Что такое интегральная микросхема. Какие бывают типы интегральных микросхем. Как производят интегральные микросхемы. Какие преимущества дают интегральные микросхемы. Где применяются интегральные микросхемы в современной электронике.
Что такое интегральная микросхема
Интегральная микросхема (ИМС) — это миниатюрное электронное устройство, содержащее в одном корпусе множество взаимосвязанных электронных компонентов, выполняющих определенную функцию. Основные характеристики интегральных микросхем:
- Миниатюрные размеры (от нескольких квадратных миллиметров до нескольких квадратных сантиметров)
- Высокая степень интеграции (от сотен до миллиардов компонентов на одном кристалле)
- Герметичный корпус для защиты от внешних воздействий
- Выполнение определенной функции или набора функций
Интегральные микросхемы произвели революцию в электронике, позволив создавать сложные электронные устройства компактных размеров.
Основные типы интегральных микросхем
Существует несколько основных типов интегральных микросхем:
1. Аналоговые микросхемы
Аналоговые ИМС работают с непрерывно изменяющимися сигналами. Они выполняют такие функции как усиление, фильтрация, преобразование сигналов. Примеры аналоговых ИМС:
- Операционные усилители
- Компараторы
- Аналого-цифровые и цифро-аналоговые преобразователи
2. Цифровые микросхемы
Цифровые ИМС работают с дискретными сигналами, представленными в двоичном коде. Они выполняют логические и арифметические операции. К цифровым ИМС относятся:
- Логические элементы (И, ИЛИ, НЕ и др.)
- Триггеры и регистры
- Счетчики
- Микропроцессоры и микроконтроллеры
3. Аналого-цифровые микросхемы
Аналого-цифровые ИМС сочетают в себе аналоговые и цифровые узлы. Они применяются для обработки сигналов на стыке аналогового и цифрового миров. Примеры:
- Аналого-цифровые преобразователи
- Цифро-аналоговые преобразователи
- Системы на кристалле (SoC)
Технологии производства интегральных микросхем
Существует несколько основных технологий производства интегральных микросхем:
1. Планарная технология
Планарная технология используется для создания полупроводниковых интегральных схем. Основные этапы:
- Выращивание монокристалла кремния
- Нарезка пластин-подложек
- Окисление поверхности
- Нанесение фоторезиста
- Фотолитография для создания рисунка схемы
- Диффузия примесей
- Металлизация для создания контактов
2. Гибридная технология
При гибридной технологии на диэлектрической подложке формируются тонко- или толстопленочные пассивные элементы, а активные компоненты монтируются в виде отдельных чипов. Это позволяет создавать ИМС с высокоточными пассивными компонентами.
3. Технология «система на кристалле»
Технология «система на кристалле» (SoC) позволяет объединить на одном кристалле различные функциональные блоки — процессорные ядра, память, интерфейсы и т.д. Это дает возможность создавать сложные многофункциональные ИМС.
Преимущества интегральных микросхем
Интегральные микросхемы обладают рядом важных преимуществ по сравнению с дискретными электронными компонентами:
- Миниатюрность и малый вес
- Высокая надежность за счет уменьшения числа соединений
- Низкое энергопотребление
- Высокое быстродействие
- Возможность массового производства и низкая стоимость
- Воспроизводимость характеристик
- Расширенные функциональные возможности
Какие еще преимущества дают интегральные микросхемы? Они позволяют создавать сложные электронные устройства с высокой степенью интеграции и функциональности при малых габаритах. Это открыло путь к развитию портативной электроники, мобильных устройств, компьютерной техники.
Применение интегральных микросхем
Интегральные микросхемы нашли широчайшее применение в современной электронике:
1. Вычислительная техника
В компьютерах и ноутбуках применяются различные типы ИМС:
- Микропроцессоры
- Микросхемы памяти (ОЗУ, ПЗУ)
- Микросхемы системной логики (чипсеты)
- Контроллеры периферийных устройств
2. Мобильные устройства
Смартфоны и планшеты содержат множество интегральных микросхем:
- Процессоры и системы на кристалле
- Микросхемы беспроводной связи (Wi-Fi, Bluetooth, GSM)
- Контроллеры дисплеев и сенсорных экранов
- Микросхемы управления питанием
3. Бытовая техника
Интегральные микросхемы широко используются в современной бытовой технике:
- Микроконтроллеры для управления режимами работы
- Драйверы двигателей и силовых устройств
- Микросхемы обработки сигналов в аудио/видеотехнике
Где еще применяются интегральные микросхемы? Практически во всех областях современной электроники — от автомобильной электроники до медицинского оборудования и промышленной автоматики. ИМС стали неотъемлемой частью большинства электронных устройств.
Перспективы развития интегральных микросхем
Развитие интегральных микросхем продолжается по нескольким направлениям:
- Уменьшение технологических норм производства (уже достигнут уровень 5 нм)
- Увеличение степени интеграции (число транзисторов на кристалле)
- Снижение энергопотребления
- Повышение быстродействия
- Внедрение новых материалов (графен, углеродные нанотрубки)
- Развитие трехмерных ИМС
Какие перспективы ждут интегральные микросхемы в будущем? Ожидается дальнейшая миниатюризация, повышение производительности и энергоэффективности ИМС. Это позволит создавать еще более компактные и мощные электронные устройства.
Заключение
Интегральные микросхемы произвели революцию в электронике, позволив создавать сложные электронные устройства компактных размеров. Они обладают рядом важных преимуществ — миниатюрность, надежность, низкое энергопотребление, высокое быстродействие. ИМС нашли применение практически во всех областях современной электроники — от компьютеров и смартфонов до бытовой техники и промышленного оборудования. Развитие технологий производства интегральных микросхем продолжается, открывая новые возможности для создания высокопроизводительных электронных устройств.
Глава 25. Интегральные микросхемы . Введение в электронику
ЦЕЛИ
После изучения этой главы студент должен быть в состоянии:
• Объяснить важность интегральных микросхем.
• Перечислить преимущества и недостатки интегральных микросхем.
• Перечислить основные компоненты интегральной микросхемы.
• Описать четыре процесса, используемых при производстве интегральных микросхем.
• Перечислить основные типы корпусов интегральных микросхем.
• Перечислить семейства интегральных микросхем.
Применение транзисторов и других полупроводниковых устройств, благодаря их малым размерам и незначительному энергопотреблению, позволило существенно уменьшить размеры электронных цепей. В настоящее время стало возможным расширить этот принцип и рассматривать цепи как отдельные компоненты. Целью разработки интегральных микросхем является получение устройства, выполняющего определенную функцию, такую, как например, усиление или переключение, устраняющего разрыв между отдельными компонентами и цепями.
Интегральные микросхемы стали популярными благодаря нескольким факторам:
• Они надежны в сложных цепях.
• Они потребляют малую мощность.
• Они имеют малые размеры и вес.
• Они экономичны в производстве.
• Они предлагают новые и лучшие решения системных задач.
25-1. ВВЕДЕНИЕ В ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ
Интегральная микросхема (ИС) — это законченная электронная цепь в корпусе не большем, чем стандартный маломощный транзистор (рис. 25-1).
Рис. 25-1. Корпуса интегральных микросхем.
Цепь состоит из диодов, транзисторов, резисторов и конденсаторов. Интегральные микросхемы производятся по такой же технологии и из таких же материалов, которые используются при производстве транзисторов и других полупроводниковых устройств.
Вследствие малых размеров, интегральные микросхемы потребляют меньшую мощность и работают с более высокой скоростью, чем стандартные транзисторные цепи. Время перемещения электронов уменьшилось благодаря прямой связи внутренних компонент.
Интегральные микросхемы более надежны чем непосредственно связанные транзисторные цепи. В интегральной микросхеме внутренние компоненты соединены непрерывно. Все компоненты сформированы одновременно, что уменьшает вероятность ошибки. После того как интегральная микросхема сформирована, она проходит предварительное тестирование перед окончательной сборкой.
Производство многих типов интегральных микросхем унифицировано, и это приводит к существенному снижению их стоимости. Производители предлагают полные и стандартные линии микросхем. Интегральные микросхемы специального назначения могут производится и по специальному заказу, но если их количество невелико, это приводит к повышению их стоимости.
Интегральные микросхемы уменьшают количество деталей, необходимых для конструирования электронного оборудования. Это уменьшает списки деталей и, следовательно, накладные расходы производителя, что в дальнейшем снижает цену электронного оборудования.
Интегральные микросхемы содержат компоненты только четырех типов: диоды, транзисторы, резисторы и конденсаторы. Диоды и транзисторы — самые простые в изготовлении компоненты. Чем больше сопротивление резистора, тем больше он по размерам. Конденсаторы занимают больше места, чем резисторы, и также увеличиваются в размере по мере увеличения емкости.
Интегральные микросхемы не ремонтируются. Это обусловлено тем, что внутренние компоненты не могут быть отделены друг от друга. Следовательно, проблема ремонта решается заменой микросхемы, а не заменой отдельных компонент. Преимущество этого «недостатка» состоит в том, что он сильно упрощает эксплуатацию систем высокой сложности и уменьшает время, необходимое персоналу для сервисного обслуживания оборудования.
Если все факторы собрать вместе, то преимущества перевесят недостатки. Интегральные микросхемы уменьшают размеры, вес и стоимость электронного оборудования, одновременно увеличивая его надежность. По мере усложнения микросхем, они стали способны выполнять более широкий круг операций.
25-1. Вопросы
1. Дайте определение интегральной микросхемы.
2. В чем преимущества интегральных микросхем?
3. В чем недостатки интегральных микросхем?
4. Какие компоненты могут быть включены в интегральные микросхемы?
5. В чем состоит процедура ремонта неисправной интегральной микросхемы?
25-2. ПРОИЗВОДСТВО ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Интегральные микросхемы классифицируются согласно способу их изготовления. Наиболее широко используются следующие способы изготовления: монолитный, тонкопленочный, толстопленочный и гибридный.
Монолитные интегральные микросхемы изготавливаются так же, как и транзисторы, но включают несколько дополнительных шагов (рис. 25-2).
Рис. 25-2. Монолитный метод изготовления микросхем.
Рис. 25-2. Продолжение.
Изготовление интегральной микросхемы начинается с круглой кремниевой пластины, диаметром 8-10 сантиметров и около 0,25 миллиметра толщиной. Она служит основой (подложкой), на которой формируется интегральная микросхема. На одной подложке одновременно формируется много интегральных микросхем, до нескольких сотен, в зависимости от размера подложки. Обычно на подложке все микросхемы одинакового размера и типа и содержат одинаковое количество и одинаковые типы компонент.
После изготовления интегральные микросхемы тестируются прямо на подложке. После тестирования подложка разрезается на отдельные чипы. Каждый чип представляет собой одну интегральную микросхему, содержащую все компоненты и соединения между ними. Каждый чип, который проходит тест контроля качества, монтируется в корпус. Несмотря на то, что одновременно изготовляется большое количество интегральных микросхем, далеко не все из них оказываются пригодными для использования.
Эффективность производства характеризуют таким параметром как выход. Выход — это максимальное число пригодных интегральных микросхем по сравнению с полным числом изготовленных.
Тонкопленочные интегральные микросхемы формируются на поверхности изолирующей подложки из стекла или керамики, обычно размером около 5 квадратных сантиметров. Компоненты (резисторы и конденсаторы) формируются с помощью очень тонких пленок металлов и окислов, наносимых на подложку. После этого наносятся тонкие полоски металла для соединения компонентов.
Диоды и транзисторы формируются как отдельные полупроводниковые устройства и подсоединяются в соответствующих местах. Резисторы формируются нанесением тантала или нихрома на поверхность подложки в виде тонкой пленки толщиной 0,0025 миллиметра. Величина резистора определяется длиной, шириной и толщиной каждой полоски. Проводники формируются из металлов с низким сопротивлением, таких как золото, платина или алюминий. С помощью этого процесса можно создать резистор с точностью ±0,1 %.
Возможно также получить отношение резисторов с точностью ±0,01 %. Такие точные отношения важны для правильной работы некоторых цепей.
Тонкопленочные конденсаторы состоят из двух тонких слоев металла, разделенных тонким слоем диэлектрика. Металлический слой нанесен на подложку.
После этого на металл наносится слой окисла, образующего диэлектрическую прокладку конденсатора. Она формируется обычно такими изолирующими материалами, как окись тантала, окись кремния или окись алюминия. Верхняя часть конденсатора создается из золота, тантала или платины, нанесенных на диэлектрик. Полученное значение емкости конденсатора зависит от площади электродов, а также от толщины и типа диэлектрика.
Чипы диодов и транзисторов формируются с помощью монолитной техники и устанавливаются на подложке. После этого они электрически соединяются с тонкопленочной цепью с помощью очень тонких проводников.
Материалы, используемые для компонентов и провод- ников, наносятся на подложку методом испарения в вакууме или методом напыления. В процессе испарения в вакууме материал достигает предварительно нагретой подложки, помещенной в вакуум. После этого пары конденсируются на подложке, образуя тонкую пленку.
Процесс напыления происходит в газонаполненной камере при высоком напряжении. Высокое напряжение ионизирует газ, и материал, который должен быть напылен, бомбардируется ионами. Ионы выбивают атомы из напыляемого материала, которые затем дрейфуют по направлению к подложке, где и осаждаются в виде тонкой пленки. Для осаждения пленки нужной формы и в нужном месте используется маска. Другой метод состоит в покрытии всей подложки полностью и вырезания или вытравливания ненужных участков.
При толстопленочном методе резисторы, конденсаторы и проводники формируются на подложке методом трафаретной печати: над подложкой размещается экран из тонкой проволоки и металлизированные чернила делают сквозь него отпечаток. Экран действует как маска. Подложка и чернила после этого нагреваются до температуры свыше 600 градусов Цельсия для затвердевания чернил.
Толстопленочные конденсаторы имеют небольшие значения емкости (порядка пикофарад). В тех случаях, когда требуются более высокие значения емкости, используются дискретные конденсаторы. Толстопленочные компоненты имеют толщину 0,025 миллиметра. Толстопленочные компоненты похожи на соответствующие дискретные компоненты.
Гибридные интегральные микросхемы формируются с использованием монолитных, тонкопленочных, толстопленочных и дискретных компонентов. Это позволяет получать цепи высокой степени сложности, применяя монолитные цепи, и в то же самое время использовать преимущества высокой точности и малых допусков, которые дает пленочная техника. Дискретные компоненты употребляются потому, что они могут работать при относительно высокой мощности.
Если изготовляется небольшое количество микросхем, то дешевле использовать гибридный метод формирования. При гибридном процессе основные расходы приходятся на соединение и сборку компонентов и упаковку устройства в корпус. Так как гибридные микросхемы используют дискретные компоненты, они больше и тяжелее, чем монолитные интегральные микросхемы. Использование дискретных компонентов делает гибридные микросхемы менее надежными, чем монолитные.
25-2. Вопросы
1. Какие методы используются для изготовления интегральных микросхем?
2. Опишите процесс изготовления монолитных микросхем.
3. В чем различие между тонкопленочным и толстопленочным методами изготовления микросхем?
4. Как изготавливают гибридные микросхемы?
5. Что определяет выбор процесса, который будет использован при изготовлении интегральной микросхемы?
25-3. КОРПУСА ИНТЕГРАЛЬНЫХ МИКРОСХЕМ
Интегральные микросхемы упаковываются в корпуса, рассчитанные на защиту их от влаги, пыли и других загрязнений. Наиболее популярным является корпус с двухрядным расположением выводов (DIP). Он производится нескольких размеров для того, чтобы соответствовать различным размерам интегральных микросхем: микросхемам малой степени интеграции (SSI), микросхемам средней степени интеграции (MSI), микросхемам большой степени интеграции (LSI или БИС) и сверхбольшим интегральным микросхемам (VLSI или СБИС) (рис. 25-3).
Рис. 25-3. Семейства интегральных микросхем.
Корпуса изготовляются либо из керамики, либо из пластмассы. Пластмассовые корпуса дешевле и более пригодны для применения при рабочей температуре от 0 до 70 градусов Цельсия. Микросхемы в керамических корпусах дороже, но обеспечивают лучшую защиту от влаги и загрязнений. Они, кроме того, работают в более широком диапазоне температур (от -55 до +125 градусов Цельсия). Микросхемы в керамических корпусах рекомендуются для использования в военной и аэрокосмической технике, а также в некоторых отраслях промышленности.
Маленький 8-выводный корпус типа DIP используется для устройств с минимальным количеством входов и выходов. В нем располагаются, главным образом, монолитные интегральные микросхемы.
Плоские корпуса меньше и тоньше чем корпуса типа DIP и они используются в случаях, когда пространство ограничено. Они изготовляются из металла или керамики и работают в диапазоне температур от -55 до +125 градусов Цельсия.
После того как интегральная микросхема заключена в корпус, она тестируется для проверки ее соответствия всем требуемым параметрам. Тестирование проводится в широком диапазоне температур.
25-3. Вопросы
1. Каково назначение корпусов интегральных микросхем?
2. Какие корпуса чаще всего используются для интегральных микросхем?
3. Какие материалы используются для корпусов интегральных микросхем?
4. В чем преимущества керамических корпусов?
5. В чем преимущество плоских корпусов интегральных микросхем?
РЕЗЮМЕ
• Интегральные микросхемы популярны, потому что они:
— более надежны в качестве сложных цепей;
— потребляют маленькую мощность;
— являются миниатюрными и легкими;
— экономичны при изготовлении;
— обеспечивают новые и лучшие решения проблем.
• Интегральные микросхемы не могут работать при больших значениях токов и напряжений.
• Элементами интегральных микросхем могут быть только диоды, транзисторы, резисторы и конденсаторы.
• Интегральные микросхемы нельзя отремонтировать, их можно только заменить.
• Для изготовления интегральных микросхем используются монолитный, тонкопленочный, толстопленочный и гибридный способы изготовления.
• Наиболее популярным корпусом интегральных микросхем является корпус типа DIP (с двухрядным расположением выводов)
• Корпуса интегральных микросхем изготовляются из керамики или пластмассы, но пластмассовые корпуса используются чаще.
Глава 25. САМОПРОВЕРКА
1. Какие компоненты содержат гибридные интегральные микросхемы?
2. Что обозначается словом «чип»?
3. Какие существуют проблемы при изготовлении резисторов и конденсаторов при производстве интегральных микросхем монолитным методом?
Интегральные микросхемы
По научному определению, интегральные микросхемы – это отдельные высокотехнологичные устройства (с огромным количеством электронных компонентов, заключенных в маленьком корпусе), которые выполняют какую-то функцию или действие. Этих функций может быть или одна или несколько. Вот список некоторых основных функций, которые выполняют интегральные микросхемы:
- Преобразование сигнала (например, из аналогового в цифровой и обратно).
- Обработка сигнала (например, усиление и очистка звука)
- Действия вычитания, сложения, умножения и деления сигнала (логические микросхемы)
Интегральные микросхемы представляют собой изделие, выполненное в герметизированном (металлическом, пластмассовом, керамическом, металлокерамическом и так лале) корпусе. Микросхемы бывают различного исполнения (прямоугольные, треугольные, круглые) с разным количеством выводов: от трех (например, на стабилизаторе LM7805, до нескольких сотен на процессорах).
Интегральные микросхемы (и аппаратура на них) обладают неоспоримыми преимуществами:
- Высокой технологичностью и надежностью. Ведь все микросхемы производят на специализированных заводах и фабриках с современной технологией производства. На линиях (полностью или частично) автоматизированных. При производстве микросхемы (особенно в юго-восточных странах) применяют и живую рабочую силу, так как это дешевле, чем покупать дорогостоящие линии. Интегральные компоненты позволяют снизить на два-три порядка затраты труда на производство, монтаж и сборку различной аппаратуры. При конструировании и создании такой аппаратуры уменьшается количество разных паяных соединений, которые зачастую являются причиной отказа аппаратуры. Микросхемы являются более надежными, чем дискретные элементы, так как ошибки при монтаже уменьшаются на 3-4 порядка. Легче и намного быстрее запаять интегральные компоненты (например, один логический элемент с 16 выводами), чем паять более 20 дискретных элементов (которые выполняют ту же функцию) с 60 выводами. Только микросхемы обеспечивают надежность систем управления в различных системах управления, в компьютерах, в околоземном пространстве на космических станциях и так далее.
- Интегральные компоненты (и аппаратура на них) малогабаритны и имеют маленький вес.
- Микросхемы намного сокращают процесс разработки нового изделия (аппарата), так как можно использовать готовые, уже опробованные, миниатюрные блоки и узлы. И поэтому внедрение нового изделия в производство резко сокращается.
- Многие интегральные элементы выпускаются массово (например, микросхемы в домашних звонках, в игрушках, в клавиатурах и мышках компьютеров и т. п.). Это намного снижает себестоимость микросхемы и всего изделия в целом.
- Интегральные элементы сокращают число комплектующих создаваемого изделия, уменьшают количество проводимых операций, что (в конечном счете) ведет к упрощению организации современного производства.
Микросхемы разделяют на два вида: 1 – полупроводниковые интегральные схемы; 2 – гибридные интегральные схемы.
Рассмотрим каждый из них по отдельности.
Полупроводниковые интегральные элементы представляют собой кристалл, в глубине которого выполняют все элементы схемы. Изоляция различных элементов осуществляют с помощью (так называемых) «p-n» переходов.
Гибридные интегральные схемы выполняются по «пленочной» технологии и представляют пластину (подложку) из диэлектрического материала. На нее нанесены (в виде пленок) плоские компоненты (резисторы, дроссели, конденсаторы и т. д.) и соединения. Причем сопротивление резисторов может быть 105 Ом, емкость конденсаторов 103 пФ, а дроссели иметь индуктивность около 10 мкГн — не более.
Транзисторы, диоды, магнитные элементы, конденсаторы более 103 пФ и электролитические выполняют с помощью навесного монтажа. Гибридные интегральные схемы имеют более высокую точность параметров (на один или два порядка выше), чем полупроводниковые аналоги. Количество элементов внутри каждого класса микросхем может достигать несколько тысяч.
Интегральная схема | Типы, использование и функции
интегральная схема
Посмотреть все СМИ
- Ключевые люди:
- Роберт Нойс Джек Килби Моррис Чанг Роберт Х. Деннард
- Похожие темы:
- микропроцессор звуковая карта компьютерный чип видеокарта аналоговая схема
Просмотреть весь связанный контент →
Сводка
Прочтите краткий обзор этой темы
интегральная схема (ИС) , также называемая микроэлектронной схемой , микрочипом или микросхемой , сборка электронных компонентов, изготовленная как единое целое, в которой миниатюрные активные устройства (например, транзисторы и диоды) и пассивные устройства (например, конденсаторы и резисторы) и их соединения построены на тонкой подложке из полупроводникового материала (обычно кремния). Таким образом, результирующая схема представляет собой небольшой монолитный «чип», размер которого может составлять всего несколько квадратных сантиметров или всего несколько квадратных миллиметров. Отдельные компоненты схемы обычно имеют микроскопические размеры.
Интегральные схемы появились благодаря изобретению транзистора в 1947 году Уильямом Б. Шокли и его командой в Bell Laboratories Американской телефонной и телеграфной компании. Команда Шокли (включая Джона Бардина и Уолтера Х. Браттейна) обнаружила, что при определенных обстоятельствах электроны образуют барьер на поверхности некоторых кристаллов, и они научились контролировать поток электричества через кристалл, манипулируя этим барьером. Управление потоком электронов через кристалл позволило команде создать устройство, которое могло бы выполнять определенные электрические операции, такие как усиление сигнала, которые ранее выполнялись электронными лампами. Они назвали это устройство транзистором, от сочетания слов передача и резистор . Изучение методов создания электронных устройств с использованием твердых материалов стало называться твердотельной электроникой. Твердотельные устройства оказались намного прочнее, с ними проще работать, они надежнее, меньше и дешевле, чем электронные лампы. Используя те же принципы и материалы, инженеры вскоре научились создавать другие электрические компоненты, такие как резисторы и конденсаторы. Теперь, когда электрические устройства можно было сделать такими маленькими, самой большой частью схемы была неудобная проводка между устройствами.
Знать, как работает ICL 2966, мейнфрейм с интегральной схемой
Просмотреть все видео к этой статьеВ 1958 году Джек Килби из Texas Instruments, Inc. и Роберт Нойс из Fairchild Semiconductor Corporation независимо друг от друга придумали способ еще больше уменьшить размер схемы . Они прокладывали очень тонкие дорожки из металла (обычно из алюминия или меди) прямо на том же куске материала, что и их устройства. Эти маленькие дорожки действовали как провода. С помощью этого метода вся схема может быть «интегрирована» в единый кусок твердого материала и таким образом создана интегральная схема (ИС). ИС могут содержать сотни тысяч отдельных транзисторов на одном куске материала размером с горошину. Работать с таким количеством электронных ламп было бы нереально неудобно и дорого. Изобретение интегральной схемы сделало возможными технологии информационного века. В настоящее время интегральные схемы широко используются во всех сферах жизни, от автомобилей до тостеров и аттракционов в парках развлечений.
Базовые типы ИС
Аналоговые или линейные схемы обычно используют только несколько компонентов и, таким образом, являются одними из самых простых типов ИС. Как правило, аналоговые схемы подключаются к устройствам, которые собирают сигналы из окружающей среды или отправляют сигналы обратно в окружающую среду. Например, микрофон преобразует изменчивые звуки голоса в электрический сигнал переменного напряжения. Затем аналоговая схема модифицирует сигнал каким-либо полезным образом, например, усиливая его или фильтруя нежелательные шумы. Затем такой сигнал можно было бы подать обратно в громкоговоритель, который воспроизвел бы тоны, первоначально улавливаемые микрофоном. Другим типичным применением аналоговой схемы является управление некоторым устройством в ответ на постоянные изменения в окружающей среде. Например, датчик температуры посылает переменный сигнал на термостат, который можно запрограммировать на включение и выключение кондиционера, обогревателя или духовки, как только сигнал достигнет определенного значения.
Цифровая схема, с другой стороны, предназначена для приема только напряжения определенных заданных значений. Схема, которая использует только два состояния, известна как двоичная схема. Схема с двоичными величинами, «включено» и «выключено», представляющими 1 и 0 (т. е. истинное и ложное), использует логику булевой алгебры. (Арифметика также выполняется в двоичной системе счисления с использованием булевой алгебры.) Эти основные элементы объединяются в конструкции ИС для цифровых компьютеров и связанных с ними устройств для выполнения желаемых функций.
Интегральная схема | Типы, использование и функции
интегральная схема
Посмотреть все СМИ
- Ключевые люди:
- Роберт Нойс Джек Килби Моррис Чанг Роберт Х. Деннард
- Похожие темы:
- микропроцессор звуковая карта компьютерный чип видеокарта аналоговая схема
Просмотреть весь связанный контент →
Сводка
Прочтите краткий обзор этой темы
интегральная схема (ИС) , также называемая микроэлектронной схемой , микрочипом или микросхемой , сборка электронных компонентов, изготовленная как единое целое, в которой миниатюрные активные устройства (например, транзисторы и диоды) и пассивные устройства (например, конденсаторы и резисторы) и их соединения построены на тонкой подложке из полупроводникового материала (обычно кремния). Таким образом, результирующая схема представляет собой небольшой монолитный «чип», размер которого может составлять всего несколько квадратных сантиметров или всего несколько квадратных миллиметров. Отдельные компоненты схемы обычно имеют микроскопические размеры.
Интегральные схемы появились благодаря изобретению транзистора в 1947 году Уильямом Б. Шокли и его командой в Bell Laboratories Американской телефонной и телеграфной компании. Команда Шокли (включая Джона Бардина и Уолтера Х. Браттейна) обнаружила, что при определенных обстоятельствах электроны образуют барьер на поверхности некоторых кристаллов, и они научились контролировать поток электричества через кристалл, манипулируя этим барьером. Управление потоком электронов через кристалл позволило команде создать устройство, которое могло бы выполнять определенные электрические операции, такие как усиление сигнала, которые ранее выполнялись электронными лампами. Они назвали это устройство транзистором, от сочетания слов передача и резистор . Изучение методов создания электронных устройств с использованием твердых материалов стало называться твердотельной электроникой. Твердотельные устройства оказались намного прочнее, с ними проще работать, они надежнее, меньше и дешевле, чем электронные лампы. Используя те же принципы и материалы, инженеры вскоре научились создавать другие электрические компоненты, такие как резисторы и конденсаторы. Теперь, когда электрические устройства можно было сделать такими маленькими, самой большой частью схемы была неудобная проводка между устройствами.
Знать, как работает ICL 2966, мейнфрейм с интегральной схемой
Просмотреть все видео к этой статьеВ 1958 году Джек Килби из Texas Instruments, Inc. и Роберт Нойс из Fairchild Semiconductor Corporation независимо друг от друга придумали способ еще больше уменьшить размер схемы . Они прокладывали очень тонкие дорожки из металла (обычно из алюминия или меди) прямо на том же куске материала, что и их устройства. Эти маленькие дорожки действовали как провода. С помощью этого метода вся схема может быть «интегрирована» в единый кусок твердого материала и таким образом создана интегральная схема (ИС). ИС могут содержать сотни тысяч отдельных транзисторов на одном куске материала размером с горошину. Работать с таким количеством электронных ламп было бы нереально неудобно и дорого. Изобретение интегральной схемы сделало возможными технологии информационного века. В настоящее время интегральные схемы широко используются во всех сферах жизни, от автомобилей до тостеров и аттракционов в парках развлечений.
Базовые типы ИС
Аналоговые или линейные схемы обычно используют только несколько компонентов и, таким образом, являются одними из самых простых типов ИС. Как правило, аналоговые схемы подключаются к устройствам, которые собирают сигналы из окружающей среды или отправляют сигналы обратно в окружающую среду. Например, микрофон преобразует изменчивые звуки голоса в электрический сигнал переменного напряжения. Затем аналоговая схема модифицирует сигнал каким-либо полезным образом, например, усиливая его или фильтруя нежелательные шумы. Затем такой сигнал можно было бы подать обратно в громкоговоритель, который воспроизвел бы тоны, первоначально улавливаемые микрофоном.