Конденсатор электролитический обозначение на схеме. Электролитический конденсатор: устройство, обозначение на схеме и маркировка

Что такое электролитический конденсатор. Как устроен электролитический конденсатор. Как обозначается электролитический конденсатор на схеме. Как маркируются электролитические конденсаторы. Каковы особенности применения электролитических конденсаторов. Какие бывают типы электролитических конденсаторов.

Содержание

Устройство и принцип работы электролитического конденсатора

Электролитический конденсатор представляет собой особый тип конденсатора, который отличается от других типов своей конструкцией и принципом работы. Основные элементы его устройства:

  • Анод — пластина или фольга из алюминия, тантала или ниобия
  • Катод — электролит (жидкий или твердый)
  • Диэлектрик — тонкая оксидная пленка на поверхности анода
  • Корпус — алюминиевый цилиндр или прямоугольный пластиковый корпус
  • Выводы — для подключения к электрической цепи

Принцип работы основан на образовании тонкого диэлектрического слоя оксида на поверхности анода при протекании тока. Это позволяет достичь очень большой емкости при малых размерах конденсатора.


Обозначение электролитического конденсатора на схеме

На принципиальных электрических схемах электролитический конденсатор обозначается следующим образом:

«` + «`

Основные элементы обозначения:

  • Две параллельные линии разной длины — обозначают обкладки конденсатора
  • Изогнутая линия — обозначает, что конденсатор электролитический
  • Знак «+» — указывает на полярность (положительный вывод)

Рядом с обозначением обычно указывается емкость конденсатора в микрофарадах (мкФ) и его рабочее напряжение.

Маркировка электролитических конденсаторов

На корпусе электролитического конденсатора обычно указывается следующая информация:

  • Емкость в микрофарадах (мкФ)
  • Максимальное рабочее напряжение (В)
  • Допустимое отклонение емкости (%)
  • Полярность выводов (обозначение «+» или «-«)
  • Рабочая температура
  • Дата изготовления

Пример маркировки: 470μF 25V 105°C

Это означает конденсатор емкостью 470 мкФ, рабочим напряжением 25 В и максимальной рабочей температурой 105°C.

Особенности применения электролитических конденсаторов

При использовании электролитических конденсаторов важно учитывать следующие особенности:


  1. Строгое соблюдение полярности при подключении. Неправильное подключение может привести к выходу из строя или даже взрыву конденсатора.
  2. Ограничение по максимальному рабочему напряжению. Превышение указанного напряжения может повредить диэлектрик.
  3. Чувствительность к температуре. Высокие температуры могут сократить срок службы конденсатора.
  4. Наличие тока утечки. Электролитические конденсаторы имеют больший ток утечки по сравнению с другими типами.
  5. Ограниченный срок хранения. Со временем характеристики конденсатора могут ухудшаться даже без использования.

Типы электролитических конденсаторов

Существует несколько основных типов электролитических конденсаторов:

1. Алюминиевые электролитические конденсаторы

Наиболее распространенный тип. Имеют большую емкость при относительно низкой стоимости. Используются в источниках питания, аудиотехнике, промышленной электронике.

2. Танталовые электролитические конденсаторы

Отличаются высокой надежностью и стабильностью характеристик. Имеют меньшие размеры по сравнению с алюминиевыми при той же емкости. Применяются в профессиональной и военной технике.


3. Ниобиевые электролитические конденсаторы

Относительно новый тип. Сочетают преимущества танталовых и алюминиевых конденсаторов. Используются в высокотехнологичных устройствах.

4. Полимерные электролитические конденсаторы

Используют твердый полимерный электролит вместо жидкого. Обладают низким эквивалентным последовательным сопротивлением (ESR) и высокой надежностью. Применяются в компьютерной технике и автомобильной электронике.

Преимущества и недостатки электролитических конденсаторов

Электролитические конденсаторы имеют ряд преимуществ и недостатков по сравнению с другими типами конденсаторов:

Преимущества:

  • Высокая удельная емкость (большая емкость при малых габаритах)
  • Относительно низкая стоимость
  • Широкий диапазон доступных емкостей (от единиц до сотен тысяч микрофарад)
  • Хорошая фильтрация низкочастотных сигналов

Недостатки:

  • Наличие полярности (нельзя использовать в цепях переменного тока)
  • Относительно высокий ток утечки
  • Ограниченный срок службы (особенно при высоких температурах)
  • Чувствительность к перенапряжению
  • Низкая точность номинальной емкости (большой разброс параметров)

Как определить емкость электролитического конденсатора?

Определить емкость электролитического конденсатора можно несколькими способами:


  1. По маркировке на корпусе. Обычно емкость указывается непосредственно на корпусе конденсатора в микрофарадах (мкФ).
  2. С помощью мультиметра со встроенной функцией измерения емкости. Подключите выводы конденсатора к соответствующим разъемам мультиметра, соблюдая полярность.
  3. Используя специализированный измеритель емкости (капациметр). Это наиболее точный метод.
  4. Методом заряда-разряда. Этот способ требует дополнительного оборудования и расчетов, но может быть полезен при отсутствии специальных приборов.

Важно помнить, что реальная емкость может отличаться от номинальной в пределах допуска, указанного производителем.

Применение электролитических конденсаторов в электронных схемах

Электролитические конденсаторы широко используются в различных электронных устройствах. Вот некоторые типичные области их применения:

  • Фильтрация пульсаций в источниках питания
  • Разделение постоянной и переменной составляющих сигнала
  • Сглаживание напряжения в выпрямителях
  • Накопление энергии в импульсных схемах
  • Фильтрация низкочастотных сигналов в аудиосистемах
  • Стабилизация напряжения в регуляторах напряжения
  • Блокировка по питанию в цифровых схемах

При проектировании электронных устройств важно правильно выбирать параметры электролитических конденсаторов, учитывая не только требуемую емкость, но и рабочее напряжение, ток пульсаций, температурный диапазон и другие характеристики.



Условное обозначение конденсаторов на схемах

Наряду с резисторами конденсаторы являются наиболее широко используемыми компонентами электрических цепей. Основные характеристики конденсатора — номинальная ёмкость и номинальное напряжение. Чаще всего в схемах используются постоянные конденсаторы, и гораздо реже — переменные и подстроенные. Отдельной группой стоят конденсаторы, изменяющие свою ёмкость под воздействием внешних факторов.

Общие условные графические обозначения конденсаторов постоянной ёмкости приведены на рис. 1 и их определяет соответствующий ГОСТ.

Рис.1. Условное обозначение конденсаторов

Номинальное напряжение конденсаторов (кроме так называемых оксидных) на схемах, как правило, не указывают. Только в некоторых случаях, например, в схемах цепей высокого напряжения рядом с обозначением номинальной ёмкости можно указывать и номинальное напряжение (см.

рис. 1, С4). Для оксидных же конденсаторов (старое название электролитические) и особенно на принципиальных схемах бытовых электронных устройств это давно стало практически обязательным (рис. 2).

Рис.2. Условное обозначение оксидных (электролитических) конденсаторов

Подавляющее большинство оксидных конденсаторов — полярные, поэтому включать их в электрическую цепь можно только с соблюдением полярности. Чтобы показать это на схеме, у символа положительной обкладки такого конденсатора ставят знак «+». Обозначение С1 на рис. 2 — общее обозначение поляризованного конденсатора. Иногда используется другое изображение обкладок конденсатора (см. рис.2, C2 и C3).

С технологическими целями или при необходимости уменьшения габаритов в некоторых случаях в один корпус помещают два конденсатора, но выводов делают только три (один из них — общий). Условное графическое обозначение сдвоенного конденсатора наглядно передает эту идею (см.

рис. 2, С4).

Для развязки цепей питания высокочастотных устройств по переменному току применяют так называемые проходные конденсаторы. У них тоже три вывода: два — от одной обкладки («вход» и «выход»), а третий (чаще в виде винта) — от другой, наружной, которую соединяют с экраном или завёртывают в шасси. Эту особенность конструкции отражает условное графическое обозначение такого конденсатора (рис. 3, С1). Наружную обкладку обозначают короткой дугой, а также одним (C2) или двумя (C3) отрезками прямых линий с выводами от середины. Условное графическое обозначение с позиционным обозначением С3 используют при изображении проходного конденсатора в стенке экрана. С той же целью, что и проходные, применяют опорные конденсаторы. Обкладку, соединяемую с корпусом (шасси), выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (см. рис. 3, С4).

Рис. 3. Условное обозначение проходных конденсаторов

Конденсаторы переменной ёмкости (КПЕ) предназначены для оперативной регулировки и состоят обычно из статора и ротора. Такие конденсаторы широко использовались, например, для изменения частоты настройки радиовещательных приёмников. Как говорит само название, они допускают многократную регулировку ёмкости в определенных пределах. Это их свойство показывают на схемах знаком регулирования — наклонной стрелкой, пересекающей базовый символ под углом 45°, а возле него часто указывают минимальную и максимальную ёмкость конденсатора (рис. 4). Если необходимо обозначить ротор КПЕ, поступают так же, как и в случае проходного конденсатора (см. рис. 4, С2).

Рис.4. Условное обозначение переменных конденсаторов

Для одновременного изменения ёмкости в нескольких цепях (например, в колебательных контурах) используют блоки, состоящие из двух, грех и большего числе КПЕ. Принадлежность КПЕ к одному блоку показывают на схемах штриховой линией механической связи, соединяющей знаки регулирования, и нумерацией секций (через точку в позиционном обозначении, рис. 5). При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь только соответствующей нумерацией секций (см. рис. 5, С2.1, С2.2, С2.3).

Рис.5. Условное обозначение блочных переменных конденсаторов

Разновидность КПЕ — подстроенные конденсаторы. Конструктивно они выполнены так, что их ёмкость можно изменять только с помощью инструмента (чаще всего отвертки). В условном графическом обозначении это показывают знаком подстроечного регулирования — наклонной линией со штрихом на конце (рис. 6). Ротор подстроечного конденсатора обозначают, если необходимо, дугой (см. рис. 6, С3, С4).

Рис.6. Условное обозначение подстроечных конденсаторов

Саморегулирумые конденсаторы (или нелинейные) обладают способностью изменять ёмкость под действием внешних факторов. В радиоэлектронных устройствах часто применяют вариконды (от английских слов vari(able) — переменный и cond(enser)—еще одно название конденсатора). Их ёмкость зависит от приложенного к обкладкам напряжения. Буквенный код варикондов — CU (U— общепринятый символ напряжения), обозначаются в этом случае — базовый символ конденсатора, перечеркнутый знаком нелинейного саморегулирования с латинской буквой U (рис. 7, конденсатор CU1).

Рис.7. Условное обозначение варикондов и термоконденсаторов

Аналогично построено обозначение термоконденсаторов. Буквенный код этой разновидности конденсаторов — СK (рис. 7, конденсатор СК2). Температура среды, естественно, обозначается символом t°.

Электролитический конденсатор обозначение на схеме

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению. При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?


Поиск данных по Вашему запросу:

Электролитический конденсатор обозначение на схеме

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры
  • Электролитический конденсатор
  • Условное обозначение конденсаторов на схемах
  • Условные обозначения конденсаторов и их параметры
  • Как определить полярность электролитических конденсаторов, где плюс и минус?
  • Условные графические обозначения конденсаторов
  • Электрический конденсатор
  • Конденсаторы | Принцип работы и маркировка конденсаторов
  • Обозначение конденсаторов на схеме
  • Конденсаторы: виды, устройство, маркировка и параметры конденсаторов

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как читать электрические схемы. Радиодетали маркировка обозначение

Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры


На электрических схемах постоянные резисторы имеют внутри символа обозначения знак, указывающий номинальную мощность рассеяния рис. Рядом с условным обозначением резистора указывается величина его номинального сопротивления и знак R с цифрой или числом, указывающим порядковый номер резистора на схеме.

Величины номинальных сопротивлений от 1 до 99 Ом указываются числом без единицы измерения, например 5,6; В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям.

Условное обозначение типа конденсатора до года было буквенным. На первом месте обычно стоит буква:. В соответствии ГОСТ маркировка конденсаторов состоит из трех элементов.

Первый одна или две буквы обозначает группу конденсаторов:. Эти буквы используются в качестве запятых при указании дробных значений емкости, например обозначение ЗНЗ или ЗпЗ соответствует пФ. На конденсаторах, имеющих корпус достаточно большого размера, могут обозначаться тип, номинальная емкость табл.

Если конденсатор подобного типа выпускается только одного класса точности, то допуск не маркируют. Если же размеры не позволяют, то применяется цветовая маркировка см. Допустимое отклонение емкости от номинального значения обозначается буквами табл.

Главная Системы видеонаблюдения Охранная сигнализация Пожарная сигнализация Система пожаротушения Система контроля удаленного доступа Оповещение и эвакуация Контроль периметра Система домофонии Парковочные системы Проектирование слаботочных сетей Аварийный контроль. Раздел: Документация Обозначение резисторов на электрических схемах Величины номинальных сопротивлений от 1 до 99 Ом указываются числом без единицы измерения, например 5,6; Обозначение и маркировка конденсаторов В основу классификации конденсаторов положено деление их на группы по виду применяемого диэлектрика и по конструктивным особенностям.

Через дефис цифрой мог быть указан порядковый номер разработки например, КМ Третий элемент — порядковый номер разработки конденсатора.


Электролитический конденсатор

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? Общее обозначение конденсатора. Обозначение переменного конденсатора. Если переменный конденсатор сдвоенный строенный , то стрелочки соединяются пунктиром. Обозначение подстроечного конденсатора.

Сокращенное условное обозначение конденсаторов состоит из следующих Применяются в тех же цепях, что и электролитические.

Условное обозначение конденсаторов на схемах

Обозначения условные графические в схемах. Резисторы, конденсаторы. Название таких говорит само за себя. Емкость постоянна, значит ее номинал постоянен, задается производителем. Наиболее распространены из них:. С органическим диэлектриком металлобумажные, бумажные, пленочные, лакопленочные. В бумажных, диэлектриком является специальная конденсаторная бумага. Обкладками является алюминевая фольга. В металлобумажных вместо фольги наносится тончайший слой металла непосредственно на бумагу.

Условные обозначения конденсаторов и их параметры

Конденсатор является пассивным электронным компонентом. Ёмкость конденсатора измеряется в фарадах. Первые конденсаторы, состоящие из двух проводников, разделенных непроводником диэлектриком , упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше [3]. Конденсатор является пассивным электронным компонентом [4]. В простейшем варианте конструкция состоит из двух электродов в форме пластин называемых обкладками , разделённых диэлектриком , толщина которого мала по сравнению с размерами обкладок см.

Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию.

Как определить полярность электролитических конденсаторов, где плюс и минус?

Проекты обсуждались на совещаниях, состоявшихся в Ницце в г. За принятие Публикации проголосовали национальные комитеты следующих стран:. Часть 1. Настоящий стандарт распространяется на конденсаторы постоянной емкости, предназначенные для использования в электронной аппаратуре. Стандарт устанавливает стандартизованные термины, методы контроля и испытаний, используемые в групповых ТУ и в ТУ на конденсаторы конкретных типов, сертифицируемых в Системах сертификации изделий электронной техники.

Условные графические обозначения конденсаторов

Конденсатором называется система из двух или более проводников обкладок , разделенных диэлектриком, предназначенная для использования ее электрической емкости. Электрическая емкость — способность накапливать на обкладках конденсатора электрический заряд. Если взять две изолированные металлические пластины, расположенные на некотором расстоянии друг от друга, и зарядить их равными разноимёнными зарядами, то на одну из пластин при этом перейдёт некоторый отрицательный заряд добавится некоторое избыточное число электронов , а на другой появится равный ему положительный заряд соответствующее число электронов будет удалено из пластины. Емкость характеризуется отношением заряда к величине напряжения на обкладках:. Емкость зависит от геометрических размеров обкладок, толщины диэлектрика и его диэлектрической проницаемости. Диэлектрическая проницаемость в свою очередь у конденсаторов постоянной емкости — константа, а у нелинейных конденсаторов — зависит от напряженности электрического поля. Номинальная емкость — условное значение емкости, полученное на стадии проектирования, указываемое на корпусе электроэлемента или таре.

Условные обозначения и полярность электролитических конденсаторов Обозначение полярных электролитических конденсаторов на схеме.

Электрический конденсатор

Электролитический конденсатор обозначение на схеме

Электролитический конденсатор — один из видов ёмкостных элементов, применяемый в электрике, радиотехнике и электронике. Повсеместное использование этих деталей обусловлено большой величиной ёмкости, при скромных габаритах. Конденсаторы предназначены для длительной работы в цепях постоянного тока. Они являются полярными емкостными двухполюсниками и должны включаться в схему с соблюдением полярности питающего напряжения.

Конденсаторы | Принцип работы и маркировка конденсаторов

Что такое конденсатор? Конденсатор это система из двух и более электродов обычно в форме пластин, называемых обкладками , разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок конденсатора. Такая система обладает взаимной ёмкостью и способна сохранять электрический заряд. ТОесть из рисунка видно что это две параллельные металические пластины разделённые каким то материалом диэлектриком- это вещество которое не проводит электрический ток.

Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Обозначение конденсаторов на схеме

Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях. Базовая структура конденсатора имеет простое объяснение. Между двумя конденсаторными пластинами имеется диэлектрик, изолирующий две проводящие поверхности. Таким образом, конденсатор представляет собой пассивное устройство, способное хранить электрозаряд. Конденсаторные пленки, диэлектрик и конструкция в значительной мере определяют свойства конденсатора, а именно возможность сохранять заряд, который пропорционален напряжению, приложенному к его пластинам.

Конденсаторы: виды, устройство, маркировка и параметры конденсаторов

Конденсаторы от лат. Емкость конденсатора зависит от размеров площади обкладок, расстояния между ними и свойств диэлектрика. Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты. Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости КПЕ , подстроечные и саморегулирующиеся.


СИСТЕМА ОБОЗНАЧЕНИЙ И МАРКИРОВКА КОНДЕНСАТОРОВ

 

Есть идеи или полезные схемы? Рады будем опубликовать! Присылайте:

  [email protected]

 

 

 

 

табл.2.5), затем через дефис ставится порядковый номер разработки.

к примеру, обозначение К 10–17 означает керамический низковольтный конденсатор с 17 порядковым номером разработки. Кроме того, применяются обозначения, указывающие конструктивные особенности: КСО — конденсатор слюдяной спрессованный, КЛГ — конденсатор литой герметизированный, КТ -керамический трубчатый и т. д. Подстроечные конденсаторы обозначаются буквами КТ, переменные -буквами К П. Затем рекомендуется цифра, указывающая тип диэлектрика: 1 — вакуумные; 2 — воздушные; 3 — газонаполненные; 4 — твердый диэлектрик; 5 — жидкий диэлектрик.В конструкторской документации помимо типа конденсатора указывается величина емкости, рабочее напряжение и ряд других параметров. к примеру, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 — подстроечный конденсатор с твердым диэлектриком. На принципиальных схемах конденсаторы обозначаются в виде двух параллельных черточек и дополнительных элементов. На рис.2.20,а отображен конденсатор постоянной емкости, на рис.2.20,6 — полярный (электролитический) конденсатор, на рис.2.20, в — конденсатор переменной емкости, на рис.2.20, г — подстроечный, на рис.2.20, д — варикап, на рис.2.20, е — вариконд. Таблица 2.5

Обозначение Тип конденсатора Обозначение Тип конденсатора
К10 Керамический, низковольтный (Upa6<1600B) К50 Электролитический, фольговый, Алюминиевый
К15 Керамический, высоковольтный (Upa6>1600B) К51 Электролитический, фольговый, танталовый,ниобиевый и др.
К20 Кварцевый К52 Электролитический, объемно-пористый
К21 Стеклянный К53 Оксидно-полупроводниковый
К22 Стеклокерамический К54 Оксидно-металлический
К23 Стеклоэмалевый К60 С воздушным диэлектриком
К31 Слюдяной малой мощности К61 Вакуумный
К32 Слюдяной большой мощности К71 Пленочный полистирольный
К40 Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками К72 Пленочный фторопластовый
К73 Пленочный полиэтилентереф-талатный
К41 Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками К75 Пленочный комбинированный
К76 Лакопленочный
К42 Бумажный с металлизированными Обкладками К77 Пленочный, Поликарбонатный


Около конденсатора ставится буква С с порядковым номером конденсатора, к примеру С26, и указывается величина емкости. Около подстроенных и переменных конденсаторов указывается минимальная и максимальная емкости. В малогабаритных конденсаторах применяется сокращенная буквенно-кодовая маркировка. При емкости конденсатора менее 100 пФ ставится буква П. к примеру, 33 П означает, что емкость конденсатора 33 пф. В настоящее время принята система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра того характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации (см. Если емкость лежит в пределах от 100 пф до 0,1 мкф, то ставится буква И (нанофарада). к примеру, 10 Н означает емкость в 10 нф или 10 000 пф. При емкости более 0,1 мкф ставится буква М, к примеру, ЮМ означает емкость в 10 мкф. к примеру, обозначения 5…25 означают, что емкость изменяется от 5 до 25 пикофарад. На корпусе конденсатора указываются его основные параметры. Слитно с обозначением емкости указывается буквенный индекс, характеризующий класс точности. Для ряда Е6 с точностью ±20% ставится индекс В, для ряда Е12 — индекс С, а для ряда Е24 — индекс И. к примеру, маркировка 1Н5С означает конденсатор емкостью 1,5 нф (1500 пф), имеющий отклонение от номинала ±10%..

  Указатель   Назад   Вперед

 

 

 

 

При использовании материалов этого сайта ссылка обязательна!

Правообладатели статей являются их правообладателями. Информация получена из открытых источников.

Конденсатор 1000 пф маркировка. Маркировка конденсаторов. Обозначение конденсатора на схеме

Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

Обозначение конденсатора на схеме

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Электролитические конденсаторы

Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

Температурный коэффициент емкости конденсатора (ТКЕ)

ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

Маркировка конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

1R5 = 1П5 = 1,5пФ

Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

6М8 = 6,8мкФ

Цифровая маркировка конденсаторов

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Параллельное соединение конденсаторов

Емкость конденсаторов при параллельном соединении складывается.

Последовательное соединение конденсаторов

Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

Если последовательно соединены два конденсатора:

Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Д опуск в % Б уквенное обозначение
лат.рус.
± 0,05pA
± 0,1pBЖ
± 0,25pCУ
± 0,5pDД
± 1,0FР
± 2,0GЛ
± 2,5H
± 5,0JИ
± 10KС
± 15L
± 20MВ
± 30NФ
-0. ..+100P
-10…+30Q
± 22S
-0…+50T
-0…+75UЭ
-10…+100WЮ
-20…+5YБ
-20…+80ZА

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Н оминальное рабочее напряжение , B Б уквенный код
1,0I
1,6R
2,5M
3,2A
4,0C
6,3B
10D
16E
20F
25G
32H
40S
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
350T
400Y
450U
500V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Э лектрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин — обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68000 мкФ 1 мкФ до 16 мкФ
± 10 и ±20 ±10 и ±50 ±20
50 — 250 6,3 — 400 250 — 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в).

Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида — диэлектрика очень мала.

При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные — просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов — разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Таблица 2.


Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.
Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот — металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Таблица 3.


Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 — 630 160 6,3 — 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Конденсаторы на основе поликарбоната используются в фильтрах, генераторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.
В металлобумажных конденсаторах общего назначения, обкладки изготавливаются путем напыления металла на бумагу пропитанную специальным составом и покрытые тонким слоем лака.

КодЕмкость(пФ)Емкость(нФ)Емкость(мкФ)
1091,0(пФ)0,001(нФ)0,000001(мкФ)
1591,5(пФ)0,0015(нФ)0,0000015(мкФ)
2292,2(пФ)0,0022(нФ)0,0000022(мкФ)
3393,3(пФ)0,0033(нФ)0,0000033(мкФ)
4794,7(пФ)0,0047(нФ)0,0000047(мкФ)
6896,8(пФ)0,0068(нФ)0,0000068(мкФ)
10010(пФ)0,01(нФ)0,00001(мкФ)
15015(пФ)0,015(нФ)0,000015(мкФ)
22022(пФ)0,022(нФ)0,000022(мкФ)
33033(пФ)0,033(нФ)0,000033(мкФ)
47047(пФ)0,047(нФ)0,000047(мкФ)
68068(пФ)0,068(нФ)0,000068(мкФ)
101100(пФ)0,1(нФ)0,0001(мкФ)
151150(пФ)0,15(нФ)0,00015(мкФ)
221220(пФ)0,22(нФ)0,00022(мкФ)
331330(пФ)0,33(нФ)0,00033(мкФ)
471470(пФ)0,47(нФ)0,00047(мкФ)
681680(пФ)0,68(нФ)0,00068(мкФ)
1021000(пФ)1(нФ)0,001(мкФ)
1521500(пФ)1,5(нФ)0,0015(мкФ)
2222200(пФ)2,2(нФ)0,0022(мкФ)
3323300(пФ)3,3(нФ)0,0033(мкФ)
4724700(пФ)4,7(нФ)0,0047(мкФ)
6826800(пФ)6,8(нФ)0,0068(мкФ)
10310000(пФ)10(нФ)0,01(мкФ)
15315000(пФ)15(нФ)0,015(мкФ)
22322000(пФ)22(нФ)0,022(мкФ)
33333000(пФ)33(нФ)0,033(мкФ)
47347000(пФ)47(нФ)0,047(мкФ)
68368000(пФ)68(нФ)0,068(мкФ)
104100000(пФ)100(нФ)0,1(мкФ)
154150000(пФ)150(нФ)0,15(мкФ)
224220000(пФ)220(нФ)0,22(мкФ)
334330000(пФ)330(нФ)0,33(мкФ)
474470000(пФ)470(нФ)0,47(мкФ)
684680000(пФ)680(нФ)0,68(мкФ)
1051000000(пФ)1000(нФ)1,0(мкФ)


2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.


3.Третий вариант.

У советских конденсаторов вместо латинской «р» ставилось «п».

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130….-49)A
33N
0(+30….-47)C
-33(+30….-80)H
-75(+30….-80) L
-150(+30. …-105)P
-220(+30….-120)R
-330(+60….-180)S
-470(+60….-210)T
-750(+120….-330)U
-500(-250….-670) V
-2200K

Далее следует напряжение в вольтах, чаще всего — в виде обычного числа.
Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

Напряжение (В)Буквеный код
1 I
1,6R
3,2A
4C
6,3 B
10D
16 E
20F
25G
32H
40C
50 J
63K
80 L
100N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с (вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).


Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

БукваМантисса.
A 1,0
B1,1
C1,2
D1,3
E 1,5
F1,6
G 1,8
H2,0
J2,2
K2,4
L2,7
M3,0
N3,3
P 3,6
Q3,9
R4,3
S 4,7
T 5,1
U5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

ГОСТ 2.

728-74 ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.728-74

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
РЕЗИСТОРЫ
, КОНДЕНСАТОРЫ

Unified system for design documentation.
Graphical symbols in diagrams.
Resistors, capacitors

ГОСТ
2. 728-74*
(CT СЭВ 863-78 и
СТ СЭВ 864-78)

Взамен
ГОСТ 2.728-68,
ГОСТ 2.729-68
в части п. 12 и
ГОСТ 2.747-68
в части подпунктов 24, 25 таблицы

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 марта 1974 г. № 692 срок введения установлен

с 1975-07-01

1. Настоящий стандарт устанавливает условные графические обозначения (обозначения) резисторов и конденсаторов на схемах, выполняемых вручную или автоматизированным способом во всех отраслях промышленности.

Стандарт полностью соответствует СТ СЭВ 863-78 и СТ СЭВ 864-78.

2. Обозначения резисторов общего применения приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. Резистор постоянный

Примечание . Если необходимо указать величину номинальной мощности рассеяния резисторов, то для диапазона от 0,05 до 5 В допускается использовать следующие обозначения резисторов, номинальная мощность рассеяния которых равна:

0,05 В

0,125 В

0,25 В

0,5 В

1 В

2 В

5 В

2. Резистор постоянный с дополнительными отводами:

а) синим симметричным

б) одним несимметричным

в) с двумя

Примечание. Если резистор имеет более двух дополнительных отводов, то допускается длинную сторону обозначения увеличивать, например, резистор с шестью дополнительными отводами

3. Шунт измерительный

Примечание. Линии, изображенные та продолжения коротких сторон прямоугольника, обозначают выводы для включения в измерительную цепь

4. Резистор переменный

Примечания :

1. Стрелка обозначает подвижный контакт

2. Неиспользуемый вывод допускается не изображать

3. Для переменного резистора в реостатном включении допускается попользовать следующие обозначения:

а) общее обозначение

б) с нелинейным регулированием

5. Резистор переменный с дополнительными отводами

6. Резистор переменный с несколькими подвижными контактами, например, с двумя:

а) механически не связанными

б) механически связанными

7. Резистор переменный сдвоенный

Примечание к пп. 4-7.

Если необходимо уточнить характер регулирования, то следует применять обозначения регулирования по ГОСТ 2. 71-74; например, резистор переменный:

а) с плавным регулированием

б) со ступенчатым регулированием

Для указания разомкнутой позиции используют обозначение, например, резистор с разомкнутой позицией и ступенчатым регулированием

в) с логарифмической характеристикой регулирования

г) с обратно логарифмической (экспоненциальной) характеристикой регулирования

д) регулируемый с помощью электродвигателя

8. Резистор переменный с замыкающим контактом, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Точка указывает положение подвижного контакта резистора, в котором происходят срабатывание замыкающего контакта. При этом замыкание происходит при движении от точки, а размыкание — при движении к точке.

2. При разнесенном способе замыкающий контакт следует изображать

3. Точку в обозначениях допускается не зачернять

9. Резистор подстроечный

Примечания :

1. Неиспользуемый вывод допускается не изображать

2. Для подстроечного резистора в реостатном включении допускается использовать следующее обозначение

10. Резистор переменный с подстройкой

Примечание . Приведенному обозначению соответствует следующая эквивалентная схема:

11. Тензорезистор:

а) линейный

б) нелинейный

12. Элемент нагревательный

13. Терморезистор:

а) прямого подогрева с положительным температурным коэффициентом

с отрицательным температурным коэффициентом

б) косвенного подогрева

14. Bap истор

(Измененная редакция, Изм. № 1, 2).

3. Обозначения функциональных потенциометров, предназначенных для генерирования нелинейных непериодических функций, приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Потенциометр функциональный однообмоточный (например, с профилированным каркасом)

Примечание. Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функции, например, потенциометр для генерирования квадратичной зависимости

2. Потенциометр функциональный однообмоточный с несколькими дополнительными отводами, например, с тремя

Примечания :

1. Линии, изображающие дополнительные отводы, должны делить длинную сторону обозначения на отрезки, приблизительно пропорциональные линейным (или угловым) размерам соответствующих участков потенциометра

2. Линия, изображающая подвижный контакт, должна занимать промежуточное положение относительно линий дополнительных отводов

3. Потенциометр функциональный многообмоточный, например, двухобмоточный, изображенный:

а) совмещенно

б) разнесенно

Примечание . Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образом, что все обмотки находятся на общем каркасе, а подвижный контакт электрически контактирует одновременно со всеми обмотками

4. Потенциометр функциональный многообмоточный, например, трехобмоточный с двумя дополнительными отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечание к пп. 3 и 4. При разнесенном изображении применяют следующие условности:

а) подвижный контакт следует показывать на обозначении каждой обмотки потенциометра;

б) линии механической связи между обозначениями подвижных контактов не изображают;

в) линию электрической связи, изображающую цепь подвижного контакта, допускается изображать только на одной из обмоток, например, двухобмоточный потенциометр с последовательно соединенными обмотками

Примечание . Обозначения, установленные в табл. 2, следует применять для потенциометров, у которых подвижный контакт перемещается между двумя фиксированными (начальным и конечным) положениями. При этом конструктивное пополнение потенциометра может быть любым: линейным, кольцевым или спиральным (многооборотные потенциометры).

4. Обозначения функциональных кольцевых замкнутых потенциометров, предназначенных для циклического генерирования нелинейных функций, приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Потенциометр функциональный кольцевой замкнутый однообмоточный (например, с профилированным каркасом) с одним подвижным контактом и двумя отводами

Примечание . Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функция. например, синусный потенциометр

2. Потенциометр функциональный кольцевой замкнутый однообмоточный с несколькими подвижными контактами, например, с тремя:

а) механически не связанными

б) механически связанными

3. Потенциометр функциональный кольцевой замкнутый однообмоточный с изолированным участком

Примечание . На изолированном участке электрический контакт между обмоткой и подвижным контактом отсутствует

4. Потенциометр функциональный кольцевой замкнутый однообмоточный с короткозамкнутым участком

Примечания .

1. На короткозамкнутом участке потенциометра сопротивление равно нулю.

2. Кольцевой сектор, соответствующий короткозамкнутому участку, допускается не зачернять

3. Потенциометр функциональный кольцевой замкнутый многообмоточный, например, двухобмоточный с двумя отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образам, что все обмотки находятся на общем каркасе, а подвижный контакт электрически -контактирует одновременно со всеми обмотками.

2. При разнесенном изображении действуют условности, установленные в примечании к п.п. 3 и 4 табл. 2

Примечание . Все угловые размеры в обозначениях (углы между линиями отводов, между подвижными механически связанными контактами, размеры и расположение секторов изолированных или короткозамкнутых участков) должны быть приблизительно равны соответствующим угловым размерам в конструкции потенциометров.

5. Обозначения конденсаторов приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Конденсатор постоянной емкости

Примечание . Для указания поляризованного конденсатора используют обозначение

1а. Конденсатор постоянной емкости с обозначенным внешним электродом

2. Конденсатор электролитический:

а) поляризованный

б) неполяризованный.

Примечание . Знак «+» допускается опускать, если это не приведет к неправильному чтению схемы

3. Конденсатор постоянной емкости с тремя выводами (двухсекционный), изображенный:

а) совмещенно

б) разнесенно

4. Конденсатор проходной

Примечание . Дуга обозначает наружную обкладку конденсатора (корпус)

Допускается использовать обозначение

5. Конденсатор опорный. Нижняя обкладка соединена с корпусом (шасси) прибора

6. Конденсатор с последовательным собственным резистором

7. Конденсатор в экранирующем корпусе:

а) с одной обкладкой, соединенной с корпусом

б) с выводом от корпуса

8. Конденсатор переменной емкости

9. Конденсатор переменной емкости многосекционный, например, трехсекционный

10. Конденсатор подстроечный

11. Конденсатор дифференциальный

11а. Конденсатор переменной емкости двухстаторный (в каждом положении подвижного электрода С=С)

Примечание к пп. 8 — 11а. Если необходимо указать подвижную обкладку (ротор), то ее следует изображать в виде дуги, например

12. Вариконд

13. Фазовращатель емкостный

14. Конденсатор широкополосный

16. Конденсатор помехоподавляющий

(Измененная редакция, Изм. № 1).

6. Условные графические обозначения резисторов и конденсаторов для схем, выполнение которых при помощи печатающих устройств ЭВМ установлено стандартами Единой системы конструкторской документации, приведены и табл. 5.

Таблица 5

Наименование

Обозначение

Отпечатанное обозначение

1. Резистор постоянный, изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

2. Конденсатор постоянной емкости, изображенный:

а) в горизонтальной цепи

б) в вертикальной цели

3. Конденсатор электролитический поляризованный изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

Примечание . Линии электрической связи - по ГОСТ 2.721.-74.

(Измененная редакция, Изм. № 2).

7. Размеры условных графических обозначений приведены и табл. 6.

Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Таблица 6

Наименование

Обозначение

1. Резистор постоянный

2. Резистор постоянный с дополнительными отводами:

а) одним

б) с двумя

3. Резистор переменный

4. Резистор переменный с двумя подвижными контактами

5. Резистор подстроечный

6. Потенциометр функциональный

7. Потенциометр функциональный кольцевой замкнутый:

а) однообмоточный

б) многообмоточный, например, двухобмоточный

8. Потенциометр функциональный кольцевой замкнутый с изолированным участком

9. Конденсатор постоянной емкости

10. Конденсатор электролитический

11. Конденсатор опорный

12. Конденсатор переменной емкости

13. Конденсатор проходной

Как проверить конденсатор и емкость конденсатора

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости. Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
 Конденсаторы постоянной емкости. Условное графическое обозначение конденсатора постоянной емкости—две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними . Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон. Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). 

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк.

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме. Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.). В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ). При этом емкость от 0 до 100 пФ обозначают в пикофарадах, помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.). Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в на нофарадах, а от 0,1 мкФ и выше — в микрофарадах. В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.). Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —ЮН, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

   Потери в конденсаторах, определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики. Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика. В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

  Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

  Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц. Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

  Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их 

  Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из .которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора. К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу. Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно. На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. 

  С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление»

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад. Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой обкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора. В отличие от других большинство типов оксидных конденсаторов полярны, т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе. Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается мощнейшим взрывом.

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

  С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). 

  Конденсаторы переменной емкости (КПЕ). Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются. Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.). Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

  В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций. Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секций. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

  В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные (от лат. differentia — различие) конденсаторы. У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой. При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. 

Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более). Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

  Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространена. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора). Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы. Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм. Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, клеем и т. п.).

Саморегулируемые конденсаторы. Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках. Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

  Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U.

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°.

Допускаемое отклонение емкости любого конденсатора  от номинала обычно указывают в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала обозначают в пикофарадах. Если на конденсаторе указано «100± 10%», это означает, что емкость его не может быть меньше 90,и больше 11О пФ. Если в маркировке допуск не указан, то у такого конденсатора допускаемое отклонение от номинала ±20%. На конденсаторах, изготовляемых только с одним, определенным допускаемым отклонением от номинала, например, оксидных (старое название — электролитические) конденсаторов серии КЭ, сегнетокерамических КДС, допуск также не указывается.

При работе конденсатора в цепи, где имеется и переменная и постоянная составляющие, общая сумма напряжения постоянного тока и амплитудного значения напряжения, переменного тока не должна превышать номинального напряжения. Если переменная составляющая напряжения мала (что имеет место во всех каскадах усиления высокой и промежуточной частот приемника), то, выбирая конденсатор, достаточно учитывать только постоянное напряжение на нем. Но в цепях оконечного каскада и выпрямителя надо учитывать также и переменную составляющую..

Следует, однако, иметь в виду, что запас по напряжению не должен слишком завышаться, так как у конденсаторов с большим номинальным напряжением обычно больше габариты, что приводит к увеличению габаритов всего устройства в целом, а также в конечном итоге к повышению стоимости устройства.

Оксидные конденсаторы (или как их ранее называли — электролитические) не рекомендуется использовать при напряжениях переменной составляющей, близких к половине рабочего напряжения конденсатора. Это объясняется особенностями устройства и режимом их работы.

При нормальной температуре фактическая емкость оксидного конденсатора может быть на 20% меньше и на 80% больше обозначенной на его корпусе. При максимальной рабочей температуре, которая для конденсатора широкого применения составляет 70 — 80°С, емкость может увеличиваться на 20 — 30% по сравнению с измеренной при нормальной температуре. У конденсаторов, предназначенных для бытовой аппаратуры, емкость при температуре — 10° С может уменьшиться в два раза но сравнению с емкостью при нормальной температуре (кондсенсаторы К50-6, К50-7). В аппаратуре для полевых, условий работы используются конденсаторы (К50-3, К50-ЗА, К50-ЗБ), у которых емкость снижается не более чем в два раза при температуре — 40 … — 60° С.

Оксидные конденсаторы полярны. Они хорошо работают в цепях постоянного и пульсирующего напряжения. Вместе с тем выпускаются и неполярные оксидные конденсаторы с алюминиевыми и танталовыми фольговыми электродами. Такие конденсаторы могут работать в цепях переменного тока.

Номинальные напряжения выпускаемых промышленностью оксидных конденсаторов находятся в пределах от 3 до 450 В, а номинальные емкости — от долей микрофарады до нескольких тысяч микрофарад, причем конденсаторы с большой емкостью, как правило, имеют меньшие номинальные напряжения.

Так как максимально допустимое напряжение включает в себя и амплитуду переменной составляющей, то для полярных оксидных конденсаторов с рабочим напряжением 100 — 450 В величина переменной составляющей не должна превышать 8% от этих напряжений. Чем больше емкость и номинальное напряжение, тем меньше допустимая амплитуда переменного тока. Если переменная составляющая имеет большую величину, оксидный конденсатор перегревается. В таких случаях оксидные конденсаторы следует заменять конденсаторами других типов, например, бумажными большой емкости.

К особенностям оксидных конденсаторов относится и то, что в фильтрах выпрямителей их можно применять лишь на частотах до 1000 Гц. При повышении частоты (выше 50 Гц) действующая емкость их будет становиться все меньше и меньше по отношению к номинальной, При более высоких частотах допустимая амплитуда переменной составляющей также уменьшается обратно пропорционально частоте. Так, при частоте 100 Гц допустимая амплитуда вдвое меньше, чем при частоте 50 Гц.

Оксидные конденсаторы имеют сравнительно низкое сопротивление изоляции. При номинальном для данного типа конденсаторов рабочем напряжении ток утечки может доходить до 0,1 мА на каждую микрофараду емкости. Утечка свыше этой нормы свидетельствует о плохом качестве конденсатора. Такой конденсатор необходимо заменить.

Оксидные конденсаторы применяют преимущественно в фильтрах блоков питания, в развязывающих фильтрах, а в транзисторной аппаратуре — в цепях связи между транзисторными каскадами и для шунтирования резисторов в цепях эмиттеров транзисторов.  

Как и для других радиодеталей, требования к жесткости допускаемых отклонений емкости от номинального значения определяются для конденсаторов в зависимости от того, какую функцию они выполняют в том или другом аппарате. Так, для конденсаторов, шунтирующих резисторы в цепях катодов ламп усилителей ВЧ и ПЧ, конденсаторов фильтра и блокирующих в анодных и экранных цепях, емкости могут быть сколь угодно большие, но не меньше номинальной, указанной на схеме; для разделительных конденсаторов, применяемых в усилителях низкой частоты, отклонения от номинала могут составлять 20 — 30%. Емкость конденсаторов, применяемых в корректирующих цепях, улучшающих частотную характеристику усилителей низкой частоты, не должна отличаться более чем на ±10% от расчетной. 

Тип диэлектрика, используемого в конденсаторе, играет решающую роль при определении области применения конденсатора. В колебательных контурах диапазона длинных и средних волн можно использовать практически конденсаторы самых разных типов, в том числе и со слюдяным диэлектриком, хотя такие конденсаторы не всегда обладают достаточно малыми потерями.

Во всех цепях токов высокой частоты можно применять керамические конденсаторы (при емкостях до 1000 — 5000 пФ) или безындукционные бумажные (при емкостях более 1000 — 5000 пФ).

В цепях экранирующих сеток ламп и в анодных фильтрах высокочастотных, каскадов для развязывания цепей допустимо применять безындукционные бумажные конденсаторы; при этом должна быть заземлена или соединена с проводом общего минуса наружная обкладка конденсатора (этот вывод помечается соответствующим знаком на корпусе или торце безындукционных конденсаторов). В низкочастотных каскадах все конденсаторы могут быть бумажные.

Конденсаторы переменной емкости для настройки колебательного контура приемников желательно иметь с воздушным диэлектриком. Еще в большей мере это от- носится к колебательным контурам измерительных приборов. Из подстроечных конденсаторов лучшими являются конденсаторы с воздушными и керамическими диэлектриками.

Основные неисправности конденсаторов: пробой изоляции (короткое замыкание между обкладками), большой ток утечки (плохая изоляция между обкладками), обрыв выводов, а у оксидных (электролитических) — и потеря емкости.

Проверка исправности конденсаторов. Неисправности конденсаторов, особенно большой емкости, такие, как потеря емкости, короткое замыкание и большой ток утечки, могут быть легко обнаружены с помощью мегаомметра, а также омметра или даже простейшего пробника.

Если конденсатор большой емкости исправен, то при подключении к нему пробника стрелка прибора сначала резко отклонится вправо, причем отклонение это будет тем больше, чем больше емкость конденсатора, а затем относительно медленно начнет возвращаться влево и установится над одним из делений в начале шкалы. Если же конденсатор неисправен, то есть потерял емкость или имеет утечку, то в первом случае стрелка прибора вообще не отклонится вправо, а во втором — отклонится почти на всю шкалу, а затем установится на одном из делений в конце ее в зависимости от величины сопротивления утечки. Проверяя конденсатор этим способом, следует всегда обращать внимание на то, не превышает ли напряжение питания прибора допустимого напряжения конденсатора, иначе в конденсаторе может произойти пробой изоляции уже при проверке.

Состояние изоляции у конденсаторов емкостью порядка микрофарад, а иногда и десятых долей микрофарады может быть оценено и по интенсивности искры, если конденсатор подключить сначала к источнику напряжения и зарядить, а затем замкнуть его выводы. Таким способом можно проверять конденсаторы любых типов (кроме электролитических).

В ряде случаев вызывает затруднение проверка конденсаторов малой емкости (порядка десятков и сотен пикофарад), у которых искра при разряде незначительна, а сопротивление утечки настолько велико, что конденсатор с обрывом вывода может быть легко принят за вполне исправный с высоким сопротивлением утечки.

С помощью омметра или авометра в режиме измерения сопротивлений можно в случае необходимости определить полярность оксидного конденсатора (типа К50-6 и др.). При подключении к конденсатору прибор в. зависимости от того, как подключены щупы, в одном положении покажет большее, а в другом меньшее сопротивление. Большее сопротивление соответствует тому случаю, когда плюсовой щуп прибора соединен с положительным полюсом конденсатора.

Оксидные (электролитические) конденсаторы, имеющие полярные выводы, также могут быть включены и параллельно и последователыю. Однако при последовательном их включении всегда следует принимать дополнительные меры для предотвращения пробоя изоляции. Особенно это важно, когда при отсутствии оксидных конденсаторов на нужные рабочие напряжения их заменяют конденсаторами меньше-го рабочего напряжения. Чтобы выровнять напряжения, параллельно каждому из последовательно соединенных конденсаторов  подключают резисторы одинакового сопротивления (0,5 — 1,5 МОм). Потери, которые вызываются подключением таких резисторов, незначительны, и практически не отражаются на-работе выпрямителя. Общая емкость двух одинаковых по емкости конденсаторов, последовательно соединенных, равна половине емкости каждого из них.

Как проверить конденсатор

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.

Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.

Наиболее важным является проверка конденсатора на пробой.

Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.

Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления.
Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.

Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 кОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.
Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.

При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.

Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.

Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов). При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.

Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.

Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.

Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.

На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.

Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.

Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. 
Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.

Микроконтроллер

— Схема чтения конденсаторов

Спросил

Изменено 6 лет, 3 месяца назад

Просмотрено 2к раз

\$\начало группы\$

У меня есть схема, которую я нашел в Интернете. Схема для солнечного зарядного устройства pwm разработан вокруг микроконтроллера, в данном случае arduino.

Проблема заключается в номиналах конденсаторов, они меня сбивают с толку.

Вот что я сделал из него:

Неполяризованный:

  • 2 47 нФ
  • 1 1 мкФ
  • 1 220 пФ

Поляризованный:

  • 1 4,7 мкФ
  • 2 1 мкФ

Верно ли это и почему он так обозначил значения, он использовал какой-то стандарт или это чисто случайно?

(например, почему он иногда использует 1 мкФ, а в других частях 1000 нФ, использует 47 н вместо 47 нФ или использует 4 мк7 вместо 4,7 мкФ)

  • микроконтроллер
  • конденсатор
  • схема
  • керамика
  • тантал

\$\конечная группа\$

\$\начало группы\$

В вашей схеме только два критических конденсатора находятся на выходе стабилизатора напряжения LP2950: C4 и C5.

Для всех остальных вы можете выбрать что хотите: я бы, наверное, выбрал электролиты для любых поляризованных и дешевую керамику X7R для остальных.

Для двух выходных конденсаторов LP2950 в техническом описании есть целая глава: http://www.ti.com/lit/ds/symlink/lp2951-n.pdf Проверьте главу 9.2.1.2.1

Короче говоря: используйте низкое ESR электролитический конденсатор на С4, номиналом не менее 10В. C5 должен быть , а не , керамическим, как объяснено в техническом описании, поэтому я бы либо использовал высококачественный электролитический конденсатор, либо просто не использовал его, это вообще не кажется необходимым.

(например, почему он иногда использует 1 мкФ, а в других частях 1000 нФ, используйте 47n вместо 47nF или используйте 4µ7 вместо 4,7µF)

Он использует краткое обозначение и подсказки. Если у вас есть конденсатор с маркировкой 47n, подразумевается единица Фарада, потому что это конденсатор. 4µ7 короче для записи, чем 4.7µF. Он занимает меньше места на схеме и на шелкографии печатной платы.

Вы также иногда будете видеть значения конденсаторов как 0,1 мк или 0,1 мк, что соответствует 0,1 мк или 100 н. Опять же, это занимает меньше места на схеме.

1000 нФ — это то же самое значение, что и 1 мкФ, но это намекает на то, что здесь следует использовать керамический конденсатор, поскольку керамика в диапазоне мкФ уже давно недоступна. Однако такие подсказки вы будете видеть нечасто.

\$\конечная группа\$

1

\$\начало группы\$

Помните, что многие из тех, кто использует Arduino, являются любителями, и хотя некоторые из них являются хорошими инженерами-электриками, другие менее опытны и могут не создавать хороших схем.

Во-первых, вы правильно прочитали все значения. Существует несколько различных способов маркировки конденсаторов, и нет жестких правил. Было бы неплохо, если бы чертежник выбрал стиль и придерживался его, но так бывает не всегда.

  • Иногда вы видите керамику как 1000 нФ, а электролиты как 1 мкФ, потому что керамика обычно имеет меньшую емкость, чем электролиты. Таким образом, керамика часто измеряется в нФ и пФ, тогда как электролиты измеряются в мкФ.
  • 4,7 мкФ можно записать как 4,7 мкФ, 4,7 мкФ, 4 мкФ, 4,7 мкФ или 4,7 мкФ, это просто вопрос стиля (и национальности при использовании , или . для десятичной точки). Преимущество 4u7 в том, что вы вряд ли измените 4,7 на 47, потеряв десятичную точку в копировальной машине. Буква F излишня, так как символ указывает на то, что это конденсатор, так что ее отсутствие экономит место.

Кроме того, используемые символы не обязательно означают керамические и танталовые конденсаторы. Они просто означают неполяризованный и поляризованный. Если где-то на схеме это не указано, вы можете использовать электролиты вместо тантала (и в этом конкретном случае это будет очень хорошо). Точно так же неполяризованные могут быть любого из дюжины типов, но керамические, вероятно, самые дешевые и простые.

C4 и C5 немного особенные, но в этом случае схема, вероятно, не содержит всей необходимой информации, поэтому, возможно, проверьте LP29.50 для подробностей.

\$\конечная группа\$

1

Твой ответ

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Стандартные номиналы конденсаторов и цветовые коды

HPE изобретает первый мемристорный лазер*

«Исследователи из Hewlett Packard Labs, где был создан первый практический мемристор, изобрели новую вариацию на устройство — а мемристорный лазер…» Также «От Транзистор к мемристору: переключающие технологии для будущего».

Со временем, как и в случае с резисторами, развился ряд стандартных номиналов конденсаторов. и индукторы. Конденсаторы доступны в огромном диапазоне стилей упаковки, напряжения пропускная способность по току, диэлектрические типы, коэффициенты качества и многие другие параметры. Тем не менее, они в значительной степени держат к этому диапазону значений.

Конденсаторы являются одним из четырех основных типов пассивных электронных компонентов; остальные три — индуктор, резистор, и мемристор. Основной единицей измерения емкости является фарад (Ф).

Для получения других значений емкости необходимо использовать параллельные и/или последовательные комбинации. Часто сложные комбинации используются для удовлетворения нескольких требований, таких как как обработка больших напряжений, при этом обеспечивая правильное количество емкости.

Если вам необходимо обеспечить периодическую настройку цепи, то необходимо использовать переменный конденсатор. Это может быть конденсатор с ручной регулировкой. или электрически настроенный конденсатор, такой как варакторный диод (варикап).

Таблица цветовых кодов старых конденсаторов

Формованные слюдяные конденсаторы (Centralab)

Старый керамический конденсатор с осевым выводом Таблица цветовых кодов

1,0 10 100 1000 0,01 0,1 1,0 10 100 1000 10 000
1.1 11 110 1100              
1,2 12 120 1200              
1,3 13 130 1300              
1,5 15 150 1500 0,015 0,15 1,5 15 150 1500  
1,6 16 160 1600              
1,8 18 180 1800              
2,0 ​​ 20 200 2000              
2,2 22 220 2200 0,022 0,22 2,2 22 220 2200  
2,4 24 240 2400              
2,7 27 270 2700              
3,0 30 300 3000              
3,3 33 330 3300 0,033 0,33 3,3 33 330 3300  
3,6 36 360 3600              
3,9 39 390 3900              
4,3 43 430 4300              
4,7 47 470 4700 0,047 0,47 4,7 47 470 4700  
5. 1 51 510 5100              
5,6 56 560 5600              
6,2 62 620 6200              
6,8 68 680 6800 0,068 0,68 6,8 68 680 6800  
7,5 75 750 7500              
8,2 82 820 8200              
9. 1 91 910 9100              

 

  10 В 10 В    
16В 16В 16В    
    20 В    
25 В 25В 25В    
  35В 35В    
50В 50В 50В 50В  
  63В      
100В 100 В   100 В  
  160 В      
      200 В  
  250 В     250 В
  350 В      
      400В 400В
  450 В      
600В        
        630 В
1000 В        

 

* Нимрод продолжает связываться со мной, чтобы сказать, что настоящего мемристора не существует.

 

Связанные страницы в RF Cafe

— Конденсаторы и Расчет емкости

— Конденсатор Цветовые коды

— преобразование емкости

— Конденсатор Диэлектрики

— Стандартные значения конденсаторов

— Поставщики конденсаторов

— Благородное искусство разъединения

Что влияет на срок службы электролитического конденсатора?

Если вы поговорите с группой инженеров-конструкторов, у вас может быстро сложиться мнение, что электролитический конденсатор имеет особенно сомнительную репутацию. Этой точке зрения определенно не способствовала так называемая «конденсаторная чума», случившаяся в первые несколько лет нового тысячелетия. Неправильная смесь электролитов, используемая в этих типах конденсаторов, приводила к преждевременному выходу устройства из строя, и довольно часто на печатные платы, на которые они были припаяны, наносился «небольшой беспорядок». Из-за громкого характера товаров, в которых использовались определенные марки «зачумленных» конденсаторов, это стало большой новостью. См. эту ссылку в Википедии, если вы хотите увидеть более подробную информацию.

Однако, несмотря на проблему с конденсаторной чумой (о которой Википедия сообщила, что она связана с неудачной попыткой промышленного шпионажа, в результате которой была использована неправильная формула электролита), эта статья сосредоточена на том, чтобы помочь разработчику понять, как получить еще много лет срока службы электролитического конденсатора. Мы не будем слишком углубляться в сравнение значений срока службы электролитических конденсаторов для различных компонентов. Суть в том, что вы получаете то, за что платите, и нравится вам это или нет, электролитические конденсаторы необходимы во многих конструкциях.

Что вызывает отказ электролитического конденсатора?

Основным механизмом, вызывающим деградацию и выход из строя электролитических конденсаторов, является медленное испарение электролита с течением времени, и, конечно, это усугубляется при более высоких температурах. Это приводит к более низкой емкости и более высокому эффективному последовательному сопротивлению (ESR). Это немного порочный круг, потому что с ростом ESR увеличивается и любой эффект самонагрева из-за пульсирующих токов. Затем это может привести к значительному локальному повышению температуры, что может еще больше усугубить проблему. В прошлом это побудило некоторые компании внедрить правило планового обслуживания, при котором электролитические конденсаторы заменялись подходящими сменными компонентами каждые несколько лет, особенно когда система используется в критически важных приложениях.

Характеристики конденсатора

Часто можно увидеть, что для электролитического конденсатора указан срок службы, например 5000 часов. Мы собираемся использовать таблицу данных TDK (ранее EPCOS) в качестве примера того, как интерпретировать эту информацию. Это техническое описание относится к конденсатору B41888, и именно его я использовал в довольно ответственных продуктах с ожидаемым длительным сроком службы. Резюме таблицы данных выглядит следующим образом:

Я выделил соответствующую область красным цветом. Это говорит вам, что конденсатор диаметром 8 мм дает 5000 часов полезного срока службы. Это жизнь всего 208 дней, что, на первый взгляд, очень мало. Однако это значение относится к рабочей температуре 105 °C. Если бы рабочая температура была на 10 °C ниже, то при 95 °C, то продолжительность жизни удвоится. Она будет удваиваться на каждые 10 °C понижения ниже 105 °C. Таким образом, если рабочая температура конденсатора в конкретной цепи поддерживалась ниже 55 °C, вы можете использовать следующую формулу для расчета фактического срока службы:

Фактический срок службы = [Срок службы при 105 °C] ∙2x

Где «x» равно (105 °C — T ACTUAL ), деленному на 10. При температуре 55 °C «x» = 5, и, следовательно, полезный срок службы увеличивается с 5000 часов при 105 °C до 32 x 5000 часов. при 55°С. Сейчас 18 лет, и это намного практичнее.

Что означает «полезный срок службы» конденсатора?

Что касается таблицы данных выше, выделенный справа столбец информирует вас о том, что емкость может ухудшиться по сравнению с исходным значением до значения, которое может быть на 40% ниже в течение срока службы компонента. Таким образом, если вы выберете конденсатор емкостью 1000 мкФ для своей конструкции, вы можете ожидать, что его минимальное начальное значение будет равно 800 мкФ, исходя из 20-процентного допуска устройства, указанного в техническом описании. Следовательно, в конце «срока полезного использования» в наихудшем сценарии он может упасть до 60% от первоначального значения в 800 мкФ, что составляет всего 480 мкФ. Как разработчик, только вы можете сказать, обеспечит ли это адекватную производительность вашего продукта в конце срока службы. Крайне важно, чтобы вы, как дизайнер, учитывали этот фактор деградации.

Коэффициент рассеяния

Для устройства B41888 в техническом описании указано, что «загар» может увеличиться в три раза в течение срока службы. Tan — это коэффициент рассеяния или отношение ESR к емкостному реактивному сопротивлению, и его не следует путать с тангенсом угла потерь. Для справки, это также обратная величина добротности. Для устройства B41888 с номинальным напряжением 35 вольт тангенс составляет 0,12 при 120 Гц. Конденсатор емкостью 1000 мкФ имеет реактивное сопротивление 1,326 Ом на частоте 120 Гц, что означает, что ESR составляет 0,159.Ом.

Это цифра для конденсатора емкостью ровно 1000 мкФ, но мы видели, что она может достигать 0,199 Ом для конденсатора, находящегося в нижней части начального допустимого диапазона (т. е. 800 мкФ). Мы видели, что в конце срока службы емкость может составлять всего 480 мкФ, и отсюда следует, что ESR может возрасти до 0,332 Ом. Наконец, поскольку загар может ухудшиться в три раза в течение срока службы, ESR потенциально может увеличиться до 0,995 Ом.

Вы начали разработку с конденсатора номинальной емкостью 1000 мкФ (с ESR 0,159Ом), и теперь вы можете получить конденсатор емкостью 480 мкФ с ESR около 1 Ом. Сможет ли ваша конструкция справиться с этим? Как это повлияет на производительность? Подсказка — инструменты моделирования — ваш союзник в этой ситуации; используйте их, чтобы увидеть эффекты.

Другие факторы, влияющие на срок службы электролитического конденсатора

Пульсирующий ток

Значение срока службы B41888 предполагает, что он работает при полном пульсирующем токе. Тем не менее, вы также найдете этот полезный график в таблице данных, который применим для конденсатора диаметром 8 мм:

Если вы выбрали работу при 50 % номинального тока пульсаций (0,5 по оси Y), это эквивалентно работе при местной температуре окружающей среды, которая на 3 °C ниже. Это потенциальное увеличение продолжительности жизни на 23%, а иногда каждый дополнительный бит может иметь значение. Если вам нужно расширить границы пульсаций тока, вы также можете получить необходимую информацию из этого графика. Например, если вы запустите компонент на 50 % выше номинального номинального тока пульсаций при 65 °C, вы все равно получите 100 000 часов полезного срока службы, как при работе с половиной номинального тока пульсаций при 71 °C. Важно отметить, что затемненная часть графика является запретной зоной, если вы не хотите повредить компонент.

Рабочее напряжение конденсатора

Вы можете значительно увеличить срок службы, когда рабочее напряжение ниже максимального номинального напряжения. По самым скромным оценкам, срок службы удваивается, когда компонент работает при 50% номинального напряжения. Конечно, оно становится пропорционально меньше по мере приближения рабочего напряжения к максимальному номинальному напряжению. Я видел менее консервативные оценки, но в связи с отсутствием каких-либо данных в информации производителя, позволяющих предположить обратное, я бы посоветовал вам придерживаться этой линейной зависимости и не ожидать дальнейшего улучшения срока службы, кроме удвоения.

Прочтите техническое описание

В техпаспорте содержится много полезной информации. Например, для конденсатора B41888, на котором мы здесь сосредоточились, выдержка из таблицы данных указывает, что, хотя устройство диаметром 8 мм имеет срок службы 5000 часов, устройство диаметром 12,5 мм (или больше) имеет удвоенный срок службы — 10000 часов. Если ваше целевое значение емкости позволяет выбрать диаметр и у вас есть место на плате, было бы выгодно выбрать деталь большего размера, чтобы увеличить срок службы. Например, если вы выбрали 100 мкФ, 35-вольтовый компонент, который вы намеревались использовать при напряжении 30 вольт, вы получите хороший срок службы, выбрав вместо него компонент с номинальным напряжением 63 вольта.

Деталь на 35 В имеет диаметр 8 мм, а деталь на 63 В — 10 мм. Тем не менее, срок службы 10-мм детали составляет 7000 часов, и этот срок можно удвоить до 14000 часов, просто запустив ее при 48% номинального напряжения. 8-миллиметровая деталь имеет срок службы 5000 часов, который увеличился бы только до 5833 часов при работе от напряжения 30 вольт. Таким образом, относительно небольшое увеличение диаметра на 2 мм значительно увеличивает срок службы.

Еще одним соображением является взаимосвязь между частотой пульсаций и номинальным током пульсаций. Например, если для вашей конструкции требуется 35-вольтовый компонент емкостью 1000 мкФ, в техническом описании будет указано, что номинальный ток пульсаций при 105 °C составляет 2,459.ампер, но это на заданной частоте 100 кГц. Таким образом, если приложение работает на более низкой частоте, вы должны использовать график ниже, чтобы определить эффект:

 

На низких частотах, таких как 120 Гц, номинальный пульсирующий ток составляет всего 65% от значения на 100 кГц. . Это означает, что для правильной оценки срока службы в приложении с частотой 120 Гц вы ограничены более ограниченным номинальным пульсирующим током всего 1,598 ампер.

Интенсивность отказов конденсаторов

Не принимайте постепенное ухудшение характеристик электролитических конденсаторов в течение ожидаемого срока службы как что-либо, связанное с частотой отказов или MTBF. Внезапный и неожиданный отказ любого электронного компонента отличается от того, как компонент может «стареть». Конечно, если схема, которую вы разработали, перестает работать из-за старения электролитического конденсатора, это, безусловно, неисправность устройства с точки зрения пользователя. Однако ошибка дизайнера заключается в том, что он не понимает, как со временем производительность компонента естественным образом ухудшается. Другими словами, это ошибка конструкции, а не неисправность компонента.

Среднее время безотказной работы электролитического конденсатора измеряется в миллионах часов. Хотя это может ухудшиться как из-за количества энергии, которое он хранит, так и из-за его рабочей температуры окружающей среды, он все еще очень далек от того, чтобы приблизиться к гораздо более низкому сроку службы компонента.

Зачем вообще использовать электролитические конденсаторы?

Если у электролитов есть такие проблемы, почему они так широко используются? Есть несколько причин, но главной из них является возможность получить высокое номинальное напряжение с высокой емкостью, что обычно требуется в конструкциях источников питания. Из-за химического состава электролитов нет другого типа компонентов, который обеспечивает такое же сочетание высокой емкости и высокого напряжения. С другими компонентами деталь либо становится физически огромной, либо нужно размещать огромное количество деталей параллельно.

В одном из прошлых проектов мне нужно было использовать 20 соединенных параллельно электролитических конденсаторов (3300 мкФ, 35 вольт), чтобы создать существенное устройство накопления энергии в новой конструкции. Я упоминаю об этом, потому что это поможет вам понять разницу между сроком службы и MTBF. Схема получала зарядный ток низкого уровня в миллиамперах, но подвергалась спорадическим импульсам тока нагрузки, которые измерялись в амперах.

Что касается всего срока службы устройства хранения, я полностью ожидаю, что параллельные компоненты со временем будут изнашиваться одинаково. Другими словами, ожидается, что срок службы всех 20 компонентов будет таким же, как срок службы одного устройства. Однако для MTBF значение одного устройства необходимо разделить на 20, поскольку компоненты подключены параллельно, и любой из 20 компонентов может выйти из строя, что приведет к отказу устройства.

Где найти надежные запчасти для конденсаторов

Проблема конденсаторной чумы, о которой мы упоминали в начале этой статьи, рассматривается как «правильный отказ» (т. его срок службы. Является ли капающий кран неисправностью в вашей ванной? Ответ, очевидно, «нет», просто обычно это происходит из-за нормального износа, чего и следовало ожидать.

Если вам нужно найти сверхнадежные детали с длительным сроком службы электролитических конденсаторов, используйте панель поиска производителя в Altium Designer®. Вы также можете использовать платформу Altium 365™ для поиска компонентов, находящихся в производстве, управления проектными данными и передачи файлов производителю. Мы только коснулись того, что можно сделать с помощью Altium Designer в Altium 365. Вы можете посетить страницу продукта, чтобы получить более подробное описание функций, или посетить один из вебинаров по запросу.

Фелер 404

Фелер 404 изображение/svg+xml

Auswahl von Land und Sprache beeinflusst Deine Geschäftsbedingungen, Produktpreise und Sonderangebote

Sprache

Верунг

Preise

нетто

брутто

нетто

брутто

Nutze diesuchmaschine, um Themen zu finden, die Dich interessieren:

Каталог Ви кауфт человек Хильфе

или zurück zu: Дом

Abonnieren Sie jetzt

В том же информационном бюллетене вы найдете самые интересные и интересные сведения о новых продуктах, товарах и услугах на веб-сайте TME.
Hier können Sie sich auch von der Liste abmelden.

* Pflichtfeld

AnmeldenAuf Mitteilungsblatt verzichten

Ich habe mich mit der Ordnung des TME-Bulletins bekannt gemacht und erteile meine Zustimmung, damit das elektronische Informationsbulletin des TME-Dienstes meine E-Mail-Adresse geschickt wird. Ordnung des TME-Bulletins

*

1. Transfer Multisort Elektronik sp. о.о. mit Sitz в Лодзи, Адрес: ул. Устронная 41, 93-350 Łódź teilt hiermit mit, dass sie der Administrator Ihrer personenbezogenen Daten sein wird.
2. Ein Datenschutzbeauftragter wird beim Administrator der personenbezogenen Daten ernannt und kann per E-Mail unter [email protected] kontaktiert werden.
3. Ihre Daten werden verarbeitet auf Grundlage von Art. 6 Абс. 1 лит. a) der Verordnung des Europäischen Parlaments und des Rates (EU) 2016/679 vom 27. April 2016 zum Schutz natürlicher Personen bei der Verarbeitung personenbezogener Daten und zum freien Datenverkehr und zur Aufhebung der Richtlinie 95/46/EG (nachstehend «DSGVO» genannt), um an die angegebene E-Mail-Adresse den elektronischen Newsletter von TME zu senden.
4. Die Angabe der Daten ist freiwillig, jedoch für den Versand des Newsletters erforderlich.
5. Ihre personenbezogenen Daten werden gespeichert, bis Ihre Einwilligung für die Verarbeitung Ihrer personenbezogenen Daten widerufen.
6. Sie haben das Recht auf Zugang, Berichtigung, Löschung oder Einschränkung der Verarbeitung Ihrer Daten;
Soweit Ihre personenbezogenen Daten aufgrund einer Einwilligung verarbeitet werden, haben Sie das Recht, die Einwilligung zu widerufen. Der Widerruf der Einwilligung berührt nicht die Rechtmäßigkeit der Verarbeitung auf der Grundlage der Einwilligung vor dem Widerruf.
7. Soweit Ihre Daten zum Zwecke des Vertragsabschlusses und der Vertragsabwicklung oder aufgrund Ihrer Einwilligung verarbeitet werden, haben Sie auch das Recht, Ihre personenbezogenen Daten zu übertragen, d. час von der verantwortlichen Stelle in structurierter, allgemein üblicher und maschinenlesbarer Form zu erhalten. Sie können diese Daten einen anderen Datenadministrator übersenden.
8. Sie haben auch das Recht, eine Beschwerde bei der für Datenschutz zuständigen Aufsichtsbehörde einzureichen.

больше Венигер

TME-Newsletter abonnieren

Анеботе — Рабатте — Нойхайтен. Sei auf dem Laufenden mit dem Angebot von TME

AGB zum Информационный бюллетень Auf Mitteilungsblatt verzichten

Daten werden verarbeitet

Die Operation wurde erfolgreich durchgeführt.

Ein unerwarteter Fehler ist aufgetreten. Bitte versuche noch einmal.

Логин

Пароль

Логин и пароль заранее.

Die Angabe im Feld ist zu kurz. Мин. Отметьте значение %minLength%.

Пароль недействителен?

Dein Browser wird nicht mehr unterstützt, bitte lade eine neue Version herunter

Хром Скачать фон Датей

Fire Fox Скачать фон Датей

Опера Скачать фон Датей

Интернет-проводник Скачать фон Датей

Выберите почтовый ящик

Diese Webseite nutzt Cookie-Dateien. Нажмите Sie Hier, um mehr über Cookie-Dateien und deren Verwaltung mithilfe von Einstellungen zu erfahren.

Конструкция, типы и применение

Теоретически в электрохимическом процессе такие металлы, как алюминий, ниобий, кадмий и другие, создают оксидное покрытие, которое препятствует фактическому протеканию тока в направлениях, но позволяет течь в противоположных направлениях. Это явление впервые наблюдал Иоганн Буфф в 1875 году, а его реализация была осуществлена ​​Дюкрете. Производитель аккумуляторов, а именно «Чарльз», узнал, что оксидное покрытие остается стабильным в случае щелочных и нейтральных электролитов и при отсутствии питания, и на это он получил патент в 189 г.7 для электролитического конденсатора борного типа. С тех пор появились различные типы электролитических конденсаторов, и сегодня в статье полностью обсуждаются их работа, особенности, типы и преимущества.

Основное определение электролитического конденсатора состоит в том, что это поляризованный конденсатор, в котором используется электролит для получения более высокого значения емкости, чем у конденсаторов других типов. Электролит может представлять собой гель/жидкость с повышенной концентрацией ионов. И почти каждый электролитический конденсатор имеет поляризованную природу, что указывает на то, что напряжение положительной клеммы выше, чем уровень напряжения отрицательной клеммы.

Преимущество электролитических конденсаторов с высоким уровнем емкости также имеет множество недостатков. И некоторые из этих недостатков — огромный ток утечки, допуски значений, одинаковое значение сопротивления при последовательном соединении и меньший срок службы.

Электролитические конденсаторы могут быть из твердого полимера или конденсатора с влажным электролитом, которые обычно изготавливаются из алюминия и тантала. А суперконденсаторы — это еще один уникальный тип электролитических конденсаторов, имеющих емкость от нескольких сотен до тысяч. А диапазон емкостей лежит в диапазоне от 1 мкФ до 48 мФ при диапазоне напряжений в несколько сотен вольт.

Как уже говорилось, электролитический конденсатор представляет собой тип поляризованного конденсатора, и символ конденсатора подразумевает полярность электролитического конденсатора . Полярность в конденсаторе имеет решающее значение для того, чтобы убедиться, что устройство правильно установлено в цепь, а также гарантирует, что оно не находится в состоянии обратного смещения. На приведенном ниже рисунке показан символ электролитического конденсатора .

Символ электролитического конденсатора

Существуют различные типы схематических символов, используемых для изображения электролитических конденсаторов. Согласно приведенному выше рисунку, первое представляет использование устройств в европейских цепях, второе — в цепях США, а третье — более старую версию представления. В то время как на некоторых схемах знак «+» не отображается, потому что уже ясно, какова полярность пластины.

Конструкция и свойства электролитического конденсатора

В конструкции электролитических конденсаторов используются две тонкие алюминиевые фольги, один из слоев которых покрыт оксидным слоем, который действует как изолятор. Поскольку для покрытия используется алюминиевая фольга, устройство также можно назвать алюминиевым электролитическим конденсатором. Между двумя пластинами помещается бумажный лист, пропитанный электролитом, после чего пластины тщательно закручиваются друг в друга и в дальнейшем хранятся в контейнере.

В качестве первого шага в конструировании фольги травят, что делает ее более шероховатой и помогает увеличить площадь поверхности. Процесс травления также помогает получить клапан с высокой емкостью в указанной области.

Второй этап – разработка анода, при котором на аноде создается тонкий слой Al 2 O 3 , что создает разницу анода, соответствующую катоду

Затем все вещество конденсатора раскатывают на намоточный инструмент. Здесь все четыре слоя: анодная катушка и ее бумажный экран, катодная фольга и ее бумажный экран намотаны вместе. Благодаря использованию бумажных экранов электроды защищены от прикосновения и короткого замыкания. После того, как ранение сделано, устройство заклеивается лентой, чтобы предотвратить его раскручивание. Позже конденсатор заливают вместе с электролитом, и это делается методом погружения под давлением.

Как обсуждалось на первом этапе, в качестве электролита используется алюминий, что позволит конденсатору сохранять необходимые свойства, такие как требуемый уровень температуры, номинальное напряжение и другие.

Строительство

Это процедура изготовления электролитического конденсатора.

Свойства

Свойства электролитических конденсаторов указаны ниже:

  • Электролитические конденсаторы алюминиевого типа обладают повышенным уровнем емкости по сравнению с конденсаторами керамического типа
  • Эти устройства поляризованы, что означает, что они должны располагаться только в одном направлении вокруг цепи
  • Электролитические конденсаторы должны эксплуатироваться ниже номинального уровня рабочего напряжения, в противном случае это может привести к высоким рискам
  • Хорошая устойчивость в диапазоне от -50% до +100%
  • Они могут нормально работать в диапазоне частот и не подходят для частот выше диапазона 50–100 кГц

Типы электролитических конденсаторов

Комбинация анодных веществ и электролитов, используемых в конденсаторах, создает различные типы электролитических конденсаторов. Некоторые из этих типов описаны в этом разделе.

Алюминиевый тип

Они бывают двух типов:

  1. Влажные алюминиевые электролитические конденсаторы
  2. Сухие алюминиевые электролитические конденсаторы

Краткое описание конденсаторов этого типа приведено в предыдущем разделе.

Тантал Тип

Это пассивное вещество электрических цепей, имеющее танталовое вещество размером с шарик, действующее в качестве анода и покрытое изолирующим оксидным веществом. Это покрытие позволяет формировать диэлектрик и окружено твердым/жидким электролитом, образуя катод.

Поскольку диэлектрический слой очень узкий и имеет повышенную диэлектрическую проницаемость, танталовый конденсатор отличается от другого типа электролитических конденсаторов, которые также дороги.

Эти конденсаторы являются принципиально поляризованными устройствами, и их работа в условиях обратного напряжения может привести к повреждению устройства. Биполярные/неполярные конденсаторы могут быть сконструированы с использованием последовательного соединения поляризованных конденсаторов, при этом аноды расположены на противоположных путях.

Ниобий Тип

Это также поляризованный и пассивный конденсатор, в котором его анод изготовлен из вещества ниобия/моноксида ниобия, а поверх него пятиокись ниобия действует как диэлектрический материал конденсатора. И тогда твердый электролит, который находится поверх оксидного слоя, действует как катод для конденсатора.

Доступны ниобиевые электролитические конденсаторы в виде чипа поверхностного монтажа, и они обладают таким же уровнем напряжения и емкости, что и танталовые конденсаторы. Эти конденсаторы отлично функционируют только при постоянном напряжении и при правильном направлении полярности. В случаях более высоких напряжений и обратных напряжений повреждается диэлектрик, а также конденсатор.

Неэлектролитический тип

Здесь диэлектрическое вещество, используемое в конденсаторах, находится в неэлектролитической форме, и этот тип конденсатора также имеет множество преимуществ. Их также называют биполярными конденсаторами.

Это основные типы электролитических конденсаторов .

Как прочитать значение емкости?

Для сквозных конденсаторов все показания, такие как максимальное номинальное напряжение и значения емкости, указаны на упаковке.

Если напечатано 5,0 мкФ 30 В, то значение емкости конденсатора равно 5,0 мкФ с максимальным номинальным рабочим напряжением 30 В, и устройство не должно работать выше указанного значения.

В случае электролитических конденсаторов для поверхностного монтажа печать на корпусе будет двух видов. В первой форме номиналы емкости и напряжения четко указаны в мкФ и вольтах.

Электролитический конденсатор с маркировкой

Пример: «4,8 30 В» означает, что значение емкости составляет 4,8 мкФ, а напряжение — 30 вольт.

Принимая во внимание, что во второй форме после цифр пишется буква, и эта буква означает номинальное напряжение в соответствии с приведенной ниже таблицей. Из трех чисел первые два означают значение в пикофарадах, а последнее число — общее количество нулей.

Пример: «E486» означает, что 48000000 пФ = 48000 нФ = 48 мкФ

Значение напряжения Письмо
2,5 и
4 Г
10 А
16 С
25 Э
35 В
50 Х
Характеристики электролитического конденсатора

При выборе конденсатора необходимо учитывать следующие характеристики:

  1. Дрейф – обычно 20 %
  2. Допуск — Высокий допуск в диапазоне от -20% до +80%
  3. Частотная характеристика — электролитические конденсаторы имеют минимальную частотную характеристику
  4. Эквивалентное последовательное сопротивление — эти конденсаторы используются в цепях с высоким уровнем тока
  5. Утечка — показывает высокий уровень утечки

Преимущества и недостатки

Преимущества электролитических конденсаторов :

  • Устройства можно быстро заряжать, а также быстро накапливать энергию
  • Рассеивание накопленной энергии также происходит так быстро
  • Минимальные потери по сравнению с конденсаторами других типов
  • Долгий срок службы
  • Может быть достаточно минимального обслуживания

Недостатками электролитических конденсаторов являются:

  • Устройства легко повреждаются при работе на высокотемпературных уровнях во время пайки
  • Переходные процессы напряжения
  • Легко высыхает
  • Показывает внутреннее рассеивание мощности
  • Обратное напряжение

Применения

Применения электролитических конденсаторов включают следующее.

  1. Электролитические конденсаторы используются для снижения нестабильности напряжения во многих фильтрующих устройствах
  2. Используется для фильтрации помех, а также для развязки в источниках питания
  3. Используется для накопления энергии в лампах-вспышках
  4. Используется для соединения различных сигналов между фазами усилителя

Итак, это полное описание электролитических конденсаторов. Несмотря на то, что применение конденсаторов в электрических цепях имеет недостатки, но благодаря своим преимуществам они широко используются в различных приложениях. Знаете, как восстанавливается алюминиевый электролитический конденсатор?

Электролитический конденсатор – определение, символ, характеристики

Электролитический конденсатор

Конденсатор, в котором используется электролит для получения высокой емкости, является электролитическим конденсатором. Электролит представляет собой жидкость или гель с очень высокой концентрацией ионов. Итак, прежде чем узнать об электролитических конденсаторах, важно узнать о терминах электролит и конденсатор. Узнайте больше об электролитическом конденсаторе, его типах, полярности, символе и многом другом.

Что такое конденсатор?

Конденсатор похож на батарею, но они работают по-разному. Батарея представляет собой электронное устройство, которое преобразует химическую энергию в электрическую. Конденсатор накапливает электростатическую энергию в электрическом поле.

Конденсатор представляет собой двухполюсное электрическое устройство. Он может накапливать энергию в виде электрического заряда. Он состоит из двух электрических проводников, разделенных расстоянием, а пространство между ними заполнено вакуумом или изоляционным материалом, называемым диэлектриком.

Емкость — это способность конденсатора накапливать заряды. Итак, конденсатор накапливает энергию, удерживая пары противоположных зарядов на расстоянии. Простейшая конструкция конденсаторов состоит из двух металлических пластин с зазором между ними.

Что такое электролитический конденсатор?

Конденсатор, между двумя заряженными концами которого находится электролит, называется электролитическим конденсатором. Электролитический конденсатор — это общий термин, охватывающий три различных конденсатора:

  • Алюминиевый электролитический конденсатор
  • Танталовый электролитический конденсатор
  • Ниобиевый электролитический конденсатор.

Электролиты этих конденсаторов содержат алюминий или тантал и другие металлы. Способность большой емкости делает электролитические конденсаторы полезными для передачи низкочастотных сигналов. Эти конденсаторы широко используются для фильтрации шума. Они также находят применение в развязке источников питания. Однако наряду с преимуществом большой емкости возникают некоторые недостатки, такие как токи утечки, ограниченный срок службы и эквивалентное последовательное сопротивление.

Знаете ли вы:

Некоторые специальные электролитические конденсаторы имеют емкость до тысяч фарад. Они называются суперконденсаторами или двухслойными электролитическими конденсаторами.

Разновидности электролитических конденсаторов

В каждом из трех электролитических конденсаторов используется нетвердый и твердый диоксид марганца. Он также может содержать твердые полимерные электролиты.

В зависимости от металла анода и используемого электролита разновидности электролитических конденсаторов бывают:

 

Алюминиевые электролитические конденсаторы

Нетвердый электролит

Органические/неорганические растворители

Твердый электролит

MnO 2

Танталовые электролитические конденсаторы

Нетвердый электролит

Серная кислота

Влажный слизень

Твердый электролит

MnO 2

Электролитические конденсаторы на основе оксида ниобия

Твердый электролит

MnO 2

Конструкция электролитических конденсаторов

Алюминиевые электролитические конденсаторы включают следующее:

  • две алюминиевые фольги
  • бумажная прокладка, пропитанная электролитом

Одна алюминиевая фольга остается покрытой оксидным слоем; эта фольга действует как анод. Алюминиевая фольга без покрытия действует как катод.

При нормальной работе анод находится под положительным напряжением, в отличие от катода. Так, катод часто маркируется знаком минус на корпусе конденсатора.

Пропитанная электролитом бумага (анод) и катод сложены в кучу. Затем свая скручивается и помещается в цилиндрический корпус. Они подключаются к цепи через контакты.

Две распространенные геометрии:

  • Осевая
  • Радиальный

Осевые конденсаторы состоят из одного контакта на каждом конце цилиндра. Напротив, конденсаторы с радиальной геометрией имеют оба контакта на одном конце цилиндра.

Знаете ли вы:

Почему некоторые конденсаторы такие большие?

Конденсатор с большой емкостью громоздкий и больше по размеру. Напряжение пробоя диэлектрического слоя пропорционально его толщине. Таким образом, создание более толстых слоев создает конденсаторы с более высоким номинальным напряжением.

Емкость электролитического конденсатора зависит от нескольких факторов, в том числе от площади пластины и толщины электролита.

Электролитический конденсатор Символ

Электролитический конденсатор состоит из алюминиевой или танталовой пластины с оксидным диэлектрическим слоем. Жидкий электролит является другим электродом. Эти поляризованные конденсаторы обеспечивают высокую емкость. Однако они имеют низкую переносимость и высокую взрывоопасность. На следующем рисунке показано обозначение электролитического конденсатора:

Символ электролитического конденсатора

Полярность электролитического конденсатора

Электролитические конденсаторы поляризованы. Эта поляризация обусловлена ​​их асимметричной конструкцией. Они должны работать с более высоким напряжением, когда на аноде больше положительного заряда, чем на катоде. Часто электролитические конденсаторы имеют маркировку полярности на корпусе.

Почти каждый электролитический конденсатор поляризован, т. е. напряжение на аноде всегда выше, чем на катоде.

Характеристики электролитических конденсаторов

Электрические характеристики электролитических конденсаторов в основном зависят от используемого электролита и анода. Основные характеристики следующие:

Емкость и допуск : Электролит и анод электролитического конденсатора влияют на значение емкости. Емкость во многом зависит от частоты и температуры. Более того, конденсаторы с нетвердым электролитом имеют более широкий диапазон частот и температур, чем конденсаторы с твердым электролитом.

Емкость измеряется в микрофарадах. Значение емкости, указанное производителями, называется номинальной или номинальной емкостью. Процентное отклонение от номинального значения называется допуском емкости.

Дрейф емкости: Емкость имеет большой допуск 20%. Однако с течением времени она дрейфует от номинальной стоимости. Таким образом, алюминиевый электролитический конденсатор с номинальной емкостью 47 мкФ будет иметь емкость от 37,6 мкФ до 56,4 мкФ.

Хотя танталовые конденсаторы также имеют более высокие допуски, низкое максимальное рабочее напряжение. Поэтому их нельзя использовать в качестве идеальной замены алюминиевым конденсаторам.

Срок годности электролитических конденсаторов : Важно отметить, что конденсаторы, изготовленные по старым технологиям, имели более короткий срок годности, всего до нескольких месяцев.

Знаете почему?

Потому что, когда они не использовались, оксидный слой разрушался. Однако можно восстановить изношенный слой в процессе, называемом риформингом конденсатора. Этот процесс осуществляется путем подключения электролитического конденсатора к источнику напряжения через резистор. Напряжение медленно увеличивают до полного восстановления оксидного слоя.

Современные электролитические конденсаторы имеют более длительный срок хранения, составляющий два года и более. Однако, если вы оставите эти конденсаторы неполяризованными на более длительное время, их также придется формировать перед использованием.

Применение электролитических конденсаторов

Некоторые области применения электролитических конденсаторов:

  • Они используются в фильтрующих устройствах для уменьшения колебаний напряжения.
  • Они подходят для сглаживания выходных и входных сигналов для фильтрации слабого сигнала постоянного тока с составляющей переменного тока.
  • Они широко используются для фильтрации шума.
  • Электролитические конденсаторы используются для развязки источников питания.
  • Они также используются для передачи сигналов между каскадами усилителя.
  • Они помогают накапливать энергию в лампах-вспышках.

Как бы вы прочитали значение емкости?

Обычно для сквозных конденсаторов на корпусе указываются значение его емкости и максимальное номинальное напряжение.

На нем вы найдете печатный текст типа «4,7 мкФ 25 В». Этот текст подразумевает, что номинальная емкость электролитического конденсатора составляет 4,7 мкФ. 25V означает, что его максимальное номинальное напряжение составляет 25 вольт, и это значение никогда не должно превышаться.

В случае электролитических конденсаторов для поверхностного монтажа вы найдете две основные маркировки. Первый — значение емкости в микрофарадах, а второй — рабочее напряжение.

Таким образом, эти конденсаторы будут иметь следующую маркировку:

4,7 25В

Это означает, что конденсатор имеет емкость 4,7 мкФ и рабочее напряжение 25 Вольт.

В другой системе маркировки вы увидите букву, за которой следуют три цифры. Эта буква означает номинальное напряжение. Значение различных букв представлено в таблице ниже. Среди трех чисел первые два представляют значение в пикофарадах, а третье число говорит, сколько нулей вы должны добавить к первым двум. Следующий пример поможет вам лучше понять.

Если вы встретите электролитический конденсатор с маркировкой – Е476, это означает, что Е означает 25 вольт, а 476 означает, что к 47 нужно добавить шесть нулей, чтобы получить емкость в пикофарадах. Следовательно, показание конденсатора будет 47000000 пФ = 47000 нФ = 47 мкФ.

Буквы на конденсаторах обозначают следующие максимальные значения напряжения:

Письмо

Напряжение

и

2,5
Г

4

Дж

6,3
А

10

С

16
Д

20

Е

25

В

35

Н

50

Чем электролитический конденсатор отличается от керамического конденсатора?

В следующей таблице перечислены основные отличия электролитического конденсатора от неэлектролитического или керамического конденсатора:

Характеристики Электролитический конденсатор

Керамический конденсатор

Поляризация

Тип поляризованного конденсатора. Это не поляризованный конденсатор.
Анодная клемма Анодный вывод больше катодного.

Оба терминала равны.

Диапазон

от 0,1 мкФ до 4700 мкФ

от 10 пФ до 0,1 мкФ

Температурная стабильность

Бедный

Хорошо

Допуск

Высокий

Низкий

Жизнь

Короткий

Длиннее

Заключение

Электролитический конденсатор помогает достичь высокой емкости при введении электролита. Его анодный вывод всегда выше катода. Эти конденсаторы находят применение в различных областях, но чаще всего используются для уменьшения колебаний напряжения в фильтрующих устройствах.

Часто задаваемые вопросы

Q1. Что такое емкость?

Емкость описывает отношение изменения электрического заряда (Q) электрической системы к соответствующему изменению электрического потенциала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *