Простую схему зарядного устройства для автомобильного. Простая схема зарядного устройства для автомобильного аккумулятора 12В своими руками

Как собрать простое зарядное устройство для автомобильного аккумулятора 12В. Какие компоненты потребуются. Как работает схема зарядного устройства. Как настроить и использовать самодельное зарядное устройство для АКБ.

Содержание

Основные компоненты для сборки зарядного устройства

Для сборки простого зарядного устройства для автомобильного аккумулятора 12В потребуются следующие основные компоненты:

  • Трансформатор на 12-14В, 1-3А
  • Диодный мост на 3-5А
  • Конденсатор 1000-2200 мкФ, 25В
  • Микросхема стабилизатор LM317T
  • Резисторы для настройки тока и напряжения
  • Светодиоды индикации
  • Печатная плата или макетная плата

Большинство компонентов можно найти в старой бытовой технике или купить в радиомагазине. Общая стоимость деталей обычно не превышает 500-1000 рублей.

Принцип работы простой схемы зарядного устройства

Принцип работы простой схемы зарядного устройства для автомобильного аккумулятора следующий:

  1. Трансформатор понижает сетевое напряжение 220В до 12-14В
  2. Диодный мост выпрямляет переменное напряжение в постоянное
  3. Конденсатор сглаживает пульсации выпрямленного напряжения
  4. Микросхема LM317T стабилизирует напряжение на уровне 14.4-14.7В
  5. Резисторы задают ток заряда и напряжение отсечки
  6. Светодиоды индицируют процесс заряда

Такая схема обеспечивает стабильный ток заряда аккумулятора и защиту от перезаряда.


Пошаговая инструкция по сборке зарядного устройства

Пошаговая инструкция по сборке простого зарядного устройства для автомобильного аккумулятора:

  1. Подготовьте все необходимые компоненты
  2. Нарисуйте принципиальную схему устройства
  3. Разместите компоненты на печатной или макетной плате
  4. Припаяйте компоненты согласно схеме
  5. Подключите трансформатор и выходные клеммы
  6. Проверьте правильность монтажа
  7. Настройте выходное напряжение и ток заряда
  8. Проверьте работу индикации
  9. Поместите схему в подходящий корпус

При сборке соблюдайте полярность компонентов и меры электробезопасности.

Настройка и использование самодельного зарядного устройства

Для правильной настройки и использования самодельного зарядного устройства выполните следующие шаги:

  1. Установите выходное напряжение на уровне 14.4-14.7В
  2. Настройте ток заряда на 10% от емкости аккумулятора
  3. Подключите аккумулятор, соблюдая полярность
  4. Контролируйте процесс заряда по индикации
  5. Отключите устройство при достижении полного заряда
  6. Не оставляйте зарядку без присмотра надолго

При правильной настройке и использовании самодельное зарядное устройство обеспечит безопасный и эффективный заряд автомобильного аккумулятора.


Меры предосторожности при работе с зарядным устройством

При работе с самодельным зарядным устройством для автомобильного аккумулятора важно соблюдать следующие меры предосторожности:

  • Не допускайте короткого замыкания выходных клемм
  • Не превышайте максимальный ток заряда аккумулятора
  • Заряжайте аккумулятор в хорошо проветриваемом помещении
  • Не допускайте попадания воды на устройство
  • Периодически проверяйте исправность всех компонентов
  • При появлении запаха или дыма немедленно отключите устройство

Соблюдение этих простых правил обеспечит безопасное использование самодельного зарядного устройства для автомобильного аккумулятора.

Возможные проблемы и их решение

При использовании самодельного зарядного устройства могут возникнуть следующие проблемы:

  • Устройство не включается — проверьте целостность предохранителя и подключение к сети
  • Низкий ток заряда — увеличьте значение токозадающего резистора
  • Перегрев компонентов — установите радиатор на стабилизатор напряжения
  • Не работает индикация — проверьте правильность подключения светодиодов
  • Аккумулятор не заряжается — убедитесь в исправности аккумулятора

Большинство проблем легко устраняются при внимательной проверке схемы и компонентов устройства.


Преимущества самодельного зарядного устройства

Самодельное зарядное устройство для автомобильного аккумулятора имеет ряд преимуществ:

  • Низкая стоимость по сравнению с готовыми устройствами
  • Возможность настройки под конкретный аккумулятор
  • Понимание принципа работы устройства
  • Возможность ремонта и модернизации
  • Развитие навыков радиолюбительства

При правильной сборке самодельное зарядное устройство не уступает по характеристикам заводским аналогам.


Простая схема зарядного устройства для автомобильного аккумулятора

Самая простая схема зарядного устройства для автомобильного аккумулятора: описание самоделки.

Если Вам срочно нужно зарядить севший аккумулятор в автомобиле, а под рукой нет зарядного, то его можно сделать из подручных материалов.

Такую схему зарядного устройства можно довольно просто собрать своими руками, при отсутствии паяльника и прочих радиоэлементов.

Прежде чем пользоваться таким зарядным устройством, хочу вас предупредить! Все детали, включая аккумуляторную батарею, находятся под опасным для жизни напряжением 220 вольт!
Поэтому соблюдайте элементарные правила электробезопасности!
На рисунке представлена схема простого зарядного устройства для автомобильного аккумулятора.

Как вы заметили, в схеме, всего две детали: лампа накаливания и диод.
При использовании лампы накаливания мощностью 100 Ватт, ток зарядки аккумулятора составляет около 0,25 Ампера. Также можно навесить еще такую же лампу и получить примерно 0,5 Ампера.

Детали: лампа накаливания любая стандартная, на напряжение 250 вольт; диод любой- напряжением 250 вольт и током не ниже 0,5 А.

Вот еще более сложная схема этого зарядного устройства:

В нем уже четыре диода или один диодный мост. Тут от одной 100 Ваттной лампы ток составляет около 0,5 Ампера. Но естественно можно его увеличить навесив параллельно еще лампы накаливания из расчета 1 лампа = 0,5 А.
Мощность диодов вычислите сами в зависимости от количества ламп и напряжением не ниже 250 вольт.

Вообще аккумуляторную батарею следует заряжать 0,1 от ее емкости. То есть если аккумуляторная батарея емкостью 90 ампер/ часов, то ток через нее должен быть 9 ампер. Время с полной разрядки до полного заряда составит около 10-12 часов. Но обычно таким током мало кто заряжает и берут обычно раза в два меньше и время больше.

Это простое зарядное устройство может выручить в ситуации когда неожиданной сел аккумулятор.


Однажды я приехал на дачу и по неловкости забыл выключить габариты. После нескольких часов работы на даче, перед тем как ехать я вставил ключ в замок зажигания и понял, что аккумулятор в ноль разряжен. Поблизости не то, что машин, людей нет, чтоб помощи попросить. Благо на даче было электричество.

Я быстро порылся в кладовке и нашел советскую плату от лампового телевизора. Снял от туда выпрямительную плату с диодами. Ну а лампочку найти не проблема. Собрал все минут за двадцать.
Снял аккумулятор, все соединил, включил в сеть. (будете делать подобное — не перепутайте последовательность действий!). Через часа три, решил попробовать завести, аккумулятор был не новый, но и не старый. Выключил, поставил аккумулятор, завел. Завелась машина без лишних трудностей. Ну а дальше пускай автомобильная система зарядки работает. И я без проблем добрался до дома.Ещё раз хочу напомнить! Такое зарядное устройство не рекомендуется для регулярной зарядки аккумулятора, но как разовая экстренная зарядка в безвыходной ситуации, вполне сгодится.

Перед зарядкой, аккумулятор отключайте от бортовой сети и снимайте с автомобиля. При подключением зарядного в розетку, помните, что напряжение 220 вольт опасно для жизни!

Источник

Схемы зарядных устройств (с использованием LM317, LM338)

Поделки своими руками для автолюбителей

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока. Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет. При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В. А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором. Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора. Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор. Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Список элементов

Для изготовления описанной выше схемы требуются следующие элементы; R1 = 240 Ом R2 = 10 кОм с предварительной установкой C1 = 1000 мкФ/25 В Диоды = 1N4007 TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.


схема 2

Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током. Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338. Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения. LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт. Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока. Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы. Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора. Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям: V+ = VCC — 74 мВ V- = VCC — Ток зарядки x R6 VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED. Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Популярное;

  • Три простые схемы регулятора тока для зарядных устройств

  • Импульсное зарядное устройство для автомобильного аккумулятора своими руками
  • Простой стабилизатор напряжения к зарядному устройству
  • Автоматическое зарядное устройство с автоотключением.
  • Простой блок управления для зарядного устройства
  • Простое, тиристорное зарядное устройство для авто АКБ
  • Схема простого зарядного устройства для АКБ
  • Зарядное устройство-автомат для автомобильного АКБ

↑ Критерий отключения

Итак, токовый режим выбран, следующий и самый сложный этап — выбор критерия отключения зарядки. Обычно используются: • отключение по таймеру, • по достижению порогового напряжения, • по мизерному падению напряжения при полной зарядке, • по температуре батареи.
Проблема в том, что в одних случаях реализация сложна, в других ненадежна. Приемлемый вариант — пороговое напряжение

, но если хотя бы один элемент плохой, напряжение никогда не достигнет порогового уровня. Поэтому я рекомендую при первой зарядке проконтролировать напряжение конкретной батареи. В литературе написано, что напряжение полной зарядки на элемент составляет 1,45-1,48 В.

Аналоги LM317

Что делать, если нет возможности использовать LM317? Можно воспользоваться ее аналогами. Братьями-близнецами данного компонента являются UPC317, GL317, ECG1900 и SG317. Отечественный же аналог — это KP142Eh22A, а также существует KP142ЕН12 с фиксированным напряжением.

Если LM317 не хватает мощности для вашего проекта, то можно воспользоваться более мощными вариантами:

  • LM350AT и LM350T – максимальный выходной ток 3А и мощность 25Вт
  • LM350K – ток 3 А и мощность 30 Вт
  • LM338T и LM338K – ток 5 А

Все эти микросхемы имеют одинаковые выводы, поэтому схемы не придется никак менять.

↑ Режим зарядки по току

Мне позвонил друг и сказал, что ему нужно зарядное устройство к шуруповерту на дачу. C его слов, аккумуляторов в батарее 10 штук емкостью 1400 мА-час. Значит, требуется заряжать батарею 12 Вольт. Аккумуляторы никель-кадмиевые, для них возможны три режима зарядки: «А» — медленный, током 0,1 от ёмкости, время зарядки 14-16 часов; «Б» — сверхбыстрый, током от 1 до 4 ёмкости, время порядка 1 часа; «В» — ускоренный, током примерно 0,25 от ёмкости, время зарядки 4-6 часов.

На мой взгляд, вариант «А» слишком медленный, пока батарея зарядится, или желание работать пропадет, или будет пора уезжать.

Вариант «Б» рискован, велика вероятность взрыва или выхода из строя батареи, для предотвращения этого нужен контроль за температурой каждого элемента, схема должна быть сложной, лучше на микроконтроллере, для него придется писать и отлаживать программу, далеко не все аккумуляторы могут выдержать такой режим, особенно герметичные.

Остается режим «В» — вечером батарея ставится на зарядку, утром аккумуляторы полностью заряжены, заряд полный, вероятность проблем минимальна.

Анализ промышленных схем удивил. В них обычно нет стабилизации тока, ограничение происходит за счет сопротивления вторичной обмотки питающего трансформатора. Значит при отклонении сетевого напряжения или не будет полной зарядки, или ток значительно возрастет. У нас ток зарядки будет стабилизирован

на заданном уровне, что полностью избавляет от указанных недостатков.

Виды LM317

Микросхема продается в нескольких варианта корпуса, в зависимости от потребности в размерах, нагрузки и подключении, а также типу монтажа схемы — каждый может выбрать наиболее подходящий ему вариант.

Наиболее популярна LM317T в корпусе TO-220 на 1.5 Ампер. Это считается универсальным вариантом, так как может использоваться в навесном монтаже, а также поверхностном. Радиатор в таком корпусе позволяет отводить излишнее тепло и испытывать более серьезные нагрузки, чем его собратья, а при необходимости его можно прикрепить к большему радиатору.

↑ Схема и детали

Для радиолюбительской самоделки, на мой взгляд, нужно, чтобы конструкция была: — простая, — недорогая, — из доступных деталей, — плата должна быть с простой разводкой.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Желательно использовать то, что есть под рукой , что не надо искать по рынкам и магазинам. Для зарядок есть специальная микросхема L200C

, но мне было интереснее применить
КР142ЕН12 (LM317)
.

Трансформатор нашелся с вторичной обмоткой на 18 Вольт. Чтобы убедиться в его пригодности, было измерено напряжение под нагрузкой 300 мА, оно оказалось 16 Вольт. Это нормально, т.к. допустимо падение на 10% .

Резисторы применены в основном SMD, транзистор КТ503 можно заменить практически любым той же проводимости.

Для индикации я использовал сверхъяркие светодиоды неизвестной марки, поскольку они отлично светятся уже при токе 1 мА. Можно ставить любые светодиоды, но придется подобрать резисторы R6, R9 для желаемой их яркости.

↑ Настройка зарядного устройства

Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась.
Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает. Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет. Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.

Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.

Как проверить LM317?

В отличие от транзисторов, данную микросхему невозможно проверить мультиметром. Такой способ никак не гарантирует правильную работу из-за большого количества внутренних элементов, не соединенных с выводами. Поэтому, если какой-то из них выйдет из строя, то проверить это мультиметром будет проблематично. Самый простой способ проверки работы LM317 — это создать простейший стенд на макетной плате, а запитать его можно будет всего лишь от батарейки.

Таким образом, вы сможете быстро убедиться в полностью рабочем состоянии элемента, даже если необходимо проверить несколько штук.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Зарядное устройство для свинцово-кислотных (автомобильных аккумуляторов) можно довольно быстро собрать на микросхеме LM317T. А самое большое преимущество в том, что не обязательно быть радиолюбителем для её реализации, достаточно примитивных познаний физики и электротехники. Схема зарядного устройства проста в настройке, и требует минимум навесных элементов, а при этом довольно надёжная и дешёвая.

Необходимые компоненты

  1. Трансформатор на 12В 1А.
  2. Микросхема LM317 (2 шт.) (купить на AliExpress).
  3. Диодный мост W005.
  4. Контактная колодка (2 шт.).
  5. Конденсаторы 1000 мкФ (купить на AliExpress) и 1 мкФ (купить на AliExpress).
  6. Конденсаторы 0,1 мкФ (5 шт.) (купить на AliExpress).
  7. Резистор 1 кОм (5 шт.) (купить на AliExpress).
  8. Диоды Nn007 (3 шт.).
  9. Операционный усилитель LM358 (купить на AliExpress).
  10. Шунтирующее сопротивление (проводник) 0.05 Ом (купить на AliExpress).
  11. Плата Arduino Nano (опционально) (купить на AliExpress).
  12. ЖК дисплей 16х2 (опционально) (купить на AliExpress).

Как собрать простую схему зарядного устройства для автомобильного аккумулятора на 12 В

Характеристики

  • ·19 декабря 2022 г.
  • ·Md. Анисур Рахман

В этом руководстве мы создадим «Цепь зарядного устройства 12-вольтовой батареи» .

Для зарядки аккумуляторов подаем напряжение на клеммы и аккумулятор начинает заряжаться. Протокол зарядки определяется размером и типом заряжаемой батареи. Некоторые типы батарей имеют высокую устойчивость к перерасходу и, в зависимости от типа батареи, могут заряжаться путем подключения к источнику постоянного напряжения или постоянного тока. Когда дело доходит до безопасной зарядки, быстрой зарядки и/или максимального времени автономной работы, все становится сложнее. Здесь мы разрабатываем простую схему зарядного устройства для 12-вольтовых аккумуляторов с использованием нескольких общедоступных компонентов, и эта схема подходит для всех типов 12-вольтовых аккумуляторов.

Эта простая схема зарядного устройства для 12-вольтовых аккумуляторов представляет собой схему общего зарядного устройства для аккумуляторов, и вы можете добавить в эту схему такие функции, как защита от обратной полярности, установив диод на выходе. (Анод диода для вывода положительного источника питания и катод диода в качестве положительного вывода на выходе) и защита от перегрузки по току на основе транзистора. Следующая схема зарядного устройства является грубым прототипом, обеспечивающим выходное напряжение 12 Вольт для аккумулятора. Эта схема создана для обеспечения зарядного тока до 3 ампер.

Необходимый компонент:

Нет Компонент Значения Кол-во
1 Понижающий трансформатор 0–14 В перем. тока / 3 А) 1
2 Модуль мостового выпрямителя BR1010 1
3 Электролитический конденсатор 100 мкФ/25 В 1,1
4 Резистор 1 кОм/1 Вт 1
5 Светодиод   1
6 Керамический конденсатор 0,01 мкФ
Цепь зарядного устройства автомобильного аккумулятора 12 В

Порядок работы:

Как показано на схеме, у нас есть блок питания, состоящий из понижающего трансформатора переменного тока 0–14 В, который используется для преобразования переменного тока 230 В. питания в источник переменного тока 12 В, а для выпрямления переменного тока в постоянный мы использовали модуль мостового выпрямителя BR1010, который обеспечивает высокоэффективный источник постоянного тока с высоким номинальным током. Этот модуль мостового выпрямителя будет иметь четыре клеммы, две для входа питания переменного тока, обозначенные волной знака, и две для выхода постоянного тока, обозначенные положительным и отрицательным знаком. C1 и C1 — сглаживающие конденсаторы. В этой схеме конденсаторы С1 и С2 выполняют роль фильтра, а светодиод сигнализирует о наличии там источника постоянного напряжения на выходе.

Среднеквадратичное значение выходного напряжения трансформатора составляет 12 В в простейшей схеме, описанной выше. То есть после выпрямления пиковое напряжение будет 12 x 1,41 = 16,92 В. Хотя это кажется выше, чем уровень 14 В полного заряда 12-вольтовой батареи, батарея не повреждается из-за низкого тока трансформатора. .

Однако лучше вынуть батарею, как только показания амперметра будут близки к нулю.

Автоматическое отключение: Вы можете легко сделать так, чтобы описанная выше конструкция автоматически отключалась при достижении полного уровня заряда, добавив биполярный транзисторный каскад с выходным сигналом, показанным ниже: V в этой конструкции, что означает, что напряжение эмиттера никогда не может превышать 14 В. Когда напряжение на клеммах батареи превышает 14 В, биполярный транзистор смещается в обратном направлении и переходит в режим автоматического отключения. Вы можете отрегулировать значение диода 15 В до тех пор, пока выходное напряжение батареи не станет около 14,3 В. Это превращает первую конструкцию в полностью автоматическую систему зарядного устройства на 12 В, которую легко построить, но при этом она остается полностью безопасной.

Почему важен контроль тока?

Настройка постоянного тока:

Зарядка любого типа заряжаемых аккумуляторов может быть критической и требует определенного внимания. Когда входной ток, используемый для зарядки аккумулятора, значительно выше, добавление контроля тока становится критически важным.

Все мы знаем, насколько умна микросхема LM317, поэтому неудивительно, что она используется во многих приложениях, требующих точного управления питанием. Представленная здесь схема зарядного устройства 12-вольтовой батареи с регулируемым током на микросхеме LM317 демонстрирует, как микросхема LM317 может быть сконфигурирована с помощью всего лишь пары резисторов и стандартного трансформаторного мостового источника питания для зарядки 12-вольтовой батареи с максимальной точностью.

Как это работает?

По сути, микросхема подключена в обычном режиме с включенными резисторами R1 и R2 для необходимой регулировки напряжения. Входная мощность ИС подается через стандартную сеть трансформатор/диодный мост; напряжение после фильтрации через С1 примерно 14 вольт. Отфильтрованные 14 В постоянного тока подаются на входной контакт микросхемы. Вывод ADJ микросхемы подключен к соединению резистора R1 и переменного резистора R2. Резистор R2 можно точно настроить для согласования конечного выходного напряжения с батареей. Без Rc схема будет вести себя аналогично простому источнику питания LM 317, без измерения и контроля тока.

Вывод:

При включении питания схема начинает работать. Понижающий трансформатор понижает мощность переменного тока с 230 В до 15 В. Затем мостовой выпрямитель выпрямляет это низковольтное переменное напряжение, создавая нестабилизированное постоянное напряжение с пульсациями переменного тока. Конденсатор фильтра пропускает пульсации переменного тока, в результате чего на нем возникает нерегулируемое и отфильтрованное постоянное напряжение. Здесь происходят две операции: – 1. Это нерегулируемое постоянное напряжение подается непосредственно на нагрузку постоянного тока (в данном случае на батарею) через реле. 2. Нерегулируемое постоянное напряжение также подается на регулятор напряжения, в результате чего получается регулируемое напряжение 12 В постоянного тока.

Моделирование в реальном времени: Как собрать простую схему зарядного устройства для автомобильного аккумулятора на 12 В

Нравится:

Нравится Загрузка. ..

Автор статьи: Md. Анисур Рахман

EVEMS, что позволяет распределять мощность для полных электрических панелей – Простой переключатель

  • РАСШИРЬТЕ ВАШ ДОМ МОЩНОСТЬ

  • Поделитесь энергией, чтобы вы могли добавить бытовую технику и зарядку электромобилей

Продукты

  • ВЫСОКАЯ МОЩНОСТЬ ЗАРЯДКА ДОМА

  • Поделитесь мощностью, чтобы вы могли легко заряжать дома

продукты

  • РАСШИРЕНИЕ ЗАРЯДКА EV ВОЗМОЖНОСТИ

  • Разделите власть в жилых домах

продукты

РАСШИРЬТЕ СВОЙ ДОМ МОЩНОСТЬ

Поделитесь энергией, чтобы вы могли добавить бытовую технику и зарядку электромобилей Продукты

ВЫСОКАЯ МОЩНОСТЬ ЗАРЯДКА ДОМА

Поделитесь мощностью, чтобы вы могли легко заряжать дома продукты

РАСШИРЕНИЕ ЗАРЯДКА EV ВОЗМОЖНОСТИ

Разделите власть в жилых домах продукты

simpleSwitch — это решение для зарядки электромобилей, которое позволяет распределять мощность между двумя мощными розетками на 240 В. Когда первичный источник, такой как стиральная машина/сушилка, духовка или нагреватель плинтуса, не используется, ваш вторичный источник, такой как паровой душ, джакузи, зарядка EVSE типа 2 для электромобиля, розетка для дома на колесах или сварочный аппарат, будет получать питание. Вам не нужно обновлять панель или просить больше мощности. Доля силы!

Посмотрите видео с демонстрацией нашего продукта ниже

С КЕМ МЫ СОТРУДНИЧАЕМ

Хотите добавить второй электромобиль? Используйте наш EVEMS в качестве переключателя зарядного устройства. Переключите зарядные устройства между первичным и вторичным электромобилем.

КАК РАБОТАЕТ SimpleSwitch?

КАК ЭТО РАБОТАЕТ

Делитесь мощностью

Экономьте время и деньги на своем электрическом проекте с помощью системы управления энергопотреблением электромобилей simpleSwitch. Запитывайте наружную вилку автодома на 50 ампер или сварочный аппарат на 40–50 ампер от той же линии, что и ваш кондиционер. Разделите энергию между стиральной машиной и гидромассажной ванной. Или добавьте зарядку электромобиля Type2 в свой дом, многоквартирный дом или квартиру. Стоимость энергии и установки может быть выставлена ​​непосредственно вашим арендаторам. simpleSwitch позволяет вам расширить печатную панель и дает вам максимальную гибкость для решения всех этих сложных проблем с проводкой.

Добавление нового устройства без места на панели

«У меня есть блок переменного тока, который только охлаждает. Я хотел добавить нагреватель на 10 000 Вт без места на панели. Мне пришлось либо потратить около 9000 долларов на новый тепловой насос с охлаждением и обогревом, либо установить новую панель и новое обслуживание, что стоило дорого. Я обнаружил, что simpleSwitch использует существующее пространство для автоматического выключателя и обеспечивает потребность в электроэнергии для продукта, которому требуется питание. Установка заняла всего несколько часов».

ЭРИК С. Я СОСТОЯНИЕ

Экономьте деньги на электричестве

«Когда я узнал о преимуществах simpleSwitch, я увидел очевидные преимущества добавления возможностей, когда печатная плата заполнена. Для меня это выглядело как решение без проблем, так как на моей панели достаточно места для дополнительных цепей. Когда я решил установить стиральную машину и сушилку в главной спальне, математика показала, что SimpleSwitch был гораздо более экономичным вариантом, чем открытие стен и ремонт гипсокартона. Сложив общую стоимость ремонта и материалов, я сэкономил тысячи долларов. Возможность разместить SimpleSwitch рядом с источником, а не на панели действительно сэкономила мне много работы и денег».

СКОТТ Б. Я ШТАТ

Зарядная станция EV для дуплексов 

«У меня есть дуплекс в Салеме с подземной подачей. Очень сложно добавить больше мощности от утилиты. Я планировал добавить зарядные устройства, но стоимость, перебои в подаче электроэнергии и разрыв моего газона, чтобы добавить больше энергии, были слишком дорогими. Вместо этого мы добавили зарядное устройство, разделив его с существующими цепями диапазона в обоих устройствах. Оба они были установлены за один день без отключения питания ни одного из блоков. Результатом арендаторы остались довольны. Стоимость меня порадовала»

САЛЕМ ДУПЛЕКС I ШТАТ

«Линия Simple Switch предоставила нашей электротехнической компании надежный и простой в использовании вариант для множества работ, которые обычно были бы невозможны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *