Что такое трансформатор напряжения. Как устроен и работает трансформатор напряжения. Какие бывают виды трансформаторов напряжения. Где применяются трансформаторы напряжения. Чем отличаются трансформаторы от автотрансформаторов.
Что такое трансформатор напряжения и для чего он нужен
Трансформатор напряжения (ТН) — это статическое электромагнитное устройство, предназначенное для преобразования высокого напряжения в низкое или наоборот. Основные задачи трансформаторов напряжения:
- Понижение высокого напряжения до уровня, безопасного для измерительных приборов и релейной защиты
- Гальваническая развязка первичных и вторичных цепей
- Создание стандартных уровней напряжения для питания различных устройств
Трансформаторы напряжения широко применяются в энергетике, электронике и других отраслях благодаря своей простоте, надежности и высокому КПД (до 99%).
Устройство и принцип работы трансформатора напряжения
Трансформатор напряжения состоит из следующих основных элементов:

- Магнитопровод из электротехнической стали
- Первичная обмотка, подключаемая к сети высокого напряжения
- Вторичная обмотка, к которой подключается нагрузка
- Изоляция между обмотками
Принцип работы ТН основан на явлении электромагнитной индукции. Как работает трансформатор напряжения:
- На первичную обмотку подается переменное напряжение
- В магнитопроводе возникает переменный магнитный поток
- Магнитный поток индуцирует ЭДС во вторичной обмотке
- Величина ЭДС зависит от соотношения числа витков в обмотках
Таким образом, изменяя число витков, можно повышать или понижать напряжение на выходе трансформатора.
Основные виды трансформаторов напряжения
Трансформаторы напряжения классифицируют по нескольким признакам:
По количеству фаз:
- Однофазные
- Трехфазные
По числу обмоток:
- Двухобмоточные
- Трехобмоточные
По типу охлаждения:
- Масляные
- Сухие (с воздушным охлаждением)
По способу установки:
- Внутренней установки
- Наружной установки
По особенностям конструкции:
- Заземляемые
- Незаземляемые
- Каскадные
- Емкостные
Выбор конкретного типа ТН зависит от области применения, требуемых характеристик и условий эксплуатации.

Области применения трансформаторов напряжения
Трансформаторы напряжения находят широкое применение в различных сферах:
- Энергетика — для измерения и контроля напряжения в высоковольтных сетях
- Релейная защита — для питания устройств защиты и автоматики
- Электроника — для создания гальванической развязки
- Бытовая техника — для понижения сетевого напряжения
- Промышленность — для питания различного оборудования
Благодаря своей универсальности, трансформаторы напряжения стали неотъемлемой частью современных электрических систем.
Чем отличаются трансформаторы от автотрансформаторов
Хотя трансформаторы и автотрансформаторы схожи по принципу действия, между ними есть ряд важных отличий:
Характеристика | Трансформатор | Автотрансформатор |
---|---|---|
Связь обмоток | Гальванически развязаны | Имеют общую часть |
Габариты | Больше | Меньше |
КПД | Ниже | Выше |
Стоимость | Выше | Ниже |
Безопасность | Выше | Ниже |
Автотрансформаторы более компактны и экономичны, но менее безопасны из-за отсутствия гальванической развязки. Поэтому в быту чаще используются обычные трансформаторы.

Как выбрать трансформатор напряжения
При выборе трансформатора напряжения следует учитывать несколько ключевых параметров:
- Номинальное первичное напряжение
- Номинальное вторичное напряжение
- Номинальная мощность
- Класс точности
- Условия эксплуатации (внутренняя/наружная установка)
- Тип охлаждения
Правильный выбор трансформатора напряжения обеспечит надежную и эффективную работу электрической системы.
Техническое обслуживание трансформаторов напряжения
Для обеспечения длительной и безопасной эксплуатации трансформаторов напряжения необходимо проводить регулярное техническое обслуживание. Оно включает в себя:
- Внешний осмотр
- Проверку уровня изоляционной жидкости (для масляных ТН)
- Измерение сопротивления изоляции
- Проверку контактных соединений
- Испытания повышенным напряжением
Периодичность и объем технического обслуживания определяются типом трансформатора и условиями его эксплуатации.
Перспективы развития трансформаторов напряжения
Современные тенденции в развитии трансформаторов напряжения направлены на:

- Повышение энергоэффективности
- Уменьшение габаритов и веса
- Увеличение срока службы
- Применение новых изоляционных материалов
- Интеграцию с цифровыми системами управления
Эти инновации позволят создавать более совершенные и экономичные трансформаторы напряжения, отвечающие растущим потребностям современной энергетики.
Что такое трансформатор
Что такое трансформатор
Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока. Такое определение трансформатору дает ГОСТ 16110-82.
Трансформатор — это устройство, которое преобразует напряжения переменного тока и/или гальваническую развязку для различных нужд в областях электроэнергетики, электроники и радиотехники.
Конструктивно трансформатор состоит из одной, как в автотрансформаторах, или нескольких изолированных проволочных, либо ленточных обмоток (катушек), намотанных, обычно, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала, охватываемых при этом общим магнитным потоком.
Базовые принципы действия трансформатора
Работа трансформатора строится на двух базовых принципах:
- Электромагнетизм — изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле;
Электромагнитная индукция — изменение магнитного потока, проходящего через обмотку, создаёт электродвижущую силу (ЭДС) в этой обмотке.
Практически все современные трансформаторы работают по одному и тому же принципу. На одну из обмоток, которую называют первичной обмоткой, подаётся напряжение от внешнего источника. переменный ток, протекающий по первичной обмотке, создаёт переменный магнитный поток в магнитопроводе. Под действием электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, включая первичную, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону относительно магнитного потока.
Некоторые трансформаторы, работающие на высоких или сверхвысоких частотах, не имеют магнитопровода.
Трансформаторы, как электромагнитныеустройства, имеют несколько режимов работы:
- Режим холостого хода. Этот режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. При помощи холостого хода определяют КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.
- Нагрузочный режим. Данный режим характеризуется замкнутой на нагрузке вторичной цепью трансформатора. Этот режим — основной рабочий для трансформатора.
- Режим короткого замыкания. Такой режим получается как результат замыкания вторичной цепи накоротко. С помощью этого режима определяют потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.
Тип трансформатора определяется при помощи коэффициента трансформации, значение которого рассчитывается как отношение числа витков первичной обмотки к числу витков вторичной:
k = N1/N2
ООО «ТД «Автоматика» уже более 10 лет поставляет трансформаторы различных типов предприятиям электроэнергетики и промышленности. Наша компания имеет партнерские отношения с большинством производителей трансформаторов и может предложить своим клиентам данные изделия по привлекательным ценам. Мы поможем вам правильно подобрать трансформатор, в полном соответствии с требованиями технической и проектной документации. Каталог трансформаторов постоянно обновляется. Кроме данного сайта, у нас имеется тематический сайт по трансформаторному оборудованию.
Трансформаторы
3.6. Трансформаторы
Трансформатор – это устройство, служащее для повышения или понижения переменного напряжения без изменения его частоты и практически без потерь мощности. Трансформатор состоит из двух или более катушек, надетых на общий сердечник. Катушка, которая подключается к источнику переменного напряжения, называется первичной, а катушка, к которой присоединяется нагрузка (потребители электрической энергии), — вторичной (рис. 3.22). Сердечники трансформаторов изготавливаются из электротехнической стали и набираются из отдельных изолированных друг от друга пластин (для уменьшения потерь энергии вследствие возникновения в сердечнике вихревых токов) – рисунок 3.23.
Катушки трансформатора, как правило, содержат разное количество витков, причем большее напряжение оказывается приложено к катушке с большим числом витков. Если трансформатор используется для повышения напряжения, то обмотка с меньшим числом витков подключается к источнику напряжения, а к обмотке с большим числом витков присоединяется нагрузка. Для понижения напряжения все делается наоборот. При этом не следует забывать, что подавать на первичную обмотку можно напряжение не больше номинального (того, на которое она рассчитана).
При отсутствии потерь в обмотках коэффициент трансформации равен отношению напряжений на зажимах обмоток: k=U1/U2.
Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего — меньше 1.
Принцип работы трансформатора основан на явлении электромагнитной индукции. При протекании переменного тока через первичную катушку вокруг нее возникает перемененное магнитное поле и магнитный поток, который пронизывает также и вторую катушку. В результате во вторичной катушке появляется вихревое электрическое поле и на ее зажимах возникает ЭДС индукции.
Трансформатор характеризуется коэффициентом полезного действия, равным отношению мощности, выделяющейся во вторичной катушке, к мощности, потребляемой первичной катушкой от сети. У хороших трансформаторов КПД составляет 99 — 99,5%.
Важным свойством трансформатора является его способность преобразовывать сопротивление нагрузки. Рассмотрим трансформатор с КПД приблизительно равным 100%. В этом случае мощность, выделяющаяся во вторичной цепи трансформатора, будет равна мощности, потребляемой первичной обмоткой от источника напряжения. Для такого трансформатора мощность, потребляемая от источника напряжения, будет чисто активной. Мощность в первичной цепи трансформатора P1=(U12)/R1, а во вторичной цепи P2=(U22)/R2.
Так как P1=P2 и U1=kU2 , то R1=k2R2.
Таким образом, нагрузка сопротивлением R2, подключаемая к источнику переменного напряжения через трансформатор, по мощности будет эквивалентна нагрузке сопротивлением R1, подключаемой без трансформатора.
Для регулировки переменного напряжения широко применяются лабораторные автотрансформаторы. Автотрансформаторы рассчитаны на подключение к сети переменного напряжения 220 В или 127 В. Как правило, выходное напряжение автотрансформатора регулируется плавно до 250 В. Принципиальная схема автотрансформатора приведена на рисунке 3.24а, а его устройство
показано на рисунке 3.24 б. Обмотка трансформатора выполнена изолированным проводом в один слой. На участках обмотки, которых касается подвижный контакт с угольной вставкой, изоляция очищена. При перемещении контакта угольная вставка закорачивает виток провода. Однако вследствие небольшого напряжения на одном витке и заметного сопротивления угольной вставки через замкнутый виток протекает допустимый ток.
Первичная обмотка автотрансформатора является частью его вторичной обмотки и поэтому между первичной и вторичной обмоткой трансформатора имеется гальваническая связь. К вторичной обмотке автотрансформатора нельзя непосредственно подключать потребители, один из проводов которых может оказаться соединенным с землей. Такое подключение приведет к аварии или несчастному случаю. При работе с автотрансформатором запрещается заземлять вторичную цепь.
Рассмотрим кратко простейший расчет маломощных трансформаторов бытовой радиоаппаратуры. Мощность трансформатора (в Вт) численно равна квадрату площади (в см2) поперечного сечения среднего стержня магнитопровода. Зная номинальную мощность трансформатора, можно найти ток в первичной обмотке при номинальной нагрузке во вторичных обмотках. Диаметр провода обмотки выбирается из расчета (2,5-3)А/мм2 поперечного сечения провода. Для стандартных магнитопроводов, применяемых для изготовления трансформаторов, число витков на 1 вольт примерно равно частному от деления 50 на площадь поперечного сечения центрального стержня магнитопровода, выраженную в см2. Однако в зависимости от качества магнитопровода коэффициент может изменяться от 35 до 65.
Полное сопротивление катушки индуктивности с ферромагнитным сердечником зависит от силы протекающего через нее тока. Сопротивление катушки в зависимости от силы протекающего тока сначала увеличивается, достигает максимального значения, а затем уменьшается. На рисунке 3.25 приведена зависимость тока, протекающего в обмотке ненагруженного трансформатора, от приложенного к ней напряжения (исследован трансформатор источника ВУ-4/36 в режиме повышения напряжения).
Зависимость, приведенную на рисунке 3.25, называют характеристикой холостого хода трансформатора. Нелинейное возрастание тока холостого хода в зависимости от приложенного к первичной обмотке напряжения начинается примерно с 0,8Uном. Номинальное напряжение первичной обмотки трансформатора выбирают так, чтобы ток холостого хода составлял 5-10% от номинального тока. При напряжении 1,1Uном ток холостого хода не должен превышать 20-25% номинального тока нагруженного трансформатора.
Трансформаторы напряжения. Всё, что о них нужно знать
Что необходимо о них знать? Расскажем об этом в предлагаемой статье.
Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.
Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.
От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.
По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.
Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.
По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.
Устройство трансформатора напряжения
ТН состоят из двух главных элементов:
-
Стального магнитопровода.
-
Обособленных друг от друга, изолированных обмоток (первичной и вторичной).
На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.
Принцип работы
В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:
-
Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.
-
Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.
-
К вторичной обмотке поступает ток, возникший под действием ЭДС.
Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.
Виды трансформаторов напряжения
Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.
Все ТН условно делятся на виды по определенным критериям:
-
Число фаз: одно- и трехфазные.
-
Количество обмоток – две или три.
-
Класс точности – диапазон допустимых параметров погрешности.
-
Тип охлаждения – масляные и сухие (воздушное охлаждение).
-
Способ размещения – внутренние или внешние.
ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:
-
Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.
-
Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.
-
Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.
-
Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.
-
Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.
-
Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.
В чем различие и особенность трансформаторов и автотрансформаторов
В чем различие и особенность трансформаторов и автотрансформаторов
Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.
Различное электрооборудование и современные электрические сети в целом используют для своей работы прежде всего переменный ток. Переменный ток питает двигатели, индукционные печи, станки, компьютеры, обогреватели, ТЭНы, осветительные приборы, бытовую технику.
Переоценить значимость переменного тока для современного мира невозможно. Однако для передачи электрической энергии на большие расстояния используется высокое напряжение. А техника требует для своего питания напряжения пониженного — 110, 220 или 380 вольт.
Поэтому после передачи на расстояние электрическое напряжение необходимо понизить. Понижение осуществляют ступенями при помощи трансформаторов и автотрансформаторов.
Вообще трансформаторы бывают повышающими и понижающими. Повышающие трансформаторы установлены на генерирующих электростанциях, где они повышают получаемое от генератора переменное напряжение до сотен тысяч и даже миллиона вольт, приемлемых для передачи на большие расстояния с минимальными потерями энергии. А потом это высокое напряжение понижается опять же при помощи трансформаторов.
Обычный силовой или сетевой трансформатор — это электромагнитный агрегат, назначение которого — изменить действующее значение переменного напряжения, подаваемого на его первичную обмотку. Трансформатор в каноническом виде имеет несколько обмоток, но минимум — две — первичную и вторичную.
Витки всех обмоток трансформатора обвивают общий магнитопровод — сердечник. На первичную обмотку подается напряжение величину которого необходимо изменить, ко вторичной (вторичным) обмотке (обмоткам) присоединяется потребитель или сеть с розетками, от которых будут питаться многочисленные потребители.
Действие трансформатора основано на законе электромагнитной индукции Фарадея. Когда по виткам первичной обмотки течет переменный ток, в пространстве внутри (в основном) обмотки действует переменное электромагнитное поле данного тока.
Это переменное магнитное поле способно навести ЭДС индукции во вторичной обмотке, которая охватывает пространство действия магнитного потока первичной обмотки. В обычном трансформаторе первичные обмотки гальванически изолированы от первичных.
В автотрансформаторе часть витков первичной обмотки используется в качестве вторичной. Автотрансформаторы целесообразно использовать тогда, когда напряжение нужно понизить лишь немного, не в разы, как это делают обычные трансформаторы, а например в 0,7 раз.
Таким образом главное отличие трансформатора от автотрансформатора заключается в том, что у обычного трансформатора обмотки электрически изолированы друг от друга, а обмотки автотрансформатора имеют общие витки и поэтому всегда связаны гальванически. У трансформатора каждая обмотка имеет минимум два собственных вывода, у автотрансформатора один вывод всегда окажется общим для первичной и вторичной обмоток.
Автотрансформаторы широко применяются в сетях с напряжением более 100 кВ, поскольку при ступенчатом понижении напряжения, когда ясно, что обмотки конечного трансформатора будут гальванически изолированы, отсутствие гальванической развязки на ступени автотрансформатора не критично.
Зато с экономической точки зрения автотрансформаторы куда выгоднее обычных. У них меньше потери в обмотках за счет меньшего количества меди в проводах чем у обычных трансформаторов аналогичной мощности.
Размер автотрансформатора при той же мощности меньше — меньше расходы на материалы и сердечник. У автотрансформаторов более высокий КПД, ибо преобразованию подвергается лишь часть магнитного потока. Да и в целом стоимость автотрансформатора получается ниже.
К недостаткам автотрансформатора, в отличие от обычного, можно отнести отсутствие гальванической развязки между первичной и вторичной цепью. Если изоляция по какой-нибудь причине окажется нарушена, обмотка низшего напряжения окажется под высоким напряжением. Поэтому автотрансформаторы обычно не используют в быту дабы не подвергать обывателя опасности поражения током.
На напряжении до 1000 вольт автотрансформаторы используются для регулирования напряжения в виде лабораторных приборов — лабораторных автотрансформаторов (ЛАТРов) и в составе электромеханических стабилизаторов напряжения.Различное электрооборудование и современные электрические сети в целом используют для своей работы прежде всего переменный ток. Переменный ток питает двигатели, индукционные печи, станки, компьютеры, обогреватели, ТЭНы, осветительные приборы, бытовую технику.
Ранее ЭлектроВести писали, что 19 августа на Днестровскую гидроаккумулирующую станцию доставлено блочный силовой трансформатор Т-4.
По материалам: electrik.info.
Высоковольтные силовые трансформаторы, характеристики, конструкция, применение, как работает
Трансформатор – это электромагнитное статическое устройство с двумя (или более) обмотками, преобразующее электроэнергию напряжения переменного тока с одними характеристиками в электроэнергию с другими характеристиками (такими как напряжение, частота, форма напряжения, фазность). Преобразование электроэнергии в трансформаторах реализуется посредством переменного магнитного поля.
Наиболее распространенным и востребованным электротехническим устройством сегодня является силовые высоковольтные трансформаторы, напряжения, номинальные мощности которых варьируются очень в широких пределах от нескольких десятков киловатт до сотен мегаватт при напряжении от 6кВ до 1150 — 1500кВ.
Поскольку потери электроэнергии в электросетях пропорциональны квадрату тока, протекающего по воздушной линии, то для передачи электроэнергии выгодно использовать высокие напряжения и, соответственно, малые токи. Электроэнергия на электростанциях вырабатывается генераторными установками (турбо-, гидрогенераторами и пр.) на напряжении 16 — 24кВ, реже 35кВ. Поскольку этот уровень напряжения является довольно высоким для использования его в быту и на производстве, но и при этом является и недостаточно выгодным и обоснованным, для наиболее экономичной передачи электроэнергии на значительные расстояния.
Поэтому и используют повышающие трансформаторы, служащие для преобразования электроэнергии до уровней 110, 150, 220, 330, 500, 750 и 1150 кВ, и понижающие трансформаторы, которые позволяют снизить напряжение до стандартных значений 10; 6; 3; 0,66; 0,38 и 0,22 кВ, предназначенных для использования в быту, сельском хозяйстве и промышленности. Помимо этого, выпуск приемников электроэнергии (вращающихся машин, осветительных приборов и пр.) с высокими номинальными напряжениями обуславливает значительные конструктивные сложности, требующие усиленной изоляции и, следовательно, повышенных материальных затрат. В связи с этим высокое номинальное напряжение не может быть напрямую использовано, питание осуществляется через понижающие трансформаторы.
Таким образом, электроэнергию, вырабатываемую электростанциями, на пути от генераторной установки до потребителей преобразуют по 3-4 раза. Понижающие трансформаторы используют с целью распределения электроэнергии между потребителями, а повышающие – для передачи электрической энергии на большие расстояния.
Многообразие применения высоковольтных трансформаторов обусловило весьма значительную номенклатуру этих устройств. В зависимости от напряжения, режима нейтрали и номинальной мощности, высоковольтные трансформаторы классифицируют на несколько, так называемых габаритов:
— I — до 100 кВА и до 35кВ;
— II — более 100 до 1000кВА и до 35кВ;
— III — более 1000 до 6300кВА и до 35кВ;
— IV – более 6300кВА и до 35кВ;
— V — до 32000кВА и более 35 до 110кВ;
— VI — более 32000 до 80000кВА и до 330кВ;
— VII — более 80000 до 200000кВА и до 330кВ;
— VIII – более 200000кВА и свыше 330кВ.
В зависимости от типа охлаждения
В зависимости от типа охлаждения трансформаторы разделяют на:
— масляные;
— сухие;
— трансформаторы, в качестве изоляции у которых выступает жидкий диэлектрик.
Условно силовые трансформаторы обозначаются как определенными буквами (тип, количество фаз, число обмоток, способ охлаждения, вид переключения ответвлений), так и цифрами (мощность, напряжение).
Буквенные обозначения (некоторые могут отсутствовать) строго в той последовательности, что приведена ниже, позволяют получить следующую информацию:
1.Назначение
— автотрасформатор – А;
— электропечной – Э;
2.Число фаз
— однофазные – О;
— трехфазные – Т;
3.Присутствие расщепленной обмотки НН – Р;
4.Способ охлаждения
4.1. У сухих трансформаторов:
— естественное воздушное: в открытом исполнении – С, в закрытом –СЗ, в герметичном СГ;
— принудительное воздушное – СД;
4.2.У масляных трансформаторов:
— естественная циркуляция воздуха и масла – М; при наличии дополнительной защиты в виде азотной подушки без применения расширителя – МЗ;
— принудительная циркуляция воздуха: с естественной масляной – Д, с принудительной масляной – ДЦ;
— принудительная водомасляная циркуляция – Ц;
4.3. С применением в качестве охлаждающего теплоносителя негорючего жидкого диэлектрика:
— естественное – Н;
— с дутьем – НД:
5.Конструктивные особенности
— литая изоляция — Л;
— трехобмоточный – Т;
— наличие РНТ – Н;
— с выводами, расположенными во фланцах стенок корпуса: с азотной подушкой и без расширителя — З; с расширителем –Ф;
— без расширителя в гофробаке – Г;
— с симметрирующим устройством – У;
— подвесное исполнение для размещения на опорах ВЛ– П;
— энергосберегающий (с пониженными потерями в режиме х.х.) – э.
6.Область применения
— обеспечение собственных потребностей электростанций – С;
— ЛЭП постоянного тока – П;
— металлургическая отрасль – М;
— обеспечение электропитания: погружных насосов – ПН; экскаваторов – Э;
— подогрев (при необходимости) грунта, бетона, а также использование в буровых установках – Б;
— термическая обработка грунта и бетона, питание ручного электроинструмента различного назначения, а также обустройство временного освещения – ТО.
Затем числовой дробью в числителе дается информация о номинальной мощности (кВ*А), а в знаменателе — класс напряжения обмотки (кВ).
Использование силовых трансформаторов в зависимости от климатических условий
Информация о возможностях использования силовых трансформаторов в зависимости от климатических условий (в соответствие с ГОСТом 15150-69):
— умеренный климат– У;
— холодный – ХЛ;
-тропический – Т;
Кроме того, в зависимости от месторасположения, трансформаторы делят на следующие категории, допускающие их эксплуатацию:
— на открытом воздухе – 1;
— в помещениях с несущественными отличиями колебаний температуры и влажности относительно внешней среды – 2;
— в закрытых помещениях, где, благодаря естественной вентиляции, перепады температуры и влажности существенно ниже, чем с внешней стороны – 3;
— в закрытых помещениях со специально созданными и регулируемыми климатическими параметрами -4;
— в помещениях с повышенной влажностью — 5.
Трансформатор что это такое — Морской флот
Стандартный трансформатор является статическим электромагнитным устройством с двумя и более обмотками, индуктивно связанными между собой посредством магнитопровода. Его основная функция заключается в преобразовании одного значения напряжения в другое, с сохранением одной и той же частоты. Трансформатор в электрических цепях применяется в самых различных областях. Он используется для передачи электроэнергии, а также в электронных и радиотехнических схемах.
Что такое трансформатор
По своей сути, трансформатор является преобразователем электрического тока. Для изменения напряжения используется электромагнитная индукция.
Основные принципы работы данных устройств заключаются в следующем:
- Электрический ток изменяется во времени и создает магнитное поле, подверженное аналогичным изменениям.
- Измененный магнитный поток, проходящий через обмотку трансформатора, вызывает появление в ней электромагнитной индукции. Некоторые устройства с высокими или сверхвысокими частотами могут не иметь магнитопровода. В идеальном варианте не должно быть потерь электроэнергии, расходуемой на потоки рассеивания и нагрев обмоток.
Трансформаторы могут работать в различных режимах:
- Холостой ход. В данном случае вторичная цепь устройства разомкнута и ток по ней не проходит. Компенсация напряжения источника питания происходит за счет компенсации электродвижущей силы индукции в первичной обмотке.
- Режим нагрузки. Вторичная цепь находится в замкнутом состоянии. В ней появляется ток, под действием которого в магнитопроводе возникает магнитный поток. Он действует в противоположном направлении относительно магнитного потока, возникающего в первичной обмотке. Равновесие ЭДС индукции с источником питания оказывается нарушенным. В результате, ток в первичной обмотке будет увеличиваться, пока значение магнитного потока не выйдет на прежний уровень. Это основной рабочий режим для любого трансформатора.
- В режиме короткого замыкания вторичная цепь замыкается накоротко. Данное состояние позволяет определить, насколько теряется полезная мощность трансформатора при нагреве проводов. Подача небольшого переменного напряжения осуществляется на первичную обмотку. Его величина должна быть одинаковой с номинальным током устройства.
Из чего состоит трансформатор
Основой каждого трансформатора является замкнутый сердечник, выполняющий функцию магнитопровода. Для его изготовления применяется электротехническая сталь в виде листов, толщиной 0,35 – 0,5 мм. На магнитопровод наматываются изолированные медные провода.
Участки сердечника с обмотками носят название стержней, а те, которые без обмоток, называются ярмами. Обмотка, на которую поступает электроэнергия, именуется первичной. Другая обмотка, из которой выходит преобразованный ток, называется вторичной. Они обе разделены между собой путем электрической изоляции, кроме автоматических трансформаторов.
Величины каждой обмотки определенным образом соотносятся между собой. Например, отношение напряжения между концами первичной и вторичной обмотки такое же, как и соотношение количества витков в этих обмотках.
В процессе работы трансформатора электрическая энергия, поступающая из сети в первичную обмотку, преобразуется в магнитное поле. Далее, попадая во вторичную обмотку, энергия магнитного поля вновь превращается в электроэнергию с такой же частотой, но с другим значением. На практике таких показателей достичь невозможно, поскольку КПД устройства всегда меньше единицы, поскольку имеют место потери энергии при нагреве обмоток и стержней. Если трансформатору обеспечен нормальный режим работы, то в этом случае КПД может составить даже 0,98 – 0,99.
Виды трансформаторов
Современные трансформаторные устройства имеют множество разновидностей и применяются в самых различных областях.
Силовые трансформаторы
Передача электроэнергии на расстояние осуществляется с помощью силовых трансформаторов. Эти низкочастотные приборы выполняют ее прием и преобразование. Название силовых они получили из-за работы с напряжением, которое может достигать более 1000 киловольт.
В городах такие трансформаторы понижают напряжение до 0,4 кВ, превращая в 380 или 220 вольт, необходимых для нормального потребления. Эти устройства оборудуются двумя, тремя и более обмоток, что позволяет одновременно преобразовывать напряжение сразу с нескольких генераторов. Нормальный температурный баланс поддерживается с помощью трансформаторного масла, а в особо мощных приборах дополнительно установлена система активного охлаждения.
Сетевые трансформаторы
До недавнего времени практически во всех электрических приборах устанавливались сетевые однофазные трансформаторы. С помощью этих устройств, обычное напряжение сети в 220 вольт снижалось до необходимого уровня в 5, 12, 24 и 48 В.
В сетевых трансформаторах практиковалась установка сразу нескольких вторичных обмоток. Такая конструкция обеспечивала питание разных частей схемы сразу от нескольких источников питания. Например, трансформатор накаливания обязательно присутствовал в схемах с радиолампами.
В современных приборах этого типа используются Ш-образные, тороидальные или стержневые сердечники. Их основой являются пластины, выполненные из электротехнической, стали. При тороидальной форме магнитопровода трансформаторы получаются более компактными, обмотка проходит по всей поверхности, не оставляя пустых участков ярма.
Автотрансформаторы
Автотрансформаторы также относятся к низкочастотным устройствам, в которых первичная и вторичная обмотка дополняет друг друга. Между ними существует не только магнитная, но и электрическая связь. Единственная обмотка оборудована сразу несколькими выводами, что позволяет получать разные значения напряжения. Данные устройства отличаются более низкой стоимостью, поскольку провода для обмоток нужно меньше, как и стали для сердечника. В итоге общая масса прибора также снижается.
Лабораторные трансформаторы
Для выполнения специфических задач используются лабораторные трансформаторы. С его помощью выполняется плавная регулировка напряжения. Конструкция выполнена в виде тороидального трансформатора. В единственной обмотке имеется неизолированная дорожка, позволяющая подключаться к любому витку. Для контакта с дорожкой используется скользящая угольная щетка, для управления которой предусмотрена специальная поворотная ручка. Данные устройства чаще всего применяются в лабораторных условиях, чтобы выполнить наладку оборудования.
Трансформаторы тока
Многие измерительные работы проводятся с применением трансформаторов тока. Специфика работы этих устройств заключается в подключении первичной обмотки к источнику тока, а вторичной – к измерительным или защитным приборам с незначительным внутренним сопротивлением.
В состав первичной обмотки входит всего один виток в виде единственного провода. Для проведения измерений выполняется его последовательное включение в цепь переменного тока. В результате, возникает пропорция между токами первичной и вторичной обмотки, используемой только под нагрузкой. В противном случае, слишком высокое напряжения во вторичной обмотке может привести к пробою изоляции. Кроме того, ее размыкание приведет к выгоранию магнитопровода под действием наведенного некомпенсированного тока.
Конструкция прибора состоит из сердечника, материалом для которого служит кремнистая шихтованная холоднокатаная электротехническая сталь. На него наматываются изолированные обмотки в количестве одной или нескольких, выполняющие функции вторичных. В качестве первичной обмотки чаще всего используется обычная шина или провод с измеряемым током, пропущенный через отверстие в магнитопроводе. Основным параметром трансформатора тока является коэффициент трансформации.
Импульсные трансформаторы
Многие устройства, например, сварочные аппараты, сетевые блоки питания, инверторы и другие аналогичные устройства не могут обойтись без импульсных трансформаторов. Основным конструктивным элементом стандартного прибора служит ферритовый сердечник, представленный большим количеством разнообразных форм. Их главным преимуществом является способность работы на частоте 500 кГц и выше.
Поскольку данное устройство относится к высокочастотным трансформаторам, его габаритные размеры существенно снижаются с увеличением частоты. Обмотки требуют меньшего количества проводов, а высокочастотный ток в первичной цепи вырабатывается за счет применения полевых или биполярных транзисторов.
Маркировка трансформаторов
Очень многие пользователи не всегда обращают внимания на маркировку трансформаторов, а некоторые просто не умеют правильно ее расшифровывать. Основные конструкции маркируются как ТМ, ТМЗ, ТСЗ, ТСЗС, ТРДНС, ТМН, ТДН, ТДНС и так далее.
Буквенные обозначения соответствуют следующим характеристикам:
- Т – трехфазное устройство.
- Р – разделение обмотки низкого напряжения на две части.
- С – сухой трансформатор.
- М – наличие масляного охлаждения с естественной циркуляцией.
- Ц – принудительная циркуляция воды и масла. Вода циркулирует по трубам, а масло течет между ними в виде ненаправленного потока.
- МЦ – циркуляция воздуха – естественная, а масло циркулирует принудительно, ненаправленным потоком.
- Д – движение масла принудительное, а воздуха – естественное.
- ДЦ – принудительное движение воздуха и масла.
- Н – регулировка напряжения осуществляется под нагрузкой.
- С – если проставлена в конце маркировки, значит трансформатор используется для собственных нужд электростанции.
- З – трансформатор без расширителя, герметичный, с азотной подушкой.
Трансформаторы с тремя обмотками маркируются как ТМТН, ТДТН, ТДЦТН, где на три обмотки указывает вторая буква Т. Наличие буквы А указывает на автотрансформатор, О – однофазное устройство, Г – грозоупорная конструкция.
Кроме того, в маркировке указывается класс напряжения, применяемый в работе, режим и условия функционирования, а также точная конструкция устройства. Номинальная мощность и класс напряжения проставляется после буквенной маркировки через дефис. Обозначение имеет вид дроби, где числитель является номинальной мощностью в киловольт-амперах, а знаменатель соответствует классу напряжения в киловольтах.
Применение трансформатора
Недостаточно только выработать электрическую энергию. Не меньшую сложность представляет ее передача на значительные расстояния и дальнейшее распределение среди потребителей. И здесь не обойтись без специальных аппаратов – трансформаторов, выполняющих повышение или понижение напряжения.
Каждый трансформатор в электрических цепях может применяться на открытом воздухе или внутри помещений. Эти устройства дали возможность передачи электроэнергии с минимальными потерями в проводах, за счет уменьшенной площади сечения.
Высокое напряжение, поступающее со станции, не может напрямую поставляться потребителям. Поэтому на входе производится установка понижающих трансформаторов. Они доводят ток до нужного значения, при котором нормально функционирует оборудование и бытовая техника.
Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2 , где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1,U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.
ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.
ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
ОБЛАСТЬ ПРИМЕНЕНИЯ
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.
В зависимости от назначения трансформаторы делят на:
Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.
Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.
Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.
–>
© 2012-2019 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.
Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.
Устройство трансформатораКонструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.
1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода
Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.
Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.
Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.
Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.
Вид уличного силового трансформатораКонструкция силового трансформатора подобна обычному бытовому трансформатору.
ВидыСуществует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.
В зависимости от различных факторов силовые трансформаторы делятся на виды:
- По выполняемой задаче . Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
- По числу фаз . Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
- По количеству обмоток . Двухобмоточные и трехобмоточные.
- По месту монтажа . Наружные и внутренние.
Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.
Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.
Принцип действияТрансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.
С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.
Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.
В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.
Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.
Сфера использованияЭнергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.
Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:
- В сварочном оборудовании.
- Для электротермических устройств.
- В схемах электроизмерительных устройств и приборов.
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
- Номинальное значение напряжения и мощности.
- Наибольший ток обмоток.
- Габаритные размеры.
- Вес устройства.
Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.
Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:
I = S х √3U, где S и U – это мощность по номиналу, и напряжение.
Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.
Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.
Установка и эксплуатацияМногие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.
Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.
Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.
Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.
После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.
Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.
Электрический трансформатор
Трансформатор – это устройство, главным назначением которого является преобразование электрического тока. Он изменяет напряжение тока посредством электромагнитной индукции.
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создает изменяющееся во времени магнитное поле.
- Изменение магнитного потока, проходящего через обмотку, электромагнитную индукцию в этой обмотке. В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать. Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток.
В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии.
Режимы работы трансформатора
1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт.
2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.
3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.
4. Режим холостого хода. Когда вторичные обмотки ни к чему не подключены, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик. Для трансформатора с сердечником из магнито-мягкого материала ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода.
5. Режим короткого замыкания. В режиме короткого замыкания на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора.
6. Режим с нагрузкой. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Виды электрических трансформаторов
Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов, подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Трансформатор тока — трансформатор, питающийся от источника тока.
Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического. Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.
Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем. Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью. Сдвоенный дроссель — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания.
Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов. Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.
Применение трансформаторов в электросетях
Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Трансформаторы понижающие электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью.
Применение трансформаторов в источниках электропитания
Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. В схемах питания современных радиотехнических и электронных устройств широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы.
Система управления с помощью широтно-импульсной модуляции позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение. Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в тех случаях, когда надо обеспечить минимальный уровень высокочастотных помех, например при высококачественном звуковоспроизведении.
Эксплуатация электрических трансформаторов
Срок службы трансформатора может быть разделен на две категории: Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего электрического трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.
Как это работает Jameco Electronics
Автор: Меган ТунгТрансформаторы — это электрические устройства, состоящие из двух или более катушек провода, которые используются для передачи электрической энергии посредством магнитного поля. Трансформаторы — это очень простые статические электромагнитные пассивные электрические устройства, которые работают по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое. Две электрические цепи связаны посредством взаимной индукции, которая представляет собой процесс, посредством которого катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости.Электрическая энергия более эффективно передается от одной катушки к другой за счет наматывания катушек вокруг сердечника. Уровни напряжения и тока увеличиваются или уменьшаются без изменения частоты. Более высокие напряжения и токи передачи переменного тока могут быть снижены до гораздо более низкого, более безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в домах и на рабочих местах.
Трансформатор напряжения
Однофазный трансформатор напряжения состоит из двух электрических катушек с проволокой, первичной обмотки и вторичной обмотки.Первичная обмотка потребляет энергию, а вторичная обмотка выдает энергию. Две катушки не связаны электрически, а связаны магнитно. Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток во второй катушке будет практически такого же размера, как и в первой катушке. Понижающий трансформатор — это когда первая катушка (первичная обмотка) имеет больше витков, чем вторая катушка (вторичная обмотка), поэтому вторичное напряжение меньше первичного напряжения.Повышающий трансформатор — это когда первая катушка имеет меньше витков, чем вторая катушка, в результате чего вторичное напряжение выше первичного.
Трансформатор с железным сердечником
Как упоминалось ранее, катушки намотаны вокруг сердечника. Сердечник может быть изготовлен из нескольких различных материалов. Во-первых, это трансформатор с железным сердечником, в котором в качестве материала сердечника используются пластины из мягкого железа. Железо обладает превосходными магнитными свойствами, что приводит к высокой магнитной связи трансформатора с железным сердечником, поэтому эффективность также высока.В трансформаторе с ферритовым сердечником используется ферритовый сердечник, который имеет высокую магнитную проницаемость и предлагает очень низкие потери в высокочастотных приложениях. Часто трансформаторы с ферритовым сердечником используются в импульсных источниках питания или в приложениях, связанных с радиочастотами. В трансформаторе с тороидальным сердечником используется материал сердечника тороидальной формы (кольцевой или кольцевой), такой как железный сердечник или ферритовый сердечник. Форма кольца обеспечивает очень низкую индуктивность рассеяния. В трансформаторе с воздушным сердечником потокосцепление полностью выполнено с использованием воздуха; однако они создают низкую взаимную индуктивность по сравнению с трансформатором с физическим сердечником.
Вам также может быть интересно прочитать: Что такое переменный ток?
Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет , Санта-Барбара (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.
Фото: Учебники по электронике
Что такое трансформатор?
Что такое трансформатор?Трансформатор — это электрическое устройство, преобразующее переменный ток из одного напряжения в другое.он может быть разработан для «повышения» или «понижения» напряжения и работает по принципу магнитной индукции. Трансформатор не имеет движущихся частей и представляет собой полностью статичное твердотельное устройство, обеспечивающее при нормальных условиях эксплуатации долгий и безотказный срок службы. Трансформатор состоит из двух или более катушек изолированного провода, намотанного на многослойный стальной сердечник. Когда напряжение подается на одну катушку (называемую первичной), оно намагничивает железный сердечник. В результате во вторичной или выходной катушке индуцируется напряжение.Изменение напряжения (отношения напряжений) между первичной и вторичной обмотками зависит от соотношения витков двух катушек.
Что делает трансформатор?
Принцип работыТрансформатор работает по принципу магнитной индукции. Каждый трансформатор состоит из двух или более катушек изолированного проводника (проволоки), намотанного на многослойный стальной сердечник. Когда напряжение подается на ПЕРВИЧНУЮ (входную) катушку, она намагничивает стальной сердечник, который, в свою очередь, индуцирует напряжение на ВТОРИЧНОЙ (выходной) катушке.Напряжение, индуцированное от первичной к вторичной катушкам, прямо пропорционально соотношению витков между двумя катушками. (См. Рис.1) Например, если на входе трансформатора или на входе первичной обмотки в два раза больше витков провода, чем во вторичной обмотке, то соотношение будет 2: 1. Следовательно, если вы приложите 480 вольт к первичной обмотке, на вторичной будет индуцировано 240 вольт. Это пример двухобмоточного «понижающего» трансформатора. (См. Рис. 2). Если напряжение должно быть «повышено» или увеличено, тот же трансформатор можно развернуть и подключить так, чтобы на входной стороне было 240 вольт, а на выходе — 480 вольт.(См. Рис. 3) Стандартные трансформаторы мощностью 3 кВА и более могут использоваться как для повышающего, так и для понижающего режима. Трансформаторы номиналом 2 кВА и ниже имеют компенсированные обмотки и не должны использоваться в системах с обратным питанием. (Примечание: необходимо учитывать некоторые соображения по проектированию системы.) |
Трансформатор | Инжиниринг | Fandom
- Эта статья про электрические и электронные трансформаторы. Для других значений см. Трансформаторы
Трансформатор — это электрическое устройство, которое передает энергию от одной электрической цепи к другой посредством магнитной связи без использования каких-либо движущихся частей.Он часто используется для преобразования высокого и низкого напряжения и для преобразования импеданса. Трансформатор был важным элементом в развитии высоковольтной передачи электроэнергии и центральных генерирующих станций.
Флюсовая муфта [править | править источник]
Простой однофазный трансформатор состоит из двух электрических проводников, называемых первичной обмоткой и вторичной обмоткой . На первичную обмотку подается переменный (переменный или непрерывный импульсный) электрический ток, который создает переменное магнитное поле вокруг проводника.В соответствии с принципом взаимной индуктивности вторичная обмотка , помещенная в это изменяющееся магнитное поле, будет развивать электродвижущую силу или ЭДС. Если концы вторичной обмотки соединены вместе, чтобы сформировать электрическую цепь, эта ЭДС вызовет ток во вторичной обмотке. Таким образом, часть электроэнергии, подаваемой в первичную обмотку, поступает во вторичную. В практических трансформаторах первичный и вторичный проводники представляют собой катушки с проводом, поскольку катушка создает более плотное магнитное поле (более высокий магнитный поток), чем прямой проводник.
Трансформаторы сами по себе не могут:
- Преобразование постоянного тока в переменный или наоборот
- Изменение напряжения или тока постоянного тока
- Измените частоту сети переменного тока.
Однако трансформаторы — это компоненты систем, которые выполняют все эти функции.
Электрические законы [править | править источник]
Примите во внимание следующие два закона:
- Согласно закону сохранения энергии, мощность, отдаваемая трансформатором, не может превышать мощность, подаваемую в него.
- Мощность, рассеиваемая в нагрузке в любой момент, равна произведению напряжения на ней и (синфазного) тока, проходящего через нее (см. Также закон Ома).
Из двух вышеупомянутых законов следует, что трансформатор не является усилителем. Если трансформатор используется для переключения мощности с одного напряжения на другое, величины токов в двух обмотках также должны быть разными, обратно пропорциональными напряжениям. Если бы напряжение было понижено трансформатором, вторичный ток, доступный для нагрузки, был бы больше.Например, предположим, что на резистивную нагрузку подается мощность 50 Вт от трансформатора с соотношением витков 25: 2.
- P = E · I (мощность = электродвижущая сила · ток)
50 Вт = 2 В · 25 А в первичной цепи
- Теперь с заменой трансформатора:
50 Вт = 25 В · 2 А во вторичной цепи.
Сильноточные обмотки низкого напряжения имеют меньше витков (обычно) более толстого провода. Обмотки высокого напряжения и низкого тока содержат больше витков (обычно) более тонкого провода.
Электродвижущая сила (ЭДС), развиваемая во вторичной обмотке, пропорциональна отношению числа витков вторичной обмотки к числу витков первичной обмотки. Пренебрегая всем потоком утечки, идеальный трансформатор следует уравнению:
Где — напряжение в первичной катушке, — это напряжение во вторичной катушке, — это количество витков провода на первичной катушке, и — это количество витков провода на вторичной катушке.Это приводит к наиболее распространенному использованию трансформатора: для преобразования мощности с одним напряжением в мощность с другим напряжением.
Пренебрегая потоком рассеяния, связь между напряжением, числом витков, интенсивностью магнитного потока и площадью сердечника определяется универсальным уравнением ЭДС:
Где — синусоидальное среднеквадратическое значение (RMS) напряжения обмотки, — частота в герцах, — количество витков проволока, , — площадь сердечника (квадратные единицы) и , — плотность магнитного потока в сетках на квадратную единицу.Значение 4,44 собирает ряд констант, требуемых системой единиц.
При нормальной работе обмотка трансформатора никогда не должна получать питание от источника постоянного постоянного напряжения, так как это приведет к протеканию большого постоянного тока. В такой ситуации в идеальном трансформаторе с разомкнутой вторичной обмоткой ток будет неограниченно возрастать как линейная функция времени. На практике последовательное сопротивление обмотки ограничивает протекающий ток, пока трансформатор не достигнет теплового равновесия или не будет разрушен.Постоянный ток иногда применяется к мощным силовым трансформаторам, чтобы «выпарить» воду перед добавлением охлаждающего масла и началом нормальной работы.
Изобретением трансформатора приписывают:
- Майкл Фарадей, который изобрел «индукционное кольцо» 29 августа 1831 года. Это был первый трансформатор, хотя Фарадей использовал его только для демонстрации принципа электромагнитной индукции и не предвидел, какое применение оно в конечном итоге будет использовано.
- Люсьен Голар и Джон Диксон Гиббс, впервые представившие устройство под названием «вторичный генератор» в Лондоне в 1881 году, а затем продали идею американской компании Westinghouse. Возможно, это был первый практический силовой трансформатор, но не первый трансформатор любого типа. Они также выставили изобретение в Турине в 1884 году, где оно было применено для системы электрического освещения. В их ранних устройствах использовался линейный железный сердечник, от которого позже отказались в пользу более эффективного круглого сердечника.
- Уильям Стэнли, инженер Westinghouse, который построил первое практическое устройство в 1885 году после того, как Джордж Вестингауз купил патенты Голларда и Гиббса. Ядро было сделано из соединенных друг с другом железных пластин Е-образной формы. Впервые эта конструкция была использована в коммерческих целях в 1886 году.
- Венгерские инженеры Отто Блати, Микса Дери и Кароли Зиперновски из компании Ganz в Будапеште в 1885 году создали эффективную модель «ZBD», основанную на конструкции Голарда и Гиббса.
- Никола Тесла в 1891 году изобрел катушку Тесла, которая представляет собой высоковольтный резонансный трансформатор с воздушным сердечником и двойной настройкой для генерации очень высоких напряжений на высокой частоте.
Крупный план регулируемого городского понижающего трансформатора (один из трех, установленных на той же бетонной опоре)
.
Классификация [править | править источник]
Трансформаторыбывают разных размеров: от соединительного трансформатора размером с миниатюру, скрытого внутри сценического микрофона, до гигаваттных устройств, используемых для соединения больших частей национальных электрических сетей, все они работают по одним и тем же основным принципам и имеют много общего в своих частях.
Грубая классификация трансформаторов по мощности, передаваемой в цепи, в ваттах (или, точнее, ВА (вольт-амперы)):
- До 1 Вт: сигнальные трансформаторы, межкаскадная связь
- 1 — 1000 Вт: трансформаторы малой мощности, трансформаторы накаливания, трансформаторы аудиовыхода
- 1 киловатт — 1 мегаватт: силовые трансформаторы; более крупные агрегаты в этом диапазоне могут быть заполнены маслом
- 1 мегаватт и более: большие силовые трансформаторы, используемые для подстанций, крупных потребителей электроэнергии, а также для электростанций и передачи.
Трансформаторы можно разделить на различные типы в зависимости от соотношения количества витков в катушках, а также от того, изолированы ли первичная и вторичная обмотки:
- Повышение
- вторичная обмотка имеет больше витков, чем первичная
- Понижающий
- вторичная обмотка имеет меньше витков, чем первичная
- Изолирующий
- предназначен для преобразования одного напряжения в такое же напряжение.Две катушки имеют примерно равное количество витков, хотя часто есть небольшая разница в количестве витков, чтобы компенсировать потери (в противном случае выходное напряжение было бы немного меньше, а не таким же, как входное напряжение ).
- Переменная
- первичная и вторичная обмотки имеют регулируемое количество витков, которое можно выбрать без повторного подключения трансформатора.
Во всех случаях первичная обмотка или вторичная обмотка или обе могут иметь отводы, позволяющие выбрать одно из нескольких различных соотношений первичного и вторичного витков.
убытков [править | править источник]
Идеальный трансформатор не имел бы потерь и, следовательно, имел бы 100% КПД. Однако катушки настоящего трансформатора имеют сопротивление. При моделировании реального трансформатора сопротивление можно рассматривать как существующее последовательно с обмоткой идеального трансформатора.
Мощные силовые трансформаторы часто имеют КПД более 98% с точки зрения энергии, подводимой к первичной обмотке трансформатора и связанной с вторичной. Оставшиеся 2% (или меньше) входящей энергии теряются на:
- Ток, протекающий по обмоткам, вызывает резистивный нагрев проводников.Это называется потерями в меди (чтобы отличить их от остальных потерь ниже, которые в основном относятся к магнитному сердечнику и известны как потери в сердечнике , также называемые потерями в стали )
- Наведенные токи, циркулирующие в сердечнике, вызывающие резистивный нагрев сердечника.
- Не все магнитное поле, создаваемое первичной обмоткой, перехватывается вторичной.Часть потока рассеяния может индуцировать вихревые токи в соседних проводящих объектах, таких как опорная конструкция трансформатора, и преобразовываться в тепло.
- Каждый раз, когда магнитное поле меняется на противоположное, небольшое количество энергии теряется на гистерезис в магнитопроводе. Различные материалы сердечника будут иметь разные уровни гистерезисных потерь.
- Переменное магнитное поле вызывает колебания электромагнитных сил между витками провода, сердечником и любыми ближайшими металлическими конструкциями, вызывая вибрации и шум, которые потребляют энергию.
- Поток в сердечнике заставляет его физически расширяться и немного сжиматься под действием переменного магнитного поля, эффект, известный как магнитострикция. Это, в свою очередь, вызывает потери из-за нагрева от трения в чувствительных ферромагнитных сердечниках. Знакомый гул или жужжащий шум, слышимый возле трансформаторов, является результатом рассеянных полей, вызывающих вибрацию компонентов резервуара, а также вызван магнитострикционной вибрацией самого сердечника.
- Мощные силовые трансформаторы могут быть оснащены охлаждающими вентиляторами, масляными насосами или теплообменниками с водяным охлаждением, предназначенными для отвода тепла, вызванного потерями в меди и сердечником.Мощность, используемая для работы системы охлаждения, обычно считается частью потерь трансформатора. Небольшие трансформаторы, такие как вставные «стенные бородавки» / «силовые блоки», используемые для питания небольшой бытовой электроники, часто имеют высокие потери и могут иметь КПД менее 85%.
Работа на высоких частотах [править | править источник]
Уравнение ЭДС универсального трансформатора показывает, что при более высокой частоте магнитная индукция сердечника будет ниже для данного напряжения. Это означает, что сердечник может иметь меньшую площадь поперечного сечения и, следовательно, быть более компактным физически, не достигая насыщения.По этой причине производители самолетов и военные используют расходные материалы на 400 Гц. Их меньше заботит эффективность, которая ниже на высоких частотах (в основном из-за повышенных гистерезисных потерь), но больше заботит снижение веса. Точно так же обратноходовые трансформаторы, которые подают высокое напряжение на электронно-лучевые трубки, работают на частоте горизонтального генератора, во много раз превышающей 50 или 60 Гц, что позволяет использовать более компактный компонент.
Трансформатор обычно имеет:
- две или более изолированные обмотки для протекания тока
- сердечник, в котором взаимное магнитное поле связывает обмотки.
В трансформаторах, предназначенных для работы на низких частотах, обмотки обычно формируются вокруг сердечника из железа или стали . Это помогает ограничить магнитное поле внутри трансформатора и повысить его эффективность, хотя наличие сердечника вызывает потери энергии. Трансформаторы, предназначенные для работы на высоких частотах, могут использовать другие материалы с меньшими потерями или могут использовать воздушный сердечник.
Силовые трансформаторы далее классифицируются по точному расположению сердечника и обмоток на «тип оболочки», «тип сердечника», а также по количеству «ветвей», по которым проходит магнитный поток (3, 4 или 5 для трехфазного трансформатор).Различия в характеристиках каждого из этих типов, хотя и представляют постоянный интерес для специалистов, возможно, более подробны, чем уместно для общей энциклопедии.
ядер [править | править источник]
Стальные сердечники [править | править источник]
Трансформатор с ламинированным сердечником, показывающий край ламинирования наверху блока
Трансформаторы часто имеют сердечники из кремнистой стали для направления магнитного поля. Это сохраняет поле более сконцентрированным вокруг проводов, что делает трансформатор более компактным.Сердечник силового трансформатора должен быть спроектирован так, чтобы он не достиг магнитного насыщения. Иногда на магнитном пути помещают тщательно продуманные зазоры, чтобы предотвратить насыщение. Практичные сердечники трансформаторов всегда изготавливаются из множества штампованных деталей из тонкой стали. Высокое сопротивление между слоями снижает вихревые токи в сердечниках, которые тратят энергию на нагрев сердечника. Они распространены в цепях питания и аудио. Типичный многослойный сердечник изготавливается из деталей E-образной и I-образной формы, что и привело к названию «трансформатор EI».Одна проблема со стальным сердечником заключается в том, что из-за магнитного гистерезиса материала он может сохранять статическое магнитное поле при отключении питания. Когда затем снова подается питание, остаточное поле может вызвать временное насыщение сердечника. Это может быть серьезной проблемой для трансформаторов с выходной мощностью более нескольких сотен ватт, поскольку более высокий пусковой ток может вызвать перегорание сетевых предохранителей, если не будет добавлена схема ограничения тока. Более того, пусковые токи могут физически деформировать и повреждать первичные обмотки больших силовых трансформаторов.
Solid cores [править | править источник]
В более высокочастотных цепях, таких как импульсные источники питания, иногда используются сердечники из порошкового железа. Эти материалы сочетают в себе высокую магнитную проницаемость с высоким удельным сопротивлением материала. На еще более высоких частотах (обычно радиочастоты) распространены другие типы сердечников, изготовленные из непроводящих магнитных материалов, такие как различные керамические материалы, называемые ферритами . Некоторые трансформаторы в радиочастотных цепях имеют регулируемые сердечники, которые позволяют настраивать схему связи.
Воздушные сердечники [править | править источник]
В высокочастотных трансформаторах также могут использоваться воздушные сердечники. Это устраняет потери из-за гистерезиса в материале сердечника. Такие трансформаторы поддерживают высокую эффективность связи (низкие потери поля рассеяния) за счет перекрытия первичной и вторичной обмоток.
Тороидальные сердечники [править | править источник]
Тороидальные трансформаторы построены вокруг кольцевого сердечника, который сделан из длинной полосы кремнистой стали или пермаллоя, намотанной в катушку, или из феррита, в зависимости от частоты.Такая конструкция гарантирует, что все границы зерен направлены в оптимальном направлении, что делает трансформатор более эффективным за счет уменьшения сопротивления сердечника и устраняет воздушные зазоры, присущие конструкции сердечника ЭУ. Поперечное сечение кольца обычно квадратное или прямоугольное, но доступны и более дорогие сердечники с круглым поперечным сечением. Первичная и вторичная обмотки намотаны концентрически, чтобы покрыть всю поверхность сердечника. Это минимизирует необходимую длину провода, а также обеспечивает экранирование, чтобы магнитное поле сердечника не создавало электромагнитных помех.
Тороидальные сердечники для использования на частотах до нескольких десятков килогерц также могут быть изготовлены из ферритового материала для уменьшения потерь. Такие трансформаторы используются в импульсных источниках питания.
Тороидальные трансформаторы более эффективны (около 95%), чем более дешевые ламинированные трансформаторы EI. Другие преимущества по сравнению с типами EI включают меньший размер (около половины), меньший вес (около половины), меньший механический гул (что делает их лучше в усилителях звука), более низкое внешнее магнитное поле (около одной десятой), низкие потери без нагрузки. (что делает их более эффективными в резервных цепях), монтаж на одном болте и больший выбор форм.Последний пункт означает, что для заданной выходной мощности можно выбрать либо широкий плоский тороид, либо высокий узкий тороид с одинаковыми электрическими свойствами, в зависимости от доступного пространства. Главный недостаток — более высокая стоимость.
При установке тороидального трансформатора важно избегать непреднамеренного короткого замыкания через сердечник (например, неосторожно вставив стальной крепежный болт посередине и прикрепив его к металлоконструкциям с обоих концов). Это вызовет протекание большого тока через болт, преобразование всей входной мощности сети в тепло и перегорание входного предохранителя.Чтобы этого не произошло, только один конец монтажного болта должен быть прикреплен к окружающим металлоконструкциям.
Обмотки [править | править источник]
Материал обмотки зависит от области применения. Трансформаторы малой мощности и сигнальные трансформаторы намотаны сплошным изолированным медным проводом, часто покрытым эмалью. Силовые трансформаторы большего размера могут быть намотаны проволочными, медными или алюминиевыми прямоугольными проводниками или ленточными проводниками для очень больших токов. Высокочастотные трансформаторы, работающие на частотах от десятков до сотен килогерц, будут иметь обмотки из литцовой проволоки, чтобы минимизировать потери на скин-эффект в проводниках.
Обмотки на первичной и вторичной обмотках силового трансформатора могут иметь отводы, позволяющие регулировать соотношение напряжений; ответвления могут быть подключены к автоматическому распределительному устройству РПН для регулирования напряжения в распределительных цепях.
Изоляция [править | править источник]
Материал проводника должен иметь изоляцию, чтобы ток проходил по сердечнику, а не в результате межвиткового короткого замыкания.
В силовых трансформаторах разница напряжений между частями первичной и вторичной обмоток может быть довольно большой.Слои изоляции вставляются между слоями обмоток для предотвращения образования дуги, а трансформатор погружается в трансформаторное масло, которое обеспечивает дополнительную изоляцию и действует как охлаждающая среда.
Экранирование [править | править источник]
Хотя идеальный трансформатор работает исключительно на магнитном поле, непосредственная близость первичной и вторичной обмоток может создать взаимную емкость между обмотками. Если трансформаторы предназначены для обеспечения высокой гальванической развязки между первичной и вторичной цепями, между обмотками может быть помещен электростатический экран, чтобы минимизировать этот эффект.
Трансформаторы также могут быть закрыты магнитными экранами, электростатическими экранами или обоими способами, чтобы предотвратить влияние внешних помех на работу трансформатора или предотвратить влияние трансформатора на работу других устройств (например, ЭЛТ в непосредственной близости от трансформатора). . Трансформаторы также могут быть закрыты по соображениям безопасности, как для предотвращения контакта с трансформатором во время нормальной работы, так и для сдерживания возможных пожаров, возникающих в результате ненормальной работы.Кожух также может быть частью системы охлаждения трансформатора.
Охлаждающая жидкость [править | править источник]
Небольшие трансформаторы мощностью до нескольких киловатт обычно должным образом охлаждаются за счет циркуляции воздуха. Более крупные трансформаторы «сухого» типа могут иметь охлаждающие вентиляторы.
Трансформаторы большой мощности или высокого напряжения залиты трансформаторным маслом — минеральным маслом высокой степени очистки, устойчивым при высоких температурах. В больших трансформаторах, используемых в помещении, должна использоваться негорючая жидкость.Раньше использовался полихлорированный дифенил (ПХБ), поскольку он не представлял опасности возгорания в силовых трансформаторах внутри помещений и очень стабилен. Из-за стабильности ПХБ и его накопления в окружающей среде это больше не допускается в новом оборудовании. Сегодня можно использовать нетоксичные, стабильные масла на основе силикона или фторированные углеводороды, где стоимость огнестойкой жидкости компенсирует дополнительные затраты на строительство хранилища трансформатора. Могут использоваться и другие менее воспламеняющиеся жидкости, такие как масло канолы, но все огнестойкие жидкости имеют некоторые недостатки в производительности, стоимости или токсичности по сравнению с минеральным маслом.
Масло охлаждает трансформатор и обеспечивает часть электрической изоляции между внутренними частями, находящимися под напряжением. Он должен быть стабильным при высоких температурах, чтобы небольшое короткое замыкание или дуга не привели к пробою или возгоранию. Для улучшения охлаждения силовых трансформаторов большой мощности бак, заполненный маслом, может иметь радиаторы, через которые масло циркулирует за счет естественной конвекции. Очень большие или мощные трансформаторы (мощностью в миллионы ватт) могут иметь охлаждающие вентиляторы, масляные насосы и даже масляные теплообменники.Большие и высоковольтные трансформаторы подвергаются длительным процессам сушки с использованием электрического самонагрева, применения вакуума или того и другого, чтобы гарантировать полное отсутствие водяного пара в трансформаторе перед подачей охлаждающего масла. Это помогает предотвратить электрический пробой под нагрузкой.
Масляные трансформаторы обычно оснащаются реле Бухгольца — предохранительными устройствами, обнаруживающими скопление газа внутри трансформатора (побочный эффект электрической дуги внутри обмоток) и отключающими трансформатор.
Экспериментальные силовые трансформаторы в диапазоне 2 МВА были построены со сверхпроводящими обмотками, что исключает потери в меди, но не потери в стали сердечника. Они охлаждаются жидким азотом или гелием.
Терминалы[править | править источник]
Очень маленькие трансформаторы будут иметь провода, подключенные непосредственно к концам катушек и выведенные к основанию блока для подключения цепей. Трансформаторы большего размера могут иметь тяжелые болтовые клеммы, шины или высоковольтные изоляционные вводы из полимеров или фарфора.Большой ввод может иметь сложную конструкцию, поскольку он должен обеспечивать как электрическую изоляцию, так и содержать масло в баке трансформатора.
Автотрансформаторы [править | править источник]
Регулируемый автотрансформатор с подключением вторичной обмотки со скользящей щеткой и тороидальным сердечником
Автотрансформатор имеет только одну обмотку, которая в некоторой точке обмотки отводится. Переменный ток или импульсный постоянный ток подается на часть обмотки, а более высокое (или более низкое) напряжение создается на другой части той же обмотки.Автотрансформаторы используются для компенсации падения напряжения в распределительной системе или для согласования двух напряжений передачи, например 115 кВ и 138 кВ. Для соотношений напряжений, не превышающих примерно 3: 1, автотрансформатор дешевле, легче, меньше и эффективнее, чем двухобмоточный трансформатор аналогичного номинала.
Регулируемые автотрансформаторы [редактировать | править источник]
Variac — торговая марка General Radio (середина 20-го века) для переменного автотрансформатора, предназначенного для удобного изменения выходного напряжения для получения постоянного входного переменного напряжения.Этот термин часто используется для описания аналогичных автотрансформаторов переменного тока, изготовленных другими производителями. Для обеспечения очень малых шагов регулировки вторичное соединение выполняется через щетку, которая скользит по катушкам обмотки. Регулируемый автотрансформатор — это эффективный и бесшумный метод регулировки напряжения ламп накаливания. В то время как легкие и компактные полупроводниковые диммеры заменили вариаторы во многих приложениях, таких как театральное освещение, регулируемые автотрансформаторы все еще используются, когда требуется неискаженная синусоидальная волна переменного напряжения.
Полифазные трансформаторы [править | править источник]
Соединение обмоток звезда и треугольник
Для трехфазного питания можно использовать три отдельных однофазных трансформатора или все три фазы можно подключить к одному многофазному трансформатору. Три первичные обмотки соединены вместе, а три вторичные обмотки соединены вместе. Наиболее распространены соединения Y-Δ, Δ-Y, Δ-Δ и Y-Y. Если обмотка подключена к земле (заземлена), точка заземления обычно является центральной точкой Y-образной обмотки.Существует множество возможных конфигураций, которые могут включать больше или меньше шести обмоток и различных соединений отводов.
Резонансные трансформаторы [править | править источник]
Резонансный трансформатор — это трансформатор, который работает на резонансной частоте одной или нескольких катушек. Резонансная катушка, обычно вторичная, действует как индуктор и последовательно соединена с конденсатором. Если первичная катушка приводится в действие периодическим источником переменного тока, например прямоугольной или пилообразной волной, каждый импульс тока способствует созданию колебаний во вторичной катушке.Из-за резонанса во вторичной обмотке может развиваться очень высокое напряжение, пока оно не будет ограничено каким-либо процессом, например электрическим пробоем. Поэтому эти устройства используются для генерации высоких переменных напряжений. Ток, доступный от катушки этого типа, может быть намного больше, чем ток от электростатических машин, таких как генератор Ван де Граафа и машина Вимшерста. Они также работают при более высокой рабочей температуре, чем стандартные агрегаты.
Примеры: —
Другие применения резонансных трансформаторов — это связь между каскадами супергетеродинного приемника, где большая мера избирательности приемника обеспечивается настроенными трансформаторами усилителей промежуточной частоты.
Трансформатор регулирования напряжения использует резонансную обмотку и позволяет части сердечника переходить в насыщение в каждом цикле переменного тока. Этот эффект стабилизирует выходной сигнал регулирующего трансформатора, который может использоваться для оборудования, чувствительного к колебаниям напряжения питания. Трансформаторы насыщения обеспечивают простой надежный метод стабилизации источника питания переменного тока. Однако из-за потерь на гистерезис, сопровождающих этот тип работы, КПД низок.
Измерительные трансформаторы [править | править источник]
Трансформаторы тока [править | править источник]
Трансформаторы тока, используемые как часть измерительного оборудования для трехфазного электроснабжения на 400 ампер.
Трансформатор тока предназначен для подачи тока во вторичной обмотке, который точно пропорционален току, протекающему в первичной обмотке.
Трансформаторы тока обычно используются в счетчиках электроэнергии для облегчения измерения больших токов, которые было бы трудно измерить более прямым способом.
Необходимо следить за тем, чтобы вторичная обмотка трансформатора тока не была отсоединена от нагрузки, пока в первичной обмотке течет ток, поскольку в этом случае на вторичной обмотке будет создаваться очень высокое напряжение.
Трансформаторы тока часто имеют один виток первичной обмотки либо в виде изолированного кабеля, проходящего через тороидальный сердечник, либо в виде шины, к которой подсоединяются проводники цепи.
Трансформаторы напряжения [править | править источник]
Трансформаторы напряжения (также известные как трансформаторы напряжения) используются в электроэнергетике для точного измерения подаваемого напряжения. Они предназначены для предоставления незначительной нагрузки по отношению к измеряемому напряжению.
Импульсные трансформаторы [править | править источник]
Импульсный трансформатор — это трансформатор, оптимизированный для передачи прямоугольных электрических импульсов (то есть импульсов с быстрым нарастанием и спадом и постоянной амплитудой).Небольшие версии, называемые сигналом Типы используются в цифровых логических и телекоммуникационных схемах, часто для согласования логических драйверов с линиями передачи. Версии power среднего размера используются в схемах управления питанием, таких как контроллеры вспышек камеры. Версии power большей мощности используются в отрасли распределения электроэнергии для сопряжения низковольтной схемы управления с высоковольтными затворами силовых полупроводников, таких как триаковые транзисторы, IGBT, тиристоры и полевые МОП-транзисторы.Специальные высоковольтные импульсные трансформаторы также используются для генерации импульсов высокой мощности для радаров, ускорителей частиц или других импульсных источников питания.
Чтобы минимизировать искажение формы импульса, импульсный трансформатор должен иметь низкие значения индуктивности рассеяния и распределенной емкости, а также высокую индуктивность холостого хода. В импульсных трансформаторах силового типа низкая емкость связи (между первичной и вторичной обмотками) важна для защиты схемы на первичной стороне от мощных переходных процессов, создаваемых нагрузкой.По той же причине требуется высокое сопротивление изоляции и высокое напряжение пробоя. Хорошая переходная характеристика необходима для сохранения прямоугольной формы импульса на вторичной обмотке, потому что импульс с медленными фронтами вызовет коммутационные потери в силовых полупроводниках.
Произведение пикового импульсного напряжения и длительности импульса (или, точнее, интеграл напряжение-время) часто используется для характеристики импульсных трансформаторов. Вообще говоря, чем больше размер этого продукта, тем больше и дороже трансформатор.
ТрансформаторыRF [править | править источник]
Для радиочастотного использования трансформаторы иногда изготавливают из конфигураций линии передачи, намотанной на ферритовые сердечники. Этот тип трансформатора дает чрезвычайно широкую полосу пропускания. Феррит резко увеличивает индуктивность, одновременно снижая ее добротность. Обмотки иногда бифилярны, а иногда сделаны из коаксиального кабеля. Только ограниченное количество соотношений (например, 1: 9,1: 4,1: 2) может быть достигнуто с помощью этой техники. Сердечники таких трансформаторов помогают работать на нижнем конце диапазона частот.Этот тип трансформатора часто используется в качестве балансира для согласования импеданса для преобразования симметричного сопротивления 300 Ом в несимметричное на 75 Ом в FM-приемниках.
- Передача электроэнергии на большие расстояния. Простота, надежность и экономичность преобразования напряжений с помощью стационарных трансформаторов были основным фактором при выборе передачи энергии переменного тока (см. «Война токов»).
- Высоковольтные системы электропередачи постоянного тока HVDC
- Большие силовые трансформаторы специальной конструкции используются в электродуговых печах в сталеплавильном производстве.
- Вращающиеся трансформаторы сконструированы таким образом, что одна обмотка вращается, а другая остается неподвижной. Распространенным использованием была система видеоголовок, которая использовалась в видеоплеерах VHS и Beta. Они могут передавать мощность или радиосигналы от стационарного устройства к вращающемуся механизму или антенне радара.
- Скользящие трансформаторы могут передавать мощность или сигналы от стационарного крепления к движущейся части, например, к головке станка. См. Линейно-регулируемый дифференциальный трансформатор,
- Некоторые вращающиеся трансформаторы сконструированы точно для измерения расстояний или углов.Обычно они имеют одну первичную и две или более вторичных обмоток, а электронные схемы измеряют различные амплитуды токов во вторичных обмотках. См. Синхронизатор и резольвер.
- Небольшие трансформаторы часто используются для изоляции и соединения различных частей радиоприемников и аудиоусилителей, преобразования сильноточных цепей низкого напряжения в слаботочные цепи высокого напряжения или наоборот. См. Электронику и согласование импеданса. См. Также разделительный трансформатор и повторяющуюся катушку.
- Преобразование симметричного сигнала в несимметричное.Особый тип трансформатора, называемый «балун», используется в радио- и аудиосхемах для преобразования между симметричными цепями и несимметричными линиями передачи, такими как антенные нисходящие провода. Симметричная линия — это линия, в которой два проводника (сигнальный и обратный) имеют одинаковое сопротивление относительно земли: например, витая пара и «симметричный двойник». К несимметричным линиям относятся коаксиальные кабели и полосы на печатных платах. Аналогичное использование используется для подключения «несимметричных» входных каскадов усилителя к мощному «двухтактному» выходному каскаду.
Шаблон: Wikibookspar
- Main : Распределенная генерация, Электронный источник питания, Электроника, Индуктор, Пикап, Электрическая сеть, Распределение электроэнергии, Мокрый трансформатор, Электроника
- Схемы : балласт, токоизмерительные клещи, повторяющаяся катушка, инвертор (электрический), система зажигания, выработка электроэнергии, линейный регулируемый дифференциальный трансформатор, неоновые вывески, регулятор, электрическая подстанция, импульсный источник питания, технологические приложения сверхпроводимости, катушка Тесла , Преобразователь
- Электромагнетизм : Переменный ток, Электроэнергия, Передача электроэнергии, Электромагнитная индукция, Эквивалентное последовательное сопротивление, Постоянный ток высокого напряжения, Согласование импеданса, Индуктивная связь, Разница потенциалов, Скин-эффект, Индуктивность утечки, Сверхпроводимость
- Люди : Отто Блати, Микса Дери, Джон Амброуз Флеминг, Отто А.Кнопп, Уильям Стэнли, Никола Тесла, Милан Видмар, Джордж Вестингауз, Кароли Зиперновски
- Прочее : Блок DI, Полихлорированный бифенил, Стаффорд, Хронология изобретений, Война токов, Всемирная Колумбийская выставка
Что такое электрические трансформаторы? | Triad Magnetics
Трансформаторы — это электрические устройства, способные изменять уровень напряжения переменного тока (AC) в цепи. Они работают только с цепями переменного тока, а не с цепями постоянного тока (DC).Основные компоненты трансформатора — это две отдельные катушки с проволокой, намотанные на один сердечник. Катушка, подключенная к входящему источнику или источнику напряжения, является первичной катушкой, катушка, подключенная к выходному выходу или выходу напряжения, является вторичной катушкой, а сердечник представляет собой электромагнитное устройство, которое препятствует (ограничивает) или усиливает (увеличивает) поток напряжения в соответствии с требованиями к выходу. .
Более глубокое исследование того, как работают трансформаторы, их различные типы и общие области применения, помогает лучше понять важную функцию, которую они выполняют, обеспечивая полезную мощность для работы компьютеров, бытовой техники, осветительных приборов и многих других электрические и электронные устройства.
Как работают трансформаторы и их различные типы
Трансформаторы не вырабатывают электроэнергию. Вместо этого они передают его из одной цепи переменного тока в другую. Этот процесс передачи начинается, когда электрический ток входит в трансформатор. Ток поступает через соединение с первичной обмоткой (также называемой обмоткой, потому что она наматывается на часть сердечника). Эта обмотка вокруг сердечника преобразует электрическую энергию в магнитное поле, которое затем течет через сердечник в обмотки вторичной катушки.Вторичная катушка превращает электромагнитный поток обратно в электрическую энергию с необходимым выходным напряжением.
Как указано выше, основной трансформатор состоит из четырех основных компонентов:
- Входные соединения: Также называемое первичной стороной, входное соединение — это место, где мощность поступает на трансформатор.
- Выходные соединения: Выходное соединение — или вторичная сторона — трансформатора передает преобразованную мощность (повышенную или пониженную) вне трансформатора на нагрузку.
- Обмотки трансформатора: В большинстве случаев первичная и вторичная обмотки представляют собой не отдельные катушки, а несколько катушек, связанных с их основным входным или выходным источником для уменьшения магнитного потока (мера силы электрического поля через заданную поверхность). Величина увеличения или уменьшения напряжения зависит от соотношения витков первичной и вторичной обмоток или количества витков каждой катушки вокруг сердечника. Например, трансформатор с соотношением витков 3: 1 преобразует 3 вольта в 1 вольт в понижающем трансформаторе, а коэффициент 3: 5 преобразует 3 вольта в 5 вольт в повышающем трансформаторе.
- Сердечники трансформатора: Сердечник трансформатора усиливает магнитную связь между первичной и вторичной цепями. Он обеспечивает контролируемый путь магнитного потока через трансформатор от первичной обмотки ко вторичной обмотке. Сердечники — это не сплошной стальной стержень. Вместо этого они состоят из множества тонких ламинированных листов стали. Эта конструкция помогает ограничить или исключить накопление тепла внутри трансформатора. В трансформаторах используются два типа сердечников — сердечник и корпус, которые отличаются друг от друга расположением первичной и вторичной катушек.Обмотки наматываются вокруг сердечника в варианте с сердечником, в то время как в варианте с оболочкой сердечник окружает обмотки.
Доступно много различных типов трансформаторов, и Triad Magnetics предлагает широкий ассортимент этих стандартных продуктов для самых разных применений. Различные категории трансформаторов включают:
Силовые трансформаторыСиловые трансформаторы увеличивают или уменьшают линейное напряжение и, если это необходимо для работы интегральной схемы или других специализированных схем, могут помочь с преобразованием переменного напряжения в постоянное.Эти трансформаторы работают на одной из трех частот, измеряемых в герцах (Гц), или на количестве циклов в секунду. Хотя некоторые импульсные силовые трансформаторы работают на частотах 2,5 мегагерца и выше, стандартные линейные силовые трансформаторы работают на частотах 50, 60 и 400 Гц.
Поскольку частота остается постоянной от источника к выходу в силовом трансформаторе, герц является важным измерением, которое влияет на размер сердечника и количество тепла, выделяемого трансформатором.Это измерение, наряду с первичным напряжением, вторичным среднеквадратичным напряжением и током, монтажными характеристиками и, иногда, пробивным напряжением между первичными и вторичными частями, необходимо учитывать при проектировании или покупке силового трансформатора.
Разделительные трансформаторы и автотрансформаторыИзолирующие трансформаторы и автотрансформаторы — это два противоположных типа силовых трансформаторов.
Изолирующие трансформаторы состоят из первичной и вторичной обмоток, которые не соединены, поскольку они намотаны независимо друг от друга.Такая конструкция позволяет этим устройствам изолировать части схемы, предотвращая сотрясение.
С другой стороны, автотрансформаторы используют часть первичной обмотки как часть вторичной обмотки, что создает прямое соединение между двумя линиями с помощью медного провода. Эти устройства используют меньше меди в катушках, что делает их менее дорогими и более компактными. Их основное применение — это приборы американского производства, предназначенные для зарубежных рынков, где линейное напряжение составляет 230 В, а устройство должно работать при 115 В.
Аудио трансформаторыАудиотрансформатор выполняет другую функцию, чем силовой или развязывающий трансформатор. Аудио преобразователи преобразуют электрические сигналы, несущие звук. Катушки в аудиопреобразователях имеют различные уровни импеданса (сопротивление электрической цепи, измеряемое в омах) в диапазоне частот от 20 Гц до 100 000 Гц. Различные уровни импеданса в аудиокомпонентах возникают из-за изменений материала сердечника или коэффициента трансформации трансформатора и влияют на качество звука.
Импульсные трансформаторыЭтот тип трансформатора обрабатывает импульсы электрических токов очень высокой частоты без искажения сигнала. Разработка импульсного трансформатора для одновременного повышения или понижения импульса связана с соотношением витков катушек. Этот тип трансформатора может передавать импульс переменного тока от одной цепи к другой, одновременно блокируя сигналы постоянного тока.
Применение и применение трансформаторов
Силовые трансформаторы и изолированные трансформаторы присутствуют на различных этапах распределения электроэнергии, от электростанции до розеток в доме или офисе.Повышающие трансформаторы преобразуют мощность электростанции в более высокое напряжение для улучшения передачи, в то время как понижающие трансформаторы на подстанциях и барабанах трансформаторов снижают напряжение для общего использования. Хотя это их наиболее распространенный вариант использования, существует бесчисленное множество других электрических и электронных применений трансформаторов, в том числе:
- Настенные трансформаторы (например, зарядные электронные устройства)
- Электростанции и возобновляемые источники энергии
- Средства автоматизации и управления промышленными процессами
- Системы освещения
- Мелкая бытовая техника (например, компьютеры, телевизоры, тостеры, микроволновые печи)
- Крупная бытовая техника (например, стиральные машины, сушилки, копировальные аппараты)
- Усилители звука и динамики
- Медицинские устройства (включая оборудование для МРТ и компьютерной томографии, кислородные насосы и контроллеры капельницы)
Выбор наиболее оптимального типа трансформатора зависит от характеристик конкретного приложения.Некоторые из характеристик, которые следует учитывать, включают:
- входное напряжение (т.е. первичное напряжение), Выходное напряжение
- (т.е. вторичное напряжение),
- выходной ток,
- уровень мощности и Размер трансформатора
- (от рисового зерна до большого полуприцепа).
Свяжитесь с Triad Magnetics сегодня для ваших нужд трансформатора
Трансформаторыразличных типов и форм позволяют безопасно использовать широкий спектр электрических и электронных устройств.Это простое устройство с относительно простой функцией, но они являются важным элементом электроснабжения домов и рабочих мест.
Компания Triad Magnetics поставляет различные трансформаторы для широкого спектра применений. Свяжитесь с нами, чтобы узнать больше о широком ассортименте трансформаторов, которые у нас есть, или запросите ценовое предложение на трансформатор, который наилучшим образом соответствует вашим потребностям, у одного из наших экспертов.
Ideal Transformer — обзор
13.3.2 Трансформаторы
Трансформатор — это устройство, которое позволяет передавать электрическую энергию в виде переменного тока от одной цепи к другой через магнитное поле . Это также позволяет преобразовывать эту энергию из одного уровня напряжения и тока в другой с минимальными потерями. Электрическая энергия наиболее эффективно передается на большие расстояния при очень высоких напряжениях, в сотни киловольт и, соответственно, умеренных уровнях тока. Распределение на месте при 230 В (или 115 В в США) безопасно и удобно.Преобразование высокого напряжения, используемого для передачи, в гораздо более низкое, используемое для распределения, выполняется трансформаторами. Они играют ключевую роль в системе электроснабжения. В дополнение к их использованию в распределении энергии и источниках питания, трансформаторы также используются во многих электронных системах, особенно в радиочастотной беспроводной связи. Трансформаторы могут быть размером с железнодорожный локомотив или меньше, чем пуговица на рубашке. Они могут работать на низких частотах (50 Гц и менее) или на радиочастотах (порядка гигагерц).Их можно сравнить с механическими коробками передач (которые используются в автомобилях, велосипедах и т. Д.), Которые преобразуют механическую энергию, передаваемую им, скажем, на высокой скорости и с низким крутящим моментом, в более низкую скорость, но с более высоким крутящим моментом, или наоборот.
На рисунке 13.5 (а) показана катушка или обмотка из Н 1 витков, намотанных на магнитопровод. Катушка подключена к источнику постоянного тока. источник напряжения В 1 . Ток I 1 определяется сопротивлением катушки R 1 , как показано эквивалентной схемой, показанной на рисунке 13.5 (б). Магнитный поток, индуцированный током I 1 , определяется следующим образом (см. Также Hughes, 1995; R. J. Smith, 1984; Slemon and Straughen, 1980).
Рис. 13.5. Простая магнитная цепь, возбуждаемая постоянным током. источник: (а) магнитная цепь; (б) электрическая эквивалентная схема.
Ток I 1 создает магнитодвижущую силу (ммс), F , Н 1 I 1 ампер (иногда используемую единицу измерения называют ампер-витками).
(13,1) F = N1I1
соответствующая напряженность магнитного поля H (измеряется в ампер / метр или ампер-виток / метр) составляет
(13,2) H = Fl
, где l — длина магнитный путь.
Связь между напряженностью поля H и плотностью потока B (измеряется в теслах) является свойством рассматриваемого материала. Для свободного пространства (и воздуха) две величины линейно пропорциональны соотношению (называемому проницаемостью) μ 0 = 4π × 10 −7 (измеряется в генри / метр).Для ферромагнитных материалов, таких как железо, сталь или ферриты, зависимость сильно нелинейна, как описано в хорошо известной петле B – H . При заданной напряженности поля H в этих материалах создается более высокая плотность потока B , чем в воздухе. Относительная проницаемость μ r описывает, насколько больше плотность потока для данной напряженности поля. Он может иметь значение от нескольких сотен и более. Обратите внимание, что поскольку соотношение между B и H является нелинейным, μ r не является константой для конкретного материала; это зависит от значения H или B.
(13,3) B = μ0μrH
Магнитный поток Φ (измеренный в веберах) рассчитывается из плотности потока как
(13,4) ϕ = BA
, где A — площадь поперечного сечения материала. перпендикулярно потоку.
На рисунке 13.6 (a) показана та же магнитная цепь, что и на рисунке 13.5 (a), но возбуждение изменено на переменное. источник напряжения (вида v = V p sin ω t ). В этом случае поток также является синусоидальным (без учета влияния нелинейности петли B – H).Однако, согласно закону Фарадея, напряжение v индуцируется в проводнике, если он находится в изменяющемся магнитном поле, где
Рис. 13.6. Простая магнитная цепь, возбуждаемая переменным током. источник: (а) магнитная цепь; (б) электрическая эквивалентная схема.
(13,5) ν = Ndϕdt
Это индуцированное напряжение противостоит приложенному, в дополнение к резистивному падению напряжения i 1 R 1 . Он представлен в эквивалентной схеме на Рисунке 13.6 (б) индуктором L M . Катушка индуктивности используется, поскольку i находится в фазе с Φ, но v не совпадает по фазе на 90 ° (из-за производного члена). Следовательно, ток в этом случае определяется как сопротивлением катушки, так и ее индуктивностью. Последнее зависит от магнитных свойств сердечника. Подстановка соотношений из (13.1) — (13.4) в (13.5) приводит к
(13.6) ν = N1dϕdt = μ0μrAlN12didi
Поскольку напряжение v представляет собой напряжение на катушке индуктивности, можно сравнить уравнение (13.6) с соотношением для катушки индуктивности v = L d i / d t . Следовательно, индуктивность с точки зрения магнитных свойств выражается как
(13,7) L = μ0μrAlN12
Предполагая, что поток синусоидальный, его можно выразить как Φ = Φ пик sin ω t . Тогда из (13.5)
(13.8) ν1 = N1dϕdt = N1ωϕpeakcosωt
Среднеквадратичное значение v 1 ( V 1 ) равно
(13.9) V1 = N1ωϕpeak2 = 2π2N1fϕpeak = 4⋅44N1fϕpeak
Это важное соотношение показывает выбор, доступный проектировщикам. Например, на высоких частотах и количество витков, и / или магнитный поток (и, следовательно, площадь поперечного сечения сердечника) могут быть уменьшены для данного входного напряжения.
На рис. 13.7 (а) показана та же магнитная цепь, что и раньше, с добавлением второй обмотки Н 2 виток. Две обмотки обычно называются первичной и вторичной .Выходное напряжение холостого хода этой второй (вторичной) обмотки В 2 можно найти с помощью уравнения (13.5). Предполагая, что поток одинаков в обеих обмотках, v 2 равно
Рис. 13.7. Трансформатор с разомкнутой вторичной обмоткой: а) магнитопровод; (б) электрическая эквивалентная схема.
(13.10) ν2 = N2dϕdt
Объединение уравнений (13.5) и (13.10) приводит к важному соотношению напряжений для идеального трансформатора.
(13.11) ν1ν2 = N1N2
Идеальным трансформатором в данном контексте является трансформатор, где
- 1.
Нет потерь мощности ни в обмотках, ни в сердечнике (механизмы потерь в трансформаторах описаны более подробно см. Slemon and Straughen, 1980).
- 2.
Поток в обеих обмотках одинаковый.
- 3.
Для создания магнитного потока в сердечнике требуется пренебрежимо малый ток (ток намагничивания).Другими словами, реактивное сопротивление L M на рисунке 13.6 очень велико.
Эквивалентная схема практического сердечника с двумя обмотками показана на рисунке 13.7 (b). Здесь показан идеальный трансформатор, резистор R 1 и катушка индуктивности L M . Резистор R 1 представляет собой сопротивление первой обмотки и используется для учета того факта, что в практическом трансформаторе потерями мощности в обмотках нельзя пренебречь, как указано для идеального в предположении (1) выше. .В результате выходное напряжение холостого хода вторичной обмотки, В, , , 2, , немного меньше, чем было бы получено уравнением (13.11) с использованием входного напряжения В, , , 1 и отношения витков. В эквивалентной схеме это представлено падением напряжения на резисторе R 1 , которое представляет собой разницу между реальным входным напряжением v 1 и v ′ 1 = v 2 Н 1 / Н 2 .Точно так же в практическом трансформаторе током намагничивания не всегда можно пренебречь, как в предположении (3) выше. Это индуктор L M .
На рисунке 13.8 (а) показан трансформатор с нагрузкой R L , подключенной к вторичной обмотке. В результате индуцированного напряжения v 2 во вторичной обмотке по вторичной цепи протекает ток i 2 . Однако этот ток, протекающий во вторичной обмотке, создает МДС, которая, согласно закону Ленца, противодействует потоку в сердечнике, который в первую очередь индуцировал В 2 .Таким образом, чистый mmf в магнитной цепи уменьшается, и это, в свою очередь, уменьшает магнитный поток Φ. Согласно уравнению (13.5), уменьшенный поток приводит к уменьшению напряжения, индуцированного в первичной обмотке, которое противодействует входному напряжению В 1 . Увеличенная разница между ними приводит к увеличению текущего i 1 до тех пор, пока не будет достигнуто новое состояние равновесия. Следовательно, увеличение тока во вторичной обмотке приводит к увеличению тока в первичной обмотке.
Рис. 13.8. Трансформатор с нагруженной вторичной обмоткой: а) магнитопровод, принципиальная схема трансформатора; (б) электрическая эквивалентная схема.
Первичный ток состоит из двух компонентов. Один из них — это ток намагничивания i M (ток, который течет в первичной обмотке, когда ток не течет во вторичной). Другой — i ′ 1 компонент, возникающий в результате протекания тока во вторичной обмотке. Следовательно,
(13.12) i1 = i′1 + iM
Эквивалентная схема на Рисунке 13.8 (b) показывает это соотношение.
В идеальном трансформаторе магнитный поток одинаков в обеих обмотках (предположение (2) выше), и МДС, создаваемые двумя обмотками, можно считать равными и противоположными друг другу. Следовательно,
(13.13) N1i′1 = N2i2
или
(13.14) i′i2 = N1N2
Обратите внимание, что объединение уравнений (13.11) и (13.14) приводит к
ν1i′1 = ν2i2
As Можно ожидать, что потребляемая мощность идеального трансформатора такая же, как и выходная мощность, поскольку отсутствуют потери.
Аналогично, использование уравнений (13.11) и (13.14) приводит к соотношению
(13.15) RL = ν2i2 = ν1N2N1i′1N1N2 = ν1i′1 [N2N1] 2 = R′L [N2N1] 2
, где R ′ L — это кажущееся сопротивление, «видимое при взгляде на первичную обмотку» в результате подключения R L к вторичной обмотке. Это соотношение составляет основу использования трансформаторов для согласования импеданса . Возможно, более полезно выразить это как
(13.16) R′L = RL [N1N2] 2
На практике поток в двух обмотках не совсем одинаковый, и предположение (2) для идеального трансформатора не относится строго к практическому.Как показано на рисунке 13.9 (а), часть потока «утекает» из сердечника и связана только с одной из обмоток. В описании схемы на рис. 13.9 (а) показано, что эффект этого потока рассеяния должен индуцировать напряжение, которое противодействует входному напряжению. Этот эффект представлен в эквивалентной схеме катушкой индуктивности. Таким образом, пересмотренная эквивалентная схема трансформатора включает в себя две катушки индуктивности L 1 и L 2 для учета индуктивности рассеяния двух обмоток.Эквивалентная схема показана на рисунке 13.9 (б). При проектировании и изготовлении трансформаторов уделяется большое внимание минимизации потока утечки с помощью таких мер, как наматывание двух обмоток друг на друга и использование сердечников тороидальной формы, если это возможно.
Рис. 13.9. Трансформатор с нагруженной вторичной обмоткой, показывающий поток рассеяния и результирующую индуктивность: (а) магнитная цепь, показывающая поток рассеяния; (б) электрическая эквивалентная схема.
Эквивалентная схема, показанная на рисунке 13.9 (б) чаще используется в упрощенном виде. Упрощение выполняется в два этапа. Во-первых, предположим, что падением напряжения в R 1 и L 1 из-за тока намагничивания i ′ M можно пренебречь. Следовательно, L M можно подключить непосредственно к источнику на другой стороне R 1 и L 1 без внесения каких-либо ошибок. Компонент R M добавлен, чтобы представить потерю энергии в сердечнике, вызванную переменным магнитным потоком.На втором этапе используется уравнение (13.16). Это позволяет объединить вторичное сопротивление и индуктивность рассеяния с первичными. Резистор R 2 отображается на первичной обмотке как R ′ 2 , и его можно комбинировать с R 1 для образования R W как
(13,17) RW = R1 + R2 [N2N1] 2
Аналогично,
(13.18) LW = L1 + L2 [N2N1] 2
Упрощенная эквивалентная схема показана на рисунке 13.10.
Рис. 13.10. Упрощенная схема замещения трансформатора.
Может использоваться для расчета регулирования трансформатора. Это мера изменения напряжения между током холостого хода и током полной нагрузки. Он определяется как
(13.19) Регулировка = Vout (без нагрузки) −Vout (полная нагрузка) Vout (полная нагрузка)
Эквивалентная схема на рисунке 13.10 обычно используется на низких частотах (50 и 60 Гц). На высоких частотах необходимо учитывать паразитную емкость обмоток.Это можно смоделировать как конденсатор на первичной обмотке. Этот конденсатор эффективно включен последовательно с катушкой индуктивности, представляющей индуктивность рассеяния, и поэтому цепь является резонансной. В некоторых схемах трансформатор спроектирован как часть настроенной нагрузки усилителя, как в разделе 9.2 (см. J. Smith, 1986). На высоких частотах влияние индуктивности намагничивания может быть меньше, но индуктивности рассеяния больше.
В следующих разделах будет видно, что форма волны тока, потребляемого выпрямителями, подключенными к накопительным конденсаторам (см. Рисунок 13.21) далека от синусоидальности. Об этом всегда нужно помнить при проектировании источников питания и используемых в них трансформаторов. Информацию о практическом проектировании трансформаторов можно найти в нескольких специализированных текстах. Уиттингтон и др. . (1992) занимается проектированием трансформаторов для импульсных источников питания (см. Раздел 13.4).
Рис. 13.21. Входное напряжение и ток, а также осциллограммы напряжения нагрузки.
SAQ 13.1
Напряжение, ток и мощность были измерены на первичной стороне трансформатора вместе с вторичным напряжением при разомкнутой и короткозамкнутой вторичной обмотке.Результаты измерений, выполненных на частоте 50 Гц, следующие:
Первичное напряжение (В) | Ток (А) | Мощность (Вт) | Вторичное напряжение (В) | |
---|---|---|---|---|
Обрыв | 240 | 0,1 | 12 | 20 |
Короткий | 10 | 1 | 8 | 0 |
Определите упрощенную эквивалентную схему, относящуюся к первичной стороне.Также определите мощность, рассеиваемую в трансформаторе, и выходное напряжение вторичной обмотки, когда она обеспечивает вторичный ток 8 А от первичного источника питания 240 В.
Трансформатор
2
Исследования могут снизить экономические потери электростанций после землетрясений
1 октября 2020 г. — На силовых трансформаторах установлены системы вводов, которые играют решающую роль в снабжении населенных пунктов электричеством.Однако эти объекты также подвержены разрушению во время землетрясений. …
Без привязки: максимальная эффективность беспроводной зарядки с использованием нескольких передатчиков
5 декабря 2020 г. — Ученые разработали стратегию управления, которая позволяет передавать энергию по беспроводной сети через несколько катушек передатчика с максимальной эффективностью. В отличие от традиционных подходов, в которых только …
Ученые связывают намагниченность со сверхпроводимостью для квантовых открытий
Сен.6, 2019 — В недавнем исследовании ученые создали миниатюрную сверхпроводящую схему на основе микросхемы, которая связывает квантовые волны магнитных спинов, называемые магнонами, с фотонами эквивалентного …
Использование возможностей спин-орбитальной связи в кремнии: масштабирование квантовых вычислений
7 декабря 2018 г. — Исследовательские группы изучают несколько способов масштабирования вычислительных архитектур на основе атомов с использованием спин-орбитальной связи, продвигаясь к своей цели создания кванта на основе кремния…
Спинами электронов в медленно движущихся квантовых точках могут управлять электрические поля
15 января 2020 г. — В новой статье представлен теоретический анализ электронных спинов в движущихся полупроводниковых квантовых точках, показывающий, как ими можно управлять с помощью электрических полей, что предполагает их применимость …
Физики открыли новый магнитоэлектрический эффект
14 сентября 2020 г. — Обнаружен специальный материал, который демонстрирует новый удивительный эффект: его электрические свойства можно контролировать с помощью магнитного поля.Этот эффект работает совершенно иначе, чем обычно. Это может быть …
Повышение коэффициента магнитосопротивления открывает двери для высокочувствительных датчиков магнитного поля
20 декабря 2018 г. — Создав новую многослойную структуру с повышенным коэффициентом магнитосопротивления, исследователи показывают, что можно повысить чувствительность к магнитному полю …
Осмысление гибких сенсорных систем
28 января 2020 г. — Группа исследователей разработала самую тонкую и легкую в мире систему магнитных сенсорных матриц, которая визуализирует двумерное распределение магнетизма на различных поверхностях с…
Концерт магнитных моментов
13 июня 2019 г. — Исследователи открыли новый способ, с помощью которого спины электронов в слоистых материалах могут …
Сохранение спокойствия с помощью квантовых ям
3 октября 2019 г. — Исследовательская группа изобрела систему полупроводниковых квантовых ям, которая может эффективно охлаждать электронные устройства с использованием установленных методов производства. Эта работа может позволить уменьшить и ускорить умные …
Теория силового трансформатора
— Gowanda Electronics
Наиболее частым назначением силового электронного трансформатора является преобразование переменного тока (А.C.) мощность от одного переменного напряжения (или тока) до другого переменного напряжения (или тока). Другой распространенной целью является обеспечение гальванической развязки между электрическими цепями. Мощность — это произведение напряжения на ток. Силовые трансформаторы не изменяют уровни мощности, за исключением паразитных потерь. Входная мощность за вычетом паразитных потерь мощности равна выходной мощности. Идеальные силовые трансформаторы не имеют потерь, следовательно, выходная мощность равна входной. Увеличение выходного напряжения приведет к уменьшению выходного тока. Электроэнергетические компании предпочитают передавать электроэнергию при малых значениях тока, чтобы снизить резистивные потери в линиях электропередачи.Более низкие токи также позволяют использовать кабели передачи меньшего размера. Силовой трансформатор используется между генерирующим оборудованием и линией (ами) электропередачи для повышения (увеличения) напряжения передачи (до высокого напряжения) и уменьшения тока передачи. Распределительные трансформаторы, которые являются силовыми трансформаторами, используются для понижения (понижения) напряжения до уровней, необходимых для промышленного и бытового использования.
Силовые электронные трансформаторыможно классифицировать по номинальной мощности (от дробной ВА до мега-ВА), типу конструкции и / или по предполагаемому применению.Один и тот же базовый силовой трансформатор может подходить для нескольких применений, поэтому один и тот же силовой трансформатор может быть отнесен к нескольким перекрывающимся типам категорий. Обычный человек связывает силовые трансформаторы с электросетью, поэтому они думают о полюсных трансформаторах и распределительных трансформаторах. На ум не сразу приходят силовые трансформаторы, используемые внутри их бытовой техники и электронных устройств. Две самые широкие категории силовых трансформаторов — это силовые трансформаторы электроснабжения и электронные силовые трансформаторы (1 и 3 фазы).Силовые трансформаторы почти полностью представляют собой синусоидальные трансформаторы переменного тока. Электронный силовой трансформатор — это, по сути, любой электронный трансформатор, подающий питание на электронные схемы. Существует множество подкатегорий: импульсные, инвертирующие, переключающиеся (обратный преобразователь, прямой преобразователь), тороидальные, прямоугольные, изоляционные и другие. Измерительные трансформаторы (например, трансформаторы тока) не считаются силовыми трансформаторами. Они измеряют напряжение или ток вместо подачи питания.
Электронные трансформаторы / силовые трансформаторы имеют размер от кубического сантиметра до нескольких кубических метров.Вес может варьироваться от долей унции до нескольких тонн. Размер и вес силового трансформатора зависит от нескольких факторов. Неполный список включает в себя: желаемую номинальную мощность, максимальную температуру окружающей среды, допустимое повышение температуры, метод охлаждения (воздушное или жидкостное охлаждение, естественная конвекция или принудительное), форма трансформатора, требования к диэлектрической проницаемости напряжения, требуемое регулирование напряжения, рабочая частота, рабочая форма волны, и основной материал. Из них двумя наиболее ограничивающими параметрами являются допустимый рост температуры и требуемое регулирование напряжения.Рабочая частота является основным параметром при выборе материала сердечника. В низкочастотных устройствах обычно используются сердечники из ленточной или многослойной кремнистой стали. В приложениях с умеренными частотами используются сердечники с ленточной намоткой или слоистые никелево-железные сердечники. В высокочастотных приложениях обычно используются ферритовые сердечники.
Силовые трансформаторы выпускаются различных форм. Тороидальные силовые трансформаторы — лучшие исполнители. Они имеют наименьший размер (по объему и весу), меньшую индуктивность рассеяния и меньшие электромагнитные помехи (EMI).Их обмотки лучше охлаждаются из-за пропорционально большей площади поверхности. Бобинные или трубчатые трансформаторы обычно более экономичны в изготовлении. Длинные тонкие сердечники больше подходят для низкочастотных высокодобротных трансформаторов. Некоторые формы, например сердечники электролизеров, обладают самозащитой (снижает электромагнитные помехи).
КОНСТРУКЦИЯ И РАБОЧАЯ ТЕОРИЯ
Конструкция силового трансформатора включает множество взаимозависимых параметров. Становится очень сложно оптимизировать конструкцию силового трансформатора.Большинство разработчиков силовых трансформаторов используют электрическую модель, которая позволяет им приблизиться к конструкции трансформатора. Предварительный примерный проект будет оценен, а затем при необходимости скорректирован для достижения желаемых целей. Электрическая модель приведена ниже.
Чтобы лучше понять силовые трансформаторы, важно ознакомиться с концепцией идеального трансформатора. Идеальный трансформатор не имеет паразитных потерь (без потерь в сердечнике, без сопротивления обмотки и без индуктивности рассеяния).Идеальные трансформаторы на 100% эффективны. Идеальный трансформатор имеет бесконечное входное сопротивление, поэтому идеальный трансформатор не потребляет ток сам по себе. Первичный ток равен нулю. На рис. 1A показана схема идеального трансформатора с витками первичной обмотки Np и витками вторичной обмотки Ns.
В идеальном (и типичном) электронном трансформаторе первичная и вторичная обмотки имеют один и тот же сердечник и испытывают одинаковый магнитный поток. Из-за приложенного переменного напряжения магнитный поток постоянно меняет значение, а направление (полярность) «изменения магнитного потока» постоянно меняет свое направление.Это изменение магнитного потока индуцирует в каждом витке обмотки трансформатора напряжение, равное первичному напряжению Vp, деленному на количество витков первичной обмотки Np. Общее индуцированное первичное напряжение равно приложенному первичному напряжению и противостоит ему. Индуцированное первичное напряжение ограничивает протекание первичного тока. В идеальном трансформаторе значение тока равно нулю. В неидеальных трансформаторах этот ток больше нуля. Этот ток известен как ток намагничивания или возбуждения. Индуцированное вторичное напряжение Vs равно количеству витков вторичной обмотки, умноженному на индуцированное напряжение на один виток.или, что эквивалентно, Vs = Ns x Vp / Np.
На рисунке 1B показана схема идеального трансформатора с резистивной нагрузкой, подключенной к его вторичным клеммам.
Поскольку потерь в трансформаторе нет, входная мощность равна выходной мощности. Индуцированное вторичное напряжение Vs вызывает протекание тока Is через резистивную нагрузку и вторичную обмотку. Направление тока Is снижает индуцированное первичное напряжение, которое противодействует приложенному входному первичному напряжению.Следовательно, течет больше первичного тока. Значение первичного тока увеличивается до тех пор, пока противоположное индуцированное первичное напряжение не сравняется с приложенным входным первичным напряжением. Сохранение энергии требует, чтобы выходная мощность была равной мощности, следовательно, Ip x Vp = Vs x Is, или Ip = Vs x Is / Vp. Поскольку Vs = Ns x Vp / Np, Ip можно переписать как Ip = (Ns x Vp / Np) x Is / Vp, или, что эквивалентно, Ip = Ns x Is / Np, или Ns x Is = Np x Ip. В идеальном трансформаторе Ip — это ток нагрузки вторичной обмотки, отраженный (преобразованный) в первичную обмотку.Эффективное сопротивление первичной обмотки Zp = Vp / Ip. Можно показать, что Zp = Np x Np x Zs / (Ns x Ns), где Zs = полное сопротивление вторичной нагрузки. Это уравнение также справедливо для индуктивных и / или емкостных нагрузок.
Неидеальный трансформаторНа рисунке 2 показана эквивалентная принципиальная схема (электрическая модель) неидеального силового трансформатора.