Что такое магнитное поле и какими свойствами оно обладает. Как возникает магнитное поле. Какие основные характеристики магнитного поля существуют. Как определить направление магнитных линий. Чем отличаются однородные и неоднородные магнитные поля.
Определение магнитного поля
Магнитное поле — это особый вид материи, который проявляется в действии на движущиеся электрические заряды и тела, обладающие магнитным моментом. Магнитное поле создается движущимися электрическими зарядами и изменяющимся во времени электрическим полем.
Основные свойства магнитного поля:
- Действует только на движущиеся электрические заряды
- Не имеет источников в виде магнитных зарядов
- Силовые линии магнитного поля всегда замкнуты
- Магнитное поле неразрывно связано с электрическим полем
Возникновение магнитного поля
Магнитное поле возникает в результате движения электрических зарядов. Основными источниками магнитного поля являются:
- Проводники с током
- Движущиеся электрические заряды
- Постоянные магниты
- Изменяющееся во времени электрическое поле
При протекании электрического тока по проводнику вокруг него образуется магнитное поле. Его интенсивность зависит от силы тока. Чем больше сила тока, тем сильнее магнитное поле вокруг проводника.

Основные характеристики магнитного поля
Основными характеристиками магнитного поля являются:
- Вектор магнитной индукции B
- Магнитный поток Φ
- Напряженность магнитного поля H
Вектор магнитной индукции
Вектор магнитной индукции B является силовой характеристикой магнитного поля. Он показывает, с какой силой магнитное поле действует на движущийся заряд. Единица измерения магнитной индукции — Тесла (Тл).
Магнитный поток
Магнитный поток Φ — это скалярная величина, характеризующая магнитное поле. Он равен произведению модуля вектора магнитной индукции на площадь контура, через который проходит поле. Единица измерения магнитного потока — Вебер (Вб).
Напряженность магнитного поля
Напряженность магнитного поля H характеризует магнитное поле независимо от свойств среды. Она связана с магнитной индукцией соотношением B = μμ₀H, где μ — магнитная проницаемость среды, μ₀ — магнитная постоянная. Единица измерения напряженности магнитного поля — Ампер на метр (А/м).
Магнитные силовые линии
Для наглядного представления магнитного поля используют магнитные силовые линии. Это воображаемые линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.

Основные свойства магнитных силовых линий:
- Являются замкнутыми кривыми
- Не пересекаются
- Густота линий характеризует величину индукции поля
- Направлены от северного полюса магнита к южному
Как определить направление магнитных линий
Для определения направления магнитных линий используют следующие правила:
Правило буравчика
Если ввинчивать буравчик по направлению тока, то направление вращения рукоятки буравчика укажет направление магнитных линий.
Правило правой руки
Если обхватить проводник правой рукой так, чтобы отставленный большой палец указывал направление тока, то остальные пальцы укажут направление магнитных линий.
Однородное и неоднородное магнитное поле
Магнитное поле может быть однородным и неоднородным:
- Однородное магнитное поле — поле, в котором вектор магнитной индукции одинаков во всех точках по величине и направлению
- Неоднородное магнитное поле — поле, в котором вектор магнитной индукции меняется от точки к точке по величине и/или направлению
Примером однородного магнитного поля является поле внутри длинного соленоида. Поле постоянного магнита является неоднородным.

Магнитные свойства веществ
По магнитным свойствам вещества делятся на три основных типа:
- Диамагнетики — слабо намагничиваются против внешнего магнитного поля
- Парамагнетики — слабо намагничиваются по направлению внешнего магнитного поля
- Ферромагнетики — сильно намагничиваются по направлению внешнего магнитного поля
Магнитные свойства веществ определяются их магнитной проницаемостью μ. У диамагнетиков μ < 1, у парамагнетиков μ > 1, у ферромагнетиков μ >> 1.
Взаимодействие магнитного поля с веществом
При внесении вещества в магнитное поле происходит его намагничивание. Степень намагничивания зависит от магнитных свойств вещества:
- Диамагнетики слабо выталкиваются из неоднородного магнитного поля
- Парамагнетики слабо втягиваются в область более сильного магнитного поля
- Ферромагнетики сильно втягиваются в область более сильного магнитного поля
Намагничивание ферромагнетиков сопровождается явлением гистерезиса — отставанием изменения намагниченности от изменения внешнего магнитного поля.

Применение магнитного поля
Магнитное поле широко используется в различных областях техники и технологий:
- Электродвигатели и генераторы
- Электромагниты
- Трансформаторы
- Магнитная запись информации
- Ускорители заряженных частиц
- Магнитно-резонансная томография
- Магнитная левитация
Понимание свойств и характеристик магнитного поля имеет фундаментальное значение для развития современных технологий. Дальнейшее изучение магнетизма открывает новые перспективы его применения в науке и технике.
Характеристики и свойства магнитного пола. Проявления магнитного поля в жизни
Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!
Магнитное поле
Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).
Важно: на неподвижные заряды магнитное поле не действует!
Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!Магнит
Магнит — тело, обладающее собственным магнитным полем.
У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).
Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.
Картина магнитного поля
Характеристики магнитного поля
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.
Сразу отметим, что все единицы измерения приводятся в системе СИ.
Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).
Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.
Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.
Магнитный поток Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.
Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).
Магнитный поток
Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.
Магнитное поле Земли
Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.
Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.
Магнитное поле земли
Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.
Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.
Магнитное поле Земли
За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.
К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля.
Магнитное поле. Линии — материалы для подготовки к ЕГЭ по Физике
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.
Взаимодействие магнитов
На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.
• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.
• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.
• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).
Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.
• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на
По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля. А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.
Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.
Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.
Линии магнитного поля
Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.
Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.
1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии
2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.
3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.
Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.
Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).
Рис. 1. Поле постоянного магнита
Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.
Опыт Эрстеда
Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.
Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.
Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.
Рис. 2. Опыт Эрстеда
Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.
Магнитное поле прямого провода с током
Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).
Рис. 3. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.
О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).
Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .
Магнитное поле витка с током
Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4).
Рис. 4. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
Магнитное поле катушки с током
Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 — изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.
Рис. 5. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6).
Рис. 6. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6) с линиями поля магнита на рис. 1. Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.
Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.
Магнитное поле
Для правильного понимания особенности и характеристики магнитного поля, необходимо дать определения многих физических явлений. При этом заранее нужно вспомнить и определить, что является силовой спецификой магнитного поля. Важно понимать, что подобный процесс можно наблюдать не только у магнитов.
Рисунок 1. Магнитное поле. Автор24 — интернет-биржа студенческих работ
Определение 1
Магнитное поле – это определенная материальная среда, через которую происходит постоянное взаимодействие между проводниками с током или движущимися зарядами элементарных частиц.
В настоящее время физики выделяют такие основные характеристики магнитного поля. Этот процесс появляется вокруг абсолютно любого проводника с током.
Магнитное поле влияет на действие любого проводника с током, который в результате такого воздействия начинает двигается в сторону постоянной силы, а замкнутый в кольцо проводник поворачивается на определенный угол.
Замечание 1
Данное поле не имеет границ, однако его действие может падать при увеличении общего расстояния от проводника с током, поэтому это взаимодействие невозможно обнаружить на больших расстояниях.
Взаимодействие токов в магнитном поле завершается с конечной скоростью в м/с.
Возникновение поля
Для того, чтобы понять принцип действия магнитного поля, стоит для начала описать его возникновение. Указанное физическое явление возникает в ходе трансформации заряженных частиц и может воздействовать на движущиеся электрические заряды, в частности на токопроводящие элементы.
Взаимосвязь между магнитным полем и перемещающимися зарядами и проводниками, по которым систематически течет ток, происходит посредством сил, называемыми электромагнитными. Интенсивность или силовую специфику магнитного поля в конкретной пространственной точке можно более точно определить с помощью постоянной индукции, которая обозначается символом В.
Линии индукции помогают представить весь процесс и его особенности в графической форме, которая предоставит все нюансы этой системы. Таким определением называют определенные линии, касательные которых абсолютно в любой точке совпадают с направлением основного вектора в магнитном процессе. Названные пути входят в характеристику поля и используются для точного установления его интенсивности и направленности. Чем выше насыщенность магнитного поля, тем больше указанных линий будет включено в работу.
Магнитные линии
Магнитные линии у прямолинейных элементов с высокой проводимостью тока имеют форму плотной концентрической окружности, центр которой находится на оси определенного проводника.
Замечание 2
Направление этих показателей возле проводников можно определить по правилу буравчика, которое интерпретируется следующим образом: если буравчик расположить так, что он будет постоянно ввинчиваться в движущийся проводник по направлению тока, тогда курс обращения самой рукоятки будет совпадать с назначением магнитных линий.
Правильное определение неоднородности и однородности является главной характеристикой магнитного поля. Эти составляющие, которые создаются при равных условиях одним током, будут иметь неоднозначную направленность и интенсивность в различных пространствах из-за движущихся магнитных свойств в данных веществах. Магнитная специфик окружающей среды характеризуются стабильной проницаемостью магнитов и измеряется физиками в генри на метр (г/м). В свойства исследуемого поля также можно отнести абсолютную магнитная проницаемость пустоты, которая называется магнитной постоянной.
Определение 2
Магнитная проницаемость – это определенное значение, которое определяет, как часто абсолютная магнитная проницаемость пространства будет отличаться от постоянной, относительной проницаемостью магнитов.
Магнитное поле оказывает непосредственное влияние на:
- изменяющиеся электрические заряды;
- вещества, посредством которых определяют проницаемость поля;
- постоянные магниты – подразумевающие общий магнитный момент всех заряженных частиц.
В магнитном процессе силовые линии возникают при сближении стабильного магнита к бумажному листу, на который необходимо насыпать слой железных опилок.
Изменения магнитных свойств материалов
При увеличении постоянства силы тока до полноценного насыщения в катушке с ферромагнитным элементами и последующим ее исчезновением, кривая намагничивания не может совпадать с линией размагничивания. С нулевой, невидимой напряженностью индукция в такой среде не будет иметь значение, а получит некий показатель, именуемый в физике остаточной магнитной индукцией.
Ситуацию с уменьшением индукции в магнитном поле от намагничивающей интенсивности физики называют гистерезисом. Для полного размагничивания процесса в элементах сердечника необходимо предоставить обратной направленности ток, с помощью которого появится элемент напряженности. Для разных ферромагнитных частиц важен отрезок различной длины. Значение, при котором будет осуществляться конечное размагничивание материала, именуется коэрцитивной силой.
При дальнейшем повышении действия тока в катушке магнитная индукция начинает увеличиваться до уровня насыщения, однако с абсолютно другими направлениям линий. При полном размагничивании в противоположном направлении возможно получить остаточную индукцию, которая используется при разработке постоянных магнитов из элементов с большим коэффициентом остаточного магнетизма. С помощью имеющих способность к перемагничиванию веществ ученые создают создаются сердечники для электрических приборов и машин.
Свойства магнитного поля
Рисунок 2. Свойства магнитного поля. Автор24 — интернет-биржа студенческих работ
Ключевым преимуществом и свойством магнитного поля считается относительность. Если данный критерий оставить в заряженном теле недалеко от системы отсчета и расположить по соседству магнитную стрелку, то она начнет указывать на север, и при этом не «увидит» стороннего поля, кроме поля нашей планеты. А если заряженное током тело будет двигаться возле указанной стрелки, то вокруг вещества возникнет магнитное поле.
Источники магнитного поля можно разделить на такие составляющие:
- электрическое пространство, меняющееся во времени;
- подвижные и постоянные заряды;
- заряженные током магниты.
В детстве многие были знакомы с магнитами, которые использовались в качестве игрушек, притягивающих к себе различные металлические детали. Их прикрепляли к холодильнику или же они были встроены в различные детские безделушки.
Электрические заряды, находящиеся в движении, чаще всего имеют намного больше магнитной энергии, если сравнить их с постоянными магнитами. Ученые установили причину, по которой физические тела получают определенные магнитные свойства. Согласно теории исследователей, внутри всех веществ есть электрические токи, имеющие микроскопическую величину. Электрон оснащен своим магнитным значением и имеет квантовую природу движения по орбите в атомах.
Магнитное поле способно влиять и воздействовать на меняющийся электрический ток. Его возможно обнаружить, если тестировать движение всех заряженных электронов. В магнитном процессе частицы с зарядом отклонятся, в результате чего проводники с движущимся током начнут уменьшаться.
Замечание 3
Данное явление не может быть воспринято человеческими органами, так как его реально зафиксировать только посредством соответствующих датчиков и приборов.
Магнитное поле бывает постоянного и переменного вида, а создается с помощью определенных индикаторов, функционирующих от переменного тока. Постоянное поле возникает только в неизменным электрическим полем.
Коэффициент такой пропорциональности называется индуктивностью основного проводника и обозначает возможность элемента создавать потокосцепление при трансформации электричества в силу тока, расположенную в контуре магнитного потока. Вышеуказанные определения и процессу помогают понять, что же собой представляет магнитное поле.
Магнитное поле определение и свойства. Магнитное поле
Источниками магнитного поля являются движущиеся электрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).
Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства
Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.
Если бы межпланетное пространство было вакуумом, то единственными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы.
На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным ветром). Концентрация этого газа 1-10 см -3
, типичные величины скоростей между 300 и 800 км/с, температура близка к 10 5
К (напомним, что температура короны 2×10 6
К).
Солнечный ветер – истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц Солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1см 3
.
Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г. ). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.
Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверхности Земли представляется магнитными картами трех или более магнитных элементов. На каждой из таких карт проводятся изолинии, вдоль которых данный элемент имеет постоянную величину. Линии равного склонения D называются изогонами, наклонения I – изоклинами, величины полной силы В – изодинамическими линиями или изодинами. Изомагнитные линии элементов H, Z, Х и Y называются соответственно изолиниями горизонтальной, вертикальной, северной или восточной компонент.
Вернемся к рисунку. Там показан круг с угловым радиусом 90°– d, который описывает положение Солнца на земной поверхности. Дуга большого круга, проведенная через точку Р и геомагнитный полюс В, пересекает этот круг в точках H’ n
и H’ m
, которые указывают положение Солнца соответственно в моменты геомагнитного полудня и геомагнитной полуночи точки Р. Эти моменты зависят от широты точки Р. Положения Солнца в местные истинные полдень и полночь указаны точками H n
и Н m
соответственно. Когда d положительно (лето в северном полушарии), то утренняя половина геомагнитных суток не равна вечерней. В высоких широтах геомагнитное время может очень сильно отличаться от истинного или среднего времени в течение большей части суток.
Говоря о времени и системах координат, скажем еще об учете эксцентричности магнитного диполя. Эксцентричный диполь медленно дрейфует наружу (к северу и к западу) с 1836 г. Экваториальную плоскость он пересел? примерно в 1862 г. Его траектория по радиальной проекции расположена в районе о-ва Гилберта в Тихом океане
В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблюдения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.
Согласно современным представлениям, образовалась примерно 4,5 млрд лет назад, и с этого момента нашу планету окружает магнитное поле. Все, что находится на Земле, в том числе люди, животные и растения, подвергаются его воздействию.
Магнитное поле простирается до высоты около 100 000 км (рис. 1). Оно отклоняет или захватывает частицы солнечного ветра, губительные для всех живых организмов. Эти заряженные частицы образуют радиационный пояс Земли, а вся область околоземного пространства, в которой они находятся, называют магнитосферой (рис. 2). С освещенной Солнцем стороны Земли магнитосфера ограничена сферической поверхностью с радиусом примерно 10-15 радиусов Земли, а с противоположной стороны она вытянута подобно кометному хвосту на расстояние вплоть до нескольких тысяч радиусов Земли, образуя геомагнитный хвост. Магнитосфера отделена от межпланетного поля переходной областью.
Магнитные полюса Земли
Ось земного магнита наклонена по отношению к оси вращения Земли на 12°. Она располагается примерно на 400 км в стороне от центра Земли. Точки, в которых эта ось пересекает поверхность планеты, — магнитные полюса. Магнитные полюсаЗемли не совпадают с истинными географическими полюсами. В настоящее время координаты магнитных полюсов следующие: северный — 77° с.ш. и 102° з.д.; южный — (65° ю.ш. и 139° в.д.).
Рис. 1. Строение магнитного поля Земли
Рис. 2. Строение магнитосферы
Силовые линии, идущие от одного магнитного полюса к другому, называются магнитными меридианами . Между магнитным и географическим меридианом образуется угол, называемый магнитным склонением . Каждое место на Земле имеет свой угол склонения. В районе Москвы угол склонения равен 7° к востоку, а в Якутске — около 17° к западу. Это значит, что северный конец стрелки компаса в Москве отклоняется на Т вправо от географического меридиана, проходящего через Москву, а в Якутске — на 17° влево от соответствующего меридиана.
Свободно подвешенная магнитная стрелка располагается горизонтально только на линии магнитного экватора, который не совпадает с географическим. Если двигаться к северу от магнитного экватора, то северный конец стрелки будет постепенно опускаться. Угол, образованный магнитной стрелкой и горизонтальной плоскостью, называют магнитным наклонением . На Северном и Южном магнитных полюсах магнитное наклонение наибольшее. Оно равно 90°. На Северном магнитном полюсе свободно подвешенная магнитная стрелка установится вертикально северным концом вниз, а на Южном магнитном полюсе ее южный конец опустится вниз. Таким образом, магнитная стрелка показывает направление силовых линий магнитного ноля над земной поверхностью.
С течением времени положение магнитных полюсов относительно по земной поверхности меняется.
Магнитный полюс был открыт исследователем Джеймсом К. Россом в 1831 г. в сотнях километров от его нынешнего местонахождения. В среднем за один год он перемещается на 15 км. В последние годы скорость перемещения магнитных полюсов резко возросла. Например, Северный магнитный полюс сейчас перемещается со скоростью около 40 км в год.
Смена магнитных полюсов Земли называется инверсией магнитного поля .
На протяжении геологической истории нашей планеты земное магнитное поле изменяло свою полярность более 100 раз.
Магнитное поле характеризуется напряженностью. В некоторых местах Земли магнитные силовые линии отклоняются от нормального поля, образуя аномалии. Например, в районе Курской магнитной аномалии (КМА) напряженность поля в четыре раза выше нормы.
Существуют суточные изменения магнитного поля Земли. Причина этих изменений магнитного поля Земли — электриче- с кие токи, текущие в атмосфере на большой высоте. Вызваны они солнечным излучением. Пол действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров. Основной же причиной возникновения солнечного ветра, как мы уже знаем, являются грандиозные выбросы вещества из короны Солнца. При движении к Земле они превращаются в магнитные облака и приводят к сильным, иногда экстремальным возмущениям на Земле. Особенно сильные возмущения магнитного поля Земли — магнитные бури. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Они могут продолжаться несколько часов и даже суток. Часто магнитные бури происходят через 1-2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.
Во время сильных магнитных бурь нарушается нормальная работа телеграфа, телефона и радио.
Магнитные бури часто наблюдаются на широте 66-67° (в зоне полярных сияний) и возникают одновременно с полярными сияниями.
Строение магнитного поля Земли меняется в зависимости от широты местности. Проницаемость магнитного поля увеличивается в сторону полюсов. Над полярными областями силовые линии магнитного поля более или менее перпендикулярны земной поверхности и имеют воронкообразную конфигурацию. Через них часть солнечного ветра с дневной стороны проникает в магнитосферу, а затем и в верхнюю атмосферу. Сюда же в период магнитных бурь устремляются частицы из хвостовой части магнитосферы, достигая границ верхней атмосферы в высоких широтах Северного и Южного полушарий. Именно эти заряженные частицы вызывают здесь полярные сияния.
Итак, магнитные бури и суточные изменения магнитного ноля объясняются, как мы уже выяснили, солнечным излучением. Но какова основная причина, создающая постоянный магнетизм Земли? Теоретически удалось доказать, что на 99 % магнитное поле Земли вызывают источники, скрытые внутри планеты. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. Их можно условно разделить на две группы. Основная их часть связана с процессами в земном ядре, где вследствие непрерывных и регулярных перемещений электропроводящего вещества создается система электрических токов. Другая — связана с тем, что горные породы земной коры, намагничиваясь главным электрическим полем (полем ядра), создают собственное магнитное поле, которое суммируется с магнитным полем ядра.
Кроме магнитного поля вокруг Земли существуют и другие поля: а) гравитационное; б) электрическое; в) тепловое.
Гравитационным полем Земли называют поле силы тяжести. Она направлена по отвесу перпендикулярно к поверхности геоида. Если бы у Земли была фигура эллипсоида вращения и в нем равномерно распределялись бы массы, то у нее было нормальное гравитационное поле. Разница между напряженностью реального гравитационного поля и теоретического — аномалия тяжести. Различный вещественный состав, плотность горных пород вызывают эти аномалии. Но возможны и другие причины. Их можно объяснить следующим процессом — уравновешение твердой и относительно легкой земной коры на более тяжелой верхней мантии, где и происходит выравнивание давления вышележащих слоев. Эти течения вызывают тектонические деформации, движение литосферных плит и тем самым создают макрорельеф Земли. Сила тяжести удерживает атмосферу, гидросферу, людей, животных на Земле. Силу тяжести нужно обязательно учитывать при изучении процессов в географической оболочке. Термином «геотропизм » называют ростовые движения органов растений, которые под влиянием силы земного тяготения всегда обеспечивают вертикальное направление роста первичного корня перпендикулярно поверхности Земли. Гравитационная биология использует растения в качестве экспериментальных объектов.
Если не учитывать силу тяжести, невозможно рассчитать исходные данные для запуска ракет и космических кораблей, сделать гравиметрическую разведку рудных ископаемых и, наконец, невозможно дальнейшее развитие астрономии, физики и других наук.
О магнитном поле мы еще помним со школы, вот только что оно собой представляет, “всплывает” в воспоминаниях не у каждого. Давайте освежим то, что проходили, а возможно, расскажем что-то новенькое, полезное и интересное.
Определение магнитного поля
Магнитным полем называют силовое поле, которое воздействует на движущиеся электрические заряды (частицы). Благодаря этому силовому полю предметы притягиваются друг к другу. Различают два вида магнитных полей:
- Гравитационное – формируется исключительно вблизи элементарных частиц и вирируется в своей силе исходя из особенностей и строения этих частиц.
- Динамическое, вырабатывается в предметах с движущимися электрозарядами (передатчики тока, намагниченные вещества).
Впервые обозначение магнитному полю было введено М.Фарадеем в 1845 году, правда значение его было немного ошибочно, так как считалось, что и электрическое, и магнитное воздействие и взаимодействие осуществляется исходя из одного и того же материального поля. Позже в 1873 году, Д.Максвелл “презентовал” квантовую теорию, в которой эти понятия стали разделять, а ранее выведенное силовое поле было названо электромагнитным полем.
Как появляется магнитное поле?
Не воспринимаются человеческим глазом магнитные поля разных предметов, а зафиксировать его могут только специальные датчики. Источником появления магнитного силового поля в микроскопическом масштабе является движение намагниченных (заряженных) микрочастиц, которыми выступают:
- ионы;
- электроны;
- протоны.
Их движение происходит благодаря спиновому магнитному моменту, который присутствует у каждой микрочастицы.
Магнитное поле, где его можно найти?
Как бы странно это ни звучало, но почти все окружающие нас предметы обладают собственным магнитным полем. Хотя в понятии многих магнитное поле имеется только у камушка под названием магнит, который притягивает к себе железные предметы. На самом деле, сила притяжения есть во всех предметах, только проявляется она в меньшей валентности.
Также следует уточнить, что силовое поле, называемое магнитным, появляется только при условии, что электрические заряды или тела движутся.
Недвижимые заряды имеют электрическое силовое поле (оно может присутствовать и в движущихся зарядах). Получается, что источниками магнитного поля выступают:
- постоянные магниты;
- подвижные заряды.
Уже давно магнитное поле вызывает множество вопросов у человека, но и сейчас остается малоизвестным явлением. Его характеристики и свойства пытались исследовать многие ученые, ведь польза и потенциал от применения поля были неоспоримыми фактами.
Давайте будем разбирать все по порядку. Итак, как действует и образуется любое магнитное поле? Правильно, от электрического тока. А ток, если верить учебникам по физике, – это имеющий направление поток заряженных частиц, не так ли? Так вот, когда ток проходит по любому проводнику, около него начинает действовать некая разновидность материи – магнитное поле. Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах. Теперь это поле и материя имеют энергию, ее мы видим в электромагнитных силах, которые могут влиять на ток и его заряды. Магнитное поле начинает воздействовать на поток заряженных частиц, и они меняют начальное направление движения перпендикулярно самому полю.
Еще магнитное поле можно назвать электродинамичным, ведь оно образуется около движущихся и воздействует только на движущиеся частицы. Ну а динамичным оно является из-за того, что имеет особое строение во вращающихся бионах на области пространства. Заставить их вращаться и двигаться может обыкновенный электрический движущийся заряд. Бионы передают любые возможные взаимодействия в этой области пространства. Поэтому движущийся заряд притягивает один полюс всех бионов и заставляет их вращаться. Только он может вывести их из состояния покоя, больше ничего, ведь другие силы не смогут влиять на них.
В электрическом поле находятся заряженные частицы, которые очень быстро двигаются и могут преодолеть 300 000 км всего за секунду. Такую же скорость имеет и свет. Магнитное поле не бывает без электрического заряда. Это значит, что частицы невероятно близко связаны друг с другом и существуют в общем электромагнитном поле. То есть, если будут любые изменения в магнитном поле, то изменения будут и в электрическом. Этот закон также обратен.
Мы тут много говорим про магнитное поле, но как же его можно представить? Мы не можем увидеть его нашим человеческим невооруженным глазом. Мало того, из-за невероятно быстрого распространения поля, мы не успеваем его зафиксировать при помощи различных устройств. Но чтобы что-то изучать, надо иметь хоть какое-нибудь представление о нем. Еще часто приходится изображать магнитное поле на схемах. Для того чтобы было проще понять его, проводят условные силовые линии поля. Откуда же их взяли? Их придумали неспроста.
Попробуем увидеть магнитное поле при помощи мелких металлических опилок и обыкновенного магнита. Насыплем на ровную поверхность эти опилки и введем их в действие магнитного поля. Затем увидим, что они будут двигаться, вращаться и выстраиваться в рисунок или схему. Полученное изображение будет показывать примерное действие сил в магнитном поле. Все силы и, соответственно, силовые линии непрерывны и замкнуты в этом месте.
Магнитная стрелка имеет сходные характеристики и свойства с компасом, и ее применяют, чтобы определить направление силовых линий. Если она попадет в зону действия магнитного поля, по ее северному полюсу мы видим направление действия сил. Тогда выделим отсюда несколько выводов: верх обычного постоянного магнита, из которого исходят силовые линии, обозначают северным полюсом магнита. Тогда как южным полюсом обозначают ту точку, где силы замыкаются. Ну а силовые линии внутри магнита на схеме не выделяются.
Магнитное поле, его свойства и характеристики имеют довольно большое применение, потому что во многих задачах его приходится учитывать и исследовать. Это важнейшее явление в науке физике. С ним неразрывно связаны более сложные вещи, такие как магнитная проницаемость и индукция. Чтобы разъяснить все причины появления магнитного поля, надо опираться на реальные научные факты и подтверждения. Иначе в более сложных задачах неправильный подход может нарушить целостность теории.
А сейчас приведем примеры. Все мы знаем нашу планету. Вы скажете, что она не имеет магнитного поля? Может, вы и правы, но ученые говорят, что процессы и взаимодействия внутри ядра Земли рождают огромное магнитное поле, которое тянется на тысячи километров. Но в любом магнитном поле должны быть его полюса. И они существуют, просто расположены немного в стороне от географического полюса. Как же мы его чувствуем? Например, у птиц развиты способности навигации, и они ориентируются, в частности, по магнитному полю. Так, при его помощи гуси благополучно прибывают в Лапландию. Специальные навигационные устройства также используют это явление.
Чтобы понять происхождение поля и его характеристики, необходимо иметь представление о многих природных явлениях. Если по-простому, то это явление — специальная форма материи, создаваемая магнитами. Причем источниками магнитного поля могут быть реле, генераторы тока, электродвигатели и др.
Немного истории
Прежде чем уходить вглубь истории, стоит узнать определение магнитного поля: МП — это силовое поле, которое воздействует на движущиеся электрические заряды и тела. Что касается явления магнетизма, то оно уходит корнями в глубокое прошлое, к временам расцвета цивилизаций Малой Азии. Именно на их территории, в Магнезии, были найдены горные породы, которые притягивались друг к другу. Их назвали в честь местности, откуда они произошли.
Однозначно сложно сказать, кто открыл понятие магнитного поля . Однако в начале XIX века Х. Эрстэд проводил эксперимент и выявил, что если магнитную стрелку расположить возле проводника и пустить по нему ток, то стрела начнет отклоняться. Если же берется рамка с током, то на ее поле воздействует внешнее поле.
Касательно современных вариантов, магниты, которые используют при производстве различных товаров, могут оказывать влияние на работу электронных сердечных стимуляторов и других устройств в кардиологии.
Стандартные железные и ферритовые магниты почти не вызывают проблем, так как характеризуются небольшой силой. Однако относительно недавно появились более сильные магниты — сплавы неодима, бора и железа. Они ярко-серебристые и их поле очень сильно. Их применяют в таких сферах промышленности:
- Швейная.
- Пищевая.
- Станкостроительная.
- Космическая и т. д.
Определение понятия и графическое отображение
Магниты, которые представлены в виде подковы, имеют два конца — два полюса. Именно в этих местах проявляются наиболее выраженные притягивающие свойства. Если магнит подвесить на веревочке, то один конец всегда будет тянуться к северу. На этом принципе основана работа компаса.
Магнитные полюса могут взаимодействовать друг с другом: одноименные отталкиваются, разноименные притягиваются. Вокруг этих магнитов возникает соответствующее поле, которое похоже на электрическое. Стоит упомянуть, что определить магнитное поле органами чувств человека невозможно.
Магнитное поле и его характеристики нередко отображают в виде графиков, при помощи индукционных линий. Термин означает, что существуют линии, касательные которых сходятся с вектором магнитной индукции. Этот параметр состоит в свойствах МП и служит определяющим фактором его мощности и направления.
Если поле сверхинтенсивное, то линий будет гораздо больше.
Понятие магнитного поля в виде изображения:
У прямых проводников с электрическим током существуют линии в виде концентрической окружности. Их центральная часть будет размещена на осевой линии проводника. Магнитные линии направляются согласно правилу буравчика: режущий элемент ввинчивают таким образом, чтобы он был указан в сторону тока, а ручка бы указывала на направление линий.
Поле, которое создается одним источником, может иметь разную мощность в различных средах. Все благодаря магнитным параметрам среды, а конкретнее, абсолютной магнитопроницаемости, которую измеряют в Генри на метр (г/м). Другие параметры полей — это магнитная постоянная — полная вакуумная проницаемость, и относительная постоянная.
Проницаемость, напряженность и индукция
Проницаемость — безразмерное значение. Среды, которые имеют проницаемость меньше единицы, именуются диамагнитными. В них поле не мощнее, чем в вакууме. К таким элементам относят воду, поваренную соль, висмут, водород. Вещества с проницаемостью выше единицы называют парамагнитными. К ним можно отнести:
- Воздух.
- Литий.
- Магний.
- Натрий.
Показатель магнитной проницаемости диамагнетиков и парамагнетиков не зависит от такого фактора, как напряжение наружного поля. Проще говоря, эта величина постоянна для конкретной среды.
К отдельной группе причисляют ферромагнетики. Их магнитопроницаемость может быть равна отметке в несколько тысяч. Такие вещества способны активно намагничиваться и увеличивать поле. Ферромагнетики широко распространены в электротехнике.
Специалисты изображают взаимосвязанность напряженности наружного поля и магнитной индукции ферромагнитов при помощи кривой намагничивания, т. е. графиков. Там, где изгибается график кривой, уменьшается скорость увеличения индукции. После изгиба, при достижении определенного показателя, появляется насыщение и кривая немного приподнимается, приближаясь к значениям прямой. В этом месте происходит рост индукции, но довольно-таки небольшой. Подводя итог, можно сказать, что график отношений напряженности с индукцией — предмет непостоянный, и что проницаемость элемента зависит от внешнего поля.
Напряженность полей
Еще одной немаловажной характеристикой МП называют напряженность, которая используется наряду с вектором индукции. Это определение — векторный параметр. Он определяет интенсивность внешнего поля. Объяснить мощные поля у ферромагнетиков можно наличием в них небольших элементов, которые представляются малыми магнитами.
Если ферромагнитный компонент не имеет магнитного поля, то у него могут отсутствовать магнитные свойства, потому что поля доменов будут иметь различную ориентацию. Рассматривая характеристики, можно поместить ферромагнетик во внешнее МП, например, в катушку с током, в это время домены изменят свое положение по направлению поля. А вот если наружное МП слишком слабое, то переворачивается лишь небольшое количество доменов, которое близко к нему.
По мере того как внешнее поле будет наращивать свои силы, все большее число доменов начнет поворачиваться по его направлению. Как только все домены повернутся, появится новое определение — магнитное насыщение.
Перемены поля
Кривая намагничивания не сходится с кривой размагничивания в тот момент, когда сила тока возрастает до своего насыщения в катушке с ферромагнетиком. Иное происходит с нулевой напряженностью, т. е. магнитная индукция будет содержать другие показатели, которые именуются остаточной индукцией. Если индукция отстает от намагничивающей силы, то это называют гистерезисом.
Чтобы добиться абсолютного размагничивания сердечника ферромагнетика в катушке, необходимо дать ток обратного направления, создавая тем самым нужную напряженность.
Различные ферромагнитные элементы нуждаются в разных отрезках. Чем он больше такой отрезок, тем больше энергии необходимо для размагничивания. Когда компонент полностью размагнитится, он достигнет состояния, которое называют коэрцитивной силой.
Если и дальше увеличивать ток в катушке, то в один момент индукция опять достигнет состояния насыщения, но уже с другим положением линий. При размагничивании в другую сторону появляется остаточная индукция. Это может пригодиться при производстве постоянного магнита. Детали, которые имеют хорошую способность к перемагничиванию, применяются в машиностроении.
Правила Ленца, левой и правой руки
По закону левой руки можно без проблем узнать направление тока. Так, при установке руки, когда в ладонь впускаются магнитные линии и 4 пальца показывают на направление тока в проводнике, большой палец покажет направленность силы. Такая сила будет направлена перпендикулярно току и вектору индукции.
Проводник, перемещающийся в МП, называется прообразом электрического двигателя, когда электроэнергия превращается в механическую. Когда проводник движется в МП, внутри него вызывается электродвижущая сила, имеющая показатели, пропорциональные индукции, используемой длине и скорости передвижения. Это соотношение именуется электромагнитной индукцией.
Для определения направления ЭДС используют правило правой руки: ее тоже располагают таким образом, чтобы в ладошку проникали линии, при этом пальцы покажут, куда направлена индуктированная ЭДС, а большой палец направит на перемещение проводника. Проводник, который двигается в МП под воздействием механической силы, считается упрощенным вариантом электрогенератора, где механическая энергия превращается в электрическую.
Когда магнит вводится в катушку, происходит повышение магнитного потока в контуре, а МП, которое создается индуцируемым током, направляется против увеличения роста магнитного потока. Чтобы определить направление, нужно смотреть на магнит со стороны северного поля.
Если проводник способен создавать сцепление потоков при прохождении через него электричества, то это называется индуктивностью проводника. Такая характеристика относится к основным, когда упоминают электрические цепи.
Поле Земли
Сама планета Земля представляет собой один большой магнит. Ее окружает сфера, где преобладают магнитные силы. Немалая часть научных исследователей утверждает, что магнитное поле Земли возникло из-за ядра. Оно имеет жидкостную оболочку и твердый внутренний состав. Так как планета вращается, то в жидкой части появляются бесконечные течения, а движение электрозарядов создает вокруг планеты поле, которое служит защитным барьером от вредных космических частиц, например, от солнечного ветра. Поле изменяет направление частиц, отправляя их вдоль линий.
Землю называют магнитным диполем . Южный полюс располагается на географическом Северном, а Северный МП, наоборот, на Южном географическом. В действительности полюса не совпадают не только по месторасположению. Дело в том, что магнитная ось наклоняется по отношению к вращательной оси планеты на 11,6 градуса. Из-за такой небольшой разницы появляется возможность использовать компас. Стрелка прибора в точности укажет на Южный магнитный полюс и немного с искажением — на Северный географический. Если бы компас существовал 730 тысяч лет назад, он бы направлял и на магнитный, и на обычный Северный полюс.
Магнитное поле, его свойства и характеристики.
Магнитное поле — форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).
Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.
Основные свойства магнитного поля:
1) порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;
2) действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;
3) переменное магнитное поле порождает переменное электрическое поле.
Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.
Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.
Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.
Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.
|
Направление линий определяется правилом правого винта. Соленоид — катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.
Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.
Магнитное поле соленоида аналогично магнитному полю полосового магнита.
Соленоид с током представляет собой электромагнит.
Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:
Вектор вводится одним из 3-х способов:
а) из закона Ампера;
б) по действию магнитного поля на рамку с током;
в) из выражения для силы Лоренца.
Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе
тока I и векторному произведению элемента длины на магнитную индукцию :
— закон Ампера
Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.
Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.
При I = const, B=const, F = B×I×l×sina
Если a =900, F = B×I×l
Индукция магнитного поля — векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.
1Тл — индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.
До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.
Магнитное поле макротоков описывается вектором магнитной напряженности .
Для однородной изотропной среды
,
m0= 4p×10-7Гн/м — магнитная постоянная, m0= 4p×10-7Н/А2,
m — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.
Дата добавления: 2016-11-04; просмотров: 12736; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
что это такое, определение, виды, силовые линии
Магнитное поле – это поле, которое можно определить как пространство вокруг магнита, в котором действуют магнитные силы.
Как известно, электрический ток может оказывать различные действия, например, тепловые, химические и магнитные. Магнитное действие проявляется, например, в том, что между проводниками с электрическим током возникают силы взаимодействия, которые называются магнитными силами.
Магнитное взаимодействие
Еще в древности было замечено, что одни тела притягивают другие тела. Янтарь следует натирать, чтобы он притягивал к себе волосы или обрывки ткани, но магниты всегда притягивают, но только железные предметы. Древние люди также обнаружили, что магнит может заставить другое тело, сделанное из железа, приобрести магнитные свойства, если держать его достаточно близко к магниту. Они также заметили, что две стороны магнита имеют разные свойства – обращенные друг к другу магниты могут притягивать или отталкивать друг друга.
Уже в настоящее время мы знаем, что магнитное поле возникает между полюсами магнитного материала. Полюса бывают северными и южными. Вы, наверное, сами сталкивались с тем, что когда вы сводите два магнита вместе, они либо притягиваются, либо отталкиваются друг от друга. Это происходит потому, что магнитные полюса с разными названиями (север-юг) притягиваются, а полюса с одинаковыми названиями (север-север, юг-юг) отталкиваются.
Магнитное поле тела часто представляют в виде диаграммы линий поля. Если внести ферромагнитное тело в магнитное поле, оно выровняется вдоль линий поля. Ферромагниты – самые известные магниты, создающие постоянное магнитное поле.
Если мы поднесем некоторое количество железных скрепок к магниту, то заметим, что большинство скрепок скопятся на концах магнита (называемых полюсами), потому что магнитная сила там наибольшая. Однако в середине магнита она имеет наименьшее значение. Магнитные силы действуют в пространстве вокруг магнита и создают то самое магнитное поле.
Магнитное поле невидимо, но, используя железные опилки, вы можете наблюдать его эффекты (см. рисунок 1).
Рис. 1. Железные опилки расположены характерным образом – они образуют линии вокруг магнита.Эти линии показывают форму магнитного поля, которое возникло вокруг стержневого магнита.

Большая часть железных опилок скапливается возле полюсов, а остальные располагаются вдоль линий поля. Они представляют собой линии магнитного поля, которые окружают магнит. Железные опилки намагничиваются, т.е. приобретают магнитные свойства и становятся маленькими магнитами, которые притягивают друг друга.
Изображение линий магнитного поля для некоторых видов магнитов
Начнем с изображения силовых линий магнитного поля. Они используются для визуализации магнитного поля. Вне магнита линии поля всегда идут от северного полюса к южному. Поскольку магнитное поле является замкнутым полем, они должны двигаться с юга на север внутри магнита. Плотность линий поля дает информацию о силе магнитного поля; чем плотнее линии поля, тем больше напряженность магнитного поля.
Магнитное поле стержневого магнита
На рисунке 2 ниже показано магнитное поле стержневого магнита. Стержневой магнит является постоянным, и имеет северный и южный полюсы.
Рис. 2. Магнитное поле стержневого магнитаЕсли сравнить магнитное поле с электрическим, то вместо плюсового и минусового полюса есть северный и южный. На этом рисунке показан ход линий поля от северного до южного полюса. Здесь также видно, что плотность линий поля не является постоянной для стержневого магнита. На полюсах она выше, чем между полюсами. Это говорит о том, что магнитное поле сильнее непосредственно у полюсов, чем между полюсами.
Магнитное поле подковообразного магнита
Кроме стержневого магнита, существуют и другие формы постоянных магнитов. Одной из важных форм является подковообразный магнит, который может быть круглым или квадратным.
Рис. 3. Магнитное поле подковообразного магнитаКак видите, магнитное поле внутри подковы однородно (см. рисунок 3). Однородность означает, что магнитное поле постоянно и не зависит от местоположения. Однородное магнитное поле на диаграмме линий поля можно распознать по параллельным линиям поля, расположенным на одинаковом расстоянии. Поэтому напряженность магнитного поля в однородном магнитном поле одинакова в каждой точке.
Магнитное поле двух стержневых магнитов
Давайте посмотрим на другой пример магнитного поля (см. рисунок 4 ниже):
Эти линии поля показывают, что два магнита с одинаковой полярностью отталкиваются друг от друга. Из этого можно сделать вывод, что одинаковые полюса отталкиваются, а разные полюса притягиваются.
Магнитное поле планеты Земля
Но какое отношение имеют полюса магнита к северу и югу Земли? Вы можете приблизиться к ответу, если спросите себя, как работает компас.
Рис. 5. Компас выравнивается по магнитному полюЗемля также имеет магнитное поле (см. рисунок 5), начало которого лежит на полюсах, т.е. на северном и южном полюсах. Стрелка компаса представляет собой постоянный стержневой магнит и выравнивается по этому полю. При этом северная часть стрелки компаса притягивается к южному полюсу магнитного поля Земли. Поэтому географический юг лежит на магнитном севере.
Магнитное поле проводника с электрическим током
Когда вы рассыпаете мелкие металлические опилки вокруг магнита и проводника, по которому течет электрический ток, они образуют определенные геометрические фигуры. Вы уже знаете, что это явление вызвано магнитным полем, создаваемым магнитом. Будет ли то же самое с проводником?
Наличие магнитного поля можно проверить с помощью магнитной стрелки, которая, как известно, является частью компаса. Как мы знаем, магнитная стрелка имеет два полюса: северный и южный. Линию, которая соединяет полюсы магнитной стрелки называют осью. я осью. Кроме того, мы знаем, что северный полюс магнитной стрелки указывает на южный магнитный полюс, а южный полюс стрелки указывает на северный магнитный полюс.
Рядом с магнитом он выравнивается по силовым линиям магнитного поля и указывает на южный полюс. С помощью магнитной стрелки определяются положения магнитных полюсов Земли и географические направления. Возникает ли магнитное поле только вокруг магнитов и Земли? Чтобы выяснить это, нужно провести эксперимент, которые отражает взаимодействие проводника с электрическим током и магнитной стрелки.
Опыт Эрстеда.
Для того, чтобы провести опыт, расположим проводник, который включён в электрическую цепь источника тока, над магнитной стрелкой параллельно её оси (см. рисунок 6).
Отклонение магнитной стрелки возле проводника, по которому протекает электрический ток, указывает на наличие магнитного поля. Направление отклонения магнитной стрелки зависит от того, в каком направлении течет электрический ток. Эта связь была открыта Хансом Кристианом Эрстедом в 1820 году. Его опыт имел большое значение для развития учения об электромагнитных явлениях.
Таким образом можно вывести 3 следующих вывода:
- Магнитное поле существует вокруг любого проводника с электрическим током, т. е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неразрывно связаны между собой.
- Направление силовых линий магнитного поля можно найти с помощью магнитной стрелки. Направление силовых линий магнитного поля зависит от того, в каком направлении течет электрический ток.
- Расположение силовых линий магнитного поля вокруг проводника с током зависит от формы проводника.
Поэтому вокруг неподвижных электрических зарядов существует только электрическое поле, а вокруг движущихся зарядов, т.е. электрического тока, существуют и электрическое, и магнитное поля. Магнитное поле возникает вокруг проводника, когда в нем возникает электрический ток, поэтому электрический ток следует рассматривать как источник магнитного поля. Выражения “магнитное поле электрического тока” или “магнитное поле, создаваемое электрическим током” следует понимать в этом смысле.
Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]
Изменит ли изменение формы проводника форму магнитного поля?
Силовые линии магнитного поля вокруг проводника, скрученного в петлю, уплотняются внутри него. Если проволоку намотать много раз, мы получим катушку, и железные опилки будут располагаться так же, как и вокруг магнита (см. рисунок 7).
Рисунок 7. Железные опилки отражают линии магнитного поляЭлектромагниты и их применение
Существование магнитного поля вокруг проводника с электрическим током широко используется в технике и промышленности. Часто используются устройства, называемые электромагнитами. Электромагнит состоит из катушки, сердечника и источника напряжения (см. рисунок 8).
Ферромагнитный сердечник электромагнита играет важную роль. Внутри него создаются магнитные поля, которые усиливают магнитное поле катушки.
Мелкие изделия из ферромагнитных материалов сильнее всего притягиваются полюсами электромагнита. Таким образом, можно сделать вывод, что магнитное поле вокруг электромагнита похоже на магнитное поле стержневого магнита.
Применение электромагнитов.
Рис. 9. Электромагниты – это устройства, имеющие широкое практическое значение. Они используются буквально везде: от дверных замков, звонков и громкоговорителей до промышленного оборудования и высокоскоростных поездов, а также медицинской и исследовательской аппаратуры.Электромагниты имеют различные применения. Например, на складах металлолома электромагнитные краны перемещают разбитые автомобили.
Также электромагниты используются в электрических замках. Когда электрический ток проходит через электромагнит, создается магнитное поле, которое сильно воздействует на металлическую (стальную) часть замка (ригеля). Это приводит к перемещению заслонки и открыванию двери. Когда дверь закрыта, соответствующим образом расположенная пружина перемещает ригель и блокирует замок. Замок можно открыть после повторного подключения электропитания.
Самые сильные электромагниты используются, в том числе, в ускорителях для управления движением частиц с высокой энергией. До недавнего времени магнитное поле, создаваемое токоведущими проводниками, управляло движением электронов в телевизионных кинескопах и компьютерных мониторах.
Список использованной литературы
- Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с.
- Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
| Характеристики | Факты
Обзор Магнетизм — это природное явление, возникающее в результате движения электрических зарядов. Эти движения часто нано-маленькие и происходят внутри соединения, называемого магнитами. Другие магниты могут притягиваться или отталкиваться магнитами или магнитными полями, создаваемыми движением электрических зарядов, которые также могут изменять подвижность различных других заряженных частиц.
Согласно веб-сайту HyperPhysics Университета штата Джорджия, сила, с которой линии магнитного поля действуют на частицы, известна как сила Лоренца. Электростатически заряженная частица в магнитном поле испытывает силы, зависящие от размера заряда, скорости частицы и напряженности ее поля. Отличительной характеристикой силы Лоренца является то, что она заставляет частицы двигаться в правильном направлении (под углом) к их первоначальному движению.
Знаете ли вы? Некоторые вещества, такие как железо, классифицируются как постоянные магниты, потому что они могут поддерживать магнитное поле, которое существует вечно. Именно такие магниты чаще всего встречаются в повседневной жизни. |
Линии поля представляют собой альтернативный метод отображения данных в магнитном векторном поле, его линии являются гипотетическими.
Это поле можно представить визуально с помощью силовых линий магнитного поля. Они объясняют, как магнитная сила северного монополя ведет себя в каждом месте.
Плотность линий показывает, насколько велико поле. Например, вблизи полюсов магнита намагниченность более интенсивная и плотная, но начинает ослабевать, и линии становятся менее толстыми по мере удаления человека от полюсов.
Характеристики линий магнитного поля:
- Эти линии никогда не пересекаются друг с другом.
- Плотность линий поля указывает на силу поля.
- Линии поля всегда образуют замкнутые пути.
- Эти силовые линии обычно берут начало или начинаются на северном полюсе и заканчиваются там.
Напряженность магнитного поля, также известная как напряженность магнитного поля, может быть определена как отношение MMF, необходимое для создания определенной плотности потока внутри определенного материала на единицу длины этого материала. Один из самых фундаментальных способов измерить его силу — использовать физическую величину, известную как напряженность магнитного поля. Измеряется в амперах на метр или А/м.
Напряженность магнитного поля — это один из двух способов выражения напряженности магнитного поля. Теоретически существует разница между плотностью магнитного потока B, рассчитанной в ньютон-метрах на ампер (Нм/А), также известной как тесла (Тл), и напряженностью магнитного поля H, рассчитанной в амперах на метр (А/м).
Силовые линии представляют собой магнитное поле. Сила магнитного поля напрямую связана с плотностью силовых линий магнитного поля. Магнитный поток (поток энергии) относится к силовым линиям полного магнитного поля в данном пространстве. Тесла-метр в квадрате (T.m2, также известный как вебер, обозначается как «Wb»). Более ранние единицы, максвелл (равный 10-8 Вб) и гаусс (равный 10-4 Тл), для плотности магнитного потока и магнитного потока, соответственно, больше не используются и почти не соблюдаются.
Плотность магнитного потока уменьшается с увеличением расстояния от прямой линии, соединяющей два магнитных полюса, или прямого провода с током. Плотность магнитного потока напрямую связана с силой тока в амперах в определенном месте вблизи проводника с током. «Магнитная сила», действующая на ферромагнитный объект, такой как кусок железа, прямо обратно пропорциональна изменению напряженности магнитного поля в том месте, где находится другой объект.
Формула напряженности магнитного поля Напряженность магнитного поля относится к силе, с которой сталкивается единичный северный полюс с силой в один Вебер в определенном месте в магнитных полях.
Формула напряженности магнитного поля может быть получена следующим образом:
B = μ0I / 2πr
Где,
B = напряженность магнитного поля (Тесла, Тл)
μ0 = проводимость свободного поля, т. е. 4μ × 10−7 Тл. м / А
I = сила электрического тока (Ампер, А)
r = расстояние (м)
Кроме того, ниже есть важная связь,
H = B / мкм
H = B / μ0 – M
B может использовать эту конкретную форму для выражения своей связи.
B = μ0 (H+M)
Ампер/метры будут одинаковыми для H и M. Аналитики иногда ссылаются на магнитную индукцию или плотность магнитного потока, чтобы еще больше отделить B от H. Намагниченность объекта также число М в этих соединениях.
Другим часто используемым выражением связи между B и H является
B = мкмГн
Здесь
μ = мкм = Kmμ0
В этом случае μ0 представляет проводимость пространства. Km обозначает проводимость материала. Кроме того, Km = 1, если материал не производит никакого намагничивания в ответ на внешние магнитные поля. Магнитная восприимчивость, также известная как магнитная величина, объясняет различия относительной проводимости друг от друга.
Магнитная восприимчивость χm = Km – 1
Можно извлечь единицу напряженности магнитного поля, которая является H, из ее отношения к магнитному полю B.
В = мкГн.
Кроме того, Н/А2 является единицей магнитной проводимости. Следовательно, формула напряженности магнитного поля измеряется в:
Т(Н/А2) = (Н/Ам) / (Н/А2) = А/м
Знаете ли вы? Эрстед — еще одна устаревшая единица измерения напряженности магнитного поля; 1 А/м равен 0,01257 эрстед. |
Магнитное поле Земли создается электрическими токами высоко над земной поверхностью и глубоко внутри планеты. Поле встречает плазму, текущую в солнечном ветре, когда она движется вглубь космоса. На дневной стороне планеты он сжимается, а на ночной вытягивается в длинный хвост из-за движения вокруг него солнечного ветра.
Рассеивая высокоэнергетические частицы солнечного ветра, геомагнитное поле защищает поверхность земли. Огромные количества плазмы и солнечной энергии выбрасываются в стратосферу Земли во время магнитных бурь, столкновений со спутниками, радиосвязью, электросетями и полярными сияниями.
Имеет направление и величину (размер). Это можно объяснить группировками элементов или компонентов. На графике показаны наиболее часто упоминаемые элементы геомагнетизма: H, F, X, Z, Y, Z, D и I.
Направление боковой (горизонтальной) составляющей геомагнитного поля служит определением магнитного севера, куда указывает стрелка компаса (H). Угол между магнитным истинным севером и севером известен как геомагнитное склонение (D), также известное как вариация.
Как ни странно: Планета Земля является мощным магнитом. По данным НАСА, магнитное поле планеты создается потоком электрического тока внутри ее расплавленного металлического ядра. Маленькая магнитная стрелка в барометре установлена так, что она может свободно вращаться внутри своего контейнера для координации с магнитным полем Земли, поэтому она указывает на север. |
Наклон вектора поля (I), также известный как наклон, представляет собой угол, в котором он наклонен относительно горизонтали. Истинный восточный (Y) компонент, истинный северный (X) компонент, вертикальный компонент (Z) и общая напряженность магнитного поля (F) являются четырьмя компонентами геомагнитного поля.
Единицы нанотесла (нТл) используются для измерения магнитных полей элементов или компонентов F, X, Z, Y и H. Углы используются для измерения наклона (I) и склонения (D).
Дополнительные компоненты магнитных полей можно определить по X, Y и Z. Например; учащиеся могут вычислить F из уравнения
Заключение Магнитные поля представляют собой бесконечные линии магнитного потока, которые проходят от магнитных полюсов, направленных на север, к магнитным полюсам, направленным на юг. Плотность линий показывает, насколько сильным является магнитное поле. Силовые линии перегружены или более плотно расположены на полюсах; например, магнитное поле сильно на северном и южном полюсах магнита. Там, где магнитное поле слабее, они расплываются и теряют плотность. Параллельные прямые линии, расположенные на равном расстоянии друг от друга, представляют собой однородные магнитные поля. Чтобы учащиеся могли расширить свои знания в этой области, они должны иметь базовые знания по этой теме.
1. Что такое силовые линии магнитного поля?
Ответ. Линии магнитного поля — это линии, образующие магнитное поле; их касательные в разных точках указывают соответственно направление и амплитуду поля. Они служат маркером направления магнитного поля. Общее количество силовых линий магнитного поля влияет на силу магнитного поля.
2. Что такое магнитное поле?
Ответ. Магнитное поле, также известное как электрический заряд или электрическое поле, представляет собой векторное поле, которое окружает магнит и в котором обнаруживаются магнитные силы. Стрелки магнитометра и другие постоянные магниты выравниваются в направлении магнитных полей, как на Земле. Эти поля заставляют электрически заряженные частицы двигаться по спирали или кругу. Функционирование электродвигателей обусловлено этой силой, которая приложена к электрическим импульсам в проводах в магнитных полях.
3. Что такое магнитная восприимчивость?
Ответ. Магнитная восприимчивость материала количественно измеряется его способностью намагничиваться в ответ на приложенные магнитные поля. Магнитная восприимчивость материала, обычно обозначаемая символом χm, равна отношению магнетизма M, присутствующего в материале, к напряженности приложенного магнитного поля H, или χm = M/H. Коэффициент намагниченности в основном включает в себя определенное количество магнетизма на единицу объема.
Магнитное поле: узнать определение, характеристики, применение
Магнитное поле магнита — это магнитное влияние, которое он оказывает на окружающую среду. Это векторная величина, которая описывает влияние магнитной силы на магнит. В качестве альтернативы его можно определить как поле, которое перемещает электрические поля и магнитные диполи в пространстве и обладает для этого магнитной силой. Магнитное поле магнита объясняет, как далеко можно ощутить притяжение.
В этой статье мы узнаем о концепциях магнитного поля и его формуле, свойствах и использовании.
Магнитное поле
Магнитный материал или движущиеся заряды создают магнитное поле. Когда магнит помещают в магнитное поле (например, рядом с магнитом), он будет притягиваться или отталкиваться. Магниты также можно использовать для притяжения или отталкивания движущихся зарядов.
Магнит называется диполем, потому что он имеет два полюса: северный (N) и южный (S). Когда 2 магнита удерживаются близко друг к другу, полярные шапки будут притягиваться друг к другу и вращаться. Магнит окружен магнитным полем, которое является невидимым полем силы притяжения. Магнитные поля создаются или генерируются всякий раз, когда электрический заряд/ток протекает вблизи магнита. Всякий раз, когда субатомная частица с таким отрицательным зарядом, например электрон, движется, она создает магнитное поле. Эти поля могут создаваться атомами и ядрами магнитных объектов, электрических проводников и кабелей.
Формула магнитного поля
Предположим, что магнитное поле создается вокруг провода электрическим током. Вокруг провода магнитные поля создают концентрические круги. Направление поля определяется текущим направлением. Чтобы определить его, можно использовать «правило большого пальца правой руки», указывая большим пальцем правой руки в направлении течения. Линии магнитного поля идут в том же направлении, что и ваши согнутые пальцы. Величина магнитного поля определяется током, а также расстоянием от несущего заряд провода. Формула магнитного поля выводится как
\( B=\frac{{{\mu }_{o}}}{2\pi r} \)
Где
\(\mu_o\) — проницаемость свободного пространства, B — магнитное поле (Тесла), а r — расстояние в метрах. {-1}] \) — это размерная формула для магнитного поля.
Диаграмма магнитного поля
Магнитное поле также можно изображать различными способами. Математически это можно понимать как просто векторное поле, которое можно изобразить в виде различных наборов на сетке. Другой вариант — использовать линии поля. Набор векторов соединен линиями. Здесь линии магнитного поля никогда не пересекаются и не останавливаются.
Вектор магнитного поля
Это векторное поле может быть отображено непосредственно на сетке в виде набора многочисленных векторов. Каждый вектор имеет длину, пропорциональную силе магнитного притяжения, и указывает в том же направлении, что и компас. Этот метод демонстрируется путем размещения множества миниатюрных компасов в виде сетки и помещения сетки в магнитное поле. Единственным отличием было то, что компас не показывает силу поля.
Линии магнитного поля
Линии — еще один способ выражения информации, представленной в векторном поле. Здесь мы не используем шаблоны сетки, вместо этого связываем векторы плавными линиями. Мы вольны создавать столько линий, сколько захотим.
Свойства магнитного поля
Ниже приведены некоторые свойства материалов, таких как линии магнитного поля:
- Линии магнитного поля являются векторными величинами, поскольку они имеют направление и величину.
- Вне магнита эти линии всегда направлены от северного полюса к южному.
- Однако внутри магнита силовые линии всегда ориентированы с юга на северный полюс.
- Эти линии замкнутые, изогнутые и непрерывные.
- Магнитное поле сильнее вблизи полюсов, в которых эти линии плотно упакованы, и слабее в центре магнита, где линии раздвинуты.
- Параллельные, а также эквидистантные силовые линии указывают на однородность магнитного поля.
Как создается магнитное поле
Магнитное поле может создаваться либо движущимися зарядами, либо электрическими токами в дополнение к магниту. Обычно мы знаем, что материя состоит из атомов, а частиц очень мало. Ядро атома состоит из протонов и нейтронов и окружено электронами. Магнитное поле формируется протонами и нейтронами или ядром атома, вращающимся и вращающимся. Направления орбиты и вращения определяют направление магнитного поля.
Магнитное поле, создаваемое проводником с током
Магнитное поле создается по длине проводника всякий раз, когда по нему проходит электрический ток. Эти же линии магнитного поля вокруг проводника будут иметь форму концентрических окружностей. Это направление силовых линий магнитного поля определяется направлением тока. Направление магнитного поля, окружающего проводящую цепь, можно определить с помощью:
Правило правой руки Флеминга
Большой, средний и указательный пальцы правой руки вытянуты под углом 90 градусов друг к другу. Затем большой палец обозначает направление силы, средний палец — направление тока, а указательный палец — направление магнитного поля.
Правило штопора Максвелла
Правило правого винта, иногда известное как правило штопора, связывает направление электрического тока с изменениями в магнитных силовых линиях, окружающих его. Если штопор провести вдоль проводника и повернуть в направлении тока, магнитное поле будет вращаться в том же направлении, что и винт.
Работа постоянных магнитов
Принцип работы постоянного магнита определяется его атомной структурой. Большинство материалов состоят из молекул, которые состоят из атомов, которые состоят из ядер и электронов. Электроны продолжают вращаться и вращаться вокруг ядра внутри атома.
Оба эти движения электронов могут привести к магнетизму. Однако направление потока электронов в большинстве материалов разнообразно и хаотично, поскольку электромагнитные эффекты уравновешивают друг друга. В результате большинство материалов действительно не магнитятся при нормальных условиях.
Магнитное поле Земли
Как известно, стрелка компаса всегда указывает на север. В каждом компасе есть магнит, и если магнит движется сам по себе, то это потому, что на него влияет магнитное поле. Это означает, что люди постоянно окружены магнитным полем. Земля является источником этого поля. Причины возникновения магнитного поля Земли:
- Ядро Земли сильно нагрето, поэтому многие минералы и сплавы находятся в расплавленном состоянии. Примерами таких минералов являются расплавленное железо и никель. Ядро Земли очень горячее, и эти минералы постоянно кипятятся. Этот постоянный нагрев вызывает конвекцию в минералах, что приводит к конвекционным потокам. Заряженные частицы переносятся этими токами, образующими магнитное поле.
- Солнечный ветер, состоящий из ионизированных заряженных частиц, отклоняется магнитным полем. Эти ветры могут вторгнуться в нашу атмосферу и постепенно разрушить ее. Магнитные поля удерживают их от попадания в атмосферу и позволяют жизни существовать на планете. Поскольку на Марсе отсутствует магнитное действие электрического тока, то есть магнитное поле, жизнь там существовать не может.
- Магнитные полюса Земли не совпадают с географическими полюсами. Канада является домом для Южного магнитного полюса, а Антарктида — Северным магнитным полюсом. Магнитные полюса смещены на 10 градусов относительно оси вращения Земли.
Использование магнитного поля
Некоторые реалистичные использование магнитного поля:
- Электрические генераторы, электрические трансформаторы
- Двигатели
- Electromagnets
- Speakers
- Magnetic Levitation
- Speakers
- Magnetic Levation
- Speakers
- Magnetic Levation
- Magnetic Levation
- Magnetic Levation
- 9003. также можете ознакомиться с другими темами по физике. Оставайтесь с Testbook, чтобы получать все последние новости о различных экзаменах. Свяжитесь с Testbook сейчас, чтобы сдать желаемый конкурсный экзамен с их исчерпывающими и надежными учебными материалами под руководством экспертов из Testbook.
Загрузите бесплатное приложение Testbook прямо сейчас и воспользуйтесь интересными предложениями.
Часто задаваемые вопросы о магнитном поле
В.1 Как рисовать линии магнитного поля?
Ответ 1 Что нужно помнить при рисовании линий магнитного поля
В любой точке пространства направление магнитного поля касается линии поля.
Маленький компас укажет направление линии поля.
Сила поля зависит от расстояния между линиями.Q.2 Как работает магнитное поле?
Ответ 2 Магнитное поле помогает описать магнитную силу, распространяющуюся на магнитный материал.
Q.3 Какова формула магнитного поля?
Ответ 3 Формула магнитного поля получается из
\( B=\frac{{{\mu }_{o}}}{2\pi r} \)Q.4 Что такое единица измерения магнитного поля в СИ?
Ответ 4 Единицей измерения магнитного поля в системе СИ является Тесла (Тл)
Q.
5 Что создает магнитное поле?
Ответ 5 Все движущиеся заряженные частицы создают магнитные поля.
Скачать публикацию в формате PDF