным, что позволяло легко запомнить связь элементов цепи и выучить все провода наизусть. Другое дело современные автомобили, где монтируется большое количество электротехнических устройств и приборов. Вот тут электрическая схема понадобится в обязательном порядке.

 

Умение читать схему может понадобиться вам при эксплуатации любого автомобиля. Это поможет вам легко найти и устранить мелкие неисправности связанные с отказом того или иного электрического прибора. Ведь диагностика неисправностей и затем последующий ремонт могут обойтись в довольно немалую сумму. Почему бы не сделать это самостоятельно?

В другом случае, знание схемы поможет вам при подключении новых электрических приборов. Многим водителям схема помогает осуществить монтаж сигнализации, автозапуска и многих других устройств, где подключение к бортовой сети автомобиля является обязательным.

Многие водители затрудняются с подключением цепи прицепа к электрической сети автомобиля. Знание элементов схемы поможет вам быстро найти неисправность и произвести ее оперативное устранение.

Видео — Как читать схему проводки автомобиля

Условные обозначения на электросхемах авто

Условные обозначения электрических схем не представляют собой ничего сложного. Чтобы понять их, необходимо иметь минимальное представление о действии электрического тока.

 

Как известно, ток – это упорядоченное движение заряженных частиц по проводникам электрического тока. В роли проводников выступают разноцветные провода, которые обозначаются в схеме в виде прямых линий. Цвет линий должен в обязательном порядке соответствовать цвету проводов в действительности. Именно это и помогает разобраться водителю с толстыми жгутами проводов и не запутаться.

Различные контактные соединения обозначаются при помощи специальных цифр, которые есть как на схеме, так и в местах соединения. Как правило, такими цифрами в обязательном порядке обладают реле, имеющие множество контактных выводов. Элементы электрической цепи на схеме подписываются при помощи цифр. Внизу схемы или в виде отдельной таблицы отображается специальная расшифровка этих чисел, которая отображает название элемента цепи.

Подытожим. Читать электрические схемы – это достаточно легкое занятие. Главное правильно взаимодействовать с условными обозначениями и уметь понимать симптомы неисправности, чтобы своевременно и правильно определить род и место неисправности на схеме.

Схемы электрические. Типы схем

Привет Хабр!
Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.
В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).

На протяжении всей статьи буду опираться на ЕСКД.
Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.
Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.

Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э).
Разберемся какие типы схем описаны в данном ГОСТе.

Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.
Основной документ: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.
Так, что же такое и с чем «едят» эти схемы электрические?
Нам даст ответ ГОСТ 2.702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:


Схема электрическая структурная (Э1)

На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)

На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)

На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.
Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)

На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Пример схемы электрической соединений:


Схема электрическая подключения (Э5)

На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т.д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
Пример схемы электрической подключений:

Схема электрическая общая (Э6)

На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Пример схемы электрической общей:

Схема электрическая расположения (Э7)

На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.
Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)

На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.
Пример схемы электрической объединенной:
PS

Это моя первая статья на Хабре не судите строго.

Принципиальные и монтажные электрические схемы

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источник, нагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

Итоги урока

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

Что такое электрические цепи? | Основные понятия электричества

Вы, возможно, задавались вопросом, как заряды могут непрерывно течь в одинаковом направлении по проводам без использования этих гипотетических Источников и Назначений. Чтобы схема источника и назначения работала, оба должны иметь бесконечную емкость для зарядов, чтобы поддерживать непрерывный поток!

Используя аналогию с мрамором и трубкой из предыдущей страницы о проводниках, изоляторах и потоке электронов, мраморный источник и мраморные приемные ведра должны быть бесконечно большими, чтобы вместить достаточно мрамора для поддержания «потока» мрамора. .

Что такое цепь?

Ответ на этот парадокс можно найти в концепции схемы : бесконечный петлевой путь для носителей заряда. Если мы возьмем провод или несколько проводов, соединенных встык, и закрутим его так, чтобы он образовал непрерывный путь, у нас есть средства для поддержки равномерного потока заряда, не прибегая к бесконечным источникам и назначениям:

Каждый носитель заряда, движущийся по часовой стрелке в этом контуре, толкает того, что находится перед ним, который толкает тот, который находится перед ним, и так далее, и так далее, точно так же, как хула-хуп, наполненный шариками.Теперь у нас есть возможность поддерживать непрерывный поток заряда в течение неограниченного времени без необходимости в бесконечных запасах и свалках. Все, что нам нужно для поддержания этого потока, — это постоянные средства мотивации для этих носителей заряда, о которых мы поговорим в следующем разделе этой главы, посвященном напряжению и току.

Что означает обрыв цепи?

Непрерывность в цепи так же важна, как и в прямом проводе. Как и в примере с прямым отрезком провода между Источником и Назначением, любой разрыв в этой цепи предотвратит прохождение заряда через нее:

Здесь важно понимать, что не имеет значения, где происходит разрыв .Любое нарушение непрерывности в цепи предотвратит поток заряда по всей цепи. Если не существует непрерывной непрерывной петли из проводящего материала, через которую проходят носители заряда, устойчивый поток просто не может поддерживаться.

ОБЗОР:

  • Схема представляет собой непрерывную петлю из проводящего материала, которая позволяет носителям заряда непрерывно проходить через нее без начала и конца.
  • Если цепь «разорвана», это означает, что ее проводящие элементы больше не образуют полный путь, и в ней не может происходить непрерывный поток заряда.
  • Местоположение разрыва в цепи не имеет отношения к ее неспособности поддерживать непрерывный поток заряда. Любой обрыв , где-нибудь в цепи предотвращает поток носителей заряда по цепи.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Электрическая цепь — Простая английская Википедия, бесплатная энциклопедия

Электрическая цепь — это путь, по которому текут электроны от источника напряжения или тока.

Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов.Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательных цепях — это сумма сопротивлений.

Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Составление чертежа соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие схемы, эти схемы обычно рисуют чертежники, а затем распечатывают. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить, как течет электричество. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электричества — от отрицательного полюса к положительному.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя какого-либо компонента. Это может вызвать серьезное повреждение других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком высоким, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный возврат для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи заземления G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и на выходе.Обычно они перегорают, но иногда этого не происходит. Это может привести к возгоранию электрического тока.

Электрическая цепь — Простая английская Википедия, бесплатная энциклопедия

Электрическая цепь — это путь, по которому текут электроны от источника напряжения или тока.

Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей».Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательных цепях — это сумма сопротивлений.

Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Составление чертежа соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие схемы, эти схемы обычно рисуют чертежники, а затем распечатывают. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить, как течет электричество. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электричества — от отрицательного полюса к положительному.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя какого-либо компонента. Это может вызвать серьезное повреждение других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком высоким, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный возврат для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи заземления G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и на выходе.Обычно они перегорают, но иногда этого не происходит. Это может привести к возгоранию электрического тока.

Электрическая цепь — Простая английская Википедия, бесплатная энциклопедия

Электрическая цепь — это путь, по которому текут электроны от источника напряжения или тока.

Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей».Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательных цепях — это сумма сопротивлений.

Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Составление чертежа соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие схемы, эти схемы обычно рисуют чертежники, а затем распечатывают. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить, как течет электричество. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электричества — от отрицательного полюса к положительному.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя какого-либо компонента. Это может вызвать серьезное повреждение других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком высоким, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный возврат для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи заземления G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и на выходе.Обычно они перегорают, но иногда этого не происходит. Это может привести к возгоранию электрического тока.

Самый быстрый словарь в мире: Vocabulary.com

  • электрическая цепь электрическое устройство, обеспечивающее путь для прохождения электрического тока

  • электрическая цепь: электрическое устройство, обеспечивающее путь для прохождения электрического тока

  • электрический контакт контакт, позволяющий току проходить от одного проводника к другому

  • электрическая энергия энергия, выделяемая потоком электрического заряда через проводник

  • электромонтажные работы ремесло электрика

  • электрический разряд Разряд электричества

  • электрическая емкость: электрическое явление, при котором сохраняется электрический заряд.

  • .
  • электрический распределитель электрическое устройство, распределяющее напряжение на свечи зажигания бензинового двигателя в порядке последовательности зажигания

  • 32″>

    электрический переключатель управления, состоящий из механического, электрического или электронного устройства для включения, разрыва или изменения соединений в цепи

  • электрическая розетка розетка, в которую можно вставить лампочку

  • электрический шунт проводник с низким сопротивлением, подключенный параллельно другому устройству для отвода части тока

  • электрический ток Поток электричества через проводник

  • электрическая мощность произведение напряжения и тока

  • Розетка электрической розетки, обеспечивающая место в системе электропроводки, где ток может использоваться для работы электрических устройств

  • поражение электрическим током рефлекторная реакция на прохождение электрического тока через тело

  • электрическое реле электрическое устройство, такое, что ток, протекающий через него в одной цепи, может включать и выключать ток во второй цепи

  • электрическая буря буря, вызванная сильными восходящими потоками воздуха

  • Электростанция Коммунальное предприятие, обеспечивающее электроэнергией

  • электрический предохранитель: электрическое устройство, которое может прерывать прохождение электрического тока при его перегрузке.

  • .
  • электрический свет электрическая лампа, состоящая из прозрачного или полупрозрачного стеклянного корпуса, содержащего проволочную нить накала (обычно вольфрамовую), излучающую свет при нагревании электрическим током

  • Объяснение

    бытовых электрических цепей — HomeAdvisor

    Может быть, вы только что купили новый дом и быстро обнаруживаете небольшие особенности и «прелести» старых электрических цепей в вашем доме.Или, может быть, вы начали самостоятельный проект и понимаете, что откусили больше, чем можете прожевать.

    Электрические схемы могут быть одними из самых детализированных проектов дома , и без надлежащих знаний это может быть трудным проектом. При больших проблемах лучше всего искать рядом с вами электрика, который обладает знаниями и сможет найти решение.

    Если вы хотите попробовать сами, прежде чем связываться с профессионалом, вам следует знать несколько вещей.

    Что такое электрические цепи?

    Прежде чем вы напишете в своей любимой поисковой системе слово «ремонт электрики рядом со мной», давайте убедимся, что вы понимаете, что ищете.

    Когда вы входите в дом или комнату, вы, вероятно, не слишком много думаете о том, что происходит, когда вы щелкаете выключателем, и вся комната наполняется светом. Кажется, что этот выключатель создал свет, но он только завершил то, что уже было: цепь.

    Итак, что такое схема и как схемы работают? Прежде чем мы углубимся в это, нам нужно различать два типа схем.

    1. Силовые цепи

    Если вам нужно передавать электричество, а также управлять им, вам понадобится силовая цепь.

    Когда вы устанавливаете электропроводку, вы и пытаетесь выполнить эту передачу. Они похожи на системы электропроводки в вашем жилом доме, но могут быть такими же большими, как внешние линии электропередач.

    Если необходимо передать и контролировать большое количество электроэнергии, для этого потребуются силовые цепи.

    2. Электронные схемы

    В то время как силовые цепи отлично подходят для передачи и управления электричеством, они не могут делать то же самое для информации.

    Вот тут-то и пригодятся электронные схемы. Они бывают разных форм и размеров. Фактически, у вас, вероятно, сейчас в вашем кармане электрических цепей. Сотовые телефоны являются прекрасным примером электронных схем, поскольку каждый день через них проходит огромное количество информации.

    Что такое цепь?

    Теперь, когда мы провели различие между силовой схемой и электронной схемой, что вообще такое схема?

    Короче говоря, электрическая цепь — это просто путь, по которому может проходить электрический сигнал.Если электронам разрешено перемещаться от источника к месту назначения, свет у вас загорится, духовка нагреется, а тостер поджарит.

    Цепи могут быть открытыми или закрытыми , что приводит к противоположным результатам.

    Если цепь замкнута , через нее может пройти электрический ток. Если цепь разомкнута , электрический заряд прекращается от завершения цепи, и переключатель переводится в положение «выключено».

    Цепи состоят из четырех частей:
    1. Проводники: Провода, обычно медные, по которым проходит электричество.
    2. Переключатель: Разрыв в цепи. После закрытия цепь замкнется, и будет течь электричество.
    3. Нагрузка : резистор AKA , нагрузка представляет собой зуммер или лампочку, указывающую на замыкание цепи.
    4. Ячейка: Источник питания.

    Что означает обрыв цепи?

    Чтобы ответить на этот вопрос, представьте кольцевую трассу в виде кольцевого железнодорожного пути.Чтобы поезд мог двигаться по этому пути, путь должен быть непрерывным . Любой перерыв в пути, и поезд не может продолжать движение.

    То же верно и для схемы. Если переключатель замкнут ( подключен ), мощность может течь по цепи от нагрузки, через проводники и к месту назначения. В случае обрыва цепи электричество не может течь.

    Ток, напряжение и сопротивление

    • Current — это то, как электричество проходит через ваш дом, телефон, машину и т. Д.Электроны, движущиеся по проволоке, называют электрическим током.
    • Напряжение похоже на ток, но движется в противоположном направлении от электронов. Электроны перемещаются от отрицательного заряда к положительному, а напряжение переходит от положительного к отрицательному.

    Измерение тока, напряжения и сопротивления

    Чтобы измерить ток , который измеряется амперметром или амперметром, выполните следующие действия.

    1. Подключите сухой элемент и лампочку.
    2. Подключите положительную клемму к отрицательной клемме.
    3. Измерить амперметром, протекающим через лампочку.

    Чтобы измерить напряжение , вам понадобится вольтметр, а процесс аналогичен измерению тока.

    1. Подключите сухой элемент и лампочку.
    2. Подключите вольтметр параллельно лампочке.
    3. Подключите положительный вывод сухого элемента к положительному выводу вольтметра и проделайте то же самое с отрицательным.

    Для измерения сопротивления вам понадобится мультиметр или тестовый измеритель, и вам нужно будет выполнить следующие действия.

    1. Поверните циферблат в положение для необходимого измерения сопротивления.
    2. Коснитесь клемм мультиметра.
    3. Установите диапазон измерителя на 0.
    4. Коснитесь клемм измерителя, чтобы измерить сопротивление и снять показания.

    Статическое электричество

    Статическое электричество — прекрасный пример того, что все вещи имеют электрические заряды. Например, когда вы трете две вещи друг о друга, генерируется электричество. Эти предметы обладают потенциалом электрического заряда, но для того, чтобы этот потенциал стал реальностью, потребовались некоторые манипуляции.

    Когда вы трете определенные предметы друг о друга, электроны освобождаются от их атомов в одном материале, а другой материал приобретает положительный заряд. Это заставляет свободные электроны, которые имеют отрицательный заряд, перемещаться в другой материал. Когда вы чувствуете этот «шок», вы испытываете это движение.

    Дополнительные ресурсы:

    Электрическая цепь — ток, электричество, устройства и сопротивление

    Электрическая цепь — это система проводящих элементов, предназначенная для управления прохождением электрического тока для определенной цели. Цепи состоят из источников электроэнергии , таких как генераторы и батареи; элементы, которые преобразуют, рассеивают или накапливают эту энергию, такие как резисторы, конденсаторы и катушки индуктивности; и соединительные провода.Цепи часто включают предохранитель или автоматический выключатель для предотвращения перегрузки по мощности.

    Устройства, подключенные к цепи, подключаются к ней одним из двух способов: последовательно или параллельно . Последовательная цепь образует единый путь для прохождения тока, в то время как параллельная цепь образует отдельные пути или ответвления для прохождения тока. Параллельные цепи имеют важное преимущество перед последовательными цепями. Если устройство, подключенное к последовательной цепи, выходит из строя или выключается, цепь разрывается, и другие устройства в цепи не могут потреблять энергию.Отдельные пути параллельной цепи позволяют устройствам работать независимо друг от друга, поддерживая цепь, даже если одно или несколько устройств выключены.

    Первая электрическая схема была изобретена Алессандро Вольта в 1800 году.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *