Датчик присутствия своими руками схема: Простой датчик движения своими руками: пошаговая инструкция

Содержание

Как сделать датчик движения своими руками, различные варианты

На сегодняшний день практически каждый знает, что такое датчик движения для освещения. Данный аппарат, хорошо себя зарекомендовал, и в служебных помещения, и в частном секторе. Стоимость не всегда является доступной. В этой статье мы подробно опишем как своими руками, сделать самодельный датчик для освещения, по простой схеме.

Основная информация о датчике движения

Рассмотрим немного информации о датчике движения для освещения и сфера его применения.
Датчик движения — устройство, основной функцией которого является распознание движения в зоне его действия. Имеется три вида датчика – пассивный, активный и смешанный.

Принцип действия активного датчика, основан на излучении ультразвуковых и электромагнитных волн. Пассивный, имеет инфракрасный датчик, который распознает тепло человека. Смешанные датчики движения имеют оба прибора контроля.

Принцип работы устройства

Активные датчики посредством регистрации и сравнения данных, полученных во время излучения, оповещают о движении, если в данных произошел сдвиг.

Плюсы ультразвуковых датчиков:

  1. Низкая стоимость.
  2. Не поддаются влиянию погодным условиям.
  3. Распознают движение независимо материалу.

Минусы ультразвуковых приборов:

  • Ограничение в дальности действия
  • Они рассчитаны на достаточно резкие движения.
  • Животные чувствительны к ультрачастотам.

Чаще всего такие приборы применяют в охранных системах для автомобиля.

Плюсы радиочастотных датчиков движения:

  • Их размеры невелики.
  • Имеются модели с большим радиусом действия.
  • Очень точны.

Минусы радиочастотных приборов:

  • Их стоимость довольно высока.
  • Из-за высокого порога чувствительности бывают ложные фиксирования движения.
  • Высокая мощность прибора может плохо влиять на организм человека или животного при долгом нахождении в поле действия.

Их применяют в охранных системах

Пассивные приборы имеют инфракрасные датчики, которые следят за температурой в радиусе своего действия. При изменении температурных данных прибор срабатывает. Именно такой прибор используется чаще, для освещения в жилом помещении.

Устройство датчика ИК

Плюсы инфракрасного датчика

  1. Они безопасны для людей и животных.
  2. Их легко можно настроить.
  3. Они отлично работают, и в помещении, и на улице.
  4. Цена является удовлетворительной.

Минусы инфракрасного датчика

  • Такой прибор работает лишь в определенных температурных рамках.
  • Он не улавливает предметы, покрытые материалом с защитой от инфракрасного излучения.
  • Прибор работает со сбоями при тепловых потоках обогревателей и теплого ветра.

Все что необходимо для изготовления

Необходимоые инструменты и элементы для сборки:

  • Вольтомметр
  • Паяльник
  • Провода
  • Водопроводная прокладка
  • Шуруп
  • Лазерная указка
  • Транзисторы
  • Фотодиод ФД 265
  • Реле РЭС 55А
  • Резисторы
  • Блок питания

Схема сборки

Произведения сборки, работы поэтапно

Схема датчика движения, для освещения, очень проста. Для тех кто занимался с ремонтом электро-приборов сделать его не будет тяжело.

Этапы работ:

  1. Для начала работы следует подготовить блок питания. Следует срезать с него разъем. Затем при помощи вольтметра найти плюс.
  2. Потом следует припаять резистор 10 ком.
  3. Фотодиод катодом нужно припаять к резистору, который, припаянный к плюсу.
  4. Посредством припаивания, присоединяем к построечному резистору фотодиод анодом. К минусу резистора следует припаять эмиттер транзистора. С базой VT 1, которая, припаянная и к R1, соединяют нужный коллектор.
  5. Затем следует соединить эмиттер VT 2с минусом, контакт реле нужно соединить с коллектором VT 2. С плюсом блока питания нужно спаять другой контакт реле.
  6. Самым распространённым является использование лазерной указки, ее и используем. Для экономии к тому же блоку питания паяем еще два дополнительных провода.
  7. Вставляем шнур в водопроводную прокладку все это, шляпкой внутрь нужно вставить в указку — так чтобы шляпка уперлась в имеющуюся внутри пружину.
  8. Один провод от питания должен быть подключен к шурупу, а другой следует просунуть между прокладкой и корпусом указки.

Перед включением следует еще раз сверится со схемой. Если со схемой все сходится,тогда проверяем работу прибора.

Как подключить прибор и настроить чувствительность

Для того чтобы прибор работал исправно и справлялся с поставленной задачей, нужно ответственно отнестись к его установке. Лучшим местом для монтажа является дверной проем. Для более эстетичного вида, прибор можно поместить в пластмассовую коробочку, проделав отверстие для фотодиода.

Монтирует датчик на высоте около метра, от пола. Указку следует установить параллельно полу и так чтобы луч попадал на фотодиод, тогда чувствительность при работе прибора будет не нарушена, не потребуется прибегать к его ремонту.

По окончании монтажа можно скрыть провода, так они не будут портить внешний вид, и путаться под ногами. Задуматься об установке прибора желательно во время ремонта в помещении, тогда будет проще скрыть провода подключения к освещению. При ремонте легче продумать расположение прибора.

Чтобы чувствительность была хорошей нужно проследить за правильностью установки указки. Если она установлена правильно тогда и чувствительность будет в норме, и прибор не будет работать со сбоями и не нужно будет его подвергать ремонту.

При установке следует помнить, что при загрязнении фотодиода или препятствию луча указки, может, нарушит работоспособность прибора.

Подведем итог

Такой прибор широко используется при установке охранной системы с использованием не только светового, но и звукового сопровождения. Данный прибор легло подключить к освещению и сделать автовключение света в жилом помещении.

Таким образом и создают систему умный дом. Достаточно экономным вариантом является такое приспособление. Оно поможет вам значительно уменьшить затраты электроэнергии.

Различные схемы подключения

Очень часто его используют в ванных комнатах, на кухне, в прихожих, и в подвалах частного дома. В ванной комнате и туалете прибор соединяют не только с освещением, но и с вентиляцией, что гораздо упрощает вентиляцию помещения.

Не имея специального образования, каждый сможет сделать датчик движения своими руками для освещения. Этот самодельный прибор не заберет много времени и финансов, при его создании. Ведь схема достаточно проста, а все манипуляции каждый с легкостью сможет повторить.

Радиосхемы. - Датчик присутствия

Охранное и шпионское оборудование своими руками

материалы в категории

Еще одна схема, подобная описанной в статье Чуствительное емкостное реле срабатывающая на постороннее присутствие в охраняемой зоне.

Принцип работы устройства основан на так называемом эффекте Доплера: изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Устройство имеет собственный генератор и антенну. Пока в зоне действия антенны нет отражающего сигнала, то устройство находится в ждущем режиме. Если в охраняемой зоне появляется посторонний объект, то сигнал, отраженный от него принимается в искаженном виде что вызовет срабатывание устройства.

Практически свой собственный радар!!

Схема датчика присутствия

Датчик состоит из СВЧ генератора на транзисторе КТ371 (КТ368), предварительного усилителя на транзисторе КТ3102 (КТ315) и компаратора на микросхеме К554СА3.

СВЧ сигнал, вырабатываемый генератором, излучается штыревой антенной и после отражения от движущегося объекта получает сдвиг по частоте, равный DFотр = 2*V*Fизл/C, где V √ скорость движения объекта, С √ скорость света, F √ частота передачи.

Отраженный от объекта сигнал принимается той же самой антенной и в СВЧ генераторе, который в этом случае работает как приемник прямого преобразования, преобразуется в сигнал низкой (инфразвуковой) частоты.

Фактически генератор работает как автодин. Полученные низкочастотные колебания усиливаются предварительным усилителем и далее в компараторе преобразуются в прямоугольные импульсы. При отсутствии отраженных сигналов напряжение на выходе компаратора имеет высокий уровень.

Подстроечный конденсатор в схеме СВЧ генератора служит для установления частоты, равной резонансной частоте антенны (подбирается по максимуму чувствительности датчика).

Конструктивно датчик выполнен на печатной плате из стеклотекстолита и расположен в пластмассовом корпусе, антенна (отрезок жесткого провода) припаяна к контактной площадке платы и через отверстие в корпусе выходит наружу. Рекомендуемое расположение антенны √ вертикальное. Непосредственно возле датчика не должно быть экранирующих предметов.

Изготовление сенсорных датчиков движений в домашних условиях

Различные виды детекторов, позволяющих осуществлять функции контроля над коммуникациями и системами безопасности в зданиях и частных домах, позволяют значительно облегчить управление всем комплексом в целом. За счет встроенных алгоритмов устройства работают автономно, и вмешательство человека становится минимальным. Одними из важных элементов таких схем являются датчики движения. С помощью этих устройств можно защитить территорию от нежелательного проникновения и сэкономить на электроэнергии. Датчики будут автоматически включать и выключать освещение в доме и на улице, коммутировать питание других электроприборов.

Самодельные датчики движения

Большинство из подобных детекторов можно изготовить самостоятельно, главное – понять принцип работы этих детекторов. Датчик движения своими руками может представлять сложное устройство или, наоборот, быть собранным из нескольких деталей.

Кольцевой выключатель

К самым простым датчикам движения можно отнести самовозвратные точки (кольцевые выключатели). Такое оборудование применяется при включении света в холодильнике. Для работы схемы используется:

  • геркон или герметизированный контакт, представляет собой колбу, внутри которой запаяны 2 ферромагнитных контакта;
  • магнит.

Во время приближения магнита к геркону контакты замыкаются, а при удалении – размыкаются. При разомкнутых контактах напряжение подается на лампу в холодильнике, и свет загорается. При замкнутых контактах лампочка обесточивается.

Такой самодельный датчик движения можно просто подключить к существующей охранной сигнализации или к звуковому извещателю. За счет этого при размыкании контактов, то есть открытии двери, система подаст звуковой сигнал. Схема применяется на дверях охраняемых объектов, но не подходит для открытых территорий.

Датчики движения с герконами

Для осуществления контроля на больших пространствах используются более сложные устройства, которые могут реагировать на различные изменения в окружающей среде. К подобным элементам относят:

  • фото,- и звуковые реле;
  • датчики поля;
  • пироприемники.

Световой датчик движения

Довольно часто датчик движения необходим, чтобы засекать какой-либо объект при перемещении через определенную линию, например, на входе в комнату. Для создания такого датчика необходимы 2 устройства: источник света и фотоприемник. При прохождении человека в области лучей связь между источником и приемником будет пропадать, датчик сработает и выдаст звуковой сигнал.

Вся схема данного устройства основана на фотоэлементе – транзисторе. Причем такой фототранзистор также можно сделать своими руками. Для этого нужно взять транзистор, по виду напоминающий шляпку с полями на трех ножках, например, П417А. Нужно отпилить верхнюю часть элемента таким образом, чтобы образовалось отверстие, или просто откройте весь кристалл. Теперь при попадании света элемент станет работать как фототранзистор, правда чувствительность его будет немного меньше обычного. Можно не тратить время на эту операцию, а сразу взять готовый фотоэлемент.

Сначала собираем фотоприемник. В работе устройства используются следующие элементы:

  • VT1 – фототранзистор;
  • R1 – резистор;
  • C1 – конденсатор;
  • DA1 – операционный усилитель с обратной связью;
  • R2 – резистор с обратной связью на операционный усилитель;
  • R1 – выполняет функции нагрузки и коллектора. С помощью этого элемента устанавливают рабочую точку. Подбор необходимого значения идет опытным путем.

Схема датчика с фотоприемником

При выборе характеристик R2 следует помнить, что чем больше коэффициент усиления, тем меньше устойчивость усилителя. С другой стороны, чем выше номинал резистора, тем больше коэффициент усиления. Оптимально использовать номинал в 100 кОм.

Самоделки работают следующим образом:

  • при попадании света на транзисторе возникает небольшое рабочее напряжение, и элемент открывается;
  • конденсатор заряжается;
  • если свет уходит, конденсатор начинает разряжаться;
  • в точке А напряжение снижается, что уменьшает напряжение и на выходе;
  • операционный усилитель необходим, чтобы усилить сигнал от точки А для дальнейшей его передачи к другим устройствам.

В качестве источника света на небольших расстояниях можно использовать фотодиод. Красный лазер позволит значительно выиграть в расстоянии. Лазерный датчик движения можно использовать на больших территориях. Но если нужно сделать так, чтобы датчик был незаметен, используйте инфракрасный диод.

Внимание! При подборе лазерного диода проверьте, чтобы его характеристики соответствовали правилам безопасности. Некоторые подобные элементы оказывают пагубное влияние на глаза.

Сам фотодатчик необходимо затемнить и закрыть темным пропускающим материалом. Это позволит снизить влияние обычного освещения. Источник света ставим напротив датчика. За счет этого образуется оптическая связь, то есть пока объект не закроет источник света (пересечет черту), напряжение в фототранзисторе будет постоянным. При разрыве оптической связи напряжение на выходе снижается до нуля за счет операционного усилителя.

Для анализа данных, приходящих с датчика, к схеме следует подключить реле. Обмотку соединяем с входом, на 1 контакт подаем напряжение 12 В, другой конец заземляем, а третий – подключаем к радиоприемнику. Если на фотоэлемент падает свет, цепь питания соединена с фотоприемником, радио не работает. Если оптическая связь разорвана, напряжение падает, и источник питания замыкается на радиоприемнике. Это приводит к включению радио. Вместо радиоприемника можно использовать другие извещатели.

Датчики движения с емкостным реле

Емкостное реле реагирует на возникновение объектов в заданном радиусе. Основными элементами такого оборудования являются антенна и микроволновый генератор.

Принципиальная схема микроволнового датчика движения

Многие из нас замечали, что звук у радио при сильном приближении к нему человека меняется, в работе появляются непонятные шумы, или волна станции сбивается. Точно по такому же принципу функционируют микроволновые датчики движения.

Роль высокочастотного генератора радиоприемника в схеме одновременно выполняет транзистор VT1. Детекторный диод необходим для выпрямления напряжения, которое задает смещение на базе транзистора VT2. У трансформатора Т1 обмотки настроены на разные частоты. Если на антенну не воздействует внешние объекты, на детекторе VD1 нет напряжения, так как амплитуды сигналов компенсируют друг друга. Если частоты меняются, амплитуды начинают складываться и детектироваться на диоде. За счет этого VT2 открывается. Для того чтобы точно задать значение для отключения и включения, используется компаратор – тиристор VS1. Этот тиристор управляется силовым реле напряжением в 12 Вольт.

Важно! Не следует располагать датчики вблизи вентиляторов и больших бытовых приборов. Все это оборудование может создавать помехи в режиме работы любого датчика.

Платформы для конструирования

Для создания более сложных и функциональных устройств можно использовать готовые платы для радиоконструирования, к примеру, Arduino. Так называется аппаратная вычислительная платформа с собственным процессором и памятью. Arduino выполняет сразу несколько важных задач:

  • считывает и обрабатывает сигнал с инфракрасного датчика;
  • реагирует на движение;
  • проводит оповещение.

Для создания датчика потребуются сама платформа, PIR-датчик, макетная плата и провода. Можно подключать датчик сразу напрямую к Arduino, но так сложнее обеспечить плотное прилегание. Поэтому удобнее воспользоваться бредбоардом.

Все инфракрасные датчики имеют одинаковое строение. Главным параметром, по которому можно отличить один сенсор от другого, является чувствительность, а, значит, и используемая оптика. Оптимальным PIR датчиком сегодня является устройство с линзами Френеля. Эти линзы могут концентрировать излучение, повышая порог чувствительности.

Датчик движения на Arduino

Главной задачей платформы является отправка данных по USB Serial при обнаружении движения через определенные промежутки времени. Отладка оборудования осуществляется за счет программного обеспечения Python и PySerial.

Такой датчик движения для включения света можно запрограммировать на создание определенного уровня освещенности. Это оборудование можно использовать для обустройства системы сигнализации в гараже, тогда детектор будет подключаться к звуковому модулю.

Видео

Оцените статью:

Датчик движения своими руками

Что такое пиромодули? Как их правильно включать и использовать? На все эти вопросы ответит данная статья.

Создание и установка пиромодулей в этой статье будут рассмотрены на примере модернизации кофеварки «ЭК-0,3».

Как известно, данный тип кофеварки не  обладает такой функцией, как выключение после приготовления кофе. Очень часто такие приборы постигает печальная участь, ведь они могут взорваться, потому что у них отсутствует автоматизация. Следовательно, для того чтобы работа прибора была безопасной, а его «жизнь» была долгой, необходимо принять определенные меры.

Один из вариантов – это использование специального термовыключателя, который будет отключать кофеварку. Минус такого способа в том, что выключатель будет срабатывать только при температуре корпуса выше 120 градусов. А при такой температуре в резервуаре кофеварки, как правило, вода отсутствует полностью. В результате все это приведет к тому, что корпус кофеварки будет перегреваться, а количество требуемой энергии увеличится в несколько раз. Оптимальный вариант – применить датчик движения, он самостоятельно отследит момент подачи кофе в кофейник.

PIR (motion) Sensor (пиромодуль) – что это?

Данная аббревиатура расшифровывается следующим образом:

PIR – Passive Infra-Red;

ПИР– Пассивный Инфракрасный.

Так что же это такое? Данное устройство преобразует инфракрасное излучение (точнее, изменение его интенсивности) в электрический ток. В определенных материалах кристаллической породы, если изменить температуру, возникает пиростатический эффект. Именно на этом эффекте и основывается работа пиромодуля. Температура в материалах изменяется как раз за счет инфракрасного излучения.

Электрическое поле необходимо зарегистрировать, но для этого нужно, чтобы оно изменилось. А при изменении кристаллические диэлектрики будут компенсированы свободными электрическими зарядами. Все датчики, построенные с помощью пироэлектриков, обладают этим свойством. А значит, все они смогут отследить даже малейшее изменение в интенсивности излучения. При всем этом сам пиромодуль (его температура) не окажет никакого влияния на результаты измерения.

Чтобы защитить пиро-сенсор от различных негативных воздействий и различных помех, необходимо заключить его в герметичный корпус из металла. В корпусе обязательно должно быть окошко, пропускающее свет (узкий диапазон излучения). Для того чтобы свет проходил в таком диапазоне, окно должно быть закрыто режекторным инфракрасным фильтром. Спектральная характеристика фильтра – 10мкм (1*104нм).

Устройство импортного пиромодуля:

– помимо самого пиро-сенсора за инфракрасным фильтром также расположен специальный усилитель. Он работает на униполярном малошумящем транзисторе. На схеме вверху показано как включать пиромодуль «PIR D203S» (иностранное производство), а также его цоколевка.

Для того чтобы подключить советские пиромодули, потребуется установка полевого транзистора. Вверху на схеме показано, как включить «ПМ-4» (советское производство), а также его распиновка.

Раньше пиромодули секретно разрабатывались в военно-промышленных комплексах. Они устанавливались в ракеты и другие подобные устройства, были частью Тепловых Головок Самонаведения или ТГС.

Сегодня применение модулей в гражданской технике широко распространено. Самое распространенное направление – детекторы движения в системах сигнализации и в системах управления освещением. На картинке выше приведен пример, датчик «Feron LX20/SEN5», который предназначен для системы управления освещением.

Каких результатов нужно добиться при усовершенствовании кофеварки?

  • Кофеварка должна обесточиваться сразу же, как только кофе начнет поступать в кофейник. Процесс завершится и без электроэнергии, для его завершения будет достаточно тепловой энергии, которая накопится корпусом.
  • Кофеварка должна аварийно отключаться при превышении температуры в 120 градусов. В противном случае она перегорит из-за отсутствия воды.

Блок управления кофеваркой (схемы).

На данном рисунке представлена блок-схема. Датчик движения подает сигналы в блок управления. Блок управления, в свою очередь, может отключать электромагнитное реле в нужный момент. А благодаря электромагнитному реле в нужный момент отключается вся кофеварка.

На данной схеме изображен блок управления в электрическом варианте. Элементы схемы и их назначение:

  • ПМ-4 – это пиромодуль без встроенного усилителя;
  • VT1 – с его помощью сигнал пиромодуля усиливается;
  • DA1-1-DA1-2 – корректирует усиление сигнала пиромодуля;
  • VD1 – датчик температуры, в основе которого лежит германиевый диод;
  • DA1-3 – усиливает сигнал от температурного датчика;
  • DA1-4 – стабилизирует виртуальную землю;
  • VS1 – блокирует реле Р1, его питание. Является пороговым элементом;
  • VT2 – это реле выполняет задержку в определенные моменты. Например, не дает кофеварке отключиться во время процессов перехода, в то время как питание уже подано;
  • Z1 – стабилизирует напряжение в 12 Вольт;
  • Z2 – стабилизирует напряжение в 8 Вольт.

Конструкция и ее детали.

На картинке представлена печатная плата, на которой и собраны все детали, за исключением температурного датчика. Размеры платы – 45х85мм.

Здесь представлена плата непосредственно в сборе.

Как уже говорилось, температурный датчик изготовлен с использованием германиевого диода. Крепление для датчика сделано из жести консервной банки.

Датчик крепится на корпус кофеварки, для более надежного крепления подойдет силиконовый герметик. Также можно нанести каплю термопасты КПТ-8 между корпусом и кронштейном. Провод МГТФ используется для подключения датчика (фторопластовая изоляция).

В подставке кофеварки необходимо просверлить два отверстия.

Эти отверстия нужны для проведения пяти проводов. Два провода нужны для питания, один провод будет управлять нагрузкой и еще два от термодатчика. Блок управления сделан таким образом, что в любое время будет пригоден для ремонта.

Глазок пиромодуля необходимо обеспечить защитой. Для этой цели прекрасно подойдет полипропиленовая пластинка. Такую пластинку можно взять в одноразовом шприце, отрезав от поршня. Пиромодуль работает в довольно узком спектре инфракрасного излучения. Этот спектр можно блокировать простым стеклом, однако полипропилен будет его пропускать.

Дополнительные материалы.

ссылка для скачивания инструкции по эксплуатации данной кофеварки.

Датчик движения – дополнительные схемы: –  электрическая схема датчика (Извещатель ИОП 409-1»).–  элементы датчика той же марки.–  элементы блока питания и его схема.  

 

Также рекомендуется ознакомиться с Датчиком угарного газа


 

Емкостной сенсорный датчик, электрическая схема, печатная плата

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.

Триггер DD2.2 работает так же, как и DD2. 1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Конструкция сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачок в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.

Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настройки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.

Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.

Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремниевой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.

Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.

Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настройки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.

Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Датчик присутствия человека своими руками

 

Сегодня стали очень модны датчики присутствия для обнаружения движения при перемещении человека по помещению.

При подключении такого устройства к осветительным приборам, вы получите автоматическую систему по включению света. Датчик присутствия для обнаружения человека самостоятельно может собрать практически любой. И здесь схема сборки будет основной. Все о процессе сборки вы узнаете из этой статьи.

Принцип работы

Первое, что нужно знать при самостоятельной сборке такого прибора – это принцип его работы.
Обратите внимание! Многие путают такие устройства с датчиками движения. Но это разные модели.
Принцип работы прибора основан на реакции сенсора на местоположение человека или крупного животного. В основе работы устройства лежит эффект Доплер – изменение длины и частоты волны. Эти изменения регистрирует сенсор и передает их на прибор, для дальнейшего включения освещения или звукового сигнала. Причем сигнал на сенсор поступает вне зависимости от того, движется ли объект или остается неподвижным. Прибор оснащен антенной и генератором. Без наличия отражающего антенной сигнала, устройство пребывает в спящем режиме. Схема устройства работы приведена ниже.

Схема

При подключении прибора к источнику света, в ситуации появления любого объекта в рабочей зоне происходит активация включения света. При этом для включения освещения как такового не нужно наличие движения (даже незначительного).

Где используется

Датчик присутствия сегодня активно применяется в следующих областях:

  • система «умный дом» для включения света в автоматическом режиме (схема подключения приведена ниже). В этой ситуации он позволяет в разы сэкономить потребление электроэнергии;

Схема подключения

  • охранные системы;
  • робототехника;
  • различные производственные линии;
  • системы видеонаблюдения;
  • для управления потребления электроэнергии и т.д.

Помимо этого все чаще появляются интерактивные игрушки, оснащенные подобными устройствами. Но в большинстве случаев при реагировании прибора нет необходимости включения света. Подобные изделия могут реагировать на температуру, ультразвук, вес объекта и многие другие параметры. Включения освещения здесь не происходит. Прибор реагирует, например, включением звука или передачей сигнала на портативное мобильное устройство (у современных моделей).
Особенно незаменимы такие разработки в охранной системе. Но не каждый человек может позволить себе приобрести такого устройство. Они достаточно дороги и могут оказаться не по карману. Поэтому некоторые делают такие устройства своими руками.

Приступаем к сборке

Для того чтобы собрать датчик, вам нужна будет приведенная ниже схема.

Схема

 

Помимо этого вам понадобится:

  • генератор СВЧ;
  • транзистор КТ371 (КТ368), который должен быть предварительно усилен КТ3102;
  • компаратор;
  • микросхема К554СА3.

Все необходимые компоненты для сборки можно отыскать на радиорынке или в специализированных магазинах электроники.
По этой схеме необходимо собрать и припаять вышеперечисленные элементы.
По приведенной схеме сенсор будет работать так:

  • генератор вырабатывает СВЧ сигнал;
  • далее он передается на штыревую антенну;
  • затем сигнал отражается от перемещающегося в контролируемой зоне объекта;
  • в результате получается частотный сдвиг;
  • затем происходит его возврат на антенну и СВЧ генератор.

На данном этапе он будет работать по принципу приемника прямого преобразования. Это связано с тем, что полученный сигнал преобразуется в инфразвуковой (низкой частоты).
После преобразования сигнала происходит следующее:

  • теперь уже полученные низкочастотные колебания, попадая на предварительный усилитель, усиливаются;
  • затем они передаются на компаратор и преобразуются в импульсы (прямоугольные).

Если отражение сигнала не происходит, то на выходе с компаратора получается напряжение высокого уровня.
Подстроечный конденсатор необходим для установления частоты. Она должна быть равна резонансной частоте, имеющейся у антенны.

Обратите внимание! Данный параметр надлежит подбирать по максимальной чувствительности сенсора.

С конструктивной точки зрения, прибор должен выполняться на печатной схеме, выполненной из стеклотекстолита. Плата должна размещаться на пластмассовом корпусе.

Печатная схема (пример)

В качестве антенны можно использовать кусок жесткого провода. Для ее изготовления лучше выбрать медный провод. Его припаиваем к контактной площадке полученной платы. Вывод антенны осуществляется через выход на корпусе. Специалисты рекомендуют располагать антенну вертикально.
Помните, что в непосредственной близости от собранного своими руками датчика не должны размещаться любые экранирующие предметы. Помимо этого следует знать, что для нормального функционирования спаянного изделия его общий провод должен обладать емкостной связью с землей.

Завершающий этап

После того, как вы смонтировали компактное устройство, его следует подвесить с внутренней стороны двери, максимально близко к дверной ручке и дверному замку. Также изделие можно разместить и в других местах. Главное, чтобы контролируемая зона была достаточной.
В ходе монтажа необходимо следить за тем, чтобы длина проводников и выводов элементов была минимальна. Это позволит избежать помех, в результате наличия которых прибор может начать работать не адекватно.
Следуя приведенной инструкции и схеме, собрать своими руками датчик присутствия можно относительно просто. Главное – это смонтировать все составляющие в нужном порядке.

 

Как подключить датчики присутствия - больше инструкций на 100ампер.ру

Датчик присутствия — одно из технических устройств, повышающих комфорт. 

Распознавая объект посредством инфракрасного излучения, они решают несколько проблем: включают и отсоединяют освещение, экономят электроэнергию, руководят работой приборов освещения. Применяют их там же, где и датчики движения, но в отличие от вторых у них есть зона высокой чувствительности, и они реагируют на чуть заметное движение.

Схема датчика присутствия и инструкция по подключению

Ключевыми элементами схемы датчика присутствия являются мультилинза и фотоэлементы. Сверхточную линзу образуют множество сегментов в виде маленьких линз, направляющих лучи, оказывающиеся в зоне контроля каждой из них, на фотоэлемент. Во время движения объекта и попадания его в зоны чувствительности, прибор фиксирует, обрабатывает информацию и направляет данные на исполнительные устройства.

При подключении ИК-датчика нужно учесть несколько моментов:

  • Центр зоны охвата не должен попадать на объекты, имеющие высокие отражающие свойства;
  • Датчик не должен находиться рядом с источниками тепла;
  • Объекты, на которые направлен датчик, не должны двигаться под воздействием ветра.

Начинают установку прибора с демонтажа декоративной рамки, чтобы открыть доступ к потенциометрам и крепежу. Далее, крепежные винты выкручивают и отделяют днище от корпуса с использованием отвертки. Крепят днище к стене или потолку и устанавливают потенциометр в одно из положений, предварительно выбрав уровень освещенности. Задают время задержки выключения, проводят тестирование для определения зоны обнаружения, настройку прибора. Устанавливают дополнительный аксессуар — защитный экран, если он есть в комплекте.

Схема подключения датчика присутствия

Присоединение датчика выполняют по схеме, имеющейся в техническом паспорте и зависящей от вида устройства. При этом учитывают следующие нюансы:

  • Место, выбранное для монтажа датчика, должно обеспечивать наиболее выгодную панораму обзора с максимальной зоной контроля во всех направлениях.
  • Существуют два варианта схемы подключения ИК-датчика — одиночное и параллельное. В первом случае он будет распознавать присутствие, определять уровень освещенности, управлять им согласно настройкам.
  • Параллельное подключение нескольких приборов отражено в инструкции, прилагаемой к датчику присутствия. Тогда как основной выполняет все функции одиночного, остальные следят за присутствием объектов в своих зонах охвата и отправляют данные на ведущий прибор.

Датчик присутствия – полезное устройство, выполняющее комплексные задачи. Одновременно он может координировать работу осветительных приборов и управлять кондиционером по дополнительному каналу. При выключении одной функции, вторая может продолжать работу.

Как построить датчик умного дома

Носимые устройства

отлично справляются с отслеживанием вашей личной физической формы. Но чтобы измерить здоровье места, где вы живете, вам понадобится другой инструмент. Это устройство контролирует температуру, влажность, шум и уровень освещенности в любом помещении. Он даже может отслеживать количество людей, которые входят. Внутри корпуса набор датчиков отправляет информацию на Arduino, который интерпретирует ввод и отображает данные на небольшом экране.Основываясь на показаниях устройства, вы можете включить осушитель, опустить термостат или открыть окно - все, что нужно для поддержания комфортной домашней обстановки.

Статистика

  • Время: 2 часа
  • Стоимость: 95 $
  • Сложность: Средняя

Инструменты

  • Паяльник
  • Плоскогубцы
  • Кусачки

Материалы

Все материалы можно заказать в SparkFun Electronics.

  • Arduino Pro Mini 328 - 3.3 В / 8 МГц (DEV-11114)
  • Датчик движения PIR (SEN-08630)
  • Монтажный провод (PRT-08022)
  • Два резистора 1K (COM-08980)
  • Датчик влажности и температуры - RHT03 (SEN-10167 )
  • Повышающее напряжение 5 В - NCP1402 (PRT-10968)
  • Зарядное устройство LiPo Basic - Micro-USB (PRT-10217)
  • Разъем датчика внешней освещенности - TEMT6000 (BOB-08688)
  • Разъем микрофона MEMS - INMP401 ( BOB-09868)
  • Прорыв Micro OLED (LCD-13003)
  • Полимерный литий-ионный аккумулятор - 1000 мАч (PRT-00339)
  • Олово
  • Pi для Raspberry Pi - белое (PRT-11979)

Подключение домашнего датчика Направляющая

Это руководство по подключению иллюстрирует проводные соединения между каждым компонентом датчика.

Инструкции

  1. Запрограммируйте Arduino, используя этот скетч. Инструкции по программированию Arduino можно найти здесь.
  2. Подготовьте печатную плату датчика движения PIR, найдя и удалив черный прямоугольный трехконтактный чип (также известный как интегральная схема или IC) с надписью 78L05. На той части платы, где раньше располагалась микросхема, найдите пустые контактные площадки 1 и 3. Припаяйте кусок соединительного провода между контактными площадками.
  3. Припаяйте резистор 1 кОм между контактом 2 датчика влажности и температуры и контактом 5 В повышающего разветвителя 5 В.
  4. Припаяйте вывод питания датчика влажности и температуры к выводу 5V повышающего коммутационного разъема 5V.
  5. Припаяйте контакт 3,7 В разветвителя повышающего напряжения 5 В к выходу зарядного устройства LiPo.
  6. Припаяйте вывод Arduino Raw и вывод VCC датчика внешней освещенности к зарядному устройству LiPo.
  7. Припаяйте второй резистор 1 кОм между выводом AL датчика движения PIR и выводом 3,3 В на Arduino.
  8. Припаяйте все контакты питания датчика движения PIR, микро OLED и микрофона MEMS к 3.Вывод 3V Arduino.
  9. Ключевые элементы схемы завершены. Следуйте инструкциям по подключению, чтобы подключить оставшиеся контакты датчика к Arduino.
  10. Подключите LiPo аккумулятор к зарядному устройству LiPo и поместите всю электронику в Pi Tin.
  11. Наконец, поместите датчик домашнего здоровья в комнату по вашему выбору. Микро-OLED-экран позволит вам держать руку на пульсе вашего дома.
Home Sensor - Open View Dave Prochnow

Эта статья впервые появилась в августовском выпуске журнала Popular Science, за 2015 год под заголовком «Если бы ваши стены могли говорить…»

Лампа инфракрасного датчика движения с ночным активированием

Сегодня мы разработали интеллектуальную схему, которая называется датчиком движения PIR, активируемым ночью.Следовательно, он инициирует свою работу всякий раз, когда цепь испытывает какое-либо движение в пределах ее диапазона. Как правило, эта световая цепь датчика движения PIR, активируемая ночью, может активировать любой свет переменного или постоянного тока при обнаружении любого человека в пределах от 5 до 10 метров.

Схема, следовательно, будет задействована в вечернее время и отключится днем. Как правило, схема используется для различных целей безопасности. В световом пятне вы также можете использовать любое оповещение переменного тока для срабатывания при распознавании неутвержденного человека.

Более того, использование этой схемы не ограничивается только целями, связанными с безопасностью. Однако он также используется для разных целей, например, для запрограммированного освещения в помещении. Точно так же он будет автоматически активирован, когда вы войдете в комнату. Эту схему также можно использовать в качестве энергосберегающего устройства, последовательно отключая устройства в вашем офисе.

Компоненты оборудования

Принципиальная схема

Работа цепи

Хотя основным компонентом схемы является модуль датчика PIR, который быстро доступен на рынке.Между тем, этот модуль содержит несколько переменных резисторов. Из которого вы также можете изменить его чувствительность и время. Однако эти тонкости можно найти в направляющей для датчиков, прилагаемой к модулю.

Между тем, микросхема таймера 555 используется для улучшения сезона включения света 230 В. Однако синхронизацию схемы можно увеличить, заменив конденсатор емкостью 470 мкФ конденсатором более высокого номинала. Кроме того, синхронизацию можно сбалансировать с помощью переменного резистора 1M.

В схеме дополнительно используется датчик темноты, работающий на полупроводнике 2N3906. Однако переменный резистор 100 кОм используется для изменения чувствительности для поиска темноты. Точно так же, если вам нужно использовать схему в течение дня, а не только для ночи. Затем вы можете откачать фазу датчика темноты из цепи. Которая также содержит 2N3906, LDR, переменный резистор 100 кОм и резистор 1 кОм. Более того, это законно связывало схему с гибкостью.

Приложения и способы использования

Как правило, инфракрасные сенсорные лампы в основном используются для экономии энергии путем обнаружения движения людей, животных и т. Д.Он также используется в системах безопасности, световых датчиках PIR, проектах уличного освещения и т. Д.

Кроме того, областью применения датчика PIR являются наружное освещение, лифтовый вестибюль, общие лестницы, подвал или парковка, торговые центры, садовое освещение и т. Д.

Как построить металлоискатель с использованием индуктивного датчика приближения с Arduino

В этом руководстве вы узнаете, как собрать металлоискатель своими руками (DIY), используя датчик приближения с Arduino.Во многих подобных проектах используются катушка и транзистор, но можно использовать датчик приближения вместо катушки. Вы просто заметите разницу в дальности действия и потребляемой мощности.

Диапазон действия датчика приближения, как правило, намного короче, чем у катушки (подумайте о миллиметрах против нескольких сантиметров - хотя диапазон действия катушки зависит от ее диаметра). Что касается мощности, датчик приближения потребляет меньше энергии, чем катушка. В конце концов, больший диапазон требует большей мощности.

Оба датчика используют катушку для обнаружения объектов (металла, пластика, железа и т. Д.).). Однако автономная катушка требует ручных расчетов чувствительности, компонентов (включая емкость, индуктивность и сопротивление) и достижимого диапазона. Это трудоемкая задача, требующая глубоких знаний в области электроники и физики.

Датчики приближения

выпускаются трех основных типов: индуктивные, емкостные и фотоэлектрические.

  • Индуктивные и емкостные датчики приближения используют электрическое и магнитное поле для обнаружения объекта. В индуктивных датчиках внешний объект увеличивает напряжение всякий раз, когда он находится в пределах диапазона электромагнитного поля датчика.Однако этот объект должен быть металлическим, чтобы его можно было намагнитить.
  • Емкостной датчик может обнаруживать присутствие или отсутствие практически любого объекта, независимо от материала. По сути, датчик и объект действуют как конденсатор, накапливая заряд, и этот заряд используется датчиком для обозначения объекта.
  • Фотоэлектрический датчик приближения аналогичен ультразвуковому комплекту Arduino. Ультразвуковые волны или лазер используются для обнаружения объекта на основе отражения.

А теперь давайте создадим металлоискатель с датчиком приближения, который может обнаруживать объекты из черных и цветных металлов, используя как индуктивные, так и емкостные датчики приближения.

Принципиальная схема
Индуктивный датчик подключен к цифровому выводу № 8 Arduino UNO. Выходной сигнал этого датчика представляет собой сигнал фиксированного напряжения.

Выход емкостного датчика подключен к аналоговому выводу Arduino UNO # A0. Этот датчик имеет ручку, которую можно вращать (с помощью небольшого винта), которая устанавливает уровень его чувствительности.

Когда чувствительность датчика сочетается с объектом из непроводящего материала, возникает емкость. Разница в емкости между датчиком и объектом отражается на выходе.Таким образом, аналоговый вывод используется для различения двух объектов.

Для этого проекта также требуется небольшой зуммер на 5 Вольт. Он подключен к цифровому выводу №5 Arduino с помощью промежуточного транзистора для ограничения тока. Мы использовали цифровой вывод как вывод с широтно-импульсной модуляцией (ШИМ).

В результате уровень шума зуммера теперь зависит от рабочего цикла и частоты ШИМ. Это делается для того, чтобы правильно различать звук объекта.

Код проекта
Сначала определите индуктивный датчик и штифт зуммера.(Аналоговые выводы Arduino могут использоваться без необходимости их определения.) В функции настройки вывод индуктивного датчика должен быть объявлен как вход, а вывод зуммера - как выход. Монитор последовательного порта Arduino настроен на 9600 бит / с.

В режиме петли, если индуктивный датчик «находит» объект, зуммер срабатывает с высоким звуком.

Считывается значение емкости, и если оно больше 50, раздается звуковой сигнал.

«Больше 50» - это просто пример. Из таблицы данных можно считать емкость датчика приближения и объекта и включить ее как часть кода Arduino.

Функция аналоговой записи делит значение емкости на четыре, потому что функция аналоговой записи принимает значения не более 255. Аналоговый вывод Arduino может считывать максимум 1023 (10-битный АЦП). Таким образом, значение переменной емкости никогда не превышает 1023 (1023/4 = 255).

Визуальное изображение того, как идентифицировать объект / среду с помощью емкостного датчика, приведено ниже.(Источник: Лист данных .)

А теперь сделай сам! Где купить запчасти?


Из рубрики: Проекты микроконтроллеров
С тегами: Arduino

18 Идеи схемы солнечного света DIY

Согласно Википедии, солнечная энергия - это «лучистый свет и тепло от солнца». Эта энергия используется в самых разных целях; некоторые примеры - тепло, свет и фотосинтез.

В этой статье мы собрали статьи, которые помогут вам создать солнечный контур, который можно использовать в качестве источника света в различных приложениях. Солнечные светильники продаются для всех областей вашего дома, от садовых огней до ночных светильников, даже светильников с датчиками движения и праздничных огней. Здесь мы составили список из 18 простых способов создания недорогих схем солнечного освещения своими руками

1. Схема солнечного садового освещения с автоматическим отключением

В этой базовой схеме используются светодиоды, солнечная панель и аккумулятор. аккумулятор вместе с транзистором PNP и резисторами. В дневное время напряжение батареи не достигает светодиодов, потому что транзистор действует как переключатель.Солнечная панель поглощает достаточно солнечной энергии, чтобы перезаряжаемая батарея освещала подключенные светодиоды.

Щелкните здесь для этого процесса .

2. Схема самостоятельного солнечного освещения - уличный фонарь

Две солнечные панели подключаются к монтажной плате, которая затем подключается к двум аккумуляторным батареям. Батареи используют накопленную мощность солнечных панелей для освещения светодиодной лампы мощностью 1 Вт. Он помещает батарею в пластиковый ящик и прикрепляет устройство к деревянной доске, чтобы все устройство оставалось вертикальным, чтобы сделать уличные фонари.

Смотреть видео

3. Простая схема DIY солнечного света

Если вы ищете очень простой способ создать светодиодную лампу на солнечной энергии, это базовое руководство, которое предлагает только то. Этот блогер использует солнечную батарею на 12 В, которая заряжает аккумулятор в дневное время. А вечером этот же ток отключается от солнечной панели. Батарея становится источником питания для светодиодной лампы мощностью 1 Вт.

Для получения дополнительной информации щелкните здесь .

4. Схема самостоятельного солнечного освещения для сада

Легкое для понимания видео, демонстрирующее, как можно сделать самодельную схему солнечного освещения для своего сада. Этот видеоблогер предлагает использовать солнечную панель на 5 В, но то же самое руководство можно применить и к цепи на 12 В. Поскольку это устройство выходит в сад и может попасть под дождь или воду с растений, рекомендуется поместить все части, кроме панели и света, в водонепроницаемую коробку.

Смотреть видео

5. Цепь солнечного света с белым светодиодом

Если вы делаете схему солнечного света своими руками, важно использовать источник света, который будет быть достаточно ярким, чтобы его можно было увидеть. Для таких областей, как сады, в этом руководстве рекомендуется использовать белые светодиоды, потому что они очень люминесцентные и обеспечивают светоотдачу.

Также важно рассчитать правильный размер и напряжение аккумулятора, чтобы обеспечить достаточный заряд.

Нажмите здесь, чтобы узнать больше .

6. Схема солнечного ночника - DIY

Узнайте, как сделать схему солнечного ночника с помощью платы TP4056. Преимущество доски такого типа в том, что она портативна. Кроме того, эта плата поставляется с защитой аккумулятора или без нее. Этот видеоблогер предлагает использовать тот, у которого есть защита. При максимальном пребывании на солнце 5 часов солнечная панель, предложенная в этом видео, рассчитана примерно на 2 часа.9Ач энергии.

Посмотреть видео

7. DIY Схема солнечного освещения для экстерьера дома

Это отличный проект для ваших детей, как этот блоггер показывает нам на своих фотографиях. Он использует аккумулятор на 12 В, светодиодные лампы и солнечную батарею. Построив уличный солнечный свет, он смог сделать внешний вид своего дома более безопасным, а также сократить расходы на электроэнергию. Он также рассказывает, как он создал второй, более крупный вариант светодиодного солнечного света, чтобы дать больше света.

Щелкните здесь, чтобы следовать этому процессу .

8. Схема самостоятельного солнечного защитного освещения

Это видео знакомит зрителя с более продвинутыми навыками самостоятельной работы. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Это предполагает использование датчика движения PIR. PIR означает, что пассивное инфракрасное излучение относится к использованию датчика для обнаружения присутствия человека в комнате. Это отличный вариант, если вы хотите добавить дополнительные функции безопасности в свой дом или квартиру и вокруг них.

Посмотреть видео

9.DIY Solar Night Light

Если вы хотите превратить существующий ночник в светильник на солнечной энергии, это видео будет вам очень полезно. Этот человек показывает вам, как взять оригинальный пластиковый корпус и создать печатную плату с использованием 18650 и TP4056. Затраты на этот проект очень минимальны, потому что вы используете то, что у вас уже есть дома, и вы можете легко превратить этот свет в вариант экологически чистой энергии.

Посмотреть видео

10.Схема самостоятельного солнечного освещения для крыльца

Отличный процесс для тех, кто хочет больше контролировать, когда и как долго горит свет на крыльце. Эта схема DIY предлагает программируемый таймер и даже позволяет задержку включения или выключения. Как это работает, очень технически, но это очень хорошо объяснено автором этой статьи.

Щелкните для получения сведений о процессе .

11. Базовая схема солнечного декоративного освещения своими руками

Базовое видео, демонстрирующее базовую схему солнечного освещения.Но информация очень подробная. Этот человек объясняет, как создать световую цепь, используя транзистор, два резистора, аккумуляторную батарею, диод и довольно небольшую солнечную панель. Он объясняет, что части могут быть заменены в зависимости от ваших потребностей. Он предоставляет базовую модель того, как построить схему солнечного освещения своими руками.

Посмотреть видео

12. Самодельная солнечная световая цепь с использованием солнечной панели 6 В

Для создания этой простой ночной лампы, работающей от солнечной энергии, используется солнечная панель 6 В.Он заряжается в течение дня и автоматически включается на закате. Затем светодиод питается от аккумулятора и горит до утра. Этот человек также предлагает поставить лампу перед зеркалом или отражающим предметом, чтобы усилить свет. Схемы соединений

Чтобы узнать больше о том, как его построить, щелкните здесь .

13. Схема самостоятельного солнечного освещения с использованием литиевой батареи

Здесь мы можем увидеть сборку с использованием солнечной панели, литиевой батареи и светодиодных фонарей.Этот садовый светильник предназначен для зарядки днем ​​и зажигания ночью. Чтобы сделать его экономичным и свести к минимуму затраты, этот человек не использует сенсор или микроконтроллер. Отсутствие этого также помогает упростить монтажную плату.

Посмотреть видео

14. Цепь солнечного света DIY, активируемая движением

Солнечный свет, активируемый движением, важен для безопасности вашего дома.В этом посте показано, как собрать его, используя модуль датчика PIR, транзистор PNP, транзистор NPN, светодиодную лампу, резисторы, свинцово-кислотную батарею и солнечную панель.

Детектор движения включает свет, когда человек или животное оказывается в пределах его досягаемости, и затем выключается, когда в этом районе больше нет движения. Рекомендуется разместить его в нескольких частях дома.

Нажмите здесь, чтобы узнать, как сделать .

15. DIY Схема солнечного света для школы Проект

Очень простой учебник о том, как сделать схему солнечного света своими руками.Это можно использовать для школьного проекта или просто как введение в создание световых цепей перед переходом к более сложным проектам. Используемые предметы очень недорогие, а использованные аккумулятор и банку, вероятно, уже можно найти в доме.

Посмотреть видео

16. Подвесная цепь солнечного света DIY

Какая уникальная идея - добавить подвесной вариант к вашей схеме DIY солнечного света. Преимущество заключается в том, что вы можете переместить его в любое место, где вы хотите, чтобы было светло, а также в течение дня его можно наклонять к солнцу, чтобы сохранить максимальную зарядку солнечной панели.

Пластиковый контейнер и проволочная вешалка - дополнительные предметы, которые этот человек использовал для создания этого уникального стиля солнечного света.

Чтобы узнать больше о том, как это сделать, нажмите здесь .

17. Схема DIY солнечного света для струнных светильников

Для вечеринки на открытом воздухе необходимо праздничное освещение. Вот отличный способ сделать самодельную версию гирлянды на солнечных батареях, используя схему освещения на солнечной энергии. Хотя для этого проекта вы можете использовать белые светодиоды, для более красивой обстановки можно использовать цветные светодиоды, как предлагает автор.Кроме того, для защиты светодиодной цепочки важно использовать какой-нибудь шланг для очистки.

Подробнее о пошаговом руководстве .

18. Схема DIY солнечного света с использованием модели Joule Thief

«Joule Thief» используется для описания минималистского стиля усилителя напряжения. Этот термин относится к типу схемы, которая имеет небольшие размеры, низкую стоимость и обычно проста в сборке. Это то, что вы найдете на этой простой схеме и видео этой цепи солнечного света.Солнце падает на солнечную батарею и заряжает аккумулятор.

В этой конкретной модели используется небольшая солнечная панель, батарея на 1 или 2 В и диоды, а также электрическая панель.

Посмотреть видео

Простой датчик вибрации без движущихся частей

Форрест М. Мимс III

Описание: Датчик вибрации без движущихся частей
Время сборки: 1 час
Уровень квалификации: Средний

Простые датчики вибрации и движения могут быть изготовлены с использованием маятникового переключателя, ртутного переключателя или одного из многих других методов.Датчик вибрации Project не использует движущихся частей для обнаружения вибрации. Вместо этого в качестве чувствительного датчика вибрации используется пьезоэлектрический элемент динамика.

Электроника DIY Project

Как это работает

Пьезо-динамик подключен к входу операционного усилителя, работающего в качестве компаратора. Эта операция достигается за счет устранения обычного резистора обратной связи между выходом (контакт 6) и инвертирующим входом (контакт 2). В процессе работы небольшие вибрации заставляют пьезоэлемент генерировать небольшое напряжение.Светодиод светится, когда напряжение превышает приложенное. к контакту 3 операционного усилителя регулятором чувствительности R2.

Шаг 1 - операционный усилитель LTC1050 и гнездо: U1 - Обратите внимание на ориентацию IC и гнезда IC, посмотрев на выемку и совместив выемку IC с выемкой на печатной плате. См. Рисунок 1.

Рисунок 1: Полярность ИС
Шаг 2 - Цветовой код неполяризованного резистора:

R1 - резистор 3,9 МОм, который можно устанавливать в любом направлении.(оранжевый - белый - зеленый - золотой)

R2 - потенциометр, припаяйте все три вывода на плате.

R3 - резистор 1 кОм, который можно установить в любом направлении, 1 кОм (коричневый - черный - красный - золотой)

Шаг 3 - Пьезо:

Подключите красный положительный провод к квадратной площадке внутри круга с надписью PIEZO. Затем подключите заземление (черный провод) к круглой площадке рядом с ним.

Шаг 4 - Светодиоды:

D1 - Подсоедините катодную (короткую) ножку светодиода к квадратной площадке, обозначенной D1.

Убедитесь, что конец катода (более короткий вывод) обращен к стороне с плоским краем. См. Рисунок 2.

Рисунок 2: Полярность светодиода


Шаг 5 - Аккумулятор

U2 - Подключите положительный полюс аккумулятора (красный провод) к контакту «+» на плате печатной платы, а заземление (черный провод) к контакту «-» на печатной плате.

Шаг 6 - Соединение всего вместе

Вы можете использовать двусторонний скотч или горячий клей, чтобы прикрепить пьезоэлемент к печатной плате.


Цепь датчика вибрации.

Тестирование цепи

Используйте небольшую отвертку, чтобы вращать вал R2, пока светодиод не погаснет. Если светодиод не горит или горит, немедленно отсоедините аккумулятор и проверьте проводку. Когда схема работает правильно, нажатие на пьезо-динамик или всю печатную плату вызовет мигание светодиода.

Дальше

Эту схему можно сделать гораздо более чувствительной и использовать для обнаружения сейсмических колебаний путем замены закрытого пьезоэлемента на пьезоэлемент без покрытия.Оголенный элемент следует прикрепить к печатной плате с помощью цемента. Печатная плата должна быть надежно закреплена на тяжелом основании (кирпич, бетонный блок и т. Д.) Или на неподвижной конструкции. Прямоугольный отрезок тонкой алюминиевой ложи следует приклеить к верхней поверхности пьезоэлемента так, чтобы конец стержня был подвешен в свободном пространстве, образуя горизонтальный маятник. Я попробовал это, прикрепив конец алюминиевой линейки к верхней поверхности пьезо-динамика, прикрепленного к монтажной плате, установленной на кирпиче.Кирпич с вытянутой линейкой положили на проложенную подъездную дорожку из калише. Светодиод загорелся, когда второй кирпич упал на подъездную дорожку с расстояния примерно 40 футов.

DIY Автоматический дозатор жидкости с датчиком приближения [без версии Arduino] - Circuit Schools

Люди, вероятно, будут использовать автоматизированные продукты в повседневной жизни и тратить гораздо больше денег на автоматизацию каждой работы. Итак, в соответствии с этими критериями здесь идет дозатор жидкости, который используется для заливки жидкости через выпускное отверстие непосредственно в емкость или просто стакан.

Возможно, вы слышали о диспенсере для питьевой воды, который льет воду через выпускной кран, когда вы включаете его нажатием кнопки или вращением крана. Итак, здесь мы пытаемся автоматизировать этот процесс, чтобы жидкость из резервуара или бутылки автоматически переливалась в стакан, когда вы помещаете стакан перед ним через выпускную трубу.

Вы можете использовать этот проект в качестве диспенсера для спиртосодержащих жидких дезинфицирующих средств, простого диспенсера для воды, диспенсера для вина и любого типа диспенсера для жидкости.Итак, приступим к списку требований для этого проекта.

Используемых компонентов:

  • Инфракрасный датчик приближения.
  • Малый водяной насос постоянного тока.
  • TIP32C PNP транзистор.
  • Резистор 1 кОм.
  • Провода малые.
  • Старый USB-кабель для источника питания (опционально).
  • Маленькая трубка в соответствии с требованиями (используется аквариумная трубка).
  • Бутылка с жидкостью для налива.
  • Powerbank или мобильное зарядное устройство (используется как источник питания 5 В).

Процедура

Здесь мы реализуем идею с бутылкой или кувшином меньшего размера и мини-водяным насосом, вы можете создать более крупный и мощный в соответствии с вашими требованиями.

Возьмите крышку банки и просверлите отверстия для проводки и трубы, одно отверстие должно быть больше для трубы, а другое - для проводки водяного насоса.

Просверлите отверстия в крышке

Теперь подсоедините один конец трубы к водяному насосу постоянного тока и вытащите другой конец из отверстия для трубы в крышке, а также вытяните проводку двигателя через другое отверстие.вы можете приклеить его в соответствии с высотой бутылки, чтобы они были надежно закреплены. как показано на рисунке ниже

Теперь, используя горячий клей, сначала приклейте датчик приближения к крышке, а затем приклейте транзистор TIP32C PNP рядом с ним. поскольку мы используем небольшую установку, транзистор не нагревается. Если вы используете его с компонентами более высокой мощности, вы можете использовать небольшой радиатор.

Теперь припаяйте компоненты небольшими проводами в соответствии с приведенной ниже схемой.

Теперь, после подключения точно так, как показано на принципиальной схеме, заклейте все открытые провода и плату датчика горячим клеем, чтобы никакая жидкость не попала на него и не разрушила плату.Примечание: не закрывайте светодиоды на плате датчика.

После того, как все сделано выше, вам понадобится источник питания для запуска вашего проекта. Для удешевления проекта мы использовали мобильное зарядное устройство в качестве источника питания, которое выдает постоянный ток 5В. Вы также можете использовать внешний аккумулятор в качестве источника питания. Или вы можете закрепить небольшую батарею с зарядным модулем, но она будет немного громоздкой на крышке.

Для лучшего обзора закройте всю крышку картонным кантом, как показано на рисунке ниже.

Работа диспенсера для жидкости своими руками

После завершения всех настроек вы можете включить источник питания, подключив USB к блоку питания или зарядному устройству телефона.тогда вы можете наблюдать светодиодный индикатор питания на плате датчика приближения.

Теперь протестируйте проект, поместив руку или стекло перед датчиком и под выпускной трубой, насос должен включиться, и жидкость будет вытекать через выпускную трубу.

Отрегулируйте чувствительность датчика приближения, отрегулируйте винт на нем и наслаждайтесь потоком с помощью автоматического дозатора жидкости или автоматического дозатора вина.

Примеры использования:

  • Можно использовать как дозатор воды из фляги или бутылки.
  • Можно использовать в винном автомате или винном серваке, не поднимая бутылку.
  • Может также использоваться как диспенсер для прохладительных напитков.

Так почему бы вам не попробовать сделать этот дешевый и простой дозатор жидкости и не поделиться своим мнением, комментируя ниже.

Все о датчиках приближения: какой тип использовать?

Индуктивный, емкостный, ультразвуковой, ИК? Это распространенные типы датчиков приближения, которые сегодня используются в различных приложениях, от датчиков приближения Andriod и iPhone до измерения расстояния и обнаружения объектов с помощью Arduino.Следовательно, выбор легко подключаемого, точного и надежного устройства очень важен для выполнения ваших предполагаемых целей.

В этом руководстве я расскажу о различных типах датчиков приближения, их использовании и цене с рекомендациями, чтобы облегчить ваше решение!

Это руководство будет охватывать следующие компоненты:

  • Что такое датчики приближения?
  • Типы датчиков приближения
  • Как выбрать датчик приближения
  • Достойные упоминания
  • Сравнение датчиков приближения (Резюме)

Датчики приближения - это датчики, которые обнаруживают движение / присутствие объектов без физического контакта и передают полученную информацию в электрический сигнал.Его также можно определить как бесконтактный переключатель, определение, данное японскими промышленными стандартами (JIS) для всех бесконтактных датчиков обнаружения

.
  • Звуки сложные? Датчик приближения просто означает; Датчик, который обнаруживает, улавливает и передает информацию без какого-либо физического контакта!

Характеристики датчика приближения

Чтобы лучше понять, что такое датчик приближения, мы рассмотрим его особенности. Ниже приведены его особенности, некоторые из которых уникальны по сравнению с традиционными оптическими / контактными датчиками:

Бесконтактное зондирование

Бесконтактный датчик приближения позволяет обнаруживать объект, не касаясь его, обеспечивая хорошее состояние объекта

Не зависит от состояния поверхности

Датчики приближения почти не зависят от цвета поверхности объектов, поскольку они в основном обнаруживают физические изменения

Пригодность для широкого спектра применений

Датчики приближения

подходят для влажных условий и использования в широком диапазоне температур, в отличие от традиционных оптических датчиков.

Датчики приближения

также применимы в телефонах, будь то ваши устройства Andriod или IOS. Он состоит из простой ИК-технологии, которая включает и выключает дисплей в соответствии с вашим использованием. Например, он отключает ваш дисплей во время телефонного звонка, чтобы вы случайно не активировали что-то, поднеся его к щекам!

Увеличенный срок службы

Поскольку датчик приближения использует полупроводниковые выходы, нет движущихся частей, зависящих от рабочего цикла.Таким образом, его срок службы увеличивается по сравнению с традиционными датчиками!

Высокая скорость отклика

По сравнению с переключателями, для которых требуется контакт, датчики приближения обеспечивают более высокую скорость отклика.

Теперь, когда мы поняли, что такое датчики приближения, мы подробнее рассмотрим различные типы; каждый хорошо подходит для своих конкретных приложений и сред.

Готовы? Вот краткое изложение различных типов датчиков приближения!

Индуктивные датчики приближения

Индуктивные датчики приближения - это бесконтактные датчики, используемые только для обнаружения металлических предметов.Он основан на законе индукции, приводящем в движение катушку с осциллятором, когда к ней приближается металлический объект.

Он имеет две версии и состоит из 4 основных компонентов:

Версии:

  • Неэкранированный: электромагнитное поле, создаваемое катушкой, не ограничено, что позволяет увеличивать и увеличивать расстояние срабатывания
  • Экранированное: генерируемое электромагнитное поле сосредоточено спереди, где стороны катушки датчика закрыты

Компоненты:

  • Он состоит из 4 основных компонентов, как показано на рисунке; Катушка, генератор, триггер Шмитта и схема переключения выхода

Как работает индуктивный датчик приближения?
  1. Переменный ток подается на катушку, создавая электромагнитное поле обнаружения
  2. Когда металлический объект приближается к магнитному полю, нарастают вихревые токи, что приводит к изменению индуктивности катушки
  3. При изменении индуктивности катушки цепь , который постоянно отслеживается, активирует выходной переключатель датчика

* Примечание: даже когда цель отсутствует, индуктивные датчики продолжают колебаться.Переключатель срабатывает только при наличии объекта.

Общие приложения:
  • Промышленное использование
    • Машины для автоматизации производства, которые подсчитывают продукты, передачи продуктов
  • Системы безопасности
    • Обнаружение металлических предметов, оружия, мин и т. Д.

Преимущества индуктивных датчиков приближения
  • Бесконтактное обнаружение
  • Адаптивность к окружающей среде; устойчивость к обычным условиям, наблюдаемым в промышленных зонах, таких как пыль и грязь
  • Возможность и универсальность в обнаружении металлов
  • Достаточно дешево по цене
  • Отсутствие движущихся частей, что обеспечивает более длительный срок службы

Недостатки индуктивных датчиков приближения
  • Отсутствие дальности обнаружения, в среднем макс. Дальность до 80 мм
  • Может обнаруживать только металлические предметы
  • На производительность могут влиять внешние условия; экстремальные температуры,
    СОЖ или химикаты

Индуктивные датчики, предлагаемые в Seeed

Grove - 2-канальный индуктивный датчик (LDC1612)

Компания Seeed предлагает этот индуктивный датчик, который позволяет реализовать преимущества индуктивного измерения в производительности и надежности при минимальных затратах и ​​потреблении энергии.

Выходя за рамки простого измерения приближения, его Arduino совместим с возможностями приложений дистанционного зондирования и многими другими возможностями!

Хотите узнать больше? Вы можете перейти на страницу нашего продукта, чтобы узнать больше!


Емкостные датчики приближения Изображение предоставлено: Automation Insights

Емкостные датчики приближения - это бесконтактные датчики, которые обнаруживают как металлические, так и неметаллические объекты, включая жидкости, порошки и гранулы.Он работает, обнаруживая изменение емкости.

Как и индуктивные датчики, он состоит из генератора, триггера Шмитта и схемы переключения выходов. Единственное отличие состоит в том, что он состоит из 2 зарядных пластин (1 внутренняя, 1 внешняя) для емкостного заряда:

  • Внутренняя пластина, подключенная к генератору
  • Внешняя пластина (электроды датчика), используемая в качестве чувствительной поверхности

Как работают емкостные датчики приближения?
  1. Емкостный датчик приближения создает электростатическое поле
  2. Когда объект (проводящий / непроводящий) приближается к чувствительной области, емкость обеих пластин увеличивается, что приводит к усилению амплитуды генератора
  3. Результирующее усиление амплитуды запускает переключатель выхода датчика

* Примечание: емкостные датчики колеблются только при наличии целевого объекта

Общие приложения:
  • Промышленное использование
    • Машины для автоматизации производства, которые подсчитывают продукты, передачи продуктов
    • Процессы розлива, трубопроводы, чернила и т. Д.
    • Уровень, состав и давление жидкости
  • Контроль влажности
  • Неинвазивное обнаружение содержимого
  • Сенсорные приложения

Преимущества емкостных датчиков приближения
  • Бесконтактное обнаружение
  • Широкий спектр материалов, которые можно обнаруживать
  • Способность обнаруживать объекты через неметаллические стены с широким диапазоном чувствительности
  • Хорошо подходит для использования в промышленных условиях
  • Содержит потенциометр, позволяющий пользователям для регулировки чувствительности датчика таким образом, чтобы обнаруживались только нужные объекты
  • Отсутствие движущихся частей, что обеспечивает более длительный срок службы

Недостатки емкостных датчиков приближения
  • Относительно низкий диапазон, но постепенное увеличение по сравнению с индуктивными датчиками
  • Более высокая цена по сравнению с индуктивными датчиками

Емкостные датчики, предлагаемые в Seeed
Grove - емкостный датчик влажности (коррозионностойкий)

Поскольку мы теперь поняли, что емкостные датчики приближения могут контролировать влажность, нам, конечно же, понадобится датчик для его применения!

Вот где на сцену выходит Grove - емкостной датчик влажности (устойчивый к коррозии).Это датчик влажности почвы, основанный на изменении емкости. По сравнению с резистивными датчиками он не только устойчив к коррозии, но и предлагает широкий спектр применения!

Хотите узнать больше? Перейдите на страницу нашего продукта здесь!

Grove - 12-клавишный емкостный датчик касания I2C V2 (MPR121)

Нужен модуль, который делает больше, чем просто емкостное определение приближения? Мы получили именно это!

The Grove - 12-клавишный емкостный датчик касания I2C V2 (MPR121) - это модуль 3-в-1 со следующими функциями: определение емкости, датчик касания и датчик приближения.

Чтобы узнать о нем больше информации, перейдите на страницу нашего продукта здесь!


Ультразвуковые датчики приближения Ультразвуковой датчик расстояния

Третий в этом списке - ультразвуковые датчики приближения, обнаруживающие присутствие объектов посредством излучения высокочастотного ультразвукового диапазона. Это происходит за счет преобразования электрической энергии. Подобно емкостным датчикам, он может обнаруживать твердые, жидкие, гранулированные или гранулированные объекты.

Пожалуй, самый простой из всех, он состоит только из ультразвукового передатчика и ультразвукового приемника.

Как работает ультразвуковой датчик приближения?
  1. Звуковой преобразователь излучает звуковые волны
  2. Звуковые волны отражаются от объекта
  3. Отразившаяся волна возвращается на датчик
  4. Время, затраченное на излучение и прием звуковых волн, затем используется для определения расстояния / близости

Общие приложения
  • Измерение расстояния
  • Анемометры для определения скорости и направления ветра
  • Автоматизация производственных процессов
  • Обнаружение жидкостей
  • Беспилотные летательные аппараты (БПЛА) для мониторинга объектов
  • Робототехника

Преимущества ультразвуковых датчиков приближения
  • Бесконтактное обнаружение
  • Не зависит от цвета и прозрачности объекта
  • Не зависит от внешних условий окружающей среды, надежное решение
    • Хорошо работает в экстремальных условиях
    • Можно использовать в темноте
  • Низкое потребление тока

Недостатки ультразвуковых датчиков приближения
  • Ограниченная дальность обнаружения, хотя и более высокая по сравнению с индуктивными и емкостными датчиками
  • Не работает в вакууме, так как ультразвуковые датчики работают с помощью звуковых волн
  • Невозможно измерить расстояние до мягких объектов или объектов с экстремальной текстурой

Ультразвуковые датчики, предлагаемые в Seeed
Grove - ультразвуковой датчик: Улучшенная версия HC-SR04

Сделанный со значительными преимуществами по сравнению с традиционным ультразвуковым датчиком HC-SR04, Grove - Ultrasonic Sensor является идеальным ультразвуковым модулем не только для определения приближения, но и для измерения расстояния и ультразвукового датчика.также!

Хотите узнать больше? Вы можете ознакомиться со следующими ресурсами:


ИК датчик приближения

IR, сокращенно инфракрасный, обнаруживает присутствие объекта, испуская луч инфракрасного света. Он работает аналогично ультразвуковым датчикам, но вместо использования звуковых волн передается ИК-излучение.

Инфракрасные датчики приближения состоят из излучающего ИК-светодиода и светового датчика для обнаружения отражения. Он имеет встроенную схему обработки сигналов, которая определяет оптическое пятно на PSD.

Как работают ИК-датчики приближения?
  1. Инфракрасный свет излучается инфракрасным светодиодным излучателем
  2. Луч света попадает на объект и отражается обратно под углом
  3. Отраженный свет достигает светового детектора
  4. Датчик в световом детекторе определяет положение / расстояние отражающего объекта

Общие приложения
  • Измерение расстояния
  • Счетчик предметов; когда объект отсекает излучающий свет, он считается за один
  • Системы безопасности, такие как наблюдение, охранная сигнализация и т. д.
  • Приложения для мониторинга и управления

Преимущества инфракрасных датчиков приближения
  • Бесконтактное обнаружение
  • Применимо для использования в дневное и ночное время
  • Защищенная связь через линию прямой видимости
  • Возможность измерения расстояния до мягких объектов в отличие от ультразвуковых датчиков приближения
  • Точность инфракрасного датчика, не подверженного коррозии или окислению

Недостатки ИК-датчиков приближения
  • Под влиянием условий окружающей среды и твердых предметов, что подразумевает невозможность использования через стены или двери
  • Для связи требуется прямая видимость между передатчиком и приемником
  • Производительность падает на больших расстояниях

Инфракрасный датчик приближения, предлагаемый в Seeed
Grove - Инфракрасный датчик приближения 80 см

Этот ИК-датчик приближения, созданный на основе SHARP GP2Y0A21, является популярным выбором, который я рекомендую всем, кто ищет точные измерения расстояния, помимо ваших альтернатив.

Этот инфракрасный датчик приближения, упакованный в небольшой корпус с низким энергопотреблением, обеспечивает непрерывное считывание расстояния в диапазоне от 10 см до 80 см!

Хотите узнать больше? Вы можете ознакомиться со следующими ресурсами:


Как выбрать подходящий датчик приближения

Теперь, чтобы помочь вам выбрать подходящий из четырех, я предоставил критерии, которые вы должны учитывать при выборе датчика приближения.

Однако, как всегда, вам нужно сначала принять во внимание предполагаемую цель; В первую очередь, для чего вы пытаетесь это использовать.

Датчик приближения Crieria Как выбрать Пригодность датчика
Требования к объекту Взгляните на объект, на котором вы планируете использовать датчик приближения на
. Учитывайте следующие факторы:
Цвет объекта
Форма объекта
Материал объекта
Наиболее подходит для сложных объектов:
ИК-датчик приближения

Не подходит для сложных объектов:
Ультразвуковой датчик приближения

Среда зондирования Взгляните на среду, в которой вы собираетесь ощущать свой объект на
. Учитывайте следующие факторы:
Чистота
Температура
Влажность
Подходит для суровых условий:
Емкостный (наиболее подходящий)
Индуктивный
Ультразвуковой

Не подходит для суровых условий:
ИК-датчик приближения

Диапазон / расстояние срабатывания Посмотрите, будет ли ваш объект размещен близко к лицевой стороне датчика
Примите во внимание следующие факторы:
Расстояние между помещенным объектом и датчиком (далеко или близко)
Подходит для обнаружения на близком расстоянии:
Индуктивные и емкостные датчики приближения

Подходит для обнаружения на большом расстоянии:
Ультразвуковые и инфракрасные датчики приближения

Еще один фактор, на который стоит обратить внимание, - это электрическая система, с которой вы интегрируете датчик приближения.Будь то электрическая нагрузка (NPN / PNP) или напряжение питания (AC / DC), датчик должен работать с системой управления, которую вы используете.


Почетные грамоты

Теперь, когда я рассмотрел критерии для рассмотрения датчика приближения, вот список некоторых почетных упоминаний, на которые все же стоит обратить внимание!

Фотоэлектрический датчик приближения

Фотоэлектрические датчики приближения - это датчики, в которых используется высококачественная фотоэлектрическая технология, они излучают световой луч, способный обнаруживать любые объекты!

Имеются следующие 3 разные модели; Отражение, пересечение луча и светоотражение.Каждая модель предлагает различные методы излучения света, хотя все они очень эффективны, когда дело касается обнаружения на расстоянии.

Если вас интересует такая технология определения приближения, вы можете проверить этот датчик, который объединяет его в небольшой корпус:

Инфракрасный датчик расстояния PSK-CM8JL65-CC5

Магнитный датчик приближения

Магнитные датчики приближения - это бесконтактные устройства, используемые для обнаружения магнитных объектов на большом расстоянии.Типичный включает стекло и металлическое лезвие, что позволяет быстро намагничивать!

Хотя он просто чувствует магниты, он по-прежнему хорош своей невысокой стоимостью, большой дальностью действия и небольшими размерами.

Если вам нравится один и вы хотите узнать о нем больше, вы можете проверить это:

Grove - 12-битный магнитный датчик положения поворота / энкодер (AS5600)

Основанный на A5600, этот магнитный датчик положения не только способен бесконтактно определять приближение, но и обладает значительными преимуществами по сравнению с обычными энкодерами.Точный, программируемый и экономичный - это вариант, который стоит рассмотреть!

Хотите узнать больше? Вы можете перейти на страницу нашего продукта для получения дополнительной информации!

Датчик приближения LiDAR

LiDar, сокращенно от Light Detection and Ranging, представляет собой высокотехнологичную сенсорную технологию, которая обеспечивает превосходную максимальную дальность обнаружения с высокой частотой обновления. Единственный главный недостаток - это стоимость, которая может оказаться слишком высокой для среднего потребителя.

Не бойтесь, компания Seeed предлагает очень доступный миниатюрный датчик приближения LiDAR!

Хотите узнать об этом больше? Вы можете перейти на страницу нашего продукта!

Сводка

Подводя итог, вот датчики приближения по сравнению с их рекомендуемым использованием:

Индуктивный Емкостной Ультразвуковой ИК
Чувствительный объект Только металл Металлические и неметаллические объекты
Включая жидкость, порошки и гранулы
Объект простые / сложные поверхности
Диапазон чувствительности Короткий Короткий Длинный Длинный
Применения Промышленное использование:
Машины, автоматика
Промышленное оборудование, жидкости:
138

Датчик касания

Измерение расстояния
Анемометры для определения скорости и направления ветра
Автоматизация производственных процессов
Обнаружение жидкостей
Беспилотные летательные аппараты (БПЛА) для наблюдения за объектами
Робототехника
Счетчик предметов
Системы безопасности, такие как системы наблюдения, ограждения сигнализация и др.
Приложения для мониторинга и управления
Окружающая среда Подходит для использования в суровых условиях окружающей среды
(в некоторой степени)
Исключительно подходит для использования в суровых условиях окружающей среды Подходит для суровых условий окружающей среды
(Не подходит для используется в вакууме)
Не подходит для использования в суровых условиях окружающей среды

Для совместимости датчика приближения с Arduino вы можете рассмотреть рекомендуемые продукты Seeed, охватываемые каждым типом датчика приближения! Это сэкономит ваше время, пытаясь сделать его самостоятельно!

  • Рекомендация индуктивного датчика:
  • Рекомендация емкостного датчика:
  • Рекомендация ультразвукового датчика:
  • Рекомендация ИК-датчика:

Пожалуйста, следуйте и ставьте лайки нам:

Теги: емкостный датчик приближения, расстояние, индуктивный датчик приближения, ИК-датчик приближения, магнитный датчик приближения, фотоэлектрический датчик приближения, приближение, датчик расстояния приближения, Датчик приближения, датчик приближения arduino, сравнение датчиков приближения, руководство по датчику приближения, среднее значение датчика приближения, датчик , типы датчиков приближения, ультразвуковой датчик приближения, ультразвуковой датчик, что такое датчик приближения

Продолжить чтение

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *