Полярность светодиода на схеме: как определить катод и анод тремя методами

Содержание

Полярность светодиода • Самоделки своими руками

Электрический ток, проходящий через светодиод в прямом направлении, вызывает излучение. Обратное же его подключение к электрической цепи не даст никакого эффекта и может даже привести к поломке светодиода. Поэтому для того чтобы предотвратить неисправности в работе или поломку светодиода, необходимо его протестировать — определить полярность светодиода. Ниже приведены методы определения вывода минуса и плюса, которые часто применяются для маломощных диодов диаметром от 3.5 до 10 мм.

Методы определения полярности светодиода:

1) Метод визуального различия выводов светодиода

Новый светодиод имеет два вывода (ножки), один из них немного длиннее другого. Длинный вывод (ножка) – это анод, его нужно подключать к плюсу источника питания. Короткий вывод (ножка) – это катод, который подсоединяют к минусу.

Если светодиод был уже в эксплуатации, то он имеет укороченные выводы одной длины. В таком случае можно определить плюс/минус путём рассмотрения кристалла в пластиковой линзе. Анод (плюс) выполнен меньшим размером контакта по сравнению с катодом. Катод (минус) выполнен в виде флажка, на котором расположен кристалл.

2) Метод определения полярности с помощью источника питания

Также для быстрого тестирования можно воспользоваться источником тока с напряжением от 1,5 до 6 вольт (батарейка) и пригодится резистор сопротивлением 300–470 Ом любой мощности. Резистор необходимо припаять к одной из ножек. Затем нужно коснутся светодиодом контактов источника питания, при правильном подключении светодиод будет светиться. Отсюда будет известно, где находится анодом (плюс), а где катодом (минус).

3) Метод определения полярности с помощью мультиметра

Мультиметр – тестер, с помощью него можно диагностировать электронные компоненты, выявлять короткое замыкание, измерять электрические параметры и т.п. Проверка мультиметром светодиода позволяет легко определить полярность (анод, катод) и его целостность.

Устанавливаем переключатель мультиметра в положение «прозвонка, проверка диода». Приложив красный щуп к аноду, а чёрный к катоду, светодиод начнет светится.

Спасибо, что дочитали до конца. Поделитесь с друзьями этими полезными способами, если данная статья вам помогла определить полярность светодиодов.

Урок 2.4 — Диоды и светодиоды

Диод

Диод – это электронный компонент, обладающий односторонней проводимостью.
Идеальный диод является проводником в одном направлении и изолятором — в другом направлении.

Основные характеристики диода

Максимально допустимый прямой ток и максимально допустимое напряжение – это такие значения тока и напряжения, которые диод может выдержать в течение длительного времени. Если превысить ток и/или напряжение, приложенные к диоду, он может выйти из строя.

В наборы Мастер Кит входят два типа диодов:
— диод малой мощности 1N4148. Максимально допустимый ток через этот диод составляет 0,15А, напряжение – до 75В
— диод средней мощности типа 1N4001…1N4007. Максимально допустимый ток через этот диод составляет 1А, напряжение (в зависимости от последней цифры) – от 50 до 1000В.


Взаимозаменяемость диодов

Если под рукой нет нужного диода, его можно заменить аналогичным. Конечно, нужно следить за тем, чтобы предельно допустимые ток и напряжения нового диода были выше таковых параметров схемы. Кроме того, новый диод должен иметь такой же или похожий тип корпуса (иначе диод может физически не поместиться на печатную плату).

Например, в схеме рекомендуется установить диод типа 1N4005. Его параметры: максимально допустимый ток – 1А, максимально допустимое обратное напряжение – 600В. Допустим, у вас нет диода 1N4005, но есть диод 1N4001 в таком же типе корпуса с параметрами, соответственно, 1А/50В. Но если в вашей схеме рабочие напряжения не превышают 12В, вы смело можете произвести замену рекомендованного диода 1N4005 на 1N4001.
Такая же ситуация бывает и на складе Мастер Кит, когда мы производим замену временно отсутствующего компонента на аналогичный.

 

Установка диода на печатную плату

Диод имеет полярность, то есть должен устанавливаться на печатную плату строго в определённом положении. Если установить диод неправильно, он не только не заработает, но и может выйти из строя.

На диоде обязательно имеется маркировка полярности. В диодах, входящих в набор Мастер Кит, полосой на корпусе маркируется вывод катода.


На печатной плате также имеется маркировка полярности диода – полоса. При установке диода на плату нужно совмещать «ключи»: полосу на компоненте и на печатной плате.

 

Светодиоды

 
Светодиод – это разновидность обычного диода, но этот диод обладает важным свойством: он излучает свет при пропускании через него тока в прямом направлении. В зависимости от типа, светодиоды могут иметь разную яркость и цвет свечения: красный, зелёный, синий, жёлтый. Существуют светодиоды невидимого спектра излучения: инфракрасные (широко применяемые в системах дистанционного управления), ультрафиолетовые.

Как и обычный диод, светодиод корректно работает (излучает свет) только при условии правильной полярности приложенного к нему напряжения. Поэтому очень важно при установке светодиода на плату соблюдать «ключи».

У светодиодов, входящих в наборы Мастер Кит, вывод анода (он же «+») – длиннее.

На печатной плате также имеется маркировка полярности.

 

 

Скачать урок в формате PDF

как определить полярность шестью способами

Эти полупроводниковые радиодетали используются в различных электронных схемах в качестве элементов индикации. Проблем с их монтажом на плате, как правило, нет. Чтобы пропаять 2 ножки, вставленные в соответствующие отверстия на «дорожках», не нужно быть крупным специалистом в этой области. А вот с полярностью, которую необходимо учитывать при работе со всеми п/п приборами, а не только светодиодами, у людей без опыта возникают сложности. Как правильно определить полярность?

По длине выводов

Самый простой способ, если светодиод новый, ни разу не использовавшийся.

Его выводы неодинаковы – один немного длиннее. Здесь несложно запомнить такую аналогию. Слова «катод» и «короткая» начинаются с одной и той же буквы – «К».

Следовательно, другая ножка, более длинная – анод светодиода. Зная это, сложно перепутать. Хотя у некоторых производителей встречается иное – они могут быть одинаковы. Стоит учесть.

По внутреннему наполнению

Если колба хорошо просматривается, то найти «чашечку» (а это катод) совсем нетрудно.

Узнать полярность светодиода – это еще не все. Необходимо его и правильно установить на плате. Схемное изображение этого полупроводника показано на рисунке. Вершина символа прибора (треугольника) указывает на катод (минусовый вывод).

По корпусу

Так проверить полярность можно не у всех светодиодов, так как это зависит от производителя. Но у некоторых на «ободке» напротив катода есть небольшая риска (засечка). Если присмотреться, заметить ее несложно. Как вариант – небольшая точка, срез.

С помощью батарейки

Также простая методика, но здесь необходимо учесть, что светодиоды разных типов отличаются напряжением пробоя. Чтобы полупроводник не вывести из строя (частично или полностью), в цепь нужно последовательно включить ограничительное сопротивление. Номиналом на 0,1 – 0,5 кОм вполне достаточно.

Мультиметром

Кстати, вполне можно задействовать и бытовой мультиметр, который уже укомплектован всем необходимым – источником питания и щупами. Это даже еще лучше.

Способ определения полярности 1 – основан на свойстве светодиода «загораться» при прохождении по нему тока. Следовательно, его анод будет там, где «плюс» батарейки мультиметра (гнездо для щупа «+»), а катод, соответственно, где минус. Чтобы проверить на «свечение», переключатель прибора устанавливается в позицию «измерение диода».

Способ определения полярности 2 – здесь измеряется сопротивление p-n перехода. Переключатель мультиметра – в положение «измерение сопротивления», предел, в зависимости от модификации тестера, в положение более 2 кОм. Например, на 10.

Касание щупами выводов светодиода – лишь кратковременное, чтобы не вывести радиодеталь из строя. Если полярности п/п и источника питания совпадают, то сопротивление будет небольшим (от сотен Ом до нескольких кОм). В этом случае красный щуп (его принято вставлять в гнездо прибора «+») указывает на ножку-анод, а черный («–»), соответственно, на катод.

Если мультиметр показывает большое сопротивление, значит, при касании щупами выводов полярность была нарушена. Следует повторить измерение, изменив ее, чтобы удостовериться в отсутствии внутреннего обрыва. Только в этом случае можно говорить не только о полярности светодиода, но и о его исправности и готовности к использованию по назначению.

На различных тематических форумах встречаются суждения, что ничего страшного не произойдет; можно подключать источник питания в любой полярности, и на светодиоде это не отразится. Но это не совсем так.

  • Во-первых, все зависит от величины напряжения пробоя, то есть характеристики конкретного полупроводника.
  • Во-вторых, он может в дальнейшем и работать, но частично утратить свои свойства. Проще говоря, светить, но не так сильно, как должен.
  • В-третьих, подобные эксперименты негативно отражаются на эксплуатационном ресурсе светодиода. Если его гарантированная производителем наработка на отказ порядка 45 000 часов (в среднем), то после таких проверок на полярность он прослужит намного меньше. Подтверждено практикой!

Инфракрасный светодиод: как проверить, где используют, виды

Чтобы проверить светодиод и узнать его параметры, нужно иметь в своем арсенале мультиметр, «Цэшку» или универсальный тестер. Давайте научимся ими пользоваться.

Прозвонка отдельных светодиодов

Начнем с простого, как прозвонить светодиод мультиметром. Переведите тестер в режим проверки транзисторов – Hfe и вставьте светодиод в разъём, как на картинке ниже.

Как проверить светодиод на работоспособность? Вставьте анод светодиода в разъём C зоны обозначенной PNP, а катод в E. В PNP разъёмах C – это плюс, а E в NPN – минусовой вывод. Вы видите свечение? Значит проверка светодиода выполнена, если нет – ошибись полярностью или диод не исправен.

Разъём для проверки транзисторов выглядит по-разному, часто это синий круг с отверстиями, так будет если проверить светодиод мультиметром DT830, как на фото ниже.

Теперь о том, как проверить светодиод мультиметром в режиме проверки диодов. Для начала взгляните на схему проверки.

Режим проверки диода так и обозначен – графическим изображением диода, подробнее об обозначениях в статье. Этот способ подойдёт не только для светодиодов с ножками, но и для проверки smd светодиода.

Проверка светодиодов тестером в режиме прозвонкипоказана на рисунке ниже, а еще можете увидеть один из видов разъёма для проверки транзисторов, описанного в предыдущем способе.

Пишите в х о том какой у вас тестер и задавайте вопросы!

Этот способ хуже, от тестера возникает яркое свечение диода, а в данном случае — едва заметно красное свечение.

Теперь обратите внимание как проверить светодиод тестером с функцией определения анода. Принцип тот же, при правильной полярности светодиод загорится.

Проверка инфракрасного диода

Действительно, почти в каждом доме есть такой LED. В пультах дистанционного управления они нашли широчайшее применение. Представим ситуацию, что пульт перестал переключать каналы, вы уже почистили все контакты клавиатуры и заменили батареи, но он все равно не работает. Значит нужно смотреть диод. Как проверить ИК-светодиод?

Человеческий глаз не видит инфракрасного излучения, в котором пульт передаёт информацию телевизору, но его видит камера вашего телефона. Такие светодиоды используются в ночной подсветке камер видео наблюдения. Включите камеру телефона и нажмите на любую кнопку пульта – если он исправен вы должны увидеть мерцания.

Методы проверки мультиметром ИК светодиода и обычного — одинаковы. Еще один способ как проверить инфракрасный светодиод на исправность – подпаять параллельно ему LED красного свечения.

Он будет служить наглядным показателем работы ИК диода. Если он мерцает, значит сигналы на диод поступают и нужно менять ИК диод.

Если красный не мерцает, значит сигнал не поступает и дело в самом пульте, а не в диоде.

В схеме управления с пульта есть еще один важный элемент, принимающий излучение — фотоэлемент. Как проверить фотоэлемент мультиметром? Включите режим измерения сопротивления. Когда на фотоэлемент попадает свет – состояние его проводимости изменяется, тогда изменяется и его сопротивление в меньшую сторону. Понаблюдайте этот эффект и убедитесь в исправности или поломке.

Проверка диода на плате

Как проверить светодиод мультиметром не выпаивая? В принципах его проверки всё остаётся также, а способы изменяются. Удобно проверять светодиоды, не выпаивая с помощью щупов.

Стандартные щупы не влезут в разъём для транзисторов, режима Hfe. Но в него влезут швейные иглы, кусочек кабеля (витая пара) или отдельные жилки из многожильного кабеля. В общем любой тонкий проводник. Если его припаять к щупу или фольгированному текстолиту и присоединить щупы без штекеров, то получится такой переходник.

Теперь вы можете прозвонить светодиоды мультиметром на плате.

Как проверить светодиоды в фонарике? Открутите блок линз или переднее стекло на фонаре, аккуратно отпаяйте плату от батарейного блока, если длина проводников не позволяет её свободно рассмотреть и изучить.

В таком положении вы легко проверите исправность каждого светодиода на плате описанным выше методом. Подробнее о светодиодах в фонариках.

Как прозвонить светодиодную лампу?

Любой электрик много раз «звонил» лампу накаливания, но как проверить ЛЕД-лампу тестером?

Для этого нужно снять рассеиватель, обычно он приклеен. Чтобы отделить его от корпуса вам нужен медиатор, или пластиковая карта, её нужно засунуть между корпусом и рассеивателем.

Если не удаётся этого сделать попробуйте немного погреть феном место склейки.

Как теперь проверить светодиодную лампочку мультиметром? Перед вами окажется плата со светодиодами, нужно прикоснуться щупами тестера к их выводам. Такие SMD в режиме проверки диодов загораются тусклым светом (но не всегда). Еще один способ проверки исправности  — прозвонка от батареи типа «крона».

Крона выдает напряжение 9-12В, потому проверяйте диоды кратковременными скользящими прикосновениями к их полюсам. Если LED не загорается при правильно подобранной полярности — требуется его замена.

Проверка LED прожектора

  • Для начала взгляните какой светодиод установлен в прожекторе, если вы видите один желтый квадрат, как на фотографии ниже, то тестером его проверить не получится, напряжение таких источников света велико – 10-30 Вольт и более.
  • Проверить работоспособность светодиода такого типа можно, используя заведомо исправный драйвер на соответствующий ток и напряжение.

Если установлено много мелких SMD – проверка такого прожектора мультиметром возможна. Для начала его нужно разобрать. В корпусе вы обнаружите драйвер, влагозащитные прокладки и плату с LED. Конструкция и процесс проверки аналогичен LED лампе, который описан выше.

Как проверить светодиодную ленту на работоспособность

На нашем сайте есть целая статья о том, как проверить светодиодную ленту, тут рассмотрим экспресс-методы проверки.

Сразу скажу, что засветить ее целиком мультиметром не удастся, в некоторых ситуациях возможно лишь лёгкое свечение в режиме Hfe. Во-первых можно проверять каждый диод по отдельности, в режиме проверки диодов.

Во-вторых иногда происходит перегорание не диодов, а токоведущих частей. Для проверки этого нужно перевести тестер в режим прозвонки и прикоснуться к каждому выводу питания на разных концах проверяемого участка. Так вы определите целую часть ленты и поврежденную.

Красной и синей линией выделены полосы, которые должны звонится от самого начала до конца светодиодной ленты.

Как проверить светодиодную ленту батарейкой? Питание ленты – 12 Вольт. Можно использовать автомобильный аккумулятор, однако он большой и не всегда есть под рукой. Поэтому на помощь придет батарейка на 12В. Используется в дверных радиозвонках и пультах управления. Ее можно использовать как источник питания при прозвонке проблемных участков LED ленты.

Другие способы проверки

Разберем как проверить светодиод батарейкой. Нам понадобится батарейка от материнской платы — типоразмера CR2032. Напряжение на ней порядка 3-х вольт, достаточное для проверки большинства светодиодов.

Другой вариант — это использовать 4,5 или 9В батарейку, тогда нужно использовать сопротивление 75Ом в первом случае и 150-200Ом во втором. Хотя от 4,5 вольт проверка светодиода возможна без резистора кратковременным касанием. Запас прочности LED вам это простит.

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

  1. Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
  2. Переведите потенциометр в положение максимального сопротивления. Плавно убавляйте его, следите за свечением диода и ростом тока.
  3. Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов. После выхода диода на номинальный ток яркость свечения почти не изменяется.
  4. Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
  5. Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.
  6. Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость.

Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться.

Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Оцените, пожалуйста, статью. Мы старались:) Загрузка…

Источник: https://SvetodiodInfo.ru/voprosy-o-svetodiodax/kak-proverit-svetodiod-multimetrom.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме.

Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы.

В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра.

Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет.  Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.
    Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.
    Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  
    Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. 
    Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.
    Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. 
    Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор.

 Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока.

 По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

Разновидности, характеристики и сфера применения инфракрасных светодиодов

Одним из
распространенных и широко применяемых в различных областях радиоэлектроники
лед-элементов является инфракрасный
светодиод.

Спектр его свечения находится в невидимом человеческому глазу
диапазоне длин волн электромагнитного излучения.

Рассмотрим, какие
разновидности светоисточников подобного типа бывают, каковы их главные
технические характеристики, какие самые мощные их модификации существуют и в
каких сферах все они используются.

Разновидности ИК излучающих диодов

На современном рынке
радиодеталей светодиодные
излучатели представлены в достаточно широком ассортименте. Существует
несколько десятков позиций, различающихся по следующим основным параметрам:

  1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
  2. Прямому назначению.
  3. Форм-фактору.

Инфракрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных.

Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами.

По цвету линзы модели различаются от чисто прозрачного до желтого и голубого оттенка.

Российские компании уже
много лет изготавливают инфракрасные светодиоды в характерном мини-корпусе.
Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более
мощные версии диодов производят на DIP-матрице по
технологии smd, как например, модель
SFh5715S линейки Osram.

Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

Технические характеристики

Так как инфракрасное
излучение невидно зрению человека и диапазон его длин волн распространен
достаточно широко – 0,75-2000 микрометров – то характерный для обычных
светодиодов набор технических параметров не применяется для них. Вместо этого
для лед-элементов, работающих в ИК-сегменте спектра, используются следующие
главные обозначения их свойств:

  1. Мощность в
    единицу времени (Вт/ч), либо дополнительно указывается на какую площадь
    излучателя она приходится.
  2. Интенсивность
    потока в пределах пространственного/телесного угла, выражаемая в Вт/ср
    (стерадианах).

  Суть и разница LCD и LED

Однако далеко не всегда требуется постоянное инфракрасное излучение, поэтому для светодиодов конкретного применения указываются характеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

Помимо выше
рассмотренных специфических параметров, для инфракрасных светодиодов характерны
и общие показатели эксплуатации, также указываемые в паспортных данных:

  1. Диапазон длин волн.
  2. Номинальный прямой ток.
  3. Наивысший импульсный ток.
  4. Величина падения напряжения.
  5. Значение обратного напряжения.

Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфракрасной области, характеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80. Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

Мощные инфракрасные светодиоды

Для изготовления
мощного инфракрасного светодиода требуется большой лед-кристалл. В связи с этим
возникает несколько технологических проблем:

  1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
  2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

Если же объединить
несколько близко установленных лед-кристаллов, возникает значительная потеря
мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных
обстоятельств, разработчики предложили несколько компромиссных вариантов:

  1. На данный момент
    допустимо изготавливать кристаллы размером до 1 мм2. До этого
    порогового значения можно существенно повысить силу тока, а значит, и мощность
    – в результате снижения сопротивления в лэд-материале из-за его нагрева.
  2. Внедряются все
    более совершенные рефлекторы, собирающие боковое излучение к центру.
  3. Производятся
    линзы с высоким коэффициентом преломления, что заставляет лучше собирать и
    направлять в пучок боковые волны.

Важно! Инфракрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим характеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

Область применения

Инфракрасные светодиоды
применяют далеко не только для
дистанционных пультов
управления бытовыми и технологическими приборами (телевизорами,
кондиционерами, котельной аппаратурой), но также во многих других областях:

  1. В создании направленной системы подсветки медицинского оборудования.
  2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфракрасных прожекторов.
  3. В приборах ночного видения.
  4. В устройствах передачи данных посредством оптоволоконной сети.
  5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
  6. В военно-промышленной сфере.
  7. В детекторах, датчиках, сигнализациях.
  8. В конвейерных сушилках на мукомольных и зерноперерабатывающих предприятиях.
  9. Для стерилизации капиллярно-пористых пищевых продуктов.
  10. В качестве компонентов контрольно-измерительного и прочего оборудования.

Добиться максимально качественно инфракрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения.

Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср.

Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

Основные выводы

Инфракрасные светодиоды
излучают в невидимой для глаза человека области спектра, и потому для
обозначения их главных параметров используют несколько отличные от обычных
лед-элементов характеристики:

  1. Мощность за период времени или с конкретной площади излучателя.
  2. Интенсивность в границах определенного пространственного угла.

Существуют десятки
модификаций инфракрасных светодиодов. Все они различаются не только по силе
излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем
больше он нагревается и разрушается.

Поэтому производители при изготовлении
мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого
увеличения их размеров.

Сфера применения ИК-диодов обширна – от индикации в
пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

Если вы владеете
информацией о том, какие еще инфракрасные светодиоды существуют и где они
применяются, обязательно напишите об этом в х.

ПредыдущаяСледующая

Источник: https://svetilnik.info/svetodiody/infrakrasnyj-svetodiod.html

Инфракрасный светодиод-сфера применения ИК диодов

Инфракрасный светодиод (ИК-светодиод) представляет собой специальный светодиод, излучающий инфракрасные лучи длиной от 700 до 1 мм.

 Различные ИК-светодиоды могут создавать инфракрасный свет с разными длинами волн, так же как разные светодиоды производят свет разных цветов.

 ИК-светодиоды обычно изготавливают из арсенида галлия или арсенида галлия алюминия. В дополнение к ИК-приемникам они обычно используются в качестве датчиков.

Внешний вид ИК-светодиода аналогичен общему светодиоду. Поскольку человеческий глаз не может видеть инфракрасное излучение, человеку невозможно определить, работает ли ИК-светодиод. Эта проблема устранена камерой на сотовой телефоне. ИК-лучи от ИК-светодиода в цепи показаны в камере.

Пин-схема инфракрасный светодиод

Инфракрасный светодиод представляет собой диод или простой полупроводник. Электрический ток пропускается только в одном направлении в диодах. По мере протекания тока электроны падают с одной части диода в отверстия на другой части. Чтобы попасть в эти дыры, электроны должны пролить энергию в виде фотонов, которые производят свет.

Необходимо модулировать излучение от Инфракрасного светодиода, чтобы использовать его в электронном приложении для предотвращения ложного срабатывания. Модуляция делает сигнал от Инфракрасного светодиода выше шума.

 Инфракрасные диоды имеют рассеиватель, который непрозрачен для видимого света, но прозрачен для инфракрасного излучения.

 Массовое использование Инфракрасных светодиодов в пульте дистанционного управления и системах охранной сигнализации резко сократило цены на Инфракрасные светодиоды на рынке.

ИК-датчик инфракрасный светодиод

ИК-датчик — это устройство, которое обнаруживает, что на него падает ИК-излучение.

 Датчики приближения (используются в телефонах с сенсорным экраном и исключая роботы), контрастные датчики (используемые в линейных следящих роботах) и счетчики / датчики препятствий (используемые для подсчета товаров и в охранной сигнализации) — это некоторые приложения, в которых используются ИК-датчики.

Принцип работы

ИК-датчик состоит из двух частей: схемы эмиттера и схемы приемника. Это коллективно известно как фотосоединитель или оптрон.

Эмиттер — это инфракрасный светодиод, а детектор — ИК-фотодиод. ИК-фотодиод чувствителен к ИК-лучу, излучаемому ИК-светодиодом. Сопротивление фотодиода и выходное напряжение изменяются пропорционально полученному ИК-лучу. Это основной принцип работы ИК-датчика.

Тип заболеваемости может быть прямой или косвенной. При прямом падении инфракрасный светодиод помещается перед фотодиодом без препятствия между ними. При косвенном падении оба диода располагаются рядом с непрозрачным предметом перед датчиком. Свет от ИК-светодиода попадает на непрозрачную поверхность и возвращается обратно к фотодиоду.

ИК-датчики находят широкое применение в различных областях. Давайте посмотрим на некоторые из них.

Датчики приближения

Датчики приближения используют рефлексивный принцип косвенного падения. Фотодиод получает излучение, излучаемое ИК-светодиодом, когда оно отражено обратно объектом. Чем ближе объект, тем выше будет интенсивность падающего излучения на фотодиоде.

 Эта интенсивность преобразуется в напряжение для определения расстояния. Датчики приближения находят применение в телефонах с сенсорным экраном, среди других устройств.

 Дисплей отключен во время вызовов, так что, даже если щека контактирует с сенсорным экраном, эффекта нет.

Роботы-последователи

В линейке следующих роботов ИК-датчики определяют цвет поверхности под ним и посылают сигнал микроконтроллеру или основной цепи, который затем принимает решения в соответствии с алгоритмом, установленным создателем бота.

 Линейные последователи используют рефлексивные или не отражающие косвенные случаи. ИК отражается обратно к модулю с белой поверхности вокруг черной линии. Но ИК-излучение полностью поглощается черным цветом.

 Нет никакого отражения инфракрасного излучения, возвращающегося к сенсорному модулю черного цвета.

Счетчик предметов

Счетчик элементов реализован на основе прямого падения излучения на фотодиод.

 Всякий раз, когда предмет препятствует невидимой линии ИК-излучения, значение хранимой переменной в компьютере / микроконтроллере увеличивается.

 Это показывают светодиоды, семисегментные дисплеи и ЖК-дисплеи. Системы мониторинга крупных заводов используют эти счетчики для подсчета продукции на конвейерных лентах.

Охранная сигнализация

Прямая частота излучения на фотодиоде применима в схеме охранной сигнализации. ИК-светодиод установлен на одной стороне дверной коробки, а фотодиод — на другой.

 ИК-излучение, излучаемое инфракрасным светодиодом, попадает на фотодиод непосредственно в обычных условиях. Как только человек препятствует ИК-тракту, будильник гаснет.

 Этот механизм широко используется в системах безопасности и реплицируется в меньших масштабах для небольших объектов, таких как экспонаты на выставке.

Какие светодиоды стоят?

Как проверить светодиод?

Лучшие светодиоды

Источник: https://lightru.pro/infrakrasnyj-svetodiod/

Инфракрасные светодиоды – виды, область применения, характеристики

Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает.

То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.

Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.

Область применения

На том, какими бывают инфракрасные светодиоды и где применяются, остановимся подробнее. Многие из нас ежедневно сталкиваются с ними, не подозревая об этом. Конечно же, речь идёт о пультах дистанционного управления (ПДУ), одним из важнейших элементов которого является ИК излучающий диод.

Благодаря своей надёжности и дешевизне метод передачи управляющего сигнала с помощью инфракрасного излучения получил огромное распространение в быту. Главным образом такие пульты применяются для управления работой телевизоров, кондиционеров, медиа проигрывателей.

В момент нажатия кнопки на ПДУ ИК светодиод излучает модулированный (зашифрованный) сигнал, который принимает и затем распознаёт фотодиод, встроенный в корпус бытовой техники. В охранной сфере большой популярностью пользуются видеокамеры с инфракрасной подсветкой.

Видеонаблюдение, дополненное ИК подсветкой, позволяет организовать круглосуточный контроль охраняемого объекта, независимо от погодных условий. В данном случае ИК светодиоды могут быть встроены в видеокамеру либо установлены в её рабочей зоне в виде отдельного прибора – инфракрасного прожектора.

Применение в прожекторах мощных ИК светодиодов позволяет осуществлять надёжный контроль прилегающей территории.

На этом их сфера применения не ограничивается. Весьма эффективным оказалось применение ИК излучающих диодов в приборах ночного видения (ПНВ), где они выполняют функцию подсветки. С помощью такого прибора человек может различать предметы на достаточно большом расстоянии в тёмное время суток. Устройства ночного видения востребованы в военной сфере, а также для скрытого ночного наблюдения.

Разновидности ИК излучающих диодов

  • мощности излучения или максимальному прямому току;
  • назначению;
  • форм-фактору.

Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFh5715S от Osram в smd корпусе.

Технические характеристики

На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.

Рабочая длина волны – основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.

Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.

Номинальный прямой ток – постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.

Максимальный импульсный ток – ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.

Прямое напряжение – падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.

Обратное напряжение – максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.

ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.

Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных.

Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки.

О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.

Источник: https://ledjournal.info/spravochnik/infrakrasnye-svetodiody.html

Условное обозначение светодиода на схеме

Интересно наблюдать, с какой поразительной скоростью сменяют друг друга технологии. Лет тридцать назад мы вполне были довольны электроникой, которой пользовались, простыми автомобилями, где-то неудобными и малоскоростными, скромными домами без евроремонта. Но так устроен человек, что постоянно стремится к чему-то более совершенному, и сейчас практически любая сфера жизни подвержена постоянной модернизации. Коснулся этот процесс также систем индикации и освещения. Так, на смену лампам накаливания пришли более совершенные полупроводниковые элементы – светодиоды.

Излучающий кристалл

История применения полупроводников старше начала использования ламп электронного типа. Попов А.С., который считается изобретателем радио, искал с помощью нехитрого полупроводникового устройства наличие радиоволн. Первый диод Попова (детектор) был изготовлен из полупроводникового кристалла, зафиксированного в держателе, и пружинного заостренного контакта из вольфрама или стали. Этот контакт опирался на площадь полупроводника, и в зависимости от точки соприкосновения можно было найти наиболее четкий сигнал радиостанции.

Способность некоторых кристаллов излучать свет под действием тока была обнаружена чуть позже, случайно, но в первое время не использовалась на практике. Теперь же светодиоды широко применяют и в спецтехнике, и в быту.

Что такое светодиод, как он выглядит на схеме?

Светодиодом называется разновидность полупроводникового элемента, имеющего особенность кристалла излучать свет под действием проходящего сквозь него электрического тока. Этот эффект проявляется не у всех полупроводников, а лишь у тех, у которых в процессе рекомбинации электронов и дырок выделение энергии происходит в световом диапазоне. Светодиод, как и обычный диод, имеет p-n-переход и пропускает ток только в одном направлении.

Особенностью светодиода как светоизлучающего прибора является то, что в нем непосредственно происходит выделение квантов света. Это отличает его от ламп накаливания, где сначала происходит разогрев спирали до определенной температуры, или галогенных ламп с эффектом ионизации. Потери энергии в светодиодах минимальны.

Конструктивно в состав светодиода входят подложка с нанесенным на нее кристаллом, выводы для подключения в электрическую цепь и корпус, который одновременно является оптической системой. Обозначение светодиода на схеме имеет определенное графическое выражение, на электронной плате он обозначается специальной кодировкой.

Для чего служит светодиод, и как это отражено в его изображении на схеме?

Светодиод излучает свет, в этом его назначение. И на схематическом изображении это четко обозначено двумя стрелочками, идущими от элемента. Применение устройство получило очень широкое:

  • Различная индикация. Для сигнализации включения тех или иных режимов работы электронных устройств используют отдельные элементы. Группы устройств применяют в цифровой индикации, где каждый светодиод играет роль сегмента цифры или буквы. Условное обозначение светодиода на схеме, входящего в группу, не ставится отдельно для каждого, а отображается вся группа в виде индикатора с ответвлением и нумерацией контактов.
  • Для бытового, общественного и промышленного освещения.
  • В составе экранов для уличного транслирования, а также при создании бегущих строк.
  • В оптопарах. Обозначение светодиода на схеме в этом случае дополняется изображением фотоприемного элемента.
  • Оптоволоконные системы. Здесь светодиоды выступают в качестве излучателей модулированной оптической волны.
  • Для подсветки экранов на жидких кристаллах.
  • Дизайн и развлекательная индустрия.

Особенности обозначения полупроводника на чертежах

Технические нормы и правила регламентируют обозначение светодиода на схеме. ГОСТ 2.702-2011 предписывает:

  • Изображать светодиод и другие элементы схемы при помощи чертежных принадлежностей либо в электронном виде. При этом последний вариант должен иметь разрешение не меньше 300dpi и содержать расширение файла tif или bmp.
  • Светодиод имеет схематическое исполнение в виде обычного диода, заключенного в окружность. Над правой верхней частью окружности расположены две параллельные стрелки, идущие от основного элемента под углом вправо вверх.
  • Возле светодиода указывают его полный буквенно-цифровой индекс.
  • Как бы ни был расположен светодиод на схеме, с полярностью в ту или иную сторону либо под углом, направление стрелок остается неизменным.
  • Вывод, идущий от треугольника, на схеме символизирует анод (+), а от вертикальной черты – катод (-).
  • Светодиод на схеме должен иметь свой порядковый номер. Нумерация идет слева направо, сверху вниз.

Светодиод – полярность обозначения

Обозначение светодиода на схеме позволяет легко определить его полярность, но чтобы определить ее у только что купленного элемента, нужно посмотреть на его контакты. Плюсовой вывод анода обычно имеет большую длину, чем катода.

Если светодиод установлен на плате, а она по каким-либо причинам не имеет маркировки элементов, то полярность полупроводника можно определить, внимательно посмотрев на его корпус. Со стороны катода (отрицательного вывода) на корпусе есть засечка плоской формы. Также у прозрачных типов корпусов светодиода видна его внутренность. Подобие чашечки, в которой расположен кристалл полупроводника, имеет прямое соединение с катодом.

В том случае, когда невозможно определить полярность вышеперечисленными способами, но в наличие есть электронный мультиметр, можно использовать его. Берут обычный диод с известной полярностью, ставят прибор на операцию прозвонки и подключают к полупроводнику. Запоминают полярность, когда диод проводит ток. Подключают светодиод к измерительным щупам. Добиваются, чтобы он проводил ток, отмечают его полярность.

Светодиод на плате

При сборке печатной платы радиомонтажники пользуются схемой и перечнем элементов спецификации. В соответствии с этим перечнем наносится специальная маркировка с указанием вида элемента и номера позиции его на схеме. Существуют международные стандарты обозначений на плате, которые повсеместно используются в импортной аппаратуре.

Обозначение светодиода на плате присутствует в виде графического изображения, буквенной кодировки и числа. Первое отображает в основном полярность полупроводника, буквы указывают на тип прибора, а число – на порядковый номер его в схеме и перечне.

Графическое обозначение светодиода на схеме платы идентично его изображению в чертеже, но может не содержать окружность вокруг значка диода. Буквенная кодировка выполнена заглавными латинскими буквами – LED (импортные схемы) и HL (отечественные). Число идет после букв либо внизу. Без числа невозможно определить параметры полупроводника, которые на плате не указывают за редким исключением.

Маркировка светодиодов

Буквенное обозначение светодиода на схеме (маркировка) несет всю информацию о характеристиках конкретного полупроводникового прибора. Маркировка содержит довольно много символов, поэтому ее не ставят на корпус прибора, а приводят в схеме либо на упаковке не распаянных элементов. Светодиоды в лентах идут бухтами в катушках, на которых проставлены маркировочные символы. Символьная кодировка отражает:

  • Серию продукции.
  • Цвет излучения светодиода. Современные светоизлучающие диоды бывают белого, зеленого, красного, синего, оранжевого, желтого цветов.
  • Качество цветового потока. Например, светодиод для освещения в доме или на улице, индикации приборов, подсветки, для матриц изображения.
  • Тип линзы. Бывают рассеивающие свет приборы и узконаправленного излучения с куполообразными, прозрачными и матовыми линзами.
  • Мощность светового потока.
  • Потребляемая мощность электроэнергии.
  • Код идентификации производителя. Не имеет практической нагрузки.
  • Символы резерва. Производители оставляют их для возможной модификации элементов.

Не существует определенного стандарта в маркировке светодиодов, поэтому каждый производитель имеет свою собственную кодировку. Запомнить ее невозможно, но серьезных производителей этого товара на рынке не так уж много. Среди них можно выделить такие фирмы, как Philips, Cree и Samsung.

Заключение

Кроме обычных светодиодов с выводами, существуют SMD-светодиоды с контактными площадками. Они отличаются маленькими размерами. Буквенное обозначение светодиода этого типа на схеме идентично с LED-элементами, но на плате упрощено и обычно сводится к указанию полярности.

Правила пайки светодиодов разного типа

Паяем светодиоды правильно — DRIVE2

Изучим правильное включение светодиодов, только электрическую сторону дела.

Для использования изложенных ниже сведений потребуются: калькулятор, паяльник, тестер.

Сразу следует остановиться на некоторых моментах.

Если нет навыков применения перечисленных инструментов, лучше обратиться к специалисту, в результате чего можно избежать таких неприятностей как незапланированный костер дома, а также повреждение собственного организма в целом или отдельных его частей. Так же не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Следует соблюдать заводские параметры включения светодиода. Прежде чем куда-либо подсоединить светодиод, нужно выяснить его электрические параметры.

Обратите внимание

Немного физики. Напряжение ‘U’ измеряется в вольтах (В), ток ‘I’- в амперах (А), сопротивление ‘R’ в омах (Ом). Закон Ома: U = R * I .

Итак, мы решили подключить светодиод. Рассмотрим наиболее популярные напряжения — 9, 12 В. Изучим вариант, когда в распоряжении есть постоянное напряжение, без помех (например батарейки, вынутые втихаря из пульта от телевизора), а потом исследуем вопрос подключения к менее идеальным источникам (помехи, нестабильное напряжение и др.).

Все светодиоды имеют один главный электрический параметр, при котором обеспечивается его нормальная работа. Это ток ( I ), текущий через светодиод. Светодиод нельзя назвать двух или трехвольтовым.

У тех, кто все-таки посещал уроки физики в школе, сразу возникает логичный вопрос: если 2 светодиода абсолютно одинаковые и через оба течет один и тот же ток, значит, и напряжение надо приложить одно и тоже к обоим.

А вот и не так! Технология изготовления кристаллов не позволяет сделать 2 светодиода с одинаковым, назовем его, ‘внутренним сопротивлением’ и по закону Ома можно сделать соответствующие выводы.

Через светодиод надо пропустить ток (согласно заводским параметрам) и измерить напряжение на его контактах. Это напряжение и будет обеспечивать протекание требуемого тока через кристалл светодиода!

Рассмотрим наиболее распространенные светодиоды, рассчитанные на ток 20 мА (т.е. 0,02 А).

Идеальный вариант подключения светодиодов — использование стабилизатора тока. К сожалению, готовые стабилизаторы стоят на порядок выше самого светодиода, об изготовлении относительно дешевого самодельного расскажем чуть ниже.

Как правило среднее напряжение (при I=20 мА) красного и желтого светодиода — 2,0 В (обычно эта величина 1,8 — 2,4 В), а белого, синего и зеленого — 3,0 В (3,0 — 3,5 В).

Важно

Итак, продавец Вам безапелляционно заявил, что Вы купили, например ‘красный светодиод на 2,0 В, такой-то яркости’ -поверим продавцу пока на слово, проверим и, если это не так, — вернемся и очень вежливо попросим заменить.

Вот простой вариант. У Вас нашлось дома, например, 8 штук батареек по 1,5 В, итого 8,0 *1,5 = 12,0 В (берем большое напряжение, чтобы было понятнее), и подсоединяем светодиод, который купили.

Подключили ? Теперь выкиньте свой светодиод, потому, что он сгорел! Вам же продавец сказал — 2,0 В, а Вы его в 12,0 В воткнули ! Купили новый, а лучше сразу небольшую кучку (фото).

Смотрим (не только смотрим, но и еще очень энергично пользуемся измерительным прибором): есть 12,0 В, надо 2,0 В, надо куда-то деть лишних 10 В (12,0 — 2,0 = 10,0). Самый простой способ — использование резистора (он же — сопротивление). Определим, какое надо сопротивление. Закон Ома гласит:

U = R * I
R = U / I

Ток, текущий в цепи I = 20 мА. Сопротивление нужно подобрать, чтобы на нем потерялось (упало) 10 В, а нужные 2,0 В дошли до светодиода. Отсюда находим требуемое R:

R = 10,0 / 0,02 = 500 Ом

Напряжение на сопротивлении превращается в тепло. Для того, что-бы сопротивление выдержало нагрузку и выделяемое тепло не привело к его выходу из строя, надо рассчитать рассеиваемую мощность сопротивления. Как известно (опять возвращаемся к посещаемости уроков физики) мощность:

P = U * I

На сопротивлении у нас 10,0 В при токе 20 мА. Считаем:

P = 10,0 * 0,02 А = 0,2 Вт.

При приобретении сопротивления просим у продавца 500 Ом, мощностью не менее 0,2 Вт (лучше больше, с запасом, чтобы на душе было спокойнее, 0,5 Вт например, но следует учесть — чем больше мощность, тем больше размеры). Подключаем светодиод (не забыв про полярность) через сопротивление и ощущаем волну радости — сияет!

Теперь размыкаем цепь между сопротивлением и светодиодом, включаем измерительный прибор и измеряем протекающий в цепи ток. Если ток менее 20 мА, надо немного уменьшить сопротивление, если больше 20 мА — увеличить. Вот и все ! Получив ток в 20 мА, мы достигли оптимальной работы светодиода, а при таком режиме производитель гарантирует десять лет непрерывной работы.

Совет

Садимся и ждем десятьлет, если что не так, пишем претензию на завод. По мере того, как батарейки будут ‘садиться’, яркость светодиода будет уменьшаться.

После того как батарейки ‘сядут’ совсем, их надо вставить обратно в пульт, сделать вид, что так и было или, например, объявить всем, что на быструю смерть батареек повлияла магнитная буря или чрезмерная активность солнца.

Это мы поступили правильно, но обычно производитель указывает среднее напряжение для партии светодиодов при оптимальном токе. И никто не утруждает себя точным подбором тока. Поэтому остальные примеры будут основаны на данных о среднем напряжении, а не токе (и мы ни кому не скажем, что это не совсем правильно !).

Теперь определимся с подключением нескольких светодиодов. Подключаем два красных последовательно. 2 шт * 2,0 = 4,0 В. Питающее напряжение — 12 В, следовательно лишних — 8,0 В. R = 8,0 / 0,02 = 400 Ом. P= 8,0 * 0,2 = 0,16 Вт.

Если шесть штук — 6шт. * 2,0В = 12 В. Сопротивление не требуется… (на самом деле так НЕЛЬЗЯ!). А нельзя потому, что светодиоды имеют небольшой разброс по напряжениям, а вот ток без резистора задать им нечем. И в такой цепи он может оказаться как 5 мА, так и 35 мА!

Аналогично, например, с синими (3,0в) : 3шт x 3,0 В = 9,0В. 12,0 В — 9,0 В = 3,0 В. R = 3,0 / 0,02 = 150 Ом. P = 3,0 * 0,02 = 0,06 Вт.

Если у нас три батарейки по 1,5 вольта и, например, 1 синий светодиод на который надо подать 3,5 В, чтобы получить требуемый ток в 20 мА (0,02А): 3 шт * 1,5 в = 4,5в (напряжение питания). Лишних: 4,5 В — 3,5 В = 1,0 В. R = U / I = 1,0 В / 0,02 А = 50 Ом. P = U * I = 1,0 В * 0,02 А = 0,02 Вт

Теперь изучим более сложный вариант. Надо подключить к 12 В тридцать штук красных по 2,0В.

На 12В можем подключить только пять штук с резистором (шесть штук без сопротивлений НЕЛЬЗЯ), соединяем пять штук последовательно с соответствующим сопротивлением и подключаем — светится.

Обратите внимание

Соединяем еще пять штук и резистор, присоединяем параллельно к первым. При этом через каждые пять штук будет течь ток в 0,02А. У нас получится шесть цепочек с общим током 6* 0,02А = 0,12А (уже батареек хватит ненадолго).

Надо подключить к 12В 30 штук зеленых по 3,5В. На 12В мы можем подключить: 12В / 3,5В = 3,43 штуки. Мы не будем отрезать от четвертого светодиода 0,43 части, а подключим 3 штуки + сопротивление: 3штуки * 3,5В = 10,5 В. Лишнее напряжение: 12,0 В — 10,5 В = 1,5 В.

Сопротивление R = 1,5В / 0,02А = 75 Ом при мощности P = 1,5 * 0,02 = 0,03 Вт.

Если вдруг одному светодиоду в процессе монтажа были случайно выдраны ноги и их осталось всего 29 штук, то соединяем 9 цепочек по 3 штуки, и одну цепочку из 2-х штук + сопротивление R = 250 Ом, P = 0,1Вт.

Чудненько. Вот мы и вспомнили чуть-чуть основы физики. Теперь рассмотрим более стабилизированную схему включения светодиодов. Возложим техническую проблему подключения на мировые умы, разрабатывающие интегральные микросхемы. Коснёмся изготовления стабилизатора тока.

Это достаточно просто, главное нащупать немного лишних монет в кармане. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.

2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напрягать их так и подавать максимум 20 вольт.

При таком подключении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток через светодиод будет соответствовать неизменному значению в 20 мА! При 20 вольтах получаем, что к такому стабилизатору можно подключить последовательно пять белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет всегдп протекать 20 мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания.

В таком случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые).

Важно

Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку желательно собирать из светодиодов одинаковых параметров и одного производителя.

Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно разрабатывать устройство так, чтобы протекающий ток через светодиод был равен не 20 мА, а 17-18 мА. Потеря яркости будет небольшая, зато долгий срок службы гарантирован.

Просто соединять светодиоды и подключать их к батарейкам от пульта — не интересно. Их обязательно надо спаять вместе и подключить к какому-нибудь устройству (пылесосу например, чтобы было видно всасывание каждой пылинки.

Тут сразу надо учесть, что в пылесосе 220 опасных вольт, да еще и напряжение переменное, что ни как не годится к подключению светодиодов.

Для этого надо изготовить специальный блок питания, но эту тему мы не будем сейчас обсуждать).

Надо найти устройство с постоянным напряжением и обильно украсить его светодиодами. Вот тут-то вперед выступают счастливые обладатели личных механических коней (авто-мото-вело-самокато).

Ведь можно обвесить свой любимый транспорт светодиодами так, что прохожие не усомнятся, что мимо проехала новогодняя елка, а никак не средство передвижения. Нужно сразу предупредить, что злоупотребление количеством, яркостью и цветом пресекается некоторыми сотрудниками дорожной инспекции.

Совет

Также не следует, к примеру, делать стоп-сигналы с яркостью превышающей яркость фар с включенным дальним светом — это немного раздражает едущих сзади, что тоже может в конце концов неблагоприятно сказаться на Вашем организме (особенно на лице), но не будем расстраиваться, ведь есть еще пространство внутри! Там уж можно приложить всю свою фантазию (например подсветить снизу лицо водителя синим цветом, что отобьет охоту у сотрудников ГИБДД проверять документы). 🙂

Сразу надо иметь ввиду, что напряжение в сети исправного авто не 12В, а 14,5 В. Желательно проверить это прибором при запущенном двигателе (если конечно есть двигатель). Так же в бортовой сети железного коня наблюдается множество помех, которые не желательны, да и напряжение иногда не очень постоянное.

Для снижения помех на входе вашего светящегося устройства можно собрать простую схему из двух деталей — диода и электролитического конденсатора (рисунок). Конденсатор и диод, как и светодиод имеет полярность, значения рабочего напряжения и тока (диод).

После установки диода и конденсатора надо замерить напряжение Uвых (оно не будет совпадать с Uвх) и после этого рассчитывать схему подключение светодиодов.

Если Вы не уверены в стабильности напряжения бортовой сети, можно использовать специальные интегральные стабилизаторы напряжения. Они обеспечивают постоянное напряжение на выходе при изменяющемся (в разумных пределах) или скачущем (как лошадка) входном напряжении.

Наиболее простые представители — К142ЕН8А или КРЕН8А (9 вольт) и К142ЕН8Б или КРЕН8Б (12 вольт). Приблизительная цена такой штуки составляет 10-20 руб (зависит от жадности продавца). Т.е.

у продавца надо спросить с гордым видом ‘КРЕНКУ, например, на 9В’, он сразу все поймет и узрев в Вас крупного специалиста не посмеет обмануть (продаются также иностранные аналоги). Микросхемы имеют всего три ноги и если Вы ни разу в жизни не заблудились в трех соснах, то разобраться в них не составит ни какого труда.

Берем левой рукой стабилизатор ногами вниз и надписью к себе, указательным пальцем правой руки слева направо тычем в выводы. Первая нога — вход (+), средняя — корпус (-), правая выход (+). (фото). Подключить ее надо как на рисунке. На выходе получим постоянное напряжение в 9 или 12 вольт.

Исходя из этого, рассчитываем, как было в начале статьи, схему включения светодиодов. Почему 9В или 12 В? На 9В хорошо подсоединяются два синих, зеленых или белых светодиода либо три-четыре красных или желтых и резистор, на 12В — пять штук красных, желтых или три штуки синих, зеленых или белых, обязательно требуется дополнительное сопротивление.

Микросхему (при большом количестве светодиодов) надо установить на радиатор. КРЕН8Б рассчитана на максимальную нагрузку в 1,5А (при таком токе очень сильно будет греться). На вход не следует подавать напряжение более 35 вольт. Входное напряжение должно быть не менее чем на 3В больше выходного, иначе стабилизатор не будет работать.

В заключении следует отметить такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.

Обратите внимание

Не рекомендуется паять светодиоды старым дедушкиным паяльником, который нагревали в печке и использовали для запайки дырок в кастрюлях.

Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Полезным будет использование медицинского пинцета при пайке.

Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.

Ноги светодиода следует изгибать с небольшим радиусом (чтобы они не ломались, нам калеки не нужны !). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Собирать светодиоды в одно большое светящееся чудо лучше всего на каком-нибудь плоском листовом материале (пластмасса, оргстекло и др.), предварительно просверлив в нем дырок нужного размера по диаметру корпуса (придется освоить еще измерительный инструмент и дрель).

Помните, что светодиод — нежный прибор и обращаться с ним надо соответственно (при пайке можно спеть песню, чтобы работал долго).

Чтобы Ваше устройство защитить от автомобиля и автомобиль от устройства (ведь теперь не известно, что надежнее) следует ставить предохранители

Взято на просторах тырнета в свободном доступе, взято себе на заметку.

Источник: https://www.drive2.ru/b/2772422/

Правила пайки светодиодов разного типа

Светодиоды присутствуют в электронных приборах, детских игрушках и бытовой технике, где сигнализируют работу определенной функции или исполняют декоративную роль.

Из мощных лампочек собирают источники света: прожектора, лампы, ленты для подсветки. В случае сгорания детали требуется пайка светодиодов, а во время монтажа освещения возникает проблема соединения кусков лент.

Разновидности деталей и способы их пайки

Обычный индикаторный светодиод для печатных плат состоит из стеклянной колбы с токоведущими ножками и напоминает маленькую лампочку.

Пайку осуществляют паяльником мощностью до 60 Вт с температурой нагрева жала 260 °C. Сначала провода или контакты платы лудят припоем с канифолью.

Аналогичное действие выполняют с токоведущими ножками светодиода. Когда все будет готово, с помощью флюса и олова осуществляют пайку. Время нагрева каждой точки не должно превышать 5 секунд.

Важно

SMD светодиоды, обычно применяемые для освещения, не имеют токоведущих ножек. Вместо них на корпусе детали расположены контактные площадки.

Пайка осуществляется паяльником мощностью 12 Вт с двойным разветвлением жала.

Как устроена светодиодная лента

Гибкая основа ленты служит печатной платой с токоведущими нитями для SMD светодиодов. На лицевой поверхности расположен диодный блок. Он сгруппирован по три элемента, включающие диод и ограничительный резистор.

Каждый блок отделяет разметка в виде рисунка ножниц. На этом месте светодиодная лента перерезается, если надо ее укоротить или повернуть при прокладке в другую сторону. Светодиодный блок имеет токоведущие контакты для припаивания проводов или установки соединительных коннекторов.

С тыльной стороны нанесен клеящий слой, закрытый защитной пленкой. Во время монтажа лента просто приклеивается к алюминиевому профилю или на любую чистую поверхность.

Работает лента от постоянного тока напряжением 12 или 24 вольта. Источником служит блок питания. Бывают ленты, рассчитанные на напряжение 36 и 48 вольт, но в быту они редко используются.

Для светодиодных лент применяют одноцветные и трехцветные SMD диоды. Самый распространенный – первый вариант с одним кристаллом. Диоды светятся белым, синим, красным или другим цветом.

Второй вариант – это лампочки с тремя кристаллами. Один RGB диод способен светиться, например, красным, синим и зеленым цветом. Переключение свечения осуществляется контроллером.

Продаются светодиодные ленты рулонами длиной по 5 м. На каждый 1 м может быть припаяно 30, 60 и более лампочек. Для защиты от влаги и механических повреждений производят изделия с силиконовым покрытием.

Правила соединения

Куски светодиодной ленты соединяют, соблюдая полярность. Изделие с одноцветными лампочками имеет 2 контакта. На RGB ленте присутствует 4 контакта. Провод используют сечением 0,75–0,8 мм в разноцветной изоляции, чтобы не спутать полюса.

Сращивание более 5 м не рекомендуется. Из-за падения напряжения дальние светодиоды будут светиться не на полную мощность.

Для пайки проводов используют паяльник мощностью 25–60 Вт. Максимальная температура нагрева жала – 300 °C. Потребуется флюс, тонкий припой и канифоль. Без паяльника соединение выполняют коннекторами.

Пайка проводов под углом

Когда светодиодная подсветка выполнена из нескольких параллельных полос, для их спаривания провода к каждому куску ленты лучше припаять под углом 90°. Причем минус и плюс фиксируют на контактах двух соседний диодных блоках.

На свечение диодов такое подключение не влияет, зато провода располагаются без накладки. У RGB ленты под углом припаивают 4 провода.

Пайка ленты покрытой силиконом

Защитное покрытие из силикона скрывает под собой токоведущие контакты. Чтобы к ним добраться выполняют зачистку острым ножом.

Если придется паять провода к ленте с защитой IP68, то после всей процедуры оголенный край заталкивают внутрь защитной оболочки. Пустоту заливают жидким силиконом на глубину 10 мм и ставят заглушку, продев сквозь технические отверстия токоведущие жилы.

Когда коннекторы нужны

Чтобы быстро соединить ленту с проводами или два куска между собой без пайки используют коннекторы. Соединительные элементы подбирают соответствующей ширины. Самый распространенный размер – 8 и 10 мм. Количество контактов в коннекторе и на светодиодной ленте должно соответствовать.

Коннекторы делятся на три вида:

  • прямые элементы для сращивания двух кусков лент;
  • для соединения двух кусков под углом 90°;
  • для соединения проводами, чтобы получить произвольный угол.

По типу подключения коннекторы бывают:

  • прижимные;
  • с защелкой;
  • прокалывающие.

Недостатки соединительных коннекторов

Коннектор удобен для быстрого соединения и не требует дополнительной изоляции. Однако в точке соединения токоведущих контактов уменьшается сечение. Во время длительной работы происходит нагрев.

Контакты подгорают, ухудшая проводимость тока. От нагрева страдают светодиоды, расположенные рядом с коннектором. Детали выходят из строя или снижается яркость свечения.

Отсутствие пайки сопровождается окислением контактов. Медь от воздействия кислорода зеленеет. Ток слабее проходит через контакты. Диоды начинают притухать, мигать, а со временем перестают гореть.

Соединение внахлест без проводов

Чтобы правильно соединить два куска внахлест, концы светодиодной ленты отрезают впритык к токоведущим контактам. С тыльной стороны одного куска счищают клеящий слой. Контакты смазывают флюсом, лудят оловом до появления серебристой пленки.

Два куска ленты стыкуют внахлест, соблюдая полярность. Контакты прогревают паяльником не более 5 секунд. За это время олово создаст прочное соединение.

Порядок работ

При соединении коннектором подбирают элемент, соответствующий по ширине светодиодной ленты и количеству контактов. Если есть силиконовое покрытие, его удаляют острым ножом.

Открывают крышечку коннектора, вставляют один конец ленты так, чтобы контакты совпали с токоведущими площадками. Крышечку прочно сжимают пальцами до легкого щелчка. Аналогичную процедуру повторяют со вторым концом ленты.

Чтобы на парных контактах припаять провода к светодиодным лентам выполняют следующие действия:

  • конец провода зачищают от изоляции длиной 5 мм;
  • оголенные медные жилы сгибают под углом 90 °C;
  • с помощью флюса и припоя лудят токоведущие парные контакты, а также оголенные концы медных жил;
  • луженый конец жилы прикладывают к токоведущему контакту и быстрым прикосновением паяльника наплавляют на соединение олово;
  • аналогично надо припаивать ко второму контакту провод.

У RGB ленты 4 контакта расположены близко друг к другу. Провода разумно припаять по два штуки на соседних модулях, чтобы не получилось замыкание.

Полярность диодов

Когда требуется самостоятельно спаять схему на печатной плате, надо определить полярность светодиодов, иначе они не будут светить. Находят плюс и минус тремя способами.

Зрительное определение. На корпусе мощных SMD светодиодов стоят обозначения «–» и «+» или цветная маркировка. Индикаторные диоды в виде лампочки определяют по токоведущим ножкам.

У новой детали минус длиннее плюса. А если посмотреть через прозрачную колбу на кристалл, то минусовая ножка будет отходить от его низа – подставки.

Определение свечением при подключении к аккумулятору. Для простого эксперимента светодиод соединяют последовательно с резистором сопротивлением от 680 Ом.

Вторую токоведущую ножку диода и выход сопротивления подключают к аккумулятору 12 вольт. Зная плюс и минус батареи, определяют полярность светодиода, когда появится свечение.

Совет

Измерение мультиметром. Тестер переводят в режим измерения сопротивления и щупами касаются концов токоведущих ножек.

Если плюсовой провод красного цвета правильно попал на плюс диода, а черный провод на минус, мультиметр покажет сопротивление примерно 1,7 кОм. При неправильной полярности на тестере ничего не отобразится.

Из всех вариантов самым безопасным считается определение полярности мультиметром.

Ошибки при пайке

Допущенные ошибки пайки и соединения приведут к миганию светодиодов, а также выходу лампочек из строя. Плохое соединение получится, если ставить коннектор на токоведущие контакты ленты, подвергавшиеся перед этим пайке. Проблема связана с разной толщиной наплавления олова.

Пайка паяльником, перегретым до температуры выше 300 °C, сжигает внутри ленты токоведущие нити. Не допускается вместо флюса использование кислоты. Агрессивный раствор аналогично разъедает контакты.

Источник: https://svaring.com/soldering/praktika/pajka-svetodiodnoj-lenty

Правильная схема подключения светодиодов: последовательно или параллельно

Самое правильное подключение нескольких светодиодов – последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя – быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток – это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно – 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс – от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Источник тока (или генератор тока) – источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе.

Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот.

Источники тока, которыми запитывают светодиоды, еще называют драйверами.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.

1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.

1В запросто может превысить максимально допустимое значение).

Обратите внимание

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи – почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым.

А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

UпитILED5 мА10 мА20 мА30 мА50 мА70 мА100 мА200 мА300 мА5 вольт12 вольт24 вольта
340 Ом170 Ом85 Ом57 Ом34 Ом24 Ом17 Ом8.5 Ом5.7 Ом
1.74 кОм870 Ом435 Ом290 Ом174 Ом124 Ом87 Ом43 Ом29 Ом
4.14 кОм2.07 кОм1.06 кОм690 Ом414 Ом296 Ом207 Ом103 Ом69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Важно

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ – конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток – это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) – либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов – это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов – 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Совет

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

СветодиодыКакой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835)см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730)драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W)драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды)драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6)драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Источник: http://electro-shema.ru/chertezhi/podklyuchenie-svetodiodov.html

Последовательное соединение светодиодов

Ранее мы рассказывали о параллельном соединении светодиодов. Посмотрели на плюсы и минусы, достоинства и недостатки… Масло масляное))) Ну уж простите. Сегодняшний пост будет посвящен самому распространенному виду соединений – последовательное соединение светодиодов.

Как только нам приходится в электрических схемах задействовать не один, а несколько светодиодов, то обязательно возникает дилемма – как правильно соединить их. Какую схему выбрать?

Если Вы начали читать эту статью, то Вас также интересует данный вопрос… Сразу и еще аз оговорюсь, что последовательное соединение светодиодов самое эффективное. Но тут есть свои минусы – не всегда это реализуемо. Почему это так, нужно углубиться в физику ( не пугайтесь, не так это страшно ))

к оглавлению ↑

Вольтамперная характеристика любых светодиодов (ВАХ)

Что такое ВАХ сильно углубляться не будем. По простому – это зависимость тока от напряжения. Этой информации нам и будет достаточно. Вольт-амперная характеристика у любого светодиода, как и у любого диода имеет нелинейную характеристику.

Мы взяли обычный белый диод. При напряжении от 2,5-3В ток увеличивается с 2 до 15 мА. Это достаточно большое увеличение. Отсюда вытекает, что при больших изменения тока падение напряжения будет невелико.

Не смотря на то, что любой завод выпускает чипы с одной характеристикой в каждой партии, падение напряжение будет разным у каждого экземпляра. Не на много, но на десятые доли вольта это точно. Именно из-за этого источник питания светодиодов должен стабилизировать ток, а не напряжение. Такие источники питания принято называть светодиодными драйверами.

к оглавлению ↑

На схеме мы видим традиционное последовательное соединение светодиодов, подключенных к аккумулятору.

Данное соединение предполагает одинаково яркое свечение светодиодов. Но тут нам “мешает” резистор.

Рассмотрим не много другой пример. А именно, возьмем светодиодный драйвер и подключим его к трем последовательным светодиодам.

В результате того, что сила тока в замкнутой цепи одинакова, то и через каждый диод будет течь одинаковый ток I1=I2=I3. Соединение без резистора при помощи драйвера также обеспечивает одинаковую яркость, а разница падения напряжения на диодах не играет никакого значения. Отражается только на величине разности потенциалов между точкой 1 и 2.

к оглавлению ↑

Расчет драйвера для последовательного соединения светодиодов

Описанное выше последовательное соединение LEDs может вызвать большие вопросы по поводу выбора самого драйвера. Используя ниже приведенный алгоритм расчета Вы всегда самостоятельно сможете рассчитать драйвер, в зависимости от выбранного соединения.

Допустим нам необходимо запитать три светодиода, соединенных последовательно током 700 мА.

Падение напряжения (вымышленно) при таком токе составляет от 3,2 до 3,4 В.

Минимальное напряжение Umin=3*3.2=9.6 V

Максимальное напряжение Umax=3.4*3=10.2 V

Мощность потребляемая светодиодами составит: Р=10,2*0,7=7,14 Вт.

Итого: наш драйвер должен иметь:

Выходной ток 700 мА

Выходное напряжение 10,2В +- 5%

Выходная мощность не менее 7,2 Вт

Это все! Как видите. никаких проблем. Рассматривать расчет резистора при отсутствии драйвера не буду. Это пережитки прошлого. Любой производитель уже выпускает светодиодные драйверы на любой вкус и цвет. При этом стоимость их ничтожно мала. А эффективность от”коробочки” на много больше, чем от простого резистора.

к оглавлению ↑

Плюсы и минусы последовательного соединения светодиодов

Плюс один и большой – дешевизна в конструкции.

Минусов же при последовательном соединении как минимум два:

  1. Если выйдет из строя хотя бы один светодиод, естественно погаснет и вся цепочка. Тут, правда, можно еще один плюс найти… Если диод закоротит, то цепь не оборвется и остальные чипы продолжат свою работу.
  2. Если светодиодов много, то низковольтное питание реализовать архисложно. А это уже проблема. Особенно, если необходимо иметь безопасность в первую очередь.

к оглавлению ↑

Видео на тему последовательного соединения светодиодов

Для тех, кому лень читать много букавак, то предлагаем посмотреть простенькое видео на тему: “последовательное соединение светодиодов”. Из него вы быстро почерпнете информацию как правильно подключать диоды при таком соединении.

Источник: https://leds-test.ru/posledovatelnoe-soedinenie-svetodiodov/

Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). 
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

Обратите внимание

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения

  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.

Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.

Недостатки параллельного подключения:

  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.

Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

  1. Прямое подключение к источнику питания.В данном случае светодиод моментально сгорит, поскольку отсутствует ограничивающий ток резистор.
  2. Параллельное подключение через один резистор.Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный.
  3. Последовательное подключение с различным током потребления.

    При такой схеме подключения есть 2 варианта: либо просто одни будут светить тусклее других, либо те, что рассчитаны на меньший ток – сгорят.

  4. Неправильно подобранный ограничивающий резистор.При неправильно подобранном сопротивлении через светодиоды будет проходить большой ток, в результате чего, они будут перегреваться и со временем перегорят.

    При большом сопротивлении они будут светить не в полную силу.

  5. Подключение к сети переменного напряжения номиналом 220В без диода или других компонентов защиты. Если при подключении с сети 220В, если не установить дополнительный диод, то на светодиоде возникнет амплитудное значение напряжения в 315В, которое моментально выведет его из строя.

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Заключение

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики.

Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения.

Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Источник: http://ledno.ru/svetodiody/podklyuchenie-svetodiodov.html

Полярность

— learn.sparkfun.com

Добавлено в избранное Любимый 42

Полярность диодов и светодиодов

Примечание: Мы будем иметь в виду поток тока относительно положительных зарядов (т. Е. Обычного тока) в цепи.

Диоды позволяют току течь только в одном направлении, и они всегда поляризованы . У диода два вывода. Положительная сторона называется анодом , а отрицательная — катодом .

Обозначение диодной цепи с маркировкой анода и катода.

Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении. Физически каждый диод должен иметь какую-то индикацию анода или катода. Обычно диод будет иметь линию рядом с выводом катода , которая соответствует вертикальной линии в символе цепи диода.

Ниже приведены несколько примеров диодов. Верхний диод, выпрямитель 1N4001, имеет серое кольцо возле катода. Ниже на сигнальном диоде 1N4148 используется черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой вывод является катодом.

Обратите внимание на линии на каждом устройстве, обозначающие сторону катода, которые соответствуют линии на изображении выше.

Светодиоды

LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы.Есть несколько идентификаторов для поиска положительных и отрицательных контактов светодиода. Вы можете попробовать найти более длинную ногу , которая должна указывать на положительный анодный штифт.

Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода. Контакт, ближайший к плоскому краю , будет отрицательным катодным контактом.

Могут быть и другие индикаторы. У SMD-диодов есть ряд идентификаторов анодов / катодов. Иногда проще всего проверить полярность с помощью мультиметра.Установите мультиметр в положение диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода. Если светодиод горит, положительный зонд касается анода, а отрицательный зонд касается катода. Если он не загорается, попробуйте поменять местами зонды.

Полярность крошечного желтого светодиода для поверхностного монтажа проверяется мультиметром. Если положительный вывод касается анода, а отрицательный — катода, светодиод должен загореться.


Диоды, безусловно, не единственный поляризованный компонент. Есть масса деталей, которые не будут работать при неправильном подключении. Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.


← Предыдущая страница
Что такое полярность?

Как понимать фотометрические полярные диаграммы

Как разбираться в фотометрических полярных диаграммах

Если вы работаете в светотехнике рано или поздно вы встретите фотометрические диаграммы, и вы должны знать, как их интерпретировать.Эта веб-страница быстро введение о том, как смотреть на фотометрическую диаграмму и информация из него. Подробнее читайте в главе 3 моей книги «Канделы. Люмен и люкс »:

Сначала начнем выключен с фотометрической диаграммой C-Gamma. Вот диаграмма C-Gamma с некоторыми из оставшихся лучей силы света:

Это делает диаграмма более запутанная, чем должна быть, а фотометрические диаграммы всегда исключите эти лучи, чтобы получить более простую диаграмму, как показано ниже:

Что нужно помнить состоит в том, что расстояние от центра диаграммы до одной из точек на контуре соответствует значению силы света, часто в канделах, в данном направлении.

Эти диаграммы сразу скажу вам, если большая часть потока (люмены, поток света) идет вверх, вниз или вбок. В примере напротив весь свет течет в нисходящем направлении.

С фотометрией C-Gamma гамма — это угол места, а гамма = 0,0 соответствует лучу. света, направленного вниз. Угол C, угол C-Plane равен обычно представлен как C = 0, идущий вправо вдоль положительного x ось и C = 90 вдоль положительной оси y.

Светильник чья полярная диаграмма показана ниже, поэтому большая часть его потока влево и симметрично в плоскости C90 — C270.

Конкретный пример может лучше объяснить концепцию C-Plane. Если установлен внутри комнаты, вы можете направить самолет C0 на север, тогда C180 будет указывать на юг, и так далее. Представленный ниже трехмерный вид должен помочь вам сориентироваться.Помните хотя это положение по умолчанию, светильник можно повернуть. и наклонены в реальной жизни.

«Кандел Люмен и люкс »дает более подробное объяснение с большим количеством примеров:

Изображения ниже покажет вам два разных типа светильников на полярной диаграмме C-Gamma. Первый светильник направляет весь свой поток вверх, предположительно он используется для внутреннего непрямого освещения, когда свет сначала отражается потолок перед прибытием на рабочую поверхность.Весь свет в гамме = От 90 до 180 градусов. Второй светильник направляет часть потока вверх. и некоторые нисходящие, прямой-косвенный метод освещения помещения.

Иногда, если светильник распределяет свет очень неравномерно или ассиметрично. полезно увидеть полное фотометрическое твердое тело. Пример приведен ниже:

Чем больше bulge тем больше интенсивность света вдоль «выпуклости».

Другой фотометрический диаграмма — это диаграмма VH. Используется для прожекторов, для светильников. которые должны освещать большую площадь. Как и в CGamma, используются два угла в качестве системы координат V и H.

Немедленное разница, которую вы видите с этой системой, заключается в том, что она покрывает только половину сферы. Предполагается, что прожекторы никогда не будут излучать свет вдали от основных луч.

Система VH обычно указывается горизонтально, но на практике светильники часто будут направлены на спортивное поле (или парковку) с высокой столб. В «Канделах» есть полное объяснение. Люмен и люкс ».

Вы можете или можете не заметил на предыдущих диаграммах, что в основном блоки «cd» (канделы), но иногда единицы измерения — «cd / klm», или кандел на килолюмен.Эти единицы cd / klm часто используются для нескольких светильники, идентичные «по форме», за исключением потока. Возможно, в светильник можно вставить лампы с большим или меньшим световым потоком (люмен). внутрь. Фотометрические кривые, рассматриваемые только как формы, идентичны даже с разными лампочками. Это означает, что одна диаграмма может представлять несколько разных светильников, если масштабировать все до кандел на килолюмен. Это объясняется с другими примерами в главе 3 книги «Канделы. Люмен и люкс »(19 долларов.99):

Есть сейчас плакат книги в наличии! Идеально для школы, колледжа и университета:

Нажмите здесь, чтобы купить плакат от Zazzle за 16,80 долларов.
Размер плаката 28 » на 20 дюймов (71 x 51 см)

Отведения ЭКГ, полярность и треугольник Эйнтховена — студент-физиолог

Стандартную ЭКГ составляют три системы отведений:

  • Стандартные отведения от конечностей (биполярные): I, IlI и III
  • Расширенные отведения от конечностей (униполярные): aVR, aVL и aVF
  • Прекардиальные отведения: V1- V6

Стандартные отведения от конечностей используются для отображения графика разности потенциалов , записанной между двумя конечностями одновременно, т.е. они биполярны.В этих отведениях одна конечность несет положительный электрод, а другая конечность — отрицательный.

Три электрода конечностей, I, II и III, образуют треугольник ( Равносторонний треугольник Эйнтховена ) на правой руке (RA), левой руке (LA) и левой ноге (LL).

Три стандартных отведения от конечностей:

Закон Эйнтховена объясняет, что комплекс Отведения II равен сумме соответствующих комплексов в Отведениях I и III и дается как II = I + III

Например,

  • Если у вас была ЭКГ, на которой зубец R отведения I был 7 мм в высоту, а зубец S 2 мм, вычтите S из R, и у вас будет 5 мм.
  • В соответствующем комплексе в отведении III зубец R имеет размер 1 мм, а зубец S имеет отрицательное отклонение 16 мм. Вычитание R из S дает -15 мм
  • В отведении II, используя тот же метод, что и раньше, вы получите размер -10 мм

Используя эти измерения с законом Эйнтховена, вы получите

Итак, эти выводы электрически равносторонние .

Расширенные отведения к конечностям получают график электрических сил, записанных от одной конечности за раз, используя нулевую точку с относительным нулевым потенциалом, таким образом, они являются униполярными.

Эти отведения, aVR, aVL и aVF, дают дополнительные виды на кривую, считывая разность потенциалов на сердце еще в трех направлениях во фронтальной плоскости.

Три дополнительных отведения к конечностям:

Электрод правой ноги (RL) удаляет артефакты из ЭКГ и не является фактором, непосредственно участвующим в видимой кривой.

Прекардиальные отведения или грудные отведения помечены V1-V6 и помещаются на грудину, перемещаясь в заднем направлении:

  • V1
    • Четвертое межреберье по правому краю грудины

  • В2
    • Напротив V1, на левой границе грудины
  • В3
  • V4
    • Пятое межреберье по срединно-ключичной линии
  • V5
    • На том же уровне, что и V4, передняя подмышечная линия
  • V6
    • На том же уровне, что и V4, средняя подмышечная линия

Это направление создает поперечную плоскость, через которую можно наблюдать электрический сигнал сердца, в дополнение к фронтальной плоскости, предлагаемой отведениями от конечностей.

Группы отведений или Смежные отведения — это категории отведений, основанные на области сердца, которую они исследуют:

  • Низшая
    • «Посмотрите» вниз, к ногам
    • Отведения II, III, aVF
  • Передне-септальный
    • Обзор межжелудочковой перегородки и передней стенки
    • Отведения V1, V2
  • Передний
    • Преимущественно над передней стенкой
    • Отведения V3, V4
  • Боковое
    • Осмотреть боковую стенку
    • Выводы V5, V6
    • Отведения I, aVL (высокий боковой)

Поляризация определяет направление следа на ЭКГ.

  • Волна поляризации, движущаяся к положительному электроду, приводит к положительному отклонению ЭКГ.
  • Волна поляризации, распространяющаяся от положительного электрода, приводит к отрицательному отклонению на трассе.
  • Волна деполяризации, распространяющаяся под прямым углом к ​​положительному электроду, приводит к двухфазному отклонению на трассе.

Чтобы графически представить электрические силы в треугольнике Эйнтховена, мы можем нарисовать их таким образом, чтобы они пересекали друг друга пополам, проходя через общую центральную точку.

Каждая ось отделена друг от друга на 60 °, при этом полярность выводов, + или -, остается в том же направлении. Это известно как трехосная эталонная система .

Объединив эту систему трехосных отведений с одним из отведений от униполярных конечностей (также с разделением на 60 °), мы создали гексаксиальную эталонную систему , используемую для определения электрической оси сердца.

ДОБАВЛЕНО:

ЧТО СОЗДАЕТ:

Пока не беспокойтесь о цветах.Они станут понятны, когда мы определим сердечную ось.

Ссылка:

Лутра, А. (2007) ЭКГ стало проще. Издание третье. Танбридж-Уэллс: Аньшань

Хоутон, А. Гэри, Д. (1997) Осмысление ЭКГ Пятое издание. Лондон: Арнольд

Как это:

Нравится Загрузка …

определение электрической полярности светодиодов и синонимов электрической полярности светодиодов (английский)

Из Википедии

(перенаправлено с электрической полярности светодиодов)

Простая принципиальная схема светодиода

В электронике Схема светодиода — электрическая схема, используемая для питания светодиода (СИД).Он состоит из источника напряжения, питающего два последовательно соединенных компонента: токоограничивающий резистор и светодиод. По желанию может быть введен переключатель для размыкания и замыкания цепи. [1] Переключатель может быть заменен другим компонентом или схемой для создания прибора для проверки целостности цепи. [2]

Используемый светодиод будет иметь падение напряжения, указанное при предполагаемом рабочем токе. Закон Ома и законы схемы Кирхгофа используются для расчета резистора, который используется для достижения правильного тока. [3] [4] Значение резистора вычисляется путем вычитания падения напряжения светодиода из напряжения питания, а затем деления на желаемый рабочий ток светодиода. Если напряжение питания равно падению напряжения светодиода, резистор не требуется. [5]

Эта базовая схема используется в широком диапазоне приложений, включая многие бытовые приборы. [6]

Простая формула сопротивления для оптимальной яркости светодиода

Формула для расчета правильного сопротивления для использования:

где:

  • Напряжение источника питания ( В с ) напряжение блока питания e.г. аккумулятор на 9 вольт.
  • Падение напряжения на светодиодах ( В f ) — это падение напряжения на светодиодах (обычно около 1,8 — 3,3 В; это зависит от цвета светодиода) 1,8 В для красный , и оно увеличивается по мере того, как спектр увеличивается до 3,3 вольт для синий .
  • Номинальный ток светодиода ( I f ) — рейтинг производителя светодиода (обычно указывается в миллиамперах, например, 20 мА)

Анализ с использованием законов Кирхгофа

Формулу можно объяснить, рассматривая светодиод как сопротивление и применяя KVL ( R — неизвестная величина):

Полярность

В отличие от ламп накаливания, которые загораются независимо от электрической полярности, светодиоды будут гореть только с правильной электрической полярностью.Когда напряжение на переходе p-n находится в правильном направлении, протекает значительный ток, и устройство называется с прямым смещением . Если напряжение неправильной полярности, устройство называется с обратным смещением , протекает очень мало тока и свет не излучается. Светодиоды могут работать от переменного напряжения, но они будут гореть только при положительном напряжении, заставляя светодиод включаться и выключаться с частотой переменного тока.

Большинство светодиодов имеют низкое номинальное напряжение обратного пробоя, поэтому они также будут повреждены приложенным обратным напряжением выше этого порога.Причина повреждения — перегрузка по току в результате пробоя диода, а не само напряжение. Светодиоды, питаемые непосредственно от источника переменного тока, напряжение которого превышает обратное напряжение пробоя, можно защитить путем размещения диода (или другого светодиода) в обратной параллели.

Как правило, производитель советует, как определить полярность светодиода, в техническом описании продукта. Однако эти методы также могут использоваться: [7]

знак: +
клемма: анод (A) катод (K)
выводы: длинный короткий
внешний вид: круглый плоский
внутренний: маленький большой
проводка: красный проводка: красный красный нет полоса
штырь: * 1 2
Печатная плата: * круглый квадратный
Размещение штампа: * разъем разъем 904 *) Менее надежные методы определения полярности

Источники питания

В этом разделе отсутствуют ссылки или нужны сноски .Помогите добавить встроенные цитаты, чтобы защититься от нарушений авторских прав и фактических неточностей. (август 2008 г.)
Основная статья: Светодиод

Вольт-амперные характеристики светодиода очень похожи на любой диод. Ток примерно экспоненциально зависит от напряжения (см. Уравнение для диода Шокли), поэтому небольшое изменение напряжения приводит к большому изменению тока. Поэтому важно, чтобы источник питания давал правильное напряжение.

Если напряжение ниже порогового значения или напряжение включено, ток не будет течь, и в результате светодиод не будет гореть. Если напряжение слишком высокое, ток превысит максимальный номинал, нагревая и потенциально разрушая светодиод. По мере нагрева светодиода падение напряжения на нем уменьшается (уменьшение ширины запрещенной зоны [8] ), дополнительно увеличивая ток. Следовательно, светодиоды следует подключать непосредственно к источникам постоянного напряжения только в случае особой осторожности. Последовательные резисторы — простой способ стабилизировать ток светодиода, но расходуют энергию в резисторе.Регулятор постоянного тока обычно используется для светодиодов большой мощности. Регуляторы постоянного тока с малым падением напряжения (LDO) также позволяют общему напряжению цепочки светодиодов составлять более высокий процент от напряжения источника питания, что приводит к повышению эффективности и снижению энергопотребления. Импульсные блоки питания используются в некоторых светодиодных фонариках, стабилизируя световой поток в широком диапазоне напряжений батарей и увеличивая срок их службы.

Миниатюрные индикаторные светодиоды обычно питаются от низкого напряжения постоянного тока через токоограничивающий резистор.Обычны токи 2 мА, 10 мА и 20 мА. Индикаторы Sub-mA могут быть получены путем включения сверхярких светодиодов при очень низком токе. Эффективность имеет тенденцию к снижению при низких токах [требуется ссылка ] , но индикаторы, работающие на 100 мкА, все еще практичны. Стоимость сверхъярких светодиодов выше, чем индикаторных светодиодов на 2 мА.

Цепочки светодиодов обычно работают в последовательно соединенных светодиодах, при этом общее напряжение на светодиодах обычно составляет около двух третей напряжения питания с регулировкой тока резистора для каждой цепочки.В одноразовых светодиодных лампах типа брелка с питанием от монетных элементов сопротивление элемента обычно является единственным устройством ограничения тока. Поэтому ячейку не следует заменять на батарею с более низким сопротивлением.

Светодиоды

можно приобрести со встроенными последовательными резисторами. Это может сэкономить место на печатной плате и особенно полезно при создании прототипов или установке печатной платы способом, отличным от задуманного разработчиками. Однако номинал резистора устанавливается во время изготовления, что устраняет один из ключевых методов настройки яркости светодиода.Буквенно-цифровые светодиоды используют ту же стратегию управления, что и светодиодные индикаторы, с той лишь разницей, что большее количество каналов, каждый со своим собственным резистором. Семисегментные светодиодные матрицы и светодиодные матрицы со звездообразной вспышкой доступны как с общим анодом, так и с общим катодом.

Освещение Светодиоды от сети

Светодиоды по своей природе требуют постоянного тока (DC) с низким напряжением, в отличие от электросети от электросети, которая обеспечивает высокое напряжение с помощью переменного тока (AC).

Капельница CR (конденсатор и резистор) с последующим двухполупериодным выпрямлением — это обычный электрический балласт с последовательно-параллельными группами светодиодов.Последовательная последовательность струн минимизирует потери капельницы, а параллельные струны повышают надежность. На практике обычно используются три струны и более. [ необходима ссылка ] Преимущество конденсатора состоит в том, что он может снизить высокое линейное напряжение до подходящего низкого напряжения без потери мощности с помощью очень простой схемы; недостатком является то, что при первом включении на короткое время может наблюдаться сильный скачок тока.

Работа с источниками прямоугольной волны и модифицированной синусоидальной волны (MSW), такими как многие инверторы, вызывает сильно увеличенное рассеивание резистора в капельнице CR, а светодиодные балласты, предназначенные для использования с синусоидальной волной, имеют тенденцию сгорать на несинусоидальных сигналах.Несинусоидальная форма волны также вызывает высокие пиковые токи светодиодов, что значительно сокращает срок их службы. Дроссель и выпрямитель делают балласт более подходящим для такого использования, также возможны другие варианты. Доступны специализированные интегральные схемы, которые обеспечивают оптимальный привод для светодиодов и максимальную общую эффективность.

Несколько светодиодов могут быть соединены последовательно с одним токоограничивающим резистором при условии, что напряжение источника больше, чем сумма пороговых напряжений отдельных светодиодов. Параллельная работа также возможна, но может быть более проблематичной.Параллельные светодиоды должны иметь точно согласованные прямые напряжения (Vf), чтобы иметь равные токи ответвления и, следовательно, равный световой поток. Изменения в производственном процессе могут затруднить получение удовлетворительной работы при параллельном подключении некоторых типов светодиодов. [9]

Для повышения эффективности (или для обеспечения возможности управления интенсивностью без усложнения DAC) мощность может подаваться периодически или с перерывами; пока частота мерцания превышает порог слияния мерцания человека, светодиод будет гореть постоянно.

Резонансный асимметричный индуктивный источник питания (RAIS)

Автономная топология драйвера светодиода с совместимостью с диммером TRIAC и коэффициентом мощности, близким к единице, без потери эффективности.

Светодиодная технология, особенно подходящая для использования с бытовыми диммерами TRIAC. Резонансный асимметричный индуктивный источник питания (RAIS) находится между сетью питания и светодиодом. [10] Отчет L10270 из лабораторий ассоциации освещения показал, что технология будет работать с различными типами диммеров, сохраняя при этом коэффициент мощности равным 0.96 с КПД системы ввода-вывода 91%. Поскольку свет приглушен, система может поддерживать значительно более высокий КПД, чем понижающий преобразователь, поскольку RAIS потребляет постоянный ток без использования спускных резисторов. RAIS — это одноступенчатый источник питания, который также обеспечивает постоянный ток на выходе светодиода без резистора считывания. В отчете также было обнаружено, что технология RAIS соответствует размерам стандартного патрона GU10 (байонет).

Светодиодное освещение обычно включает последовательно соединенные светодиоды.Результирующее прямое напряжение может быть в диапазоне от 10 до 20 В. В таких случаях соотношение между напряжением сети и напряжением, требуемым для управления нагрузкой, составляет от 10 до 20. При таком большом соотношении обычные схемы, используемые для управления светодиодами, становятся очень неэффективными, поскольку переключение будет работать с крайними значениями продолжительности включения. с очень коротким временем проводимости и высокими пиковыми токами. Это неизбежно означает, что необходимо использовать дополнительные компоненты, такие как дроссель синфазного сигнала. Поэтому обычно включают магнитный или пьезоэлектрический (керамический) трансформатор с отношением входа к выходу, подходящим для создания скачка напряжения и соответствующего скачка тока.Однако это приводит к дальнейшим потерям в эффективности, стоимости и большому объему.

Напротив, технология RAIS может управлять цепочками светодиодов с высоким током и низким напряжением от источника питания переменного тока 240 В без высоких пиковых токов, трансформатора или синфазного дросселя и при этом обеспечивать коэффициент передачи.


Типичное использование: Между сетью питания и светодиодом с лампами, приспособленными для модернизации, такими как GU10, где требуется небольшой размер и использование с обычными диммерами TRIAC.

Особые характеристики: Внутренняя совместимость с диммерами TRIAC благодаря постоянному потреблению тока так же, как и обычная лампа, другими словами, она выглядит как резистор, подключенный к сети.Это также влияет на КПД, поскольку не требует цепи утечки или резистора удерживающего тока для обеспечения правильной работы симистора, что может вызвать потерю эффективности во время диммирования.

Топология — это постоянный ток. Нет необходимости во второй ступени, измерении тока, обратной связи или защите от короткого замыкания

Типичные характеристики модифицированной светодиодной лампы TRIAC с регулируемой яркостью, коэффициент мощности 0,96, КПД> 90%

Технология RAIS теперь получила патент Великобритании # GB2449616 от 17 февраля 2009 года и применяется на большинстве других мировых территорий.

Светодиод как датчик света

Светодиод может использоваться в качестве фотодиода для обнаружения света, а также излучения. Эта возможность была продемонстрирована и использовалась в различных приложениях, включая обнаружение окружающего света и двунаправленную связь. [11] [12] Эта реализация светодиодов важна, потому что функциональность может быть добавлена ​​к проектам только с незначительными изменениями, обычно за небольшую плату или бесплатно. [11]

Светодиод — это просто диод, который специально легирован для эффективного излучения света и упакован в прозрачный корпус.Следовательно, если он вставлен в схему так же, как фотодиод, что по сути одно и то же, светодиод будет выполнять ту же функцию. Как фотодиод, он чувствителен к длинам волн, равным или меньшим, чем преобладающая длина волны, которую он излучает. Например, зеленый светодиод будет чувствителен к синему свету и некоторому зеленому свету, но не к желтому или красному свету. Кроме того, светодиод может быть мультиплексирован в такой схеме, так что он может использоваться как для излучения света, так и для восприятия в разное время. [11]

Было предложено и / или реализовано несколько приложений для этой технологии, от использования в качестве простых датчиков внешней освещенности до полноценной двунаправленной связи с использованием одного светодиода. Большинство этих приложений выигрывают от этой технологии из-за снижения стоимости использования одного и того же компонента для нескольких функций.

Датчики внешней освещенности
В качестве датчиков внешней освещенности использовались

светодиодов. Например, подсветка клавиатуры пульта ДУ включается емкостными датчиками приближения только при отсутствии окружающего освещения.Светодиод, используемый для подсветки, также использовался в качестве датчика внешней освещенности. Это привело к увеличению функциональности без увеличения производственных затрат. [11]

Двунаправленная связь

Светодиоды могут использоваться как в качестве излучателей, так и детекторов света, что означает, что устройство, имеющее только один светодиод, может использоваться для достижения двунаправленной связи с другим устройством, отвечающим этим требованиям. Используя эту технологию, любой из широко распространенных светодиодов, подключенных к бытовой технике, компьютерам и другим электронным устройствам, можно использовать в качестве порта двунаправленной связи. [11]

Одним из приложений для двунаправленной связи с одним светодиодом является волоконно-оптическая связь. В типичных пластиковых оптоволоконных коммуникациях одно оптическое волокно используется только для связи в одном направлении. Это связано с тем, что один светодиодный передатчик размещается на одном конце волокна, а фотодиодный приемник — на другом конце. Таким образом, для двунаправленной связи необходимы два волокна. Однако, если по одному светодиоду разместить на каждом конце волокна, тогда оптическое волокно может передавать информацию в обоих направлениях, используя половину количества компонентов, как в типичной системе.Это снижает вес, стоимость и сложность системы. [12]

Еще одним применением этого использования светодиодов является предлагаемая альтернатива RFID-меткам под названием iDropper, разработанная Mitsubishi Electric Research Laboratories в 2003 году. IDropper — это небольшое устройство, состоящее из микроконтроллера, батареи и Светодиод и одна кнопка. Устройство записывает или передает небольшой объем данных по команде пользователя. По сравнению с RFID-метками, iDropper более безопасен, потому что пользователь должен нажать кнопку, чтобы раскрыть личную информацию, и аналогичен по стоимости. [11]

Одним из основных ограничений этой схемы является тот факт, что один светодиод может работать только как полудуплексный приемопередатчик. Один светодиод может передавать или принимать информацию одновременно, а не оба одновременно. Проще говоря, светодиодный трансивер ведет себя как рация, в отличие от телефона. Это означает, что двум устройствам требуется значительное время, чтобы «разговаривать» друг с другом. [12]

См. Также

Ссылки

  1. ↑ Singmin, Andrew (1997).«3. Создание проекта с использованием простой светодиодной схемы». Начало электроники через проекты . Оксфорд [Англия]: Newnes. п. 29. ISBN 0-7506-9898-5. «Как вы можете видеть на Рисунке 3-1, в цепи светодиода всего четыре компонента. Это батарея, переключатель, светодиод и резистор»
  2. ↑ Кейв, Джон; Каборн, Колин; Плесень, Ян (2000). Дизайн и технологии . Челтнем: Nelson Thornes Ltd., стр. 116. ISBN 0-17-448277-9. «Предохранитель или лампочка накаливания, помещенная в цепь, покажут, исправна ли лампа или предохранитель.»
  3. ↑ Мид, Рассел Л. (2004). Основы электроники: Схемы и устройства, обычный поток . Клифтон-Парк, Нью-Йорк: обучение Томсона Делмара. Стр. 1051. ISBN 1-4018-5976-3.» Значение токоограничивающего резистора, подключенного последовательно со светодиодом, зависит от величины питающего напряжения ».
  4. Applied electronics . p. 270. http://books.google.com/books?id=v9dSggu4hB8C&pg=PA270.
  5. ↑ Walsh, Ronald A. (2000). Справочник по электромеханическому проектированию .Нью-Йорк: Макгроу-Хилл. С. 6–242. ISBN 0-07-134812-3. «Светоизлучающий диод обычно питается от источника напряжения питания, которое выше, чем светодиод может выдержать без перегорания».
  6. ↑ Катсулис, Джон (2003). Разработка встроенного оборудования . Севастополь, Калифорния: О’Рейли. ISBN 0-596-00362-5. «Эта простая светодиодная схема (или ее варианты) управляет светодиодами на передней панели вашего ПК, видеомагнитофона и DVD-плеера, вашего мобильного телефона и множества других устройств».
  7. 7.0 7.1 «Пластиковый инфракрасный светодиод». Fairchild Semiconductor. 2001-10-31. http://www.fairchildsemi.com/ds/QE%2FQED233.pdf. Проверено 15 мая 2009.
  8. ↑ Ван Зегбрук, Барт Дж. (1997). «2.2.5». 2.2.5 Температурная зависимость ширины запрещенной зоны . Ece-www.colorado.edu. http://ece-www.colorado.edu/~bart/book/eband5.htm. Проверено 15 февраля 2009.
  9. ↑ «Электрические свойства GaN-светодиодов и параллельные соединения» (PDF). Указания по применению .Ничиа. http://www.nichia.co.jp/specification/appli/electrical.pdf. Проверено 13 августа 2007.
  10. ↑ «Достижения в драйверах с регулируемой яркостью TRIAC открывают путь для субсидий на лампы». http://www.ledsmagazine.com/features/6/5/8. Проверено 13 июня 2009.
  11. 11,0 11,1 11,2 11,3 11,4 11,5 Дитц, Пол, Уильям Йеразунис, Даррен Ли (2003). «Очень дешевое зондирование и связь с использованием двунаправленных светодиодов». Исследовательские лаборатории Mitsubishi Electric .http://www.merl.com/papers/docs/TR2003-35.pdf.
  12. 12,0 12,1 12,2 Бент, Сара, Аойф Молони и Джеральд Фаррелл (2006). «Светодиоды как оптические источники и детекторы в двунаправленных пластиковых оптических волокнах». Ирландская конференция по сигналам и системам, 2006. IET : 345. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4123923&isnumber=4123844.

Подготовка к экзамену IELTS — IELTS Writing Task 1 # 102

Тестовый наконечник

1) Опишите ключевые этапы процесса в логическом порядке, проводя сравнения где необходимо.
2) Используйте подходящие слова и фразы, чтобы структурировать и четко связать процесс.
3) Не забудьте включить обзор основных характеристик процесс.
4) Изменяйте словарный запас и используйте свои собственные слова, насколько это возможно.

На это задание нужно потратить около 20 минут.

На схемах показана конструкция, которая используется для выработки электроэнергии из энергии волн.

Обобщите информацию, выбрав и сообщив об основных характеристиках, и при необходимости проведите сравнения.

Напишите не менее 150 слов.

Производство электроэнергии из морских волн

Типовой ответ

На двух диаграммах показано, как можно производить электричество из подъем и падение воды, вызванные морскими волнами.

В процессе используется конструкция, которая устанавливается на склоне утеса или моря. стена. Эта структура состоит из большой камеры. Один конец открыт к морю, и другой ведет в вертикальную колонну, открытую для атмосферы.Турбина установлен внутри этой колонны и используется для выработки электроэнергии в две фазы.

Первая диаграмма показывает, что при приближении волны к устройству вода нагнетается. в камеру, оказывая давление на воздух внутри колонны. Этот воздух ускользает в атмосферу через турбину, производя электричество.

Вторая диаграмма иллюстрирует следующую часть процесса, когда волна отступает. Когда уровень воды падает, воздух снаружи колонны всасывается обратно через турбина.В результате электричество продолжает вырабатываться. Турбина вращается только в одном направлении, независимо от направления воздушного потока.

В заключение мы видим, что эта структура полезна, поскольку вырабатывается электричество. в обеих фазах: вход и выход из воды.

(195 слов)


Полярность Манга

Рейтинг: 3051-е, у него 421 ежемесячный / 11441 общий просмотр.

Жанры: корейский язык , Сейнен , Сёнэн , Действие , Фантастика , Школьная жизнь , Супер сила , Сверхъестественное

Направление чтения: Сверху вниз

Статус выпуска: На постоянной основе

Год выпуска: 2019 г.

Резюме:
 Популярная серия от EunSong возвращается с официально обновленными обложками, главами и дополнительными сценами! Внезапная вспышка смертоносного вируса повергает человечество в хаос.Те немногие, кто выживают, превращаются либо в ужасных каннибалистических существ, называемых «Черви», либо в сверхлюдей, называемых «Аномалиями». Хару, юная ученица Anomaly в Новой школе Сеула, мечтает присоединиться к престижной «ISO» - организации, созданной для борьбы с этим вирусом. Но будущее его не такое, как он себе представлял ... 
Уведомления:
 Не стесняйтесь забрать это ~ 

Загрузка… Моя любимая Добавить в избранное

Загружается .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *