Эл схемы зарядных устройств для автомобильных аккумуляторов: схемы на самодельное зарядное устройство для АКБ

Содержание

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при

эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать

батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольтЗУ на 12 вольт
ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2Схема ЗУ Рассвет 2Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ
Умное ЗУУмное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный видИнверторный видИнверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого

процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема ЭлектроникаСхема ЭлектроникаСхема Электроника

1 схема мощного ЗУ

Мощное ЗУМощное ЗУМощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУСоветское ЗУСоветское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3МСхема Электрон 3МСхема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схемаПростая схемаПростая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

СхемаСхемаСхема

1 упрощенная схема с сайта Паяльник

СхемаСхемаСхема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУИнтеллектуальное ЗУИнтеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

СхемаСхемаСхема

1 простая схема — как собрать ЗУ

СхемаСхемаСхема
Схемы зарядных устройств для автомобильного аккумулятора: сборка своими руками

Зарядное устройство для автомобильного аккумулятора  Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Зарядник для аккумулятора автомобиля

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Простое зарядное устройство для аккумулятораЧтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  •  Зарядное устройство для аккумулятора автомобиляЗарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Зарядное устройство своими руками

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Зарядное устройство для автомобильного аккумулятора: схема

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Самодельное зарядное устройство для автомобильного аккумулятораВсе свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Зарядное устройство для автомобильного АКБ. Схемы.

По этой схеме собрать зарядное устройство для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.


Нажмите на изображение чтобы увеличить

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А (размеры трансформатора внушительные, примерно 15х15х15 см. и выше). Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Настройка прибора сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру (мультиметру, авометру).


Совсем элементарная схема простейшего зарядного устройства АКБ автомобилей

Диоды Д 242, Д 242А, конденсатор электролитический 2200 мкф 25 В

Трансформатор силовой

1 обмотка на 220 В, 2 обмотка 15 В от 6 А и можно до 15 А, ТС 180-2 от старого лампового ЧБ телевизора вполне подойдёт.

Данная схема ЗУ имеет большие пульсации на выходе.


Схема ЗУ с автоматическим отключением АКБ


Пусковое устройство

Применение пускового устройства будет особенно полезно автолюбителям, занимающимся эксплуатацией автомобиля в зимнее время года, так как оно продлевает срок службы аккумулятора, а также позволяет без проблем заводить холодный автомобиль зимой, даже при не полностью заряженном аккумуляторе. Из опыта известно, что при минусовой температуре аккумулятор снижает свою отдачу на 25…40%. А если он еще не полностью заряжен, то не сможет обеспечить требуемый для пуска двигателя начальный ток 200 А. Этот ток потребляет стартер в начальный момент раскрутки вала двигателя (номинальный ток потребления стартером около 80 А, но в момент пуска он значительно больше).

Простейшие расчеты показывают, что, для того чтобы пусковое устройство эффективно работало при подключении его параллельно с аккумулятором, оно должно обеспечивать ток не менее 100А при напряжении 10…14В. При этом номинальная мощность используемого сетевого трансформатора Т1 (рис.1) должна быть не менее 800 Вт. Как известно, номинальная рабочая мощность трансформатора зависит от площади сечения магнитопровода (железа) в месте расположения обмоток.


Рис.1.

Сама схема пускового устройства довольно проста, но требует правильного изготовления сетевого трансформатора. Для него удобно использовать тороидальное железо от любого ЛАТРА — при этом получаются минимальные габариты и вес устройства. Периметр сечения железа может быть от 230 до 280 мм (у разных типов автотрансформаторов он отличается). Перед намоткой обмоток необходимо закруглить напильником острые края на гранях магнитопровода, после чего его обматываем лакотканью или стеклотканью.

Первичная обмотка трансформатора содержит примерно 260…290 витков провода ПЭВ-2 диаметром 1,5…2,0 мм (провод может быть любого типа с лаковой изоляцией). Намотка распределяется равномерно в три слоя, с межслойной изоляцией. После выполнения первичной обмотки, трансформатор необходимо включить в сеть и замерить ток холостого хода. Он должен составлять 200…380 мА. При этом будут оптимальные условия трансформации мощности во вторичную цепь.

Если ток будет меньше, часть витков надо отмотать, если больше — домотать до получения указанной величины. При этом следует учитывать, что зависимость между индуктивным сопротивлением (а значит и током в первичной обмотке) и числом витков является квадратичной — даже незначительное изменение числа витков будет приводить к существенному изменению тока первичной обмотки.

При работе трансформатора в режиме холостого хода не должно быть нагрева. Нагрев обмотки говорит о наличии межвитковых замыканий или же продавливании и замыкании части обмотки через магнитопровод. В этом случае намотку придется выполнять заново.

Вторичная обмотка наматывается изолированным многожильным медным проводом сечением не менее 6 кв. мм (например типа ПВКВ с резиновой изоляцией) и содержит две обмотки по 15… 18 витков. Наматываются вторичные обмотки одновременно (двумя проводами), что позволяет легко получить их симметричность — одинаковые напряжения в обоих обмотках, которое должно находиться в интервале 12…13,8В при номинальном сетевом напряжении 220В. Измерять напряжение во вторичной обмотке лучше на временно подключенном к клеммам Х2, Х3 нагрузочном резисторе сопротивлением 5…10 Ом.

Показанное на схеме соединение выпрямительных диодов позволяет использовать металлические элементы корпуса пускового устройства не только для крепления диодов, но и в качестве теплоотвода без диэлектрических прокладок («плюс» диода соединен с крепежной гайкой).

Для подключения пускового устройства параллельно аккумулятору, соединительные провода должны быть изолированными и многожильными (лучше, если медные), с сечением не менее 10 кв. мм (не путать с диаметром). На концах провода, после облуживания, припаиваются соединительные наконечники. Контакты включателя S1 должны быть рассчитаны на ток не менее 5А, например типа Т3.


Зарядно-пусковое устройство Старт УПЗУ-У3 — схема, описание

Устройство предназначено для зарядки аккумулятора током не более 30А, также для пуска стартера дополнительным током 50А при наличии заряженного аккумулятора

Инструкция к ЗПУ Старт УПЗУ-У3 — Скачать

Простые схемы для зарядки самых разных аккумуляторов Приветствую, Самоделкины!
Сегодня мы рассмотрим 3 простые схемы зарядных устройств, которые могут быть использованы для зарядки самых разных аккумуляторов.

Первые 2 схемы работают в линейном режиме, а линейный режим в первую очередь означает сильный нагрев. Но зарядное устройство вещь стационарная, а не портативная, чтобы КПД было решающим фактором, так что единственный минус представленных схем – это то, что они нуждаются в больших радиатор охлаждения, а в остальном все хорошо. Такие схемы всегда применялись и будут применяться, так как имеют неоспоримые плюсы: простота, низкая себестоимость, не «гадят» в сеть (как в случае импульсных схем) и высокая повторяемость.

Рассмотрим первую схему:


Данная схема состоит всего из пары резисторов (с помощью которых задается напряжение окончания заряда или выходное напряжение схемы в целом) и датчика тока, который задает максимальной выходной ток схемы.


Если нужно универсальное зарядное устройство, то схема будет выглядеть следующим образом:

Вращением подстроечного резистора можно задать любое напряжение на выходе от 3 до 30 В. По идее можно и до 37В, но в таком случае на вход нужно подавать 40В, чего автор (AKA KASYAN) делать не рекомендует. Максимальный выходной ток зависит от сопротивления датчика тока и не может быть выше 1,5А. Выходной ток схемы можно рассчитать по указанной формуле:

Где 1,25 — это напряжение опорного источника микросхемы lm317, Rs — сопротивление датчика тока. Для получения максимального тока 1,5А сопротивление этого резистора должно быть 0,8 Ом, но на схеме 0,2 Ома.

Дело в том, что даже без резистора максимальный ток на выходе микросхемы будет ограничен до указанного значения, резистор тут в большей степени для страховки, а его сопротивление снижено для минимизации потерь. Чем больше сопротивление, тем больше на нем будет падать напряжение, а это приведет к сильному нагреву резистора.

Микросхему обязательно устанавливают на массивный радиатор, на вход подается не стабилизированное напряжение до 30-35В, это чуть меньше максимально допустимого входного напряжения для микросхемы lm317. Нужно помнить, что микросхема lm317 может рассеять максимум 15-20Вт мощности, обязательно учитывайте это. Также нужно учитывать то, что максимальное выходное напряжение схемы будет на 2-3 вольта меньше входного.

Зарядка происходит стабильным напряжением, а ток не может быть больше выставленного порога. Данная схема может быть использована даже для зарядки литий-ионных аккумуляторов. При коротких замыканиях на выходе ничего страшного не произойдет, просто пойдет ограничение тока и, если охлаждение микросхемы хорошее, а разница входного и выходного напряжения небольшое, схема в таком режиме может проработать бесконечно долгое время.



Собрано все на небольшой печатной плате.


Ее, а также печатные платы для 2-ух последующих схем можете скачать вместе с общим архивом проекта.

Вторая схема из себя представляет мощный стабилизированный источник питания с максимальным выходным током до 10А, была построена на базе первого варианта.


Она отличается от первой схемы тем, что тут добавлен дополнительный силовой транзистор прямой проводимости.

Максимальный выходной ток схемы зависит от сопротивления датчиков тока и тока коллектора использованного транзистора. В данном случае ток ограничен на уровне 7А.

Выходное напряжение схемы регулируется в диапазоне от 3 до 30В, что у позволит заряжать практически любые аккумуляторы. Регулируют выходное напряжение с помощью того же подстроечного резистора.


Этот вариант отлично подходит для зарядки автомобильных аккумуляторов, максимальный ток заряда с указанными на схеме компонентами составляет 10А.

Теперь давайте рассмотрим принцип работы схемы. При малых значениях тока силовой транзистор закрыт. При увеличении выходного тока падение напряжения на указанном резисторе становится достаточным и транзистор начинает открываться, и весь ток будет протекать по открытому переходу транзистора.


Естественно из-за линейного режима работы схема будет нагреваться, особенно жестко будут греться силовой транзистор и датчики тока. Транзистор с микросхемой lm317 прикручивают на общий массивный алюминиевый радиатор. Изолировать подложки теплоотвода не нужно, так как они общие.

Очень желательно и даже обязательно использование дополнительного вентилятора, если схема будет эксплуатироваться на больших токах.
Для зарядки аккумуляторов, вращением подстроечного резистора нужно выставить напряжение окончания заряда и все. Максимальный ток заряда ограничен 10-амперами, по мере заряда батарей ток будет падать. Схема коротких замыканий не боится, при КЗ ток будет ограничен. Как и в случае первой схемы, если имеется хорошее охлаждение, то устройство сможет долговременно терпеть такой режим работы.
Ну а теперь несколько тестов:


Как видим стабилизация свое отрабатывает, так что все хорошо. Ну и наконец третья схема:

Она представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство. Начальная схема подвергалась некоторым изменением, а плата дорабатывалась в ходе испытаний.

Рассмотрим схему.


Как видим она до боли простая, содержит всего 1 транзистор, электромагнитное реле и мелочевку. У автора на плате также имеется диодный мост по входу и примитивная защита от переполюсовки, на схеме эти узлы не нарисованы.


На вход схемы подается постоянное напряжение с зарядного устройства или любого другого источника питания.

Тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя.


При подаче питания на вход схемы, заряжается аккумулятор. В схеме есть делитель напряжения, с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

По мере заряда, напряжение на аккумуляторе будет расти. Как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится, заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.


Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстро заряжаемого аккумулятора. Напряжение конденсатора 25-35В.

Сперва подключаем ионисторы или конденсатор к выходу схемы, соблюдая полярность. По окончании заряда сперва отключаем зарядное устройство от сети, затем аккумулятор, иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятный.
Далее берем любой регулируемый источник питания и выставим на нем то напряжение, до которого будет заряжаться аккумулятор и подключаем блок к входу схемы.

Затем медленно вращаем обычный резистор до тех пор, пока не сработает красный индикатор, после чего делаем один полный оборот подсроечника в обратном направлении, так как схема имеет некоторый гистерезис.

Как видим все работает. Благодарю за внимание. До новых встреч!


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Как сделать зарядное устройство для аккумулятора автомобиля своими руками

Зарядное устройство для аккумулятора – это необходимый девайс каждого автолюбителя. Но в силу высокой стоимости и частых поломок, позволить себе купить новое ЗУ может далеко не каждый. Но выход есть.

Если вы имеете определенные навыки и умеете держать в руках инструменты, в том числе и паяльник, то сделать зарядное устройство для автомобильного аккумулятора своими руками – не составит труда. Ниже более подробно изучим этот вопрос.

Немного полезной информации

Аккумулятором называется накопитель электрического заряда. Во время подачи на него электрического напряжения, происходит накопление энергии, что объясняется химическими изменениями внутри батареи. При подключении источника потребления можно наблюдать обратный процесс, который обусловлен обратным химическим изменением, создающим напряжение в области клеммов устройства. Через нагрузку происходит прохождение тока. То есть, чтобы получить напряжение от аккумуляторной батареи, следует сначала ее зарядить.

Сам процесс заряда батареи происходит по определенным правилам и зависит от вида аккумулятора. Из-за нарушения данных правил возможно уменьшение срока эксплуатации батареи, а также ее емкости.

Именно поэтому параметры для зарядного устройства к автомобильному аккумулятору должны подбираться строго индивидуально, для определенного носителя энергии.

Это возможно в случае со сложными зарядными устройствами, имеющими регулируемые параметры, а также приобретая отдельное ЗУ специально под определенную батарею. Но есть более универсальный и практичный вариант – сделать зарядное устройство своими руками.

Виды зарядных устройств для автомобильных аккумуляторов

В процессе заряда батареи происходит восстановление израсходованной в емкости энергии. С этой целью на клеммы аккумуляторной емкости происходит подача напряжения, которая слегка выше, нежели основные рабочие показатели аккумуляторной батареи. В зависимости от вида зарядного устройства, подаваться может:

  1. Постоянный ток. Средняя длительность такого заряда составляет около 10 часов и более, при этом на протяжении всего времени происходит подача фиксированного тока. Напряжение может изменяться в пределах от 13,8 до 14,4 В в самом начале зарядки, а в конце она может снизиться до отметки в 12,8 В. То есть это постепенный метод накопления емкости батареи, который в ходе эксплуатации держится дольше. Но среди минусов можно выделить необходимость в контроле над процессом, так как важно вовремя выключить ЗУ. В случае перезаряда возможно закипание электролита, что снизит функциональность батареи.
  2. Постоянное напряжение. При таком типе заряда устройство все время подает напряжение в 14,4 В, при этом происходит изменение значений от больших в начале зарядки, до меньших – в конце. Поэтому перезаряд невозможен, разве что в случае если вы оставите ЗУ на несколько дней. Достоинством является меньшее время для заряда (7-8 часов), и возможность оставить ЗУ без присмотра. Но при частом использовании данного метода возможно более быстрое выхождение батареи из строя, в процессе эксплуатации она будет быстрее разряжаться.

Поэтому, если нет необходимости в быстром заряде батареи, лучше отдать предпочтение первому варианту – с постоянным током. А в случае, когда нужно быстро восстановить работоспособность АБ подойдет постоянное напряжение, но не для многоразового пользования.

Если же задаетесь вопросом, какое лучше зарядное устройство сделать своими руками, то здесь однозначно стоит выбрать вариант с подачей постоянного тока. По схеме этот прибор достаточно прост, и состоит из доступных элементов.

Как узнать состояние батареи?

Необходимость в зарядке аккумулятора автомобиля зависит от уровня заряда. И метод проверки, именуемый в народе как «крутит/не крутит» является не самым удачным методом. Если же батарея «не крутит», например, перед выездом, то вы вообще не сможете завести машину, состояние «не крутит»– критическое и может предполагать крайне негативные последствия для самого аккумулятора.

Самым эффективным и безопасным методом является измерение напряжение при помощи самого простого тестера. Так, при температуре воздуха приблизительно около 20 градусов, зависимость степени зарядки от напряжения на клеммах отключенного от нагрузки аккумулятора такова:

  • 12,6-12,7 – батарея полностью заряжена;
  • 12,3-12,4 – уровень заряда составляет около 75%;
  • 12,0-12,1 – приблизительно 50%;
  • 11,8-11,9 – 25%;
  • 11,6-11,7 – батарея находится в разряженном состоянии;
  • если же показатель находится ниже отметки в 11,6 В, то это означает глубокий разряд.

Все вышеперечисленные показатели измеряются в вольтах.

Показатель в 10,6 Вольт является критическим, и если уровень еще больше снизится, то аккумуляторная батарея, особенно которая давно обслуживалась, просто выйдет из строя.

Нужные параметры при зарядке постоянным током

Уже доказано, что производить заряд автомобильных свинцовых кислотных аккумуляторных батарей (в основном в автомобилях присутствуют именно такие) необходимо при помощи тока, не превышающего показателя в 10% от емкости всей батареи.

Так, в случае емкости АБ в 55 A/ч, максимальная подача тока заряда должна быть 5,5 А. По такому принципу высчитывается максимальный ток для любой батареи. Можно даже немного снизить подачу тока, но в таком случае процесс заряда будет идти немного медленнее. Накопление заряда будет происходить даже в случае, если ток заряда будет ближе к отметке 0,1 А. Но в таком случае для восстановления емкости необходимо будет очень много времени.

Минимальное время заряда АБ при уровне тока в 10% от заряда составляет 10 часов, но это в случае полного разряда батареи, которого допускать недопустимо. Поэтому на фактическое время до полного заряда влияет глубина разряда.

Чтобы произвести расчет примерного времени до полного заряда, следует выяснить разницу между максимальным зарядом (12,8 вольт) и вольтажом на данный момент. Если эту цифру умножить на 10, то можно получить приблизительно время в часах.

Схема зарядного устройства для автомобильного аккумулятора

Обычно с целью пополнения емкости электрического накопителя, необходима бытовая сеть в 220 вольт, преобразовывающаяся в пониженное напряжение с помощью преобразователя. Сделать ЗУ своими руками вполне возможно, скорее, это даже не вызовет никаких проблем. Для этого достаточно будет минимальных знаний в области электротехники и умение пользоваться паяльником, и другими инструментами.

Простые схемы

Самый простой и действенный метод заключается в использовании понижающего трансформатора. С его помощью снижается напряжение в 220 В до необходимых для заряда 13-15 вольт.

Найти трансформаторы такого типа можно в старых ламповых телевизорах или же в блоках питания для компьютера, которые продаются на блошиных рынках. Однако имеется нюанс – на выходе трансформатора переменное напряжение. Поэтому появляется необходимость в его выпрямлении.

Это можно сделать с помощью таких методов:

  • Одного выпрямляющего диода, установленного после трансформатора, при этом на выходе подобного зарядного устройства будет наблюдаться пульсирующий ток с сильными ударами, так как срезана только одна полуволна. Ниже представлена самая простая схема с одним диодом.

  • Второй метод – это использование диодного моста, благодаря которому отрицательная волна будет заворачиваться вверх. Зарядное устройство тоже будет обладать пульсирующим током, но биение уже будут менее выраженными. Чаще всего в домашних условиях реализовывают именно эту схему, хотя она является далеко не самым лучшим вариантом. Диодный мост можно собрать самостоятельно на любых выпрямляющих диодах. Или же можно не заморачиваться, и приобрести уже готовую сборку.

  • Третий вариант – это диодный мост со сглаживающим конденсатором (4000-5000 мкФ, 25 вольт). На выходе данной схемы мы получается постоянный ток, что очень даже подходит для изготовления зарядного устройства для автомобильного аккумулятора своими руками.

Все вышеперечисленные схемы имеют в своем составе также предохранители типа 1А и приборы для измерения. С их помощью возможно контролировать процесс заряда аккумуляторной батареи. Однако можно исключить их из данных схем, но в таком случае для периодических измерений и контроля над функциональностью прибора необходимо будет использовать мультиметр.

И если в случае с контролем напряжения подобный вариант возможен (просто нужно будет приставлять щупы к клеммам), то вот проконтролировать ток будет достаточно сложно. В таком случае для измерения необходимо будет включать прибор в разрыв цепи. Это означает, что каждый раз для проверки тока потребуется выключать питание, после проводить проверку мультиметром в режиме измерения тока, а потом опять включать питание. Придется разбирать измерительную цепь в обратном направлении. В связи с этим необходимо заранее подумать о применении амперметра хотя бы на 10 А.

Среди недостатков данных схем можно выделить отсутствие возможности регулировки параметров заряда. Поэтому выбирая элементную базу, отдавайте предпочтение таким вариантам, чтобы на выходе сила тока соответствовала тем самым 10% или немного меньше от емкости батареи. Напряжение должно наблюдаться в пределах от 13,2 до 14,4 вольт.

Но что делать в случае, когда ток больше необходимой отметки? Для этого в схему ЗУ следует добавить резистор, который размещают на плюсовом выходе диодного моста непосредственно перед амперметром. По месту необходимо подобрать сопротивление, основной ориентир – ток. При этом мощность резистора должна быть немного больше, так как на него будет рассеиваться лишний заряд, приблизительно 10-20 ВТ.

Еще один нюанс – скорее всего зарядное устройство для автомобильного аккумулятора, сделанное своими руками по вышеперечисленным схемам будет сильно нагреваться. Чтобы избежать перегорания, можно в схему добавить куллер, который должен располагаться после диодного моста.

Схемы с регулировкой

Недостатком всех данных схем является отсутствие возможности производить регулировку подачи тока. И единственный вариант изменить это – менять сопротивления. Можно поставить переменный подстроечный резистор, что является наиболее простым и эффективным вариантом. Однако более надежно будет произвести ручную регулировку тока в схеме с использованием двух транзисторов и подстроечным резистором.

Ниже предоставлена схема зарядного устройства для автомобильного аккумулятора своими руками, в которой имеется возможность производить ручную регулировку тока заряда.

Изменение тока заряда происходит при помощи переменного резистора, который необходимо разместить после составного транзистора VT1-VT2, поэтому через него проходит небольшой ток. В связи с этим мощность будет в среднем около 0,5-1 Вт.

Трансформатор с мощностью в 250-500 Вт и вторичная обмотка 15-17 В, при которой диодный мост должен быть собран на диодах с рабочим током в 5% и более.

Следует выбирать транзистор VT1 — П210, так как VT2 можно выбрать из нескольких вариантов. Это германиевые П13-П17 или же кремниевые КТ814, КТ 816. Чтобы отводить тепло и не провоцировать перегрев, следует на металлической пластине или же в области радиатора установить отвод не менее 300 см кв.

Зарядное устройство из блока питания

Для сбора простого зарядного устройства своими руками, необходим самый обыкновенный блок питания от старого компьютера и немного знаний в области радиотехники. При этом характеристики прибора будут очень даже неплохими. С помощью подобного устройства можно заряжать аккумуляторные батареи током не более 10 А, при этом имеется возможность регулировки тока и напряжения заряда.

Основным условием является блок питания с контроллером TL494. Чтобы создать автомобильную зарядку своими руками из блока питания компьютера, необходимо собрать схему, которая представлена ниже на картинке.

Далее представим алгоритм для доработки операции:

  1. Откусить провода шин питания, кроме желтый и черных.
  2. Произвести соединение желтых проводов между собой и отдельно черных, с учетом полюса «+» и «-» (отталкиваясь от данных на схеме).
  3. Перерезать все дорожки, которые ведут к выводам контроллера 1, 14, 15 и 16.
  4. Произвести установку на кожух блока питания переменных резисторов, номинал которых будет соответствовать 10 и 4,4 кОм, что необходимо для регулировки напряжения и тока зарядки.
  5. При помощи навесного монтажа собрать схему, показанную на картинке выше.

В случае правильного монтажа, на этом доработку можно считать завершенной. Останется только добавить вольтметр, амперметр и провода с крокодильчиками для подключения к батарее.

Имея небольшие знания и умения в области электрики и радиотехнологии, можно с легкостью разобраться с задачей создания зарядного устройства в домашних условиях. Важно соблюдать нюансы, и обращать внимания на мелочи, так как даже банальное несовпадение проводов или же путаница в полюсах может привести устройство в негодность.

Видео «Пошаговая инструкция по сборке зарядного устройства»

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для

автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Схема простого зарядного устройства для АКБ

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Схема простого зарядного устройства для АКБСхема простого зарядного устройства для АКБСхема простого зарядного устройства

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Схема простого зарядного устройства

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для десульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

для консульфатации аккумулятора

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мостДиодный мост

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

 эффективный ток заряда

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

 эффективный ток заряда

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

 эффективный ток заряда

переделал на транзистор

 эффективный ток заряда эффективный ток заряда эффективный ток заряда

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Введите электронную почту и получайте письма с новыми поделками.

 эффективный ток заряда

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

заряда аккумуляторной батареи

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН


Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема зарядного устройства для никель-кадмиевых аккумуляторов

Ранее мы создали много типов схем зарядных устройств, которые включают солнечное зарядное устройство , для зарядного устройства с плавающей запятой , 12v Зарядное устройство для аккумуляторной батареи , Силовая батарея и т. Д. Сегодня мы находимся Собираюсь построить зарядное устройство для зарядки Ni-Cd Battery . Процесс зарядки никель-кадмиевых аккумуляторов можно выполнить двумя способами:

  1. Быстрая зарядка
  2. Медленная зарядка

Быстрая зарядка требует правильного отключения после полной зарядки.В отличие от свинцово-кислотной батареи или литиевой батареи, никель-кадмиевая батарея не может заряжаться поплавком. Также отключение зарядного устройства после полной зарядки не простое. Это должно быть сделано на основе алгоритма, который измеряет температуру батареи и постоянное снижение напряжения после завершения зарядки. Другая часть заключается в том, что перед быстрой зарядкой аккумулятор должен быть полностью разряжен.

Следовательно, здесь мы собираемся создать простое медленное зарядное устройство , которое может заряжать никель-кадмиевую батарею при более низких и безопасных токах.Этот процесс без автоматического выключения не повредит ячейку так сильно по сравнению с быстрым зарядным устройством без автоматического отключения.

Медленные зарядные устройства могут использоваться для преодоления саморазряда . Никель-кадмиевая батарея саморазряжается со скоростью 15-20% в месяц, что выше по сравнению с 5-10% в месяц литиевой батареей. Но он ниже по сравнению с Ni-MH аккумулятором, саморазряд которого составляет 20-30% в месяц.

Зарядка никель-кадмиевых батарей:

Электрохимическое устройство, которое подает энергию во внешнюю цепь посредством внутренней химической реакции, называется ячейкой .Комбинация этих элементов в последовательном или параллельном соединении называется Battery .

Ниже приводится спецификация нескольких никель-кадмиевых аккумуляторов типоразмеров AA и AAA,

Specification sheet of Ni Cd batteries of AA and AAA size

Разница между стандартной зарядкой и быстрой зарядкой основана на зарядном напряжении, зарядном токе и методе или алгоритме отключения.

Voltage-Time waveform of simple charging Voltage-Time waveform of fast charging

Быстрая зарядка требует точного отключения питания в конце зарядки с использованием температуры элемента или отрицательного изменения напряжения.Различные типы, в которых можно заряжать никель-кадмиевую батарею:

Ni-Cd batteries charging specification

Используемая здесь батарея имеет емкость 600 мАч и указывает на то, что мы должны заряжать элемент при 60 мА, что является рекомендуемой медленной зарядкой 0,1C. Следовательно, мы сделали постоянный ток медленным зарядом.

600mAh Ni-Cd battery

Необходимые компоненты:

  1. LM317 — 2№
  2. 1N4007 — 4Нет.
  3. Конденсатор, 100 мкФ (электролитический) — 1Нет.
  4. AAA или AA держатель батареи — 1No
  5. POT (100Ὠ) — 1Нет.
  6. светодиод (красный -1)
  7. Резисторы (1 кОм -1; 560Ὠ -1; 100Ὠ -2)
  8. Перфорированная точечная доска
  9. Соединительные провода

Ni-Cd Схема медленного зарядного устройства и пояснение:

Ni-Cd Battery Charger Circuit diagram

Вот как выглядит схема на Perf Board:

Ni-Cd Battery Charger Circuit PCB

Ni-Cd Battery Charger Circuit hardware

1. Понижающий трансформатор:

Здесь используется понижающий трансформатор переменного тока с номиналом от 230 В до 15 В, 1 А.Несмотря на то, что выходная сила тока трансформатора составляет 1 А, допустимый длительный ток составляет всего 0,4 А для безопасной работы. Можно использовать трансформатор с напряжением 230 В / 0-15 В или 230 В / 15-0-15 В.

230v to15v Step down Transformer

2. Мостовой выпрямитель:

Двухполупериодный мостовой выпрямитель преобразует источник переменного тока в источник постоянного тока посредством процесса, называемого выпрямлением и. Выпрямитель, используемый здесь, сделан с использованием четырех диодов в конфигурации моста.

3.Цепь регулятора напряжения:

Здесь LM317 используется для регулирования напряжения; это трехконтактный регулируемый регулятор

LM317 Circuit

LM317 Resistor Voltage Calculation

Таким образом, для зарядки аккумулятора требуется максимальное выходное напряжение 1,45 В.

В OUT = 1,25 * {1+ (100/560 Ом)}

В OUT = 1,47 В

Этот калькулятор напряжения LM317 можно использовать, если вам нужен калькулятор для расчета резистора или планирования выходного напряжения.

4. Цепь ограничителя тока:

Так как ток зарядки аккумулятора на 600 мАч будет 60 мА. Соответствующий резистор должен быть рассчитан,

I OUT = 1,25 / R

Следовательно, R установлен на 21Ὠ, чтобы ограничить ток до 0,06A.

Работа цепи зарядного устройства Ni-Cd:

Напряжение разомкнутой цепи без батареи выглядит как 1,5 В, что видно из рисунка ниже,

Ni-Cd Battery Charger Circuit in action

Как упоминалось ранее, выходное напряжение равно 1.49 В, ток ограничен 60 мА, а красный светодиод указывает на состояние зарядки батареи.

Ni-Cd Battery Charger Circuit

,
Бортовые зарядные устройства и зарядные станции для электромобилей

Поскольку мир готовится к революции EV, все еще верно, что скорость адаптации низкая. Электрические транспортные средства (EV), несмотря на то, что они являются более экологичным, более плавным и дешевым видом транспорта, пока не кажутся практичными. Причина в двух словах: Стоимость и Экосистема. В настоящее время стоимость электромобилей в значительной степени сопоставима с автомобилями с бензиновым двигателем, что делает его менее значимым выбором для покупателей. Ожидается, что прогресс в области аккумуляторных технологий и правительственных схем снизит стоимость электромобиля в будущем.

Вторая часть заключается в том, что у покупателей нет подходящей экосистемы для использования электромобиля без особых хлопот. В «Экосистеме» я имею в виду зарядные станции для зарядки вашего электромобиля, когда у вас заканчивается заряд батареи. Представьте себе, что вы пользуетесь бензиновым транспортным средством, когда в вашем городе нет бензоколонок, и вы можете заправиться только в своем месте, добавив, что для зарядки обычного электромобиля потребуется не менее 6-8 часов. Многие компании, такие как Tesla, EVgo, пункт зарядки и т. Д., Уже признали эту проблему, установив зарядные станции по всей стране.В таких странах, как Нидерланды, которые пообещали отказаться от бензинового двигателя к 2035 году, он уверен, что дороги будущего будут заменены электромобилями вместо двигателей внутреннего сгорания, и вокруг нас появится множество станций зарядки электромобилей.

Но, , как работает станция зарядки электромобилей ? Может ли одна зарядная станция заряжать все типы электромобилей? Какие типы зарядных устройств для электромобилей ? Какие протоколы соблюдаются для зарядных устройств EV? В этой статье мы обсудим ответ на все эти вопросы, а также поймем, что представляет собой зарядная станция для электромобилей и какие подсистемы стоят за ней .Прежде чем идти дальше, вы должны прочитать о батареях, используемых в электромобиле, и о том, как работает система управления батареями внутри электромобиля.

Оборудование по поставке электромобилей (EVSE)

Оборудование, которое представляет собой зарядную станцию ​​для электромобилей, в совокупности называется оборудованием для подачи электромобилей (EVSE). Этот термин более популярен и относится только к зарядным станциям. Некоторые люди также называют его ECS, что означает «Электрическая зарядная станция».

EVSE разработан и спроектирован для зарядки аккумуляторной батареи с использованием сети для подачи энергии; эти аккумуляторы могут присутствовать в электромобиле (EV) или в электромобиле (PEV). Мощность, разъем и протокол для этих EVSE будут варьироваться в зависимости от его дизайна, который мы обсудим в этой статье.

Бортовые зарядные устройства и зарядные станции

Прежде чем мы перейдем к зарядным станциям, важно понять, что находится внутри электромобиля и к какой части будет подключено зарядное устройство. Большинство электромобилей сегодня поставляются с бортовым зарядным устройством (OBC ), и производитель также предоставляет зарядное устройство вместе с автомобилем. Эти зарядные устройства вместе с бортовым зарядным устройством могут использоваться клиентом для зарядки его электромобиля от его домашней розетки, как только он / она доставит его домой. Но эти зарядные устройства очень простые и не имеют каких-либо дополнительных функций, поэтому для зарядки обычного электромобиля обычно требуется около 8 часов.

Типы зарядных станций EV (EVSE)

Зарядные станции

можно разделить на два типа: зарядные станции переменного тока и зарядные станции постоянного тока.

Зарядная станция переменного тока , как следует из названия, обеспечивает питание переменного тока от сети для EV, который затем преобразуется в постоянный ток с использованием встроенного зарядного устройства для зарядки транспортного средства. Эти зарядные устройства также называются зарядными устройствами уровня 1 и уровня 2 , которые используются в жилых и коммерческих помещениях. Преимущество зарядной станции переменного тока состоит в том, что встроенное зарядное устройство будет регулировать напряжение и ток в соответствии с требованиями для электромобиля, поэтому зарядная станция не обязательно должна сообщаться с электромобилем. Недостатком является его низкая выходная мощность, что увеличивает время зарядки. Типичная система зарядки переменного тока показана на рисунке ниже. Как мы видим, переменный ток от сети подается напрямую в OBC через EVSE, затем OBC преобразует его в постоянный ток и заряжает аккумулятор через BMS. Пилотный провод используется для определения типа зарядного устройства, подключенного к EV, и установки требуемого входного тока для OBC. Мы поговорим об этом позже.

Types of EV Charging Stations Level 1 and 2

Станция зарядки постоянного тока получает энергию переменного тока от сети, преобразует ее в напряжение постоянного тока и использует для зарядки аккумуляторной батареи напрямую, минуя встроенное зарядное устройство (OBS).Эти зарядные устройства обычно выдают высокое напряжение до 600 В и ток до 400 А, что позволяет заряжать электромобиль менее чем за 30 минут по сравнению с 8-16 часами на зарядном устройстве переменного тока. Они также называются зарядными устройствами уровня 3 и широко известны как быстрые зарядные устройства постоянного тока (DCFC) или суперзарядные устройства. Преимущество этого типа зарядного устройства заключается в его быстром времени зарядки, в то время как недостатком является его сложная конструкция , в которой ему требуется связь с EV, чтобы заряжать его эффективно и безопасно.Типичная система зарядки постоянного тока показана ниже, поскольку вы можете видеть, что EVSE подает постоянный ток непосредственно на аккумулятор в обход OBS. EVSE скомпонован в виде пакетов, чтобы обеспечить высокий ток, так как один стек не сможет обеспечить высокий ток из-за ограничений переключателя питания.

Types of EV Charging Stations Level 3 and 4

Обычно зарядные устройства уровня 1 предназначены для бытового использования. — это зарядные устройства, которые поставляются производителями вместе с электромобилем, который можно использовать для зарядки электромобиля через стандартные розетки.Таким образом, работают от однофазного источника питания переменного тока и могут выдавать напряжение от 12А до 16А, а для зарядки электромобиля 24 кВт / ч требуется около 17 часов. Зарядное устройство уровня 1 не играет большой роли в зарядных станциях.

Зарядное устройство уровня 2 предоставляется в качестве обновления для зарядного устройства уровня 1 , которое может быть установлено в доме по специальному запросу при условии, что в доме есть источник питания с разделенной фазой или может использоваться в общественных / коммерческих зарядных станциях в качестве хорошо.Эти зарядные устройства могут обеспечивать выходной ток до 80 А из-за высокого входного напряжения и могут заряжать электромобиль за 8 часов. Зарядное устройство уровня 3 или суперзарядные устройства предназначены только для общественных зарядных станций. Они требуют многофазного переменного тока от сети и потребляют более 240 кВт, что почти в 10 раз больше, чем обычные кондиционеры в нашем доме. Таким образом, эти зарядные устройства требуют специального разрешения от сети для работы.

Зарядные устройства уровня 2 и уровня 3 считаются более эффективными, чем зарядное устройство уровня 1 , поскольку преобразование переменного / постоянного тока и постоянного / постоянного тока происходит в самом EVSE.Из-за огромного размера и сложности зарядных устройств уровня 2 и уровня 3 их нельзя встроить в электромобиль, так как это увеличит вес и снизит эффективность электромобиля.

Зарядная станция Тип

Уровень зарядного устройства

Напряжение и ток переменного тока

Зарядное устройство Power

Время зарядки 24-киловаттной батареи

Зарядная станция переменного тока

Уровень 1 — Жилой

Однофазный — 120/230 В и ~ 12–16 А

~ 1.От 44 кВт до ~ 1,92 кВт

~ 17 часов

Зарядная станция переменного тока

Уровень 2 — Коммерческий

Фаза разделения

— 208/240 В и ~ 15–80 А

~ 3,1 кВт до ~ 19,2 кВт

~ 8 часов

Зарядная станция постоянного тока

Уровень 3 — Нагнетатель

Однофазный — 300/600 В и ~ 400 А

~ 120 кВт до ~ 240 кВт

~ 30 минут

Типы разъемов для зарядки электромобилей

Так же, как европейцы работают при 220 В 50 Гц, а американцы работают при 110 В 60 Гц, электромобили также имеют различные типы зарядных разъемов в зависимости от страны, в которой они изготовлены.Это привело к путанице среди производителей ESVE, поскольку они не могут быть легко универсальными для всех электромобилей. Основные классификации разъемов для зарядных устройств переменного и постоянного тока приведены ниже.

AC Зарядные розетки для электромобилей :

AC Charging Sockets for Electric Vehicle

Среди трех наиболее распространенным типом гнезда для зарядки переменного тока является гнездо JSAE1772 , популярное в Северной Америке. Как видите, штекер / разъем имеет несколько соединений, три широких контакта предназначены для фазы, нейтрали и заземления, в то время как два маленьких контакта используются для связи между зарядным устройством и EV (интерфейсом пилота), об этом мы поговорим позже.Mennekes или VDE-AR-E используется в Европе для трехфазной системы зарядки переменного тока и, следовательно, может выдавать высокую мощность до 44 кВт. Le-Grand также представляет собой аналогичное гнездо с защитной шторкой для предотвращения попадания мусора в зарядное гнездо. Согласно техническим стандартам только гнезда HSAE 1772 и VDE-AR-E рекомендуется использовать во всех зарядных устройствах переменного тока будущего.

Зарядные розетки постоянного тока для электромобиля :

DC Charging Sockets for Electric Vehicle

Со стороны зарядного устройства постоянного тока у нас есть зарядное гнездо CHAdeMO , которое является самым популярным типом розеток.Он был представлен Японией и вскоре адаптирован Францией и Кореей. Сегодня большинство электромобилей, таких как Nissan Leaf, Kia и т. Д., Имеют такие типы розеток. Гнездо имеет два широких контакта для шин питания постоянного тока и контакты для протокола CAN. Как мы знаем, зарядные устройства постоянного тока уровня 3 не используют встроенное зарядное устройство и, следовательно, должны сами обеспечивать требуемое напряжение и ток для аккумуляторной батареи электромобиля. Это делается путем установления линии связи (пилотной линии) через протокол сети управления (CAN) с BMS аккумуляторной батареи.Затем BMS инструктирует зарядное устройство начать процесс зарядки, контролирует его и затем просит зарядное устройство прекратить зарядку.

CHAdeMO charger socket

Автомобили Tesla имеют свои собственные типы зарядных устройств, называемые суперзарядными устройствами , и, следовательно, имеют свои собственные типы разъемов, как показано выше. Но они продают адаптер, который может преобразовать их порт для зарядки с помощью зарядных устройств CHAdeMO или CSS. Зарядное устройство CDD — это еще одна популярная розетка, которая объединяет в себе зарядные устройства как переменного, так и постоянного тока.Как вы можете видеть на изображении, зарядное устройство разделено на два сегмента для поддержки постоянного и переменного тока. Он может поддерживать CAN и Power Line Communication (PLC) и широко используется в европейских автомобилях, таких как Audi, BMW, Ford, GM, Porsche и т. Д. Он может поддерживать выходную мощность до 400 кВт и выходную мощность 43 кВт.

Зарядная станция переменного тока EVSE — Зарядные устройства 1 и 2 уровня

Зарядная станция уровня 1 и уровня 2 просто должна подавать питание переменного тока на бортовое зарядное устройство в электромобиле, которое затем позаботится о процессе зарядки; это может выглядеть на первый взгляд.Но они несут ответственность за обеспечение правильного количества энергии от сети, как того требует аккумуляторный блок электромобиля, посредством связи с ним через контрольный провод. Подсистемы, присутствующие в типичной зарядной станции переменного тока, представленной в учебном документе TI, показаны ниже.

EVSE AC Charging Station

Зарядные устройства уровня уровня 1 имеют максимальный выходной ток 16А из-за ограничений в розетках бытового питания, в то время как зарядные устройства уровня уровня 2 могут обеспечить до 80А при работе от трехфазного источника питания.В зарядных устройствах переменного тока уровня 1 и уровня 2 обычно используются стандартные штекерные разъемы SAEJ1772.

Как видите, линия переменного тока (L1 и L2) подключена к разъему J1772 через реле. Это реле будет закрыто, чтобы начать процесс зарядки, и разомкнется, когда зарядка будет завершена. Связь с сигналом пилот-сигнала используется для определения состояния батареи, а хост-система решает, сколько энергии должно быть подано на бортовое зарядное устройство. Мы поговорим об этом позже.

Блок питания состоит из преобразователя переменного / постоянного тока , который принимает сетку питания переменного тока и преобразует ее в постоянное напряжение 15 В, используя схему переключения. Затем эти 15 В поступают на регулятор, который состоит из преобразователя постоянного тока, который использует три разных стабилизатора напряжения для регулирования 12, 5 и 3,3 В, которые используются для питания датчиков, дисплеев и контроллеров в зарядном устройстве. Измерительная система состоит из V / I Sense цепей , которые используются для измерения переменного тока и переменного напряжения.На приведенной выше блок-схеме трансформатор тока (CT) используется для измерения входного тока, но также можно использовать шунтирующий или флюсовый метод. Напряжение измеряется на любой стороне реле, чтобы узнать, является ли реле открытым или закрытым. Поскольку измерительная подсистема имеет дело с переменным напряжением и током, она имеет цифровую изоляцию от основной вычислительной подсистемы.

Подсистема обработки хоста состоит из основного микроконтроллера, который получает информацию от пилотной связи и на основе информации запускает реле, используя схемы драйвера реле.Он также контролирует ток и напряжение, используя значения, предоставленные подсистемой измерения, и при необходимости предпринимает корректирующие действия. Этот контроллер также будет иметь дисплей, EEPROM и RTC для предоставления пользователю полезной информации, такой как время зарядки, текущее состояние и т. Д.

Pilot Wire Communication в EVSE (зарядное устройство переменного тока)

В зарядных устройствах переменного тока скорость зарядки, то есть требуемый входной ток, фактически определяется самим EV. Не всем электромобилям требуется одинаковая величина входного зарядного тока, и, следовательно, зарядное устройство переменного тока должно связываться с электромобилем, чтобы узнать требуемый входной ток и выполнить рукопожатие, прежде чем зарядка действительно может начаться, эта связь называется пилотной проводной связью .

Обычно в зарядных устройствах переменного тока используется кабель J1772, который имеет две точки на зарядном устройстве, помимо линий электропередачи. Эти две сигнальные линии помогают зарядному устройству связываться с EV с помощью сигналов +/- 12 В ШИМ. По умолчанию сигнальные штыри на выходе EVSE + 12 В, это при подключении к EV будет снижено до 9 В из-за нагрузочного резистора, присутствующего в электромобиле, это сигнализирует EVSE, что разъем был подключен к EV. После этого EVSE отправит ШИМ-сигнал величиной 12 В и значение рабочего цикла, соответствующее максимальному току, который он может выдать.Если EV в порядке с этим значением тока, тогда он выполняет квитирование, изменяя сопротивление нагрузки и понижая напряжение ШИМ до 6 В, после чего начинается зарядка.

Pilot Wire Communication in EVSE

Приведенный выше график иллюстрирует связь, происходящую между EV и EVSE. Как вы можете видеть вначале, когда EVSE не подключен к выходу EVSE 12 В, как только он подключается, он падает до 9 В и запускается сигнал ШИМ. Здесь, в этом случае, рабочий цикл сигнала ШИМ составляет 50% и означает, что доступный входной ток составляет 30 А (максимальная емкость 60 А).Если EV бортового зарядного устройства могли работать с этим током, то EV сигнализирует о рукопожатии, изменяя сопротивление нагрузки, и сигнал PWM теперь падает до 6 В. Зарядка начинается в этой точке и будет продолжаться до тех пор, пока сигнал ШИМ колеблется между 6 В и -12 В. EV изменит свое сопротивление нагрузки снова, когда процесс зарядки завершится, чтобы дать сигнал зарядному устройству отключиться.

Зарядная станция постоянного тока EVSE — Зарядные устройства 3-го уровня

Зарядные станции третьего уровня более сложны, чем Уровни 1 и Уровня 2, поскольку преобразование постоянного тока в аккумуляторный блок должно выполняться самим EVSE.Поскольку DC EVSE обходит встроенное зарядное устройство, он должен знать все жизненно важные параметры аккумуляторной батареи для безопасной зарядки, поэтому между EVSE и BMS EV необходимо установить CAN или PLC (связь по линии электропередачи). Зарядное устройство уровня 3 обычно использует гнездо зарядного устройства CHAdeMO, но другие разъемы, такие как комбинированный зарядный разъем J1772 и разъем Tesla, также адаптированы различными производителями. Эти зарядные устройства могут подавать до 200 А непосредственно в аккумуляторную батарею для зарядки электромобиля менее чем за 30 минут. ,Типичная упрощенная блок-схема подсистемы подзарядки постоянного тока показана ниже.

EVSE DC Charging Station

Система здесь слишком упрощена за счет удаления систем, которые мы обсуждали ранее в системе зарядки переменного тока. Зарядное устройство уровня уровня 3 всегда работает от трехфазного источника питания переменного тока , поэтому преобразователь переменного / постоянного тока должен принимать трехфазное питание и преобразовывать его в постоянное напряжение 40 В или выше. Это постоянное напряжение будет затем повышено до более высокого уровня (350-700 В), как того требует аккумуляторная батарея.Выходное напряжение и ток будут определены BMS EV , которые затем будут переданы в EVSE через связь CAN / PLC. Большинство из этих зарядных устройств уровня 3 будут размещены на зарядных станциях для общего доступа, и, следовательно, обязательным условием является интерфейс человек-машина (HMI) . Некоторые EVSE также будут иметь беспроводные функции, такие как NFC, Bluetooth, функции онлайн-платежей и т. Д., Чтобы упростить публичное использование.

Задача технологии заключается в подсистемах преобразователя переменного тока в постоянный и преобразователя постоянного тока в модуле.Поскольку зарядное устройство потребляет в сети большой ток, требуется соответствующая система коррекции коэффициента мощности . Также преобразователи работают с очень высоким током, и силовые электронные переключатели внутри них, такие как MOSFET и IGBT, не могут работать как единое целое. Следовательно, обычно блоки преобразователя разделяются на небольшие блоки, которые затем объединяются параллельно для обеспечения высокого тока.

Достижения в EVSE

Мало кто может предположить, что электромобили не являются полностью зелеными, если они питаются от электричества, генерируемого из невозобновляемых электростанций, таких как уголь, атомная энергетика и т. Д.Хорошо, что солнечных батарей EVSE постепенно становятся популярными. Из-за размера, эффективности и веса солнечной панели невозможно использовать электромобиль непосредственно от солнечной энергии. Но EVSE, с другой стороны, может получать энергию от солнечной панели вместо сетки. Недостатком является огромные первоначальные затраты и низкая эффективность, поскольку солнечная энергия должна храниться в батареях, а затем снова передаваться в электромобили. Кроме того, эффективность солнечной панели очень низкая (44,5% — самая высокая на сегодняшний день), и ее технология все еще нуждается в разработке, чтобы сделать ее доступным по цене.

Другим заметным улучшением является система Vehicle to Grid (V2G). При этом батарейный блок в электромобиле может выступать источником питания для бытового оборудования. Современные электромобили поставляются с огромным аккумулятором до 100 кВт или более, что делает его легкой переносной электростанцией. Таким образом, при правильном преобразователе питание от этих аккумуляторных батарей может подаваться в сеть в часы максимальной нагрузки. Затем эти электромобили могут быть отправлены на станции, работающие на солнечной энергии, чтобы снова зарядить их, создав полностью экологичную экологическую систему.

Создание станции зарядки электромобилей в Индии

По мере того, как электромобили EV становятся быстро популярными в Индии, мы уже можем заметить, как многие крупные компании EVSE появляются в крупных городах Индии. С нормами, все еще стандартизированными для Индии, следующие проблемы являются общими при создании EVSE в Индии.

1. Низкий уровень зарядки для индийских электромобилей: Электромобили в Индии все еще не готовы к зарядным устройствам уровня 3 или Super, так как их аккумуляторы не поддерживают быструю зарядку.Скорость зарядки батареи зависит от уровня C, индийские электромобили имеют очень низкий рейтинг C, поэтому даже зарядное устройство 2-го уровня не требуется для большинства электромобилей. Это создаст меньший спрос на публику EVSE

2. Проблема перепродажи электроэнергии: Согласно нормам, вы не можете напрямую перепродавать электроэнергию. Только DISCOM разрешено продавать электроэнергию. Однако под давлением ISGF зарядные станции могут рассматриваться как ожидание этого в будущем.

3.Слабые распределительные трансформаторы: Большинство распределительных трансформаторов (DT) в Индии уже перегружены. EVSE будет потреблять большую мощность от сети, что делает его серьезной проблемой. Следовательно, полный DT в этой области должен быть заменен на более высокий рейтинг. Это будет серьезной проблемой, так как новый EVSE начинает появляться в городе. Вы можете прочитать эту статью от ISGF, чтобы узнать больше о настройке станции зарядки электромобилей в Индии.

,

Зарядка электромобиля | HowStuffWorks

Любой электромобиль, использующий аккумуляторы, нуждается в зарядной системе для зарядки аккумуляторов. Система зарядки имеет две цели:

  • Для накачки электроэнергии в батареи так быстро, как это позволят батареи
  • Для контроля батарей и предотвращения их повреждения во время процесса зарядки

Самые современные системы зарядки контролируют напряжение аккумулятора, ток и температуру аккумулятора, чтобы минимизировать время зарядки.Зарядное устройство посылает как можно больше тока без чрезмерного повышения температуры аккумулятора. Менее сложные зарядные устройства могут контролировать только напряжение или силу тока и делать определенные предположения о средних характеристиках батареи. Такое зарядное устройство может подавать максимальный ток на батареи до 80 процентов от их емкости, а затем обрезать ток до некоторого заданного уровня для последних 20 процентов, чтобы избежать перегрева батарей.

Электромобиль Джона Мауни на самом деле имеет две разные системы зарядки.Одна система принимает напряжение 120 В или 240 В от обычной электрической розетки. Другая — это индуктивная зарядная система Magna-Charge, популярная на автомобиле GM / Saturn EV-1. Давайте посмотрим на каждую из этих систем в отдельности.

У обычной бытовой зарядной системы есть преимущество: везде, где есть розетка, можно заряжать. Недостатком является время зарядки.

Обычная домашняя розетка на 120 вольт обычно оснащена автоматическим выключателем на 15 А, что означает, что максимальное количество энергии, которое может потреблять автомобиль, составляет примерно 1500 Вт, или 1.5 киловатт-часов в час. Поскольку для полной зарядки аккумулятора в машине Джона обычно требуется от 12 до 15 киловатт-часов, полная зарядка автомобиля может занять от 10 до 12 часов.

Используя 240-вольтовую цепь (например, розетку для электрической сушилки), автомобиль может получать 240 вольт при 30 амперах или 6,6 киловатт-часов в час. Такое расположение позволяет значительно ускорить зарядку и может полностью зарядить аккумулятор за четыре-пять часов.

В машине Джона сливная горловина для газа была снята и заменена зарядной пробкой. Простое подключение к стене с помощью сверхмощного удлинителя запускает процесс зарядки.

В этом автомобиле зарядное устройство встроено в контроллер. В большинстве автомобилей домашнего приготовления зарядное устройство представляет собой отдельную коробку, расположенную под капотом, или даже может быть отдельно стоящим устройством, отдельным от автомобиля.

В следующем разделе мы рассмотрим систему Magna-Charge.

,
Зарядка электромобиля — аккумулятор университета

Узнайте о различных вариантах зарядки электромобиля

Если у вас есть электромобиль, вы хотите побаловать аккумулятор и зарядить автомобиль дома и в офисе. Требования к мощности для зарядки электромобиля среднего размера аналогичны требованиям электрической плиты, подключенной к цепи 40 А, 240 В переменного тока, развиваемой до 9,6 кВт. Большинство электромобилей среднего размера имеют встроенное зарядное устройство мощностью 6,6 кВт, рассчитанное на зарядку от 4 до 5 часов. (6,6 кВт получается умножением 220 В на 30 А.)

Бортовые зарядные устройства ограничены стоимостью, размерами и тепловыми проблемами. Благодаря наличию трехфазного переменного тока в большинстве жилых домов в Европе встроенные зарядные устройства могут быть меньше, чем при использовании двухфазной системы. Renault предлагает компактные бортовые зарядные устройства мощностью от 3 до 43 кВт.

Подключение для зарядки электромобиля называется сервисным оборудованием для электромобилей (EVSE). За исключением уровня 1, все должно быть установлено электриком, если он еще не доступен. Есть три категории зарядки.

Уровень 1: 1,5 кВт типовой комплект

Кабель подключается к обычной бытовой розетке напряжением 115 В, 15 А (230 В, ~ 6 А в Европе). Это однофазное соединение производит около 1,5 кВт, а время зарядки составляет от 7 до 30 часов в зависимости от размера батареи. Уровень 1 удовлетворяет потребности в ночной зарядке для электронных велосипедов, скутеров, электрических инвалидных колясок и PHEV, не превышающих 12 кВт / ч.

EV дальность движения за минуту зарядки: 130 м (426 футов)

Уровень 2: 7 кВт типичный

Настенный; 230VAC, 30A, двухполюсный, заряжает EV среднего размера за 4-5 часов.Это самая распространенная домашняя и общественная зарядная станция для электромобилей. Он производит около 7 кВт для питания 6,6 кВт бортового зарядного устройства EV. Стоимость установки EVSE 2-го уровня составляет около 750 долларов США на материалы и рабочую силу. Домохозяйства со службой 100А должны заряжать электромобиль после приготовления пищи и сушки одежды, чтобы предотвратить превышение выделенной мощности в доме.

EV дальность движения за минуту зарядки: 670 м (2200 футов)

Уровень 3: Типовая мощность 50 кВт (зарядка станций Tesla V2 при 120 кВт)

Быстрое зарядное устройство постоянного тока; 400–600 В постоянного тока, до 300А; служит в качестве сверхбыстрой зарядки, обходя встроенное зарядное устройство и подавая питание непосредственно на аккумулятор.Зарядные устройства 3-го уровня обеспечивают мощность 50 кВт, а затем могут достигать 120 кВт, чтобы заполнить литий-ионную батарею до 80 процентов примерно за 30 минут. Потребляемая мощность в 120 кВт равна пяти домохозяйствам.

EV пробег за минуту зарядки при 50 кВт: 4,6 км (2,9 мили)

сверхбыстрая зарядка: 150 кВт; до 400 кВт (зарядка станций Tesla V3 при 250 кВт) Зарядные станции мощностью

400 кВт будут заряжаться при напряжении до 800 В постоянного тока. Это приводит к высокой стоимости компонентов и высокой потребности в электроэнергии, равной 16 домохозяйствам.Фактор стресса сверхбыстрой зарядки аккумулятора также играет свою роль. Если возможно, зарядите по более обычной ставке.

EV диапазон в минуту заряда при 400 кВт: 37 км (23 миль) (30 км Тесла)


В 1990-х и 2000-х годах производители электромобилей предприняли согласованные усилия для разработки универсального порта зарядки для электромобилей, в результате чего появился SAE J1772, 5-контактный разъем для передачи данных и переменного тока. Недостатком является время зарядки согласно уровню 2, которое занимает несколько часов.

Производители электромобилей согласны с тем, что будущее электромобиля заключается в быстрой зарядке. В то время как уровень 2 набирает всего около 40 км (25 миль) в час, быстрая зарядка от постоянного тока заряжает аккумулятор до 80 процентов за 30 минут. Это превращает EV из пригородного автомобиля в туристический, и маркетинг EV начал продвигать концепцию.

Япония первой представила систему быстрой зарядки постоянного тока, разработав разъем CHAdeMO для Nissan Leaf и Mitsubishi MiEV. JEVS (Стандарт электромобилей Японии) определил разъем, который включает в себя два больших контакта постоянного тока с контактами связи для CAN-BUS.Стандарт CHAdeMO был сформирован TEPCO (Токийская электроэнергетическая компания), Nissan, Mitsubishi, Fuji Heavy Industries (производитель автомобилей Subaru) и Toyota в 2008 году. Он заряжает аккумулятор при 500 В постоянного тока и 125 А с мощностью зарядки до 62,5 кВт. CHAdeMO расшифровывается как «CHArge на ходу»; На рисунке 1 показана вилка.

Рисунок 1: Японская вилка CHAdeMO DC Fast Charge, разработанная в 2008 году. Nissan и Mitsubishi ведут DC быструю зарядку и разработали CHAdeMO.Он быстро заряжается при 500 В постоянного тока и 125 А, развивая мощность до 62,5 кВт.

В то время как разъем CHAdeMO работает хорошо, Запад лоббировал его, ссылаясь на «технические проблемы». Причиной этого может быть синдром «не изобретен на моем заднем дворе», а также стандарт, который благоприятствует определенным маркам автомобилей. SAE отклонил CHAdeMO в пользу своей версии.

После большой задержки в 2012 году Комитет SAE International J1772 выпустил стандарт быстрой зарядки SAE DC, систему, также известную как комбинированная система зарядки (CCS). Задержка вызвала

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *