Обозначение диода на схеме. Обозначение диодов и других полупроводниковых приборов на электрических схемах

Каковы особенности условных графических обозначений различных типов диодов на электрических схемах. Как правильно обозначать выпрямительные, импульсные, стабилитроны и другие виды диодов. Какие буквенные коды используются для маркировки диодов на схемах.

Содержание

Основные принципы обозначения диодов на схемах

Диоды являются одними из базовых элементов электронных схем. Их условное графическое обозначение на схемах основано на следующих принципах:

  • Треугольник, символизирующий анод (p-область)
  • Вертикальная черта, обозначающая катод (n-область)
  • Стрелка, указывающая направление прохождения тока
  • Буквенный код VD для обозначения диодов

Такое обозначение наглядно передает основное свойство диода — одностороннюю проводимость от анода к катоду. Рассмотрим более подробно обозначения различных типов диодов.

Обозначение выпрямительных и импульсных диодов

Выпрямительные и импульсные диоды обозначаются базовым символом диода без дополнительных элементов:


  • Треугольник (анод) и вертикальная черта (катод)
  • Буквенный код VD
  • При необходимости указывается тип диода рядом с обозначением

Выпрямительные столбы (последовательное соединение диодов) обозначаются несколькими символами диодов подряд с общим кодом VD.

Обозначение диодных мостов

Однофазные выпрямительные мосты имеют особое обозначение на схемах:

  • Квадрат с символом диода внутри
  • 4 вывода по углам квадрата
  • Буквенный код VD
  • Полярность выпрямленного напряжения не указывается

Несколько мостов в одном корпусе обозначаются отдельно с указанием принадлежности к одному изделию в позиционном обозначении (например, VD1.1, VD1.2).

Особенности обозначения стабилитронов

Стабилитроны отличаются от обычных диодов наличием дополнительного элемента в обозначении:

  • Базовый символ диода
  • Короткий штрих у катода, направленный к аноду
  • Расположение штриха неизменно при любой ориентации символа
  • Двуханодные стабилитроны имеют два таких штриха

Такое обозначение позволяет легко отличить стабилитрон от других типов диодов на схеме.


Обозначение туннельных и обращенных диодов

Для обозначения туннельных и обращенных диодов используются следующие особенности:

  • Туннельный диод: два штриха у катода, направленные к аноду
  • Обращенный диод: два штриха у катода, направленные в разные стороны
  • Диод Шоттки: штрих у катода в виде буквы S

Эти дополнительные элементы позволяют однозначно идентифицировать данные типы диодов на схемах.

Как обозначаются варикапы

Варикапы (диоды переменной емкости) имеют характерное обозначение:

  • Базовый символ диода
  • Две параллельные линии у катода (символ конденсатора)
  • Буквенный код VD

Матрицы варикапов с общим катодом обозначаются несколькими такими символами с общим выводом катода.

Особенности обозначения тиристоров

Тиристоры обозначаются на основе базового символа диода со следующими отличиями:

  • Динистор: символ диода с отрезком, параллельным катоду
  • Тринистор: дополнительный управляющий вывод
  • Симметричный тиристор: два встречно включенных символа
  • Буквенный код VS

Такие обозначения наглядно показывают принцип работы различных типов тиристоров.


Обозначение фотодиодов и светодиодов

Фотодиоды и светодиоды имеют следующие особенности обозначений:

  • Фотодиод: символ диода в кружке, две стрелки к символу слева
  • Светодиод: символ диода в кружке, две стрелки от символа справа
  • Буквенные коды: VD для фотодиодов, HL для светодиодов

Стрелки показывают направление светового потока — к фотодиоду или от светодиода.

Обозначение оптронов на схемах

Оптроны (оптопары) обозначаются следующим образом:

  • Символы излучателя и фотоприемника в прямоугольнике
  • Две стрелки между ними, показывающие оптическую связь
  • Буквенный код U
  • Возможно раздельное изображение частей с общим кодом

Такое обозначение наглядно показывает принцип работы оптрона — передачу сигнала через оптический канал.

Буквенные коды для обозначения диодов

На схемах используются следующие основные буквенные коды для диодов:

  • VD — диоды общего назначения
  • VS — тиристоры
  • HL — светодиоды
  • U — оптроны

Эти коды позволяют быстро идентифицировать тип полупроводникового прибора на схеме.


Маркировка диодов на печатных платах

При маркировке диодов на печатных платах используются следующие принципы:

  • Позиционное обозначение (VD1, VD2 и т.д.)
  • Контур корпуса с обозначением катода
  • Возможно указание типа или основных параметров
  • Для мощных диодов — площадка для теплоотвода

Такая маркировка позволяет однозначно определить расположение и ориентацию диодов на плате.

Заключение

Знание правил обозначения диодов и других полупроводниковых приборов на схемах позволяет быстро «читать» электрические схемы и понимать принцип работы устройств. Важно помнить основные отличительные признаки обозначений разных типов диодов и использовать корректные буквенные коды. Это значительно упрощает работу с электронными схемами.


Условное обозначение диодов, тиристоров, светодиодов, варикапов на схемах

Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (p-n-переход). Как известно, основное свойство p-n-перехода — односторонняя проводимость: от области p (анод) к области n (катод). Это наглядно передает и условное графическое обозначение полупроводникового диода : треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 1).

Рис.1. Условное обозначение диодов

Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы (см. рис. 1, VD4). Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 2, VD1). Полярность выпрямленного моста напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 2, VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.

Рис.2. Условное обозначение диодных мостов

На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 3, VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения обозначения стабилитрона на схеме (VD2—VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).

Рис. 3. Условное обозначение стабилитронов, варикапов, диодов Шотки

Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 3, VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в обозначении диода Шотки (VD10) — в разные стороны; в обозначении обращенного диода (VD9) — оба штриха касаются катода своей серединой.

Свойство обратно смещенного p-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах — варикапах (от слов vari(able) — переменный и cap(acitor) — конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 3, VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами.

Для примера на рис. 3 показано обозначение матрицы из двух варикапов (VD1).

Базовый символ диода использован и в обозначении тиристоров (от греческого thyra — дверь и английского resistor — резистор) — полупроводниковых приборов с тремя p-n-переходами (структура р-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов — VS.

Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 4, VS1). Такой же прием использован и при построении обозначения симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4).

Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.4, VS5).

Рис.4. Условное обозначение динисторов, тринисторов

Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева вверху, независимо от положения) помещают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 5, VD1—VD3). Подобным образом строятся обозначения любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 5 в качестве примера показано условное графическое обозначение фотодинистора VD4.

Рис.5. Условное обозначение фотодиодов

Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону (рис. 6). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.

Рис.6. Условное обозначение светодиодов и светодиодных индикаторов

Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 6, где изображено обозначение семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита но часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов — HG.

Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.

Рис.7. Условное обозначение оптронов

Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7, U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7, U4.1,U4.2).

Обозначение на плате диодов

Спасибо за ответ, Сергей! Предохранители- Вы имеете ввиду автоматические выключатели или плавкие предохранители? Возможно и, в случае пробоя одного из диодов, уберечь от цепного пробоя остальные диоды? С уважением, Александр. У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Обозначение разных типов диодов на схеме
  • Диоды и их разновидности
  • 2. 3.1. Виды и обозначение диодов
  • Электроника для начинающих
  • Условное обозначение радиодеталей на схеме и их название
  • Условное обозначение диодов, варикапов, светодиодов на схемах

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: СТАБИЛИТРОН — Принцип работы, маркировка, схемы включения

Обозначение разных типов диодов на схеме


Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход p-n-переход. Как известно, основное свойство p-n-перехода — односторонняя проводимость: от области p анод к области n катод. Это наглядно передает и условное графическое обозначение полупроводникового диода : треугольник символ анода вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости.

Перпендикулярная этой стрелке черточка символизирует катод рис. Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы см. Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри рис. Полярность выпрямленного моста напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении см.

Рядом с позиционным обозначением диода можно указывать и его тип. На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода рис. Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения обозначения стабилитрона на схеме VD2—VD4.

Это относится и к символу двуханодного двустороннего стабилитрона VD5. Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода см. Свойство обратно смещенного p-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах — варикапах от слов vari able — переменный и cap acitor — конденсатор.

Условное графическое обозначение этих приборов наглядно отражает их назначение рис. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков их называют матрицами с общим катодом и раздельными анодами. Для примера на рис.

Базовый символ диода использован и в обозначении тиристоров от греческого thyra — дверь и английского resistor — резистор — полупроводниковых приборов с тремя p-n-переходами структура р-n-p-n , используемых в качестве переключающих диодов.

Буквенный код этих приборов — VS. Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду рис. Такой же прием использован и при построении обозначения симметричного динистора VS2 , проводящего ток после его включения в обоих направлениях.

Тиристоры с дополнительным, третьим выводом от одного из внутренних слоев структуры называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода VS3 , по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод VS4.

Условное графическое обозначение симметричного двунаправленного тринистора получают из символа симметричного динистора добавлением третьего вывода см.

Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним слева вверху, независимо от положения помещают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа рис. Подобным образом строятся обозначения любого другого полупроводникового диода, управляемого оптическим излучением.

На рис. Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону рис.

Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных ИК светодиодов. Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы.

Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита но часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов сегментов в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться.

Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов — HG. Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. Оптическую связь излучателя светодиода и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона.

Фотоприемником в оптроне могут быть фотодиод см. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении см. Карта сайта. RadioLibrary Справочник радиолюбителя. Обозначения Главная.

Условное обозначение диодов, варикапов, светодиодов на схемах. Смотрите также: Справочник по отечественным диодам Справочник по отечественным стабилитронам Справочник по импортным диодам Справочник по импортным диодным мостам.

Главная Карта сайта Контакты RadioLibrary. Обозначения Главная Условное обозначение диодов, варикапов, светодиодов на схемах Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход p-n-переход. Условное обозначение диодов Буквенный код диодов — VD. Условное обозначение диодных мостов На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Условное обозначение стабилитронов, варикапов, диодов Шотки Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ.

Условное обозначение динисторов, тринисторов Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Условное обозначение фотодиодов Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону рис.

Условное обозначение светодиодов и светодиодных индикаторов Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условное обозначение оптронов Оптическую связь излучателя светодиода и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Смотрите также:. Справочник по отечественным диодам. Справочник по отечественным стабилитронам.

Справочник по импортным диодам. Справочник по импортным диодным мостам.


Диоды и их разновидности

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения. Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т. Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Цветовые обозначения отечественных диодов электронные компоненты микроскопических размеров, припаянные к медной стороне платы и не.

2.3.1. Виды и обозначение диодов

Пользователь интересуется товаром NSbox — Конструктор радиолюбителя для сборки генератора сигналов до 1 МГц. Диод — это электронный компонент, обладающий односторонней проводимостью. Идеальный диод является проводником в одном направлении и изолятором — в другом направлении. Максимально допустимый прямой ток и максимально допустимое напряжение — это такие значения тока и напряжения, которые диод может выдержать в течение длительного времени. В наборы Мастер Кит входят два типа диодов: — диод малой мощности 1N Максимально допустимый ток через этот диод составляет 0,15А, напряжение — до 75В — диод средней мощности типа 1N…1N Максимально допустимый ток через этот диод составляет 1А, напряжение в зависимости от последней цифры — от 50 до В. Если под рукой нет нужного диода, его можно заменить аналогичным. Конечно, нужно следить за тем, чтобы предельно допустимые ток и напряжения нового диода были выше таковых параметров схемы.

Электроника для начинающих

Как включить светодиод? Включение светодиодов необходимо осуществлять корректно. Их нельзя подключать как-нибудь. Но обычно, полярность диода в схеме соблюдается согласно его обозначению на схеме.

Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход p-n-переход. Как известно, основное свойство p-n-перехода — односторонняя проводимость: от области p анод к области n катод.

Условное обозначение радиодеталей на схеме и их название

Это двухконтактный полупроводниковый элемент с двумя активными электродами, анодом и катодом, между которыми ток может протекать только однонаправленно. Применяются в различных электросхемах, где требуется односторонний эффект диода. Для изготовления приборов чаще всего применяется кремний, германий. Основанные на одном принципе действия диоды не одинаковы по способу функционирования. Известно несколько типов приборов, которые различаются обозначениями на схеме, а также внешним видом:.

Условное обозначение диодов, варикапов, светодиодов на схемах

Скачать буквенные обозначения радиодеталей в формате XLSX. Обратная связь Получить информацию о наличии товара вы можете у наших менеджеров, позвонив по телефону Электронные компоненты Статьи по радиоэлектронике Графическое обозначение радиодеталей на схемах. Обновлена: 01 Июля 2. Поделиться с друзьями. Радиодетали — электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты.

Включение светодиодов необходимо осуществлять корректно. Их нельзя подключать как-нибудь. На схеме могут быть обозначения А или + для анода и.

Маркировка несет в себе информацию о светодиоде, и каждый производитель закладывает в нее свои данные. На светодиодах, как правило, не хватает места для размещения маркировки, поэтому ее следует искать на упаковочной таре: коробки, пакеты. Некоторые производители размещают светодиоды на ленте и сматывают на катушку.

Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM. А — маломощный диод;В — варикап;С — маломощный низкочастотный транзистор;D — мощный низкочастотный транзистор;Е — туннельный диод;F — маломощный высокочастотный транзистор;G — несколько приборов в одном корпусе;Н — магнитодиод;L — мощный высокочастотный транзистор;М — датчик Холла;Р — фотодиод, фототранзистор;Q — светодиод;R — маломощный регулирующий или переключающий прибор;S — маломощный переключательный транзистор;Т — мощный регулирующий или переключающий прибор;U — мощный переключательный транзистор;Х — умножительный диод;Y — мощный выпрямительный диод;Z — стабилитрон. Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее. А как же они обозначаются. Разберем в данной статье. И так поехали.

Под диодом обычно понимают электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь. Односторонняя проводимость диода является его основным свойством.

Dec Log in No account? Create an account. Remember me. Facebook Twitter Google.

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может.


Условное обозначение светодиода на схеме

Интересно наблюдать, с какой поразительной скоростью сменяют друг друга технологии. Лет тридцать назад мы вполне были довольны электроникой, которой пользовались, простыми автомобилями, где-то неудобными и малоскоростными, скромными домами без евроремонта. Но так устроен человек, что постоянно стремится к чему-то более совершенному, и сейчас практически любая сфера жизни подвержена постоянной модернизации. Коснулся этот процесс также систем индикации и освещения. Так, на смену лампам накаливания пришли более совершенные полупроводниковые элементы – светодиоды.

Излучающий кристалл

История применения полупроводников старше начала использования ламп электронного типа. Попов А.С., который считается изобретателем радио, искал с помощью нехитрого полупроводникового устройства наличие радиоволн. Первый диод Попова (детектор) был изготовлен из полупроводникового кристалла, зафиксированного в держателе, и пружинного заостренного контакта из вольфрама или стали. Этот контакт опирался на площадь полупроводника, и в зависимости от точки соприкосновения можно было найти наиболее четкий сигнал радиостанции.

Способность некоторых кристаллов излучать свет под действием тока была обнаружена чуть позже, случайно, но в первое время не использовалась на практике. Теперь же светодиоды широко применяют и в спецтехнике, и в быту.

Итоги.

Описанные методы имеют свои сильные и слабые стороны. По технической документации и визуально невозможно проверить работоспособность светодиода. Проверка с помощью подачи напряжения требует особенной осторожности. А мощный светодиод не всегда удастся прозвонить мультиметром. Для успешной работы электротехнику стоит освоить все методы и применять их по необходимости.

    Похожие записи
  • Лампы для дома: разновидности, формы, современные модели
  • Что такое и какие бывают люминесцентные лампы дневного света
  • Свойства и принцип работы соляной лампы

Что такое светодиод, как он выглядит на схеме?

Светодиодом называется разновидность полупроводникового элемента, имеющего особенность кристалла излучать свет под действием проходящего сквозь него электрического тока. Этот эффект проявляется не у всех полупроводников, а лишь у тех, у которых в процессе рекомбинации электронов и дырок выделение энергии происходит в световом диапазоне. Светодиод, как и обычный диод, имеет p-n-переход и пропускает ток только в одном направлении.

Особенностью светодиода как светоизлучающего прибора является то, что в нем непосредственно происходит выделение квантов света. Это отличает его от ламп накаливания, где сначала происходит разогрев спирали до определенной температуры, или галогенных ламп с эффектом ионизации. Потери энергии в светодиодах минимальны.

Конструктивно в состав светодиода входят подложка с нанесенным на нее кристаллом, выводы для подключения в электрическую цепь и корпус, который одновременно является оптической системой. Обозначение светодиода на схеме имеет определенное графическое выражение, на электронной плате он обозначается специальной кодировкой.

Виды диодов

Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:

  • Плюсовым, обладающим электропроводностью P.
  • Минусовым, обладающим электропроводностью N.


Анод и катод в светодиоде Источник multiurok.ru
Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:
  • Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
  • Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.

Важно! Величина сопротивления в закрытом положении непосредственно связана со значением прямого тока. Если оно высокое, то сопротивление будет низким.

Для чего служит светодиод, и как это отражено в его изображении на схеме?

Светодиод излучает свет, в этом его назначение. И на схематическом изображении это четко обозначено двумя стрелочками, идущими от элемента. Применение устройство получило очень широкое:

  • Различная индикация. Для сигнализации включения тех или иных режимов работы электронных устройств используют отдельные элементы. Группы устройств применяют в цифровой индикации, где каждый светодиод играет роль сегмента цифры или буквы. Условное обозначение светодиода на схеме, входящего в группу, не ставится отдельно для каждого, а отображается вся группа в виде индикатора с ответвлением и нумерацией контактов.
  • Для бытового, общественного и промышленного освещения.
  • В составе экранов для уличного транслирования, а также при создании бегущих строк.
  • В оптопарах. Обозначение светодиода на схеме в этом случае дополняется изображением фотоприемного элемента.
  • Оптоволоконные системы. Здесь светодиоды выступают в качестве излучателей модулированной оптической волны.
  • Для подсветки экранов на жидких кристаллах.
  • Дизайн и развлекательная индустрия.

Классификация и система обозначений

Параметры, влияющие на классификацию диодов

Классификация диодов зависит от целого ряда факторов. В частности, это касается следующих условий:

  • Физических свойств.
  • Основных электрических параметров.
  • Конструктивно-технологических признаков.
  • Род полупроводников.

Принадлежность к тому или иному типу показывается по принципу системы условных обозначений. Периодически она обновляется с дополнением новых подвидов. В большинстве случаев маркировка осуществляется посредством использования буквенно-цифровых кодов.

Советская маркировка

Системы буквенно-цифровых сокращений диодов, использующиеся в электротехнике советской эпохи, неоднократно изменялась. Однако, наибольшей популярностью пользовался способ, параметры которого прописаны в ГОСТ 11.336.919-81. К примеру, как это показано в списке, приведённом на изображении.


Советская маркировка диодов Источник ru.wikipedia.org

В качестве примера можно привести такие обозначения:

  • ВИ 121.
  • ДГ 805 А.
  • ЦК 504Ж.

Помимо этого, система аббревиатур подразумевает использование дополнительных значений с целью конфигурации независимого конструктивно-технологического свойства изделия.

Особенности обозначения полупроводника на чертежах

Технические нормы и правила регламентируют обозначение светодиода на схеме. ГОСТ 2.702-2011 предписывает:

  • Изображать светодиод и другие элементы схемы при помощи чертежных принадлежностей либо в электронном виде. При этом последний вариант должен иметь разрешение не меньше 300dpi и содержать расширение файла tif или bmp.
  • Светодиод имеет схематическое исполнение в виде обычного диода, заключенного в окружность. Над правой верхней частью окружности расположены две параллельные стрелки, идущие от основного элемента под углом вправо вверх.

  • Возле светодиода указывают его полный буквенно-цифровой индекс.
  • Как бы ни был расположен светодиод на схеме, с полярностью в ту или иную сторону либо под углом, направление стрелок остается неизменным.
  • Вывод, идущий от треугольника, на схеме символизирует анод (+), а от вертикальной черты – катод (-).
  • Светодиод на схеме должен иметь свой порядковый номер. Нумерация идет слева направо, сверху вниз.

Диод: анод и катод, полярность

Отправим материал на почту

  • Почему нужно уметь отличать анод от катода
  • Виды диодов
  • Классификация и система обозначений
  • Советская маркировка
  • Иностранные способы
  • Другие способы
  • Популярные светодиоды
  • Способы определения полярности
  • Мультиметр
  • Источник питания
  • Другие способы
  • Заключение

Диод – популярный элемент, использующийся в электротехнике и выполняющий роль светоиндикатора. Для его правильной работы и излучения света он должен быть подключен правильно, с соблюдением полярности. Определить её можно несколькими способами: с помощью мультиметра, обычной батарейки или блока питания от мобильного телефона. Существует ещё несколько вариантов нахождения катода и анода диода. Однако в отличие от ранее упомянутых методов, они не дают 100% гарантии точного результата.

Светодиод – полярность обозначения

Обозначение светодиода на схеме позволяет легко определить его полярность, но чтобы определить ее у только что купленного элемента, нужно посмотреть на его контакты. Плюсовой вывод анода обычно имеет большую длину, чем катода.

Если светодиод установлен на плате, а она по каким-либо причинам не имеет маркировки элементов, то полярность полупроводника можно определить, внимательно посмотрев на его корпус. Со стороны катода (отрицательного вывода) на корпусе есть засечка плоской формы. Также у прозрачных типов корпусов светодиода видна его внутренность. Подобие чашечки, в которой расположен кристалл полупроводника, имеет прямое соединение с катодом.

В том случае, когда невозможно определить полярность вышеперечисленными способами, но в наличие есть электронный мультиметр, можно использовать его. Берут обычный диод с известной полярностью, ставят прибор на операцию прозвонки и подключают к полупроводнику. Запоминают полярность, когда диод проводит ток. Подключают светодиод к измерительным щупам. Добиваются, чтобы он проводил ток, отмечают его полярность.

Распознавание с помощью мультиметра.

Самый надежный способ распознания полярности − использование специальных приборов. При помощи обычного мультиметра можно обозначить контакты у диодов с высокой степенью точности. Попутно обнаружится исправность элемента и цвет свечения. Воспользоваться тестером можно 3-мя путями.

Во-первых, проверить LED устройство на режиме «проверка сопротивления – 2 кОм». При этом следует прикоснуться щупами мультиметра к контактам светодиода. Если красный положительный щуп тестера коснется анода диода, а черный отрицательный – катода, то экран покажет значение 1600-1800 Ом. В противоположном случае тестер выдаст единицу. Значит, щупы нужно поменять местами. Если и это не помогло, значит, элемент неисправен. Узнать цвет свечения таким методом не получится.

Во-вторых, можно установить мультиметр в режим «прозвонка, проверка диода». Если красный провод дотронется до анода, а черный – до катода, то элемент будет светиться. Экран покажет число от 500 до 1200 мВ.

В-третьих, многие тестеры позволяют проводить измерения вовсе без щупов. Мультиметр должен обладать специальным отделом для проверки PNP и NPN транзисторов. В них есть разъемы, обозначенные буквами «Е» и «С». При проверке элемента в PNP-зоне, если катод вставить в гнездо «С», а анод − в «Е», то светодиод начнет излучать свет. Следовательно, полярность определена верно. При работе в NPN-отсеке свечение появится при противоположном размещении контактов: катод в «Е», а анод в «С». Пожалуй, это самый скорый способ определения распиновки. Кстати, если у изучаемого светодиода нет длинных выводов, то можно в разъемы поместить иголки, и LED элемент аккуратно присоединять к ним.

Светодиод на плате

При сборке печатной платы радиомонтажники пользуются схемой и перечнем элементов спецификации. В соответствии с этим перечнем наносится специальная маркировка с указанием вида элемента и номера позиции его на схеме. Существуют международные стандарты обозначений на плате, которые повсеместно используются в импортной аппаратуре.

Обозначение светодиода на плате присутствует в виде графического изображения, буквенной кодировки и числа. Первое отображает в основном полярность полупроводника, буквы указывают на тип прибора, а число – на порядковый номер его в схеме и перечне.

Графическое обозначение светодиода на схеме платы идентично его изображению в чертеже, но может не содержать окружность вокруг значка диода. Буквенная кодировка выполнена заглавными латинскими буквами – LED (импортные схемы) и HL (отечественные). Число идет после букв либо внизу. Без числа невозможно определить параметры полупроводника, которые на плате не указывают за редким исключением.

Маркировка светодиодов

Буквенное обозначение светодиода на схеме (маркировка) несет всю информацию о характеристиках конкретного полупроводникового прибора. Маркировка содержит довольно много символов, поэтому ее не ставят на корпус прибора, а приводят в схеме либо на упаковке не распаянных элементов. Светодиоды в лентах идут бухтами в катушках, на которых проставлены маркировочные символы. Символьная кодировка отражает:

  • Серию продукции.
  • Цвет излучения светодиода. Современные светоизлучающие диоды бывают белого, зеленого, красного, синего, оранжевого, желтого цветов.
  • Качество цветового потока. Например, светодиод для освещения в доме или на улице, индикации приборов, подсветки, для матриц изображения.
  • Тип линзы. Бывают рассеивающие свет приборы и узконаправленного излучения с куполообразными, прозрачными и матовыми линзами.
  • Мощность светового потока.
  • Потребляемая мощность электроэнергии.
  • Код идентификации производителя. Не имеет практической нагрузки.
  • Символы резерва. Производители оставляют их для возможной модификации элементов.


Не существует определенного стандарта в маркировке светодиодов, поэтому каждый производитель имеет свою собственную кодировку. Запомнить ее невозможно, но серьезных производителей этого товара на рынке не так уж много. Среди них можно выделить такие фирмы, как Philips, Cree и Samsung.

Направление тока в диоде по маркировке

Направление электрического потока. Диод

«Приятной особенностью большого количества стандартов является то, что есть из чего выбрать»

Эндрю Таненбаум, профессор информатики

Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал «отрицательными» (имеющими недостаток заряда), фактически имеют избыток электронов.

К тому времени, когда было открыто истинное направление движения потока электронов, обозначения «положительный» и «отрицательный» уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к «избыточному» заряду, правильно было бы назвать электрон «положительно» заряженным . По большому счету, термины «положительный» и «отрицательный» являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда «черным», а его недостаток — «белым», в этом случае ученые говорили бы, что электрон имеет «белый» заряд (при условии использования гипотезы Франклина).

Поскольку мы склонны связывать слово «положительный» с «избытком» а слово «отрицательный» с «недостатком», то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где «положительный» означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока:

Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов:

Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и — (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и — выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае.

Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен . почти.

Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными. И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными.

Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока. Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов.

Условно-графические обозначения полупроводниковых приборов

Заглавная страница
Избранные статьи
Случайная статья
Познавательные статьи
Новые добавления
Обратная связь

КАТЕГОРИИ:

Археология
Биология
Генетика
География
Информатика
История
Логика
Маркетинг
Математика
Менеджмент
Механика
Педагогика
Религия
Социология
Технологии
Физика
Философия
Финансы
Химия
Экология

ТОП 10 на сайте

Приготовление дезинфицирующих растворов различной концентрации

Техника нижней прямой подачи мяча.

Франко-прусская война (причины и последствия)

Организация работы процедурного кабинета

Смысловое и механическое запоминание, их место и роль в усвоении знаний

Коммуникативные барьеры и пути их преодоления

Обработка изделий медицинского назначения многократного применения

Образцы текста публицистического стиля

Четыре типа изменения баланса

Задачи с ответами для Всероссийской олимпиады по праву



Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Влияние общества на человека

Приготовление дезинфицирующих растворов различной концентрации

Практические работы по географии для 6 класса

Организация работы процедурного кабинета

Изменения в неживой природе осенью

Уборка процедурного кабинета

Сольфеджио. Все правила по сольфеджио

Балочные системы. Определение реакций опор и моментов защемления

⇐ ПредыдущаяСтр 18 из 20Следующая ⇒

 

На электрических и радиоэлектронных схемах полупроводниковые диоды обозначаются символом, напоминающим кристаллический детектор с парой кристалл – металлическое острие, использовавшийся в 20-е годы. Вместо ост­рия на схеме рисуется треугольник (анод), вершина, которого упирается в чер­ту, под которой подразумевается плоскость кристалла полупроводника (ка­тод). Эта вершина указывает направление наибольшей проводимости. Этот сим­вол обозначения полупроводникового диода лежит в основе и для обозначения диодов разного назначения.

В таблице 5.12 даны некоторые обозначения различных видов диодов.

 

Таблица 5.12 – Обозначения некоторых видов диодов

Наименование Обозначение
Диод (общее обозначение)
Диод туннельный
Стабилитрон
Варикап (диод емкостной)
Диод Шотки
Диод светоизлучающий

 

Некоторые обозначения тиристоров приведены в таблице 5. 13

 

Таблица 5.13 – Обозначения некоторых видов тиристоров

Наименование Обозначение
Тиристор диодный, запираемый в обратном направлении
Тиристор диодный, проводящий в обратном направлении
Тиристор диодный симметричный
Тиристор триодный

 

Условное графическое обозначение биполярных транзисторов содержит обозначение базы, эмиттера и коллектора. Базу транзистора обозначают короткой черточкой, эмиттер — наклонной линией со стрелкой. Для транзистора структуры p-n-р стрелка направлена к изображению базы, а для транзистора структуры n-p-п — от базы. Кружок на схеме символизирует корпус транзистора. Если транзистор без корпуса или входит в состав интегральной микросхемы, то кружок не ставится. В изображении лавинного транзистора используется дополнительный знак — изображение пря­мого угла между эмиттером и коллектором. Особенностью изображения однопереходного транзистора является то, что символ эмиттера направлен под углом к середине изображения базы, а два вывода от базы смещены к ее краям.


В таблице 5.14 даны некоторые обозначения некоторых видов биполярных транзисторов.

 

Таблица 5.14 – Обозначения некоторых видов биполярных транзисторов

Наименование Обозначение
Транзистор типа PNP
типа NPN
Транзистор лавинный типа NPN
Транзистор однопереходный с P-базой
Транзистор однопереходный с N-базой
Транзистор двухбазовый типа NPN
Транзистор многоэмиттерный типа NPN

 

При выполнении схем допускается выполнять обозначения транзисторов в зеркальном изображении, например, так, как показано на рисунке 5. 12.

 

Рисунок 5.12 – Пример обозначения транзисторов в зеркальном изображении

 

Полевые транзисторы изображают несколько иначе. Они имеют только общее изображение корпуса в виде кружка. У полевых транзисторов с р-п переходом канал изображают в виде черточки, как базу у биполярных транзисторов. Две параллельные линии справа символизируют сток и исток полевого транзистора. Линия, продолжающая исток в противоположном направлении, представляет затвор. Соединение затвора с каналом, управляющим p-n переходом, изображается стрелкой, указывающей электропроводность канала. Стрелка, направленная к общей вертикальной черте, — полевой транзистор с каналом n-типа стрелка, идущая от общей вертикальной черты — с каналом p-типа.

Примеры построения обозначений некоторых полевых транзисторов приведены в таблице 5.15.

 

Таблица 5.15 – Обозначения некоторых видов полевых транзисторов

Наименование Обозначение
Транзистор полевой с каналом типа N
Транзистор полевой с каналом типа Р
Транзистор полевой с изолированным затвором без вывода от подложки: обогащенного типа с Р-каналом
обедненного типа с N-каналом

 

Размеры условных графических обозначений полупроводниковых приборов (в модульной сетке) приведены в таблице 5. 18.

 

Таблица 5.18 – Размеры условных графических обозначений полупроводниковых приборов

Наименование Обозначение
Диод  
Тиристор диодный
Транзистор биполярный  
Транзистор полевой

 

⇐ Предыдущая11121314151617181920Следующая ⇒



Читайте также:



Где возникла философия и почему?

Относительная высота сжатой зоны бетона

Сущность проекции Гаусса-Крюгера и использование ее в геодезии

Тарифы на перевозку пассажиров



Последнее изменение этой страницы: 2017-02-10; просмотров: 539; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia. su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь — 161.97.168.212 (0.006 с.)

5) Понятие выпрямительного диода. Обозначение выводов. Условное обозначение в схемах. Вах диода.

Выпрямительные диоды — диоды, предназначенные для преобразования переменного тока в постоянный. Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.[источник?]

Основные параметры выпрямительных диодов:

  • среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;

  • средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;

  • допустимое амплитудное значение обратного напряжения Uобр.макс.;

  • средний прямой ток Iпр. ср.;

  • частота без снижения режимов.

Работа выпрямительного диода объясняется свойствами электрического p–n-перехода.

Вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда (из-за рекомбинации) и обладающий высоким электрическим сопротивлением, – так называемый запирающий слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер).

Если к p–n-переходу приложить внешнее напряжение, создающее электрическое поле в направлении, противоположном полю электрического слоя, то толщина этого слоя уменьшится и при напряжении 0,4 — 0,6 В запирающий слой исчезнет, а ток существенно возрастет (этот ток называют прямым).

При подключении внешнего напряжения другой полярности запирающий слой увеличится и сопротивление p–n-перехода возрастет, а ток, обусловленный движением неосновных носителей заряда, будет незначительным даже при сравнительно больших напряжениях.

Прямой ток диода создается основными, а обратный – неосновными носителями заряда. Положительный (прямой) ток диод пропускает в направлении от анода к катоду. 

На рис. 1 показаны условное графическое обозначение (УГО) и характеристики выпрямительных диодов (их идеальная и реальная вольт-амперная характеристики). Видимый излом вольт-амперной характеристики диода (ВАХ) в начале координат связан с различными масштабами токов и напряжений в первом и третьем квадранте графика. Два вывода диода: анод А и катод К в УГО не обозначаются и на рисунке показаны для пояснения.

На вольт-амперная характеристика реального диода обозначена область электрического пробоя, когда при небольшом увеличении обратного напряжения ток резко возрастает.

Электрический пробой является обратимым явлением. При возвращении в рабочую область диод не теряет своих свойств. Если обратный ток превысит определенное значение, то электрический пробой перейдет в необратимый тепловой с выходом прибора из строя. 

Рис. 1. Полупроводниковый выпрямительный диод: а – условное графическое изображение, б – идеальная вольт-амперная характеристика, в – реальная вольт-амперная характеристика

Промышленностью в основном выпускаются германиевые (Ge) и кремниевые (Si) диоды.

Схема включение стабилитрона.Принцип действия

Стабилитрон (диод Зенера) — полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).

В основе работы стабилитрона лежат два механизма:

  • Лавинный пробой p-n перехода

  • Лавинный пробой — электрический пробой в диэлектриках и полупроводниках, связанный с тем, что в сильном электрическом поле носители заряда могут приобретать энергию, достаточную для ударной ионизации атомов или молекул материала. В результате каждого такого столкновения возникает пара противоположно заряженных частиц, одна или обе из которых также начинают участвовать в ударной ионизации. По этой причине нарастание числа участвующих в ударной ионизации носителей происходит лавинообразно, отсюда и название пробоя.

  • В дополнение можно сказать, что сейчас активно развивается фрактальный подход к описанию сложных процессов, связанных с разрядами.

  • Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе)

  • Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диодеквантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50. .150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

  • Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом[источник не указан 516 дней], выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом[источник не указан 516 дней]. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения[источник не указан 533 дня].

  • Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

  • Обозначение стабилитрона на принципиальных схемах

7)Понятие и типы транзисторов

Конструкция биполярных транзисторов

Физические процессы в биполярном транзисторе

Транзи́стор (англ.  transistor) — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. На принципиальных схемах обозначается «VT» или «Q«.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

Биполярным транзистором называется электропреобразовательный полупроводниковый прибор, имеющий в своей структуре два взаимодействующих p-n-перехода и три внешних вывода, и предназначенный, в частности, для усиления электрических сигналов. Термин “биполярный” подчеркивает тот факт, что принцип работы прибора основан на взаимодействии с электрическим полем частиц, имеющих как положительный, так и отрицательный заряд, — дырок и электронов. В дальнейшем для краткости будем его называть просто — транзистором.

Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности. На рисунке транзистор типа n-p-n, у которого средняя область с дырочной, а крайние с электронной электропроводностью.

Средняя область называется базой, одна из крайних областей — эмиттером, другая — коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный — между базой и эмиттером и коллекторный — между базой и коллектором. Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора.

Транзистор работает в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном — обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном — обратное (рис. 2). Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Рис. 2 — Движение электронов и дырок в транзисторе типа n-p-n.

Соответственно, как и раньше, темные маленькие кружки со стрелками — электроны, красные — дырки, большие кружки — положительно и отрицательно заряженные атомы доноров и акцепторов.

Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усление электрических колебаний с помощью транзистора.

При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.

Диод шоттки что это такое, характеристики, обозначение на схеме, маркировка, принцип работы, как проверить диод шоттки, диодный мост шоттки

Содержание

  • Индекс цветопередачи CRI
  • Вольт-амперная характеристика — диод
  • Принцип действия выпрямительного диода
  • Применение
  • Диод Шоттки в ВЧ цепях
  • Миниатюризация
  • Диод в цепи постоянного тока
  • Шаги
  • Стадии
  • Диагностика диодов Шоттки
  • Проверка транзистор-тестером
  • Проверка диодов Шоттки
  • Конструкция
  • Основные диоды Шоттки, которые встречаются в блоках питания

Индекс цветопередачи CRI

Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.

Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.

Вольт-амперная характеристика — диод

Вольт-амперная характеристика диода существенно зависит от температуры окружающей среды, с повышением которой прямой ток диода при одном и том же напряжении может увеличиться в несколько раз. При заданном прямом токе с увеличением температуры снижается прямое напряжение между электродами диода.

Вольт-амперная характеристика диода ( рис. 38 — 6) показывает зависимость тока через диод от приложенного к нему напряжения.

Вольт-амперные характеристики диода — двухэлектрод-ной электронной лампы и полупроводникового диода были показаны на рис. 3.3 и 3.17, в. Диод, у которого можно пренебречь обратным током и падением напряжения в прямом направлении, следует считать идеальным вентилем. Сопротивление идеального вентиля в прямом направлении ( гъ) равно нулю, а в обратном ( / чбр) — бесконечно велико. Вольт-амперная характеристика идеального вентиля, показанная на рис. 15.1, представляет собой отрезок ( Оа) положительной полуоси тока и отрезок ( Об) отрицательной полуоси напряжения. Заменой реальной характеристики вентиля отрезками прямых ( кусочно-линейная аппроксимация), в частности характеристикой идеального вентиля, шиши роко пользуются, чтобы упростить расчет режима цепи с вентилями.

Вольт-амперная характеристи.

Вольт-амперная характеристика диода условно разделяется на три области: область насыщения и две области пробоя. В области насыщения ток насыщения, проходящий через диод, очень мал и практически не зависит от приложенного напряжения.

Условные изображения диодов.| Вольтамперные характеристики диодов.

Вольт-амперная характеристика диода нелинейна, и значение R зависит от величины напряжения U а. На рабочем участке характеристики величина R может иметь значения от нескольких десятков до нескольких тысяч ом.

Селеновый ( а и меднозакисный ( б диоды.| Вольтамперные характеристики селеновой и меднозакисной шайб.

Вольт-амперные характеристики диодов сильно зависят от температуры.

Вольт-амперная характеристика диода зависит от температуры. С повышением температуры прямое и обратное сопротивления уменьшаются. Наиболее сильно с изменением температуры меняются обратный ток и.

Вольт-амперная характеристика диода в режиме теплового пробоя соответствует кривой б на рис. 3.4. Она имеет падающий характер, так как вследствие повышения температуры перехода концентрация носителей заряда в нем резко увеличивается и электрическое сопротивление перехода уменьшается относительно быстрее, чем растет ток перехода.

Устройство диода Шоттки. — — — — — — — — / L.

Вольт-амперная характеристика диодов Шоттки почти идеально описывается экспоненциальной зависимостью ( 10 — 52) для идеализированного диода. Это обстоятельство позволяет с успехом использовать диоды Шоттки в качестве логарифмирующих элементов.

Диодные ограничители.

Излом вольт-амперной характеристики диодов позволяет пропускать практически без искажений малые мгновенные значения напряжений и резко ослаблять вершины полуволн.

Принцип действия выпрямительного диода

Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.

Как ведет себя диод при прямом и обратном включении

Прямое направление — направление постоянного тока, в котором диод имеет наименьшее сопротивление.

Обратное направление — направление постоянного тока, в котором диод имеет наибольшее сопротивление.

Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.

При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).

  • анод (для прямого включения подключаем к плюсу), основание треугольника
  • катод (подключаем к минусу для прямого включения) палочка

Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.

Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.

Применение

Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:

  • бытовых электроприборов;
  • стабилизаторов напряжения;
  • во всем спектре радио- и телеаппаратуры;
  • в другой электронике.

Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.

Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.

Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.


Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Шаги

Метод 1 из 2:

Осмотр маркировки

  1. 1

    Изучите принцип работы диода. Диод состоит из полупроводников p- и n-типа. Полупроводник n-типа отвечает за отрицательную сторону диода и называется катодом. Полупроводник р-типа является положительной стороной диода и называется анодом.

    • Если положительная сторона источника напряжения соединена с положительной стороной диода (анодом), а отрицательная сторона соединена с отрицательной стороной (катодом), то диод будет проводить ток.
    • Если перевернуть диод обратной стороной, то он не будет пропускать электрический ток (до определенной величины).
  2. 2

    Узнайте, что означают условные обозначения. Диоды обозначаются на схеме символом (—▷|—), который показывает, как его следует устанавливать. Стрелка указывает на вертикальную полосу, из которой выходит линия.
    X
    Источник информации

    Стрелка указывает на положительную сторону диода, а вертикальная линия — на отрицательную. Проще запомнить так: положительная сторона перетекает в отрицательную, а стрелка указывает на направление потока.

  3. 3

    Найдите большую ленту. Если на диоде отсутствуют условные обозначения, найдите на диоде кольцо, ленту или линию. Возле отрицательной стороны (катода) большинства диодов обычно находится большая цветная лента, опоясывающая диод.

  4. 4

    Распознайте положительную сторону светодиода. LED — это светодиод, стороны которого легко различить по его ножкам. Длинная ножка будет положительным концом (анодом).
    X
    Источник информации

    Если ножки были обрезаны, осмотрите внешний корпус светодиода. Электрод, который находится ближе в плоскому краю, является отрицательным (катодом).

Метод 2 из 2:

С помощью мультиметра

  1. 1

    Настройте мультиметр на проверку диода.

    Диод можно проверить и без этого режима на мультиметре. Для этого установите ручку мультиметра в режим для измерения сопротивления (Ω).

    Для этого поверните ручку на условное обозначение диода (—▷|—). В этом режиме мультиметр пропустит через диод немного тока, что облегчит его проверку.

  2. 2

    Подсоедините мультиметр к диоду. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Показания отобразятся на экране мультиметра.
    X
    Источник информации

    • Если на мультиметре есть режим проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то экран покажет наличие напряжения. В противном случае вы ничего не увидите.
    • Если на мультиметре нет режима для проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то дисплей покажет низкое сопротивление. В противном случае на экране отобразится очень сильное сопротивление, которое может быть выражено символами «OL».
  3. 3

    Проверьте светодиод. LED — это светодиод. Поверните ручку на мультиметре в положение для проверки диода. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Если светодиод загорится, значит, положительный щуп касается положительного конца (анода), а отрицательный щуп — отрицательного (катода). Если светодиод не загорится, значит, щупы касаются противоположных концов.

Стадии

Как и любое другое инфекционное заболевание, микробная экзема протекает в несколько стадий:

  • I — начало болезни (эритематозная экзема). Проявляется зудом и легким покраснением ограниченных участков кожи.
  • II — развитие патологии (папуловезикулярная стадия). Характеризуется появлением узелковых высыпаний, которые со временем заполняются прозрачной жидкостью.
  • III — разгар болезни (стадия мокнутия). Пузырьки самопроизвольно вскрываются с выделением серозной жидкости, в местах папул формируются гнойные очаги.
  • IV — затухание патологии (сухая экзема). Воспаленные участки кожи подсыхают, покрываются серовато-желтыми корками, которые со временем могут трескаться.

Острая микробная экзема диагностируется в случае, когда длительность заболевания не превышает 3 месяца. Воспалительные очаги при этом имеют ярко-красную окраску, подвергаются постоянному мокнутию, сильно зудят.

В случае если симптомы экземы не проходят в период от 3 до 6 месяцев, речь идет о подостром течении патологии. При данной форме пораженные участки кожи имеют менее насыщенный цвет (розоватый, светло-красный), отличаются большей плотностью, сухостью и постоянно шелушатся.

Для хронической формы патологии характерно длительное, более 6 месяцев, течение. Протекает с периодами ремиссии и обострения. В неактивной фазе экземы кожа практически не отличается от здоровой, но имеет более плотную структуру, склонна к повышенной сухости. Клинические симптомы активной фазы болезни сходны с проявлениями острой экземы.

Диагностика диодов Шоттки

Можно провести диагностику электронного элемента Шоттки, если возникнет такая необходимость, но на это уйдет немного времени. Прежде всего, необходимо выпаять один элемент из диодного моста или электронной схемы. Осмотреть визуально и проверить тестером. В результате этих простых технических операций узнаете исправный ли полупроводник или нет. Хотя и необязательно выпаивать всю сборку, ведь это лишняя работа, а самое главное — затраты времени.

Также можно проверить данный диод или диодный мост мультиметром, при этом учитывайте то, что на приборе изготовитель пишет ток сбоку. Мы включаем мультиметр и подводим его щупы к концам анода и катода, и он покажет нам напряжение диода.

Иногда бывает так, что диод Шоттки может стать неисправным по некоторым причинам. Рассмотрим их:

  1. Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.
  2. Если в полупроводнике или диодном мосту возникнет обрыв, тогда он вообще перестанет пропускать ток.

Причем в обоих случаях запаха гари вы не почувствуете и дыма не увидите, так как в корпусе встроена специальная защита против таких происшествий. Если вдруг в одном транзисторе сгорел вышесказанный диод, то убедитесь, что это единственное устройство, где вы нашли неисправность, потому что диоды обязательно нужно проверять все.

Хотя иногда может и не быть такой возможности для того, чтобы проверить диоды на исправность, когда это будет необходимо. Иногда бывает так, что компьютер начинает тормозить, включаться очень долго, «зависает». Возможно, дело связано именно с диодами, и каждый может разобрать процессор и посмотреть, что внутри случилось.

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Проверка диодов Шоттки

Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.

«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.

Тестирование диодов Шоттки

Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер. Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт

При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Основные диоды Шоттки, которые встречаются в блоках питания

Шоттки TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10AШоттки TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15AУльтрафаст TO-220 SF1004G 5A x 2 =10A 200V Vf=0. 97V при 5AУльтрафаст TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8AУльтрафаст SR504 5A 40V Vf=0.57Шоттки TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20AШоттки TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49VУльтрафаст TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20AШоттки TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30AШоттки TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15AШоттки TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30AШоттки TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15AШоттки TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15AШоттки TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10AШоттки TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15AШоттки TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20AУльтрафаст TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Существуют и современные отечественные диодные сборки на большой ток. Вот их маркировка и внутренняя схема:

Высоковольтные силовые диоды Шоттки с напряжением до 1200 В

Хотя более предпочтительным является применение диодов Шоттки в низковольтных мощных выпрямителях с выходными напряжениями в пару десятков вольт, на высоких частотах переключения.

Маркировка диода Код маркировки Кол-во диодов Обратное напр. Прямой ток Время рас. Емкость диода Корпус диода Характеристики сборки диодовСкладЗаказ
BAT54C WW1 2 шоттки 30В 200мА 5 нс 10 пФ SOT23 BAT54CW 43 2 Шоттки 30В 200мА 5 нс 10 пФ SOT323 BAT54S WV4 2 шоттки 30В 200мА 5 нс 10 пФ SOT23 BAT54SW 44 2 Шоттки 30В 200мА 5нс 10 пФ SOT323

Купить

Упаковка:

Tags: ампер, анод, бра, вид, выбор, генератор, дом, е, емкость, зажим, замена, знак, как, компьютер, конденсатор, кт, лампочка, маркировка, мультиметр, нагрузка, напряжение, паяльник, переменный, постоянный, правило, принцип, провод, пуск, р, работа, размер, расчет, расшифровка, регулятор, резистор, ремонт, ряд, свет, светодиод, соединение, сопротивление, стабилизатор, стабилитрон, схема, тен, тип, ток, транзистор, треугольник, ук, щит, эффект

Диодный ток: функциональность и характеристики

Ключевые выводы

● Узнайте о функциях диодов.

● Получите более полное представление о характеристиках протекания тока через диоды.

● Узнайте, как изменения смещения диодов определяют, работают ли они как изоляторы или проводники.

 

Смещение диода влияет на протекание тока.

По сравнению с множеством электронных компонентов, с которыми мы сталкиваемся в области электроники, диод является относительно простым компонентом. По сути, диод — это компонент, который позволяет току течь в одном направлении и блокирует его в другом направлении. Диоды позволяют току течь в одном направлении без влияния какого-либо импеданса, полностью блокируя весь поток тока в другом. Кроме того, существует четкое обозначение между этими двумя состояниями работы.

Диод

Как уже говорилось, ток, протекающий через диод, может течь только в одном направлении, и мы называем это состояние прямым смещением. Поскольку ток может течь только в одном направлении (прямое смещение), мы неофициально считаем диоды односторонними электронными вентилями. Если напряжение на диоде отрицательное, ток не течет; таким образом, идеальный диод выглядит как разомкнутая цепь.

Типичные диоды могут находиться в прямом или обратном смещении. В электронике мы определяем смещение или смещение как метод установления набора токов или напряжений в различных точках электронной схемы, чтобы установить надлежащие условия работы в электронных компонентах. Хотя это упрощенная версия ответа, в целом она верна.

Диод представляет собой электронный компонент, состоящий из полупроводникового материала P-типа и N-типа; мы называем p-n переход. Он также имеет выводы, подключенные к этим двум концам, что упрощает внедрение практически в любую электронную схему.

Функциональность диода

Мы называем вывод, прикрепленный к полупроводнику N-типа, катодом. Таким образом, катод является отрицательной стороной диода. Напротив, мы называем вывод, подключенный к полупроводнику P-типа, анодом, что делает его положительной стороной диода.

Когда мы подключаем источник напряжения к диоду так, что положительная сторона источника напряжения соединяется с анодом, а отрицательная сторона соединяется с катодом, диод действует как проводник, позволяя течь току. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это прямым смещением.

Однако, если мы изменим это направление напряжения, то есть подключим отрицательную (-) сторону к аноду, а положительную (+) сторону к катоду, ток не будет течь. В это время диод действует как изолятор. Когда мы подключаем напряжение к диоду в этом направлении, мы называем это обратным смещением.

Примечание. Хотя при прямом смещении ток течет, а при обратном — нет, существует максимальный предел уровня тока, который диод может эффективно блокировать.

Две области диода

Мы кратко обсудили две полупроводниковые области в диоде (P и N). Однако также важно различать стороны или полупроводниковые области.

Во-первых, о символе, который схематически изображает диод, катод находится справа, а анод — слева. Анодную сторону условного обозначения, как правило, рассматривают как стрелку, изображающую стандартное направление протекания тока, т. е. от положительного (+) к отрицательному (-). Следовательно, диод допускает протекание тока в направлении стрелки. А затем рассмотрите вертикальную линию на стороне катода как огромный знак минус (-), показывающий, какая сторона диода является отрицательной для прямого смещения.

Функциональность протекания тока через диод

Стандартному диоду требуется определенное прямое напряжение, прежде чем он позволит протекать току. Как правило, указанное количество напряжения, которое требуется диоду, прежде чем позволить протекать току, составляет минуту. Обычно это 0,5 вольта. Пока он не достигнет этой величины напряжения, ток не будет течь. Однако при достижении прямого напряжения ток легко протекает через диод.

Мы называем этот минимальный порог напряжения в прямом направлении прямым падением напряжения на диоде. Причина этого в том, что цепь теряет или падает это напряжение на диоде. Мы можем проверить это, используя мультиметр и измерив выводы диода, когда он находится в прямом смещении. Полученное показание будет прямым падением напряжения на диоде.

Для дополнительной иллюстрации мы можем использовать приведенную выше принципиальную схему. Когда мы используем мультиметр для измерения на клеммах лампы, напряжение будет представлять собой разницу между напряжением батареи (12 вольт) и прямым падением напряжения на диоде в цепи. Например, если прямое падение напряжения на нашем диоде составляет 0,8 вольта, а напряжение батареи точно равно 12 вольтам, то напряжение на лампе будет 11,2 вольта.

Характеристики диода

Диод имеет максимальное обратное напряжение, которое он может выдержать до того, как выйдет из строя, что позволяет протекать обратному току через диод. Мы называем это обратное напряжение пиковым обратным напряжением (PIV) или пиковым обратным напряжением. Кроме того, это важная характеристика диода с точки зрения функциональности схемы. Крайне важно, чтобы ни один диод в вашей схеме не подвергался напряжению, превышающему этот предел.

Наряду с номинальным значением PIV и прямого падения напряжения диод также получает максимальный номинальный ток. Как следует из этого рейтинга, это пиковый рабочий ток диода, и его превышение приведет к непоправимому повреждению диода и, возможно, всей схемы.

Диод как компонент является относительно простым, но он обеспечивает функциональность двух различных компонентов в одном. Широкий спектр приложений для диода включает практически бесконечный список приложений для электрических устройств. Таким образом, диод является действительно адаптивным компонентом, который дает разработчикам оптимальный контроль над тем, какую функцию диод будет играть в их схемотехнике.

Набор диодов различных форм и размеров, но все они имеют одинаковые характеристики протекания тока.

Для успешного внедрения диода в вашу конструкцию с соответствующими характеристиками протекания тока через диод необходимо использовать высококачественное программное обеспечение для проектирования и анализа печатных плат. Allegro от Cadence — одно из таких программ с множеством надежных функций для компоновки, а также тестирования и моделирования.

Если вы хотите узнать больше о том, какое решение может предложить Cadence, обратитесь к нам и нашей команде экспертов. Чтобы посмотреть видео по связанным темам или узнать, что нового в нашем наборе инструментов для проектирования и анализа, подпишитесь на наш канал YouTube.

 

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Подпишитесь на LinkedIn Посетить сайт Больше контента от Cadence PCB Solutions

Обозначение Наименование Фото Описание
Заземление Защитное заземление — защищает людей от поражения электрическим током в электроустановках.
Батарея представляет собой гальванический элемент, в котором химическая энергия преобразуется в электрическую.
Солнечная батарея используется для преобразования солнечной энергии в электрическую.
Вольтметр — измерительный прибор для определения напряжения или ЭДС в электрических цепях.
Амперметр — прибор для измерения силы тока, шкала калибруется в микроамперах или в амперах.
Выключатель — коммутационное устройство, предназначенное для включения и выключения отдельных цепей или электрооборудования.
Тактовая кнопка представляет собой механизм переключения, замыкающий электрическую цепь при нажатии на толкатель.
Лампы накаливания общего назначения, предназначенные для внутреннего и наружного освещения.
Двигатель (двигатель) — устройство, преобразующее электрическую энергию в механическую работу (вращение).
Пьезодинамики (пьезоизлучатели) используются в технике для оповещения о происшествии или событии.
Резистор — пассивный элемент электрических цепей с определенным значением электрического сопротивления.
Переменный резистор предназначен для плавного изменения тока за счет изменения собственного сопротивления.
Фоторезистор Фоторезистор – это резистор, электрическое сопротивление которого изменяется под действием световых лучей (освещения).
Термистор Термисторы или термисторы представляют собой полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Предохранитель — электротехническое устройство, предназначенное для отключения защищаемой цепи путем разрушения.
Конденсатор служит для накопления заряда и энергии электрического поля. Конденсатор быстро заряжается и разряжается.
Диод имеет другую проводимость. Задача диода — проводить электрический ток в одном направлении.
Светоизлучающий диод (LED) представляет собой полупроводниковое устройство, создающее оптическое излучение при передаче электричества.
Фотодиод — это приемник оптического излучения, который преобразует свет в электрический заряд за счет процесса в p-n переходе.
Тиристор — это полупроводниковый переключатель, т. е. устройство, назначение которого — замыкать и размыкать цепь.
Назначение стабилитрона — стабилизация напряжения на нагрузке, при изменении напряжения во внешней цепи.
Транзистор представляет собой полупроводниковый прибор, предназначенный для усиления и управления электрическим током.
Фототранзистор представляет собой полупроводниковый транзистор, чувствительный к облучающему его световому потоку (освещению).