Регулятор оборотов электродвигателя схема: Регулятор оборотов электродвигателя 220в: схема и описание

Содержание

Регулятор оборотов электродвигателя 220в: схема и описание

Как сделать регулятор оборотов электродвигателя 220в, схема и подробное описание.

В данной статье, мы рассмотрим как сделать контроллер скорости вращения для однофазных коллекторных электродвигателей. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора.

Давайте рассмотрим технические параметры регулятора:

  • напряжение питания: 230 вольт переменного тока.
  • диапазон регулирования: 5…99%.
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором).
  • максимальная мощность без радиатора 300 Вт.
  • низкий уровень шума.
  • стабилизация оборотов.
  • мягкий старт.
  • размеры платы: 50×60 мм.

Электросхема принципиальная

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления электродвигателем — классическая схемотехника для подобных устройств.

Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора.

Конденсатор C1 отвечает за фильтрацию напряжения питания.

Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Расположение элементов на печатной плате.

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Схема регулятора оборотов коллекторного двигателя 220В

Схема регулятора оборотов коллекторного двигателя 220в бывает двух типов стандартная и модифицированная. Все зависит непосредственно от регулятора, который вы используете.

Зачем они нужны

Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.

Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

  • Коллектор,
  • Щетки,
  • Ротор,
  • Статор.

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

Простой самодельный регулятор

Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

Это дополнительные навыки для вас и определенная экономия средств для кошелька.

Для изготовления регулятора вам потребуется:

  • Набор проводков,
  • Паяльник,
  • Схема,
  • Конденсаторы,
  • Резисторы,
  • Тиристор.

Монтажная схема будет выглядеть следующим образом.

Согласно представленной схеме, регулятор мощности и оборотов будет контролировать 1 полупериод. Расшифровывается она следующим образом.

  1. Питание от стандартной сети 220в поступает на конденсатор. 220 Вольт стандартный показатель бытовых розеток.
  2. Конденсатор, получив заряд, вступает в работу.
  3. Нагрузка переходит к нижнему кабелю и резисторам.
  4. Положительный контакт конденсатора соединяется с электродом тиристора.
  5. Идет один достаточный заряд напряжения.
  6. Второй полупроводник при этом открывается.
  7. Тиристор через себя пропускает полученную от конденсатора нагрузку.
  8. Происходит разряжение конденсатора, и полупериод вновь повторяется.

При большой мощности электродвигателя, питающегося от постоянного или переменного тока, регулятор дает возможность применять агрегат более экономично.

Самодельные регуляторы оборотов имеют полное право на свое существование. Но когда речь заходит о необходимости использовать регулятор электродвигателя для более серьезного оборудования, рекомендуется купить готовое устройство. Пусть оно обойдется дороже, но вы будете уверены в работоспособности и надежности агрегата.

Регулятор оборотов электродвигателя 220в. Схема и описание

Данный регулятор оборотов электродвигателя 220в позволяет изменять частоту оборотов вращения вентилятора либо электродвигателя, рассчитанных на работу от сети 220 вольт.

Достаточно популярным регулятором оборотов для электродвигателей на 220 вольт переменного тока является схема на тиристорах. Типовой схемой является подключение электродвигателя или вентилятора в разрыв анодной цепи тиристора.

Одно не маловажное условие при использовании подобных регуляторов, это надежный контакт во всей цепи. Что нельзя сказать про коллекторные электродвигатели, поскольку у них механизм щеток создает кратковременные обрывы электроцепи. Это существенно влияет на качество работы регулятора.

Описание работы схемы регулятора оборотов

Приведенная ниже схема тиристорного  регулятора оборотов,  как раз разработана для изменения частоты вращения коллекторных электродвигателей (электродрель, фрезер, вентилятор). Первое, что следует отметить, это то, что  двигатель вместе с силовым тиристором VS2 подсоединен в одну из диагоналей диодного моста VD3, на другую же  подается сетевое напряжение 220 вольт.

Помимо этого, данный тиристор контролируется достаточно широкими импульсами, благодаря которым, непродолжительные отключения активной нагрузки, которыми характеризуется работа  коллекторного двигателя,  не  влияют на  устойчивую  работу данной схемы.

Для управления тиристором VS1 на транзисторе VT1, собран генератор импульсов. Питание данного генератор осуществляется трапециевидным напряжением, создающимся в результате ограничения положительных полуволн стабилитроном VD1 имеющих частоту 100 Гц. Конденсатор С1 разряжается через сопротивления R1, R2, R3.  Резистором R1 осуществляется скорость разряда данного конденсатора.

При достижении на конденсаторе напряжения достаточного для открывания транзистора VT1, на управляющий вывод  VS1 поступает положительный импульс. Тиристор открывается и теперь уже на управляющем выводе  VS2 появляется длительный импульс управления. И уже с данного тиристора напряжение, которое фактически и влияет на величину оборотов, подается на двигатель.

Частоту оборотов вращения электродвигателя регулируют резистором R1. Так как в цепь  VS2 подключена индуктивная нагрузка, то возможно спонтанное отпирание тиристора,  даже при отсутствии управляющего сигнала.  Поэтому для предотвращения данного нежелательного эффекта, в схему добавлен диод VD2 который подключается параллельно обмотке возбуждения L1 электродвигателя.

Детали регулятора оборотов вентилятора и электродвигателя

Стабилитрон – можно заменить на другой с напряжением стабилизации в районе 27 – 36В. Тиристоры VS1 – любой маломощный с прямым напряжением более 100 вольт, VS2 — возможно поставить КУ201К, КУ201Л, КУ202М. Диод VD2 – с обратным напряжением не меньше 400 вольт и прямым током более 0,3А. Конденсатор C1 – КМ-6.

Настройка регулятора оборотов

Во время наладки схемы регулятора желательно применить стробоскоп, который позволяет измерить частоту вращения электродвигателя либо стрелочный вольтметр для переменного тока, который подсоединяют параллельно двигателю.

Вращая ручку резистора R1, определяют диапазон изменения напряжения. Путем подбора сопротивления R3 устанавливают данный диапазон в районе от 90 до 220 вольт. В том случае если при минимальных оборотах двигатель вентилятора работает  неустойчиво, то необходимо немного уменьшить сопротивление R2.

Источник: www.stalvit.ru

Регулятор оборотов коллекторного двигателя без потерь

Для выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать — момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:

  • Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры. Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя. Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

При увеличении тока в цепи двигателя, включенного по стандартной схеме, обмотка возбуждения включена последовательно с якорем. При таком включении мы увеличиваем и магнитное поле, воздействующее на якорь, что позволяет добиться линейности характеристик. Если поле будет неизменным, то получить хорошую динамику сложнее, не говоря уже о больших потерях мощности. Такие двигатели лучше использовать на низких скоростях, так как ими удобнее управлять на малых дискретных перемещениях.

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится. Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования. Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров. Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования. Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

Схема управления электродвигателем постоянного тока 12в. Самостоятельное изготовление регулятора оборотов электродвигателя

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

ШИМ контроллер на 12 вольт

Схема регулятора оборотов минидрели

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, — это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Видео работы

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор -регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы — преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Для чего нужен частотный преобразователь оборотов

Контроллеры оборотов входят в структуру многих приборов, так как они обеспечивают точность электрического управления. Это позволяет регулировать обороты в нужную величину.

Регулятор оборотов двигателя постоянного тока используется во многих промышленных и бытовых областях. Например:

Выбираем устройство
  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.
  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

Существует универсальный прибор 12в для бесколлекторных двигателей.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Схема состоит из двух частей-логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Прибор триак

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 — конденсатор, R1 — первый резистор, R2 — второй резистор.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Видео № 1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео № 3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Функции и основные характеристики

Одноканальный регулятор для мотора

Конструкция устройства

Принцип работы

Материалы и детали

Примечание 3 . Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) — на белом листе офисной (формат А4).

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№ 1) на плотную и тонкую картонную бумагу (№ 2). Затем с помощью ножниц вырезается диск (№ 3).

Полученную заготовку переворачивают (№ 1) и к центру крепят квадрат черной изоленты (№ 2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№ 3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Принцип работы

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Понадобится печатная плата размером 30×30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

Устройство собрано на печатной плате размерами 61×52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.


Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.


Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.


Фото – синусоида нормальной работы электродвигателя

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.


Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.


Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:


Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

  1. Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.


Принципиальная электрическая схема
  1. Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3 . Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

  1. Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл ), а монтажный чертеж (файл ) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом. Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

  1. Конструкция устройства

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

  1. Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

  1. Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

  1. Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

На основе мощного симистора BT138-600, можно собрать схему регулятора скорости вращения двигателя переменного тока. Эта схема предназначена для регулирования скорости вращения электродвигателей сверлильных машин, вентиляторов, пылесосов, болгарок и др. Скорость двигателя можно регулировать путем изменения сопротивления потенциометра P1. Параметр P1 определяет фазу запускающего импульса, который открывает симистор. Схема также выполняет функцию стабилизации, которая поддерживает скорость двигателя даже при большой его нагрузке.

Например, когда мотор сверлильного станка тормозит из-за повышенного сопротивления металла, ЭДС двигателя также уменьшается. Это приводит к увеличению напряжения в R2-P1 и C3 вызывая более продолжительное открывание симистора, и скорость соответственно увеличивается.

Регулятор для двигателя постоянного тока

Наиболее простой и популярный метод регулировки скорости вращения электродвигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или PWM ). При этом напряжение питания подается на мотор в виде импульсов. Частота следования импульсов остается постоянной, а их длительность может меняться — так меняется и скорость (мощность).

Для генерации ШИМ сигнала можно взять схему на основе микросхемы NE555. Самая простая схема регулятора оборотов двигателя постоянного тока показана на рисунке:

Здесь VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1. Частоту ШИМ сигнала можно рассчитать по формуле:

F = 1.44/(R1*C1) , [Гц]

Где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 290 Гц.

Стоит отметить, что даже современные устройства , в том числе и высокой мощности управления, используют в своей основе именно такие схемы. Естественно с использованием более мощных элементов, выдерживающих большие токи.

Схема регулятора оборотов двигателя постоянного тока работает на принципах широтно-импульсной модуляции и применяется для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала двигателя при помощи широтно-импульсной модуляции дает больший КПД, чем при применение простого изменения постоянного напряжения подаваемого на двигатель, хотя эти схемы мы тоже рассмотрим

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Скорость 6 вольтового моторчика можно регулируется в пределах 5-95%

Регулятор оборотов двигателя на PIC-контроллере

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

В качестве стабилизатора напряжения микроконтроллера PIC16F628A, используется трехвыводной стабилизатор КР1158ЕН5В, имеющий низкое падение напряжение «вход-выход», всего около 0,6В. Максимальное входное напряжение — 30В. Все это позволяет применять двигатели с напряжением от 6В до 27В. В роли силового ключа используется составной транзистор КТ829А который желательно установить на радиатор.

Устройство собрано на печатной плате размерами 61 х 52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Большинство подобных конструкций собирается по гораздо более простой схеме. Здесь же представляем более усовершенствованный вариант, который использует таймер 7555, драйвер на биполярных транзисторах и мощный полевой MOSFET. Такая схематика обеспечивает улучшенное регулирование скорости и работает в широком диапазоне нагрузки. Это действительно очень эффективная схема и стоимость её деталей при покупке для самостоятельной сборки довольно низкая.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

Есть много применений для этой схемы, которые будут питаться от 12 В: электродвигатели, вентиляторы или лампы. Использовать её можно в автомобилях, лодках и электротранспортных средствах, в моделях железных дорог и так далее.

Светодиодные лампы на 12 В, например LED ленты, тоже можно смело сюда подключать. Все знают, что светодиодные лампы гораздо более эффективны, чем галогенные или накаливания, они прослужит намного дольше. А если надо — питайте ШИМ-контроллер от 24 и более вольт, так как сама микросхема с буферным каскадом имеют стабилизатор питания.

Регулятор скорости двигателя переменного тока

ШИМ контроллер на 12 вольт

Драйвер регулятора постоянного тока полумостовой

Схема регулятора оборотов минидрели

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор –регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

  • Для чего нужен частотный преобразователь оборотов
  • Область применения
  • Выбираем устройство
  • Устройство ПЧ
  • Виды устройств
    • Процесс пропорциональных сигналов

Для чего нужен частотный преобразователь оборотов

Функция регулятора в инвертировании напряжения 12, 24 вольт, обеспечение плавности пуска и остановки с использованием широтно-импульсной модуляции.

Контроллеры оборотов входят в структуру многих приборов, так как они обеспечивают точность электрического управления. Это позволяет регулировать обороты в нужную величину.

Область применения

Регулятор оборотов двигателя постоянного тока используется во многих промышленных и бытовых областях. Например:

  • отопительный комплекс;
  • приводы оборудования;
  • сварочный аппарат;
  • электрические печи;
  • пылесосы;
  • швейные машинки;
  • стиральные машины.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Устройство ПЧ
  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии. Напряжение поступает в регулятор, где происходит выпрямления 220 вольт с помощью диода, расположенного на входе. Затем происходит фильтрация тока посредством 2 конденсатора. Образуется ШИМ. Далее импульсный сигнал передаётся от обмоток двигателя к определённой синусоиде.

Существует универсальный прибор 12в для бесколлекторных двигателей.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Схема состоит из двух частей–логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Виды устройств

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

СХЕМА РЕГУЛЯТОРА ОБОРОТОВ ДВИГАТЕЛЯ

Регулятор для двигателя переменного тока

На основе мощного симистора BT138-600, можно собрать схему регулятора скорости вращения двигателя переменного тока. Эта схема предназначена для регулирования скорости вращения электродвигателей сверлильных машин, вентиляторов, пылесосов, болгарок и др. Скорость двигателя можно регулировать путем изменения сопротивления потенциометра P1. Параметр P1 определяет фазу запускающего импульса, который открывает симистор. Схема также выполняет функцию стабилизации, которая поддерживает скорость двигателя даже при большой его нагрузке.

Принципиальная схема регулятора электромотора переменного питания

Например, когда мотор сверлильного станка тормозит из-за повышенного сопротивления металла, ЭДС двигателя также уменьшается. Это приводит к увеличению напряжения в R2-P1 и C3 вызывая более продолжительное открывание симистора, и скорость соответственно увеличивается.

Регулятор для двигателя постоянного тока


Наиболее простой и популярный метод регулировки скорости вращения электродвигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или PWM ). При этом напряжение питания подается на мотор в виде импульсов. Частота следования импульсов остается постоянной, а их длительность может меняться — так меняется и скорость (мощность).

Для генерации ШИМ сигнала можно взять схему на основе микросхемы NE555. Самая простая схема регулятора оборотов двигателя постоянного тока показана на рисунке:

Принципиальная схема регулятора электромотора постоянного питания

Здесь VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1. Частоту ШИМ сигнала можно рассчитать по формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 290 Гц.

Стоит отметить, что даже современные устройства, в том числе и высокой мощности управления, используют в своей основе именно такие схемы. Естественно с использованием более мощных элементов, выдерживающих большие токи.

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда — либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент — диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой — лампой накаливания или каким-либо нагревательным элементом.

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового9raquo; провода. Возможный вариант подобной схемы показан на рисунке 5.

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит9raquo; в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки — лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере. в интернете их полно, но проще сделать на таймере NE555 .

j&;лектрик Ин &2;о — элек &0;ротехника и элек &0;роника, дома &6;няя ав &0;оматизация, l&;татьи про &1;стройство и ремон &0; дома &6;ней элек &0;ропроводки, роk&;етки и в &9;ключатели, провода и кабели, иl&;точники l&;вета, ин &0;ересные &2;акты и многое др &1;гое для элек &0;риков и дома &6;них маl&;теров.

Ин &2;ормация и об &1;чающие ма &0;ериалы для на &5;инающих элек &0;риков.

Кейl&;ы, пример &9; и &0;ехнические ре &6;ения, обk&;оры ин &0;ересных элек &0;ротехнических новинок.

Вl&;я ин &2;ормация на l&;айте j&;лектрик Ин &2;о предоl&;тавлена в оk&;накомительных и поk&;навательных &4;елях. За применение э &0;ой ин &2;ормации админиl&;трация l&;айта о &0;ветственности не неl&;ет. Сай &0; може &0; l&;одержать ма &0;ериалы 12+

Перепе &5;атка ма &0;ериалов l&;айта k&;апрещена.

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Радиоаматор, 4/2008

Чистотники регулятор оборотов электродвигателя 220в

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

При пуске электродвигателя происходит превышение потребления тока в 7 раз, что способствует преждевременному выходу из строя электрической и механической частей мотора. Для предотвращения этого следует применять регулятор оборотов электродвигателя. Существует много моделей заводского плана, но для того чтобы сделать такое устройство самостоятельно, необходимо знать принцип действия электродвигателя и способы регулирования оборотов ротора.

Общие сведения

Электродвигатели переменного тока получили широкое распространение во многих сферах жизнедеятельности человека, а именно — модели асинхронного типа. Основное назначение двигателя как электрической машины — трансформация электрической энергии в механическую. Асинхронный в переводе означает неодновременный, так как частота вращения ротора отличается от частоты переменного напряжения (U) в статоре. Существует две разновидности асинхронных двигателей по типу питания:

Однофазные применяются для домашних бытовых нужд, а трехфазные используются на производстве. В трехфазных асинхронных двигателях (далее ТАД) используются два вида роторов:

  • замкнутые;
  • фазные.

Замкнутые составляют около 95% от всех применяемых двигателей и обладают значительной мощностью (от 250 Вт и выше). Фазный тип конструктивно отличается от АД, но применяется достаточно редко по сравнению с первым. Ротор представляет собой стальную фигуру цилиндрической формы, которая помещается внутрь статора, причем на его поверхность напрессован сердечник.

Короткозамкнутый и фазный роторы

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности) играют роль электромагнитов с полюсами, обращенными к статору. Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое.

Более часто используемый для стержней двигателей средней мощности алюминий отличается малой плотностью и высокой электропроводностью.

Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения. Если используется электромотор маленькой мощности, то пазы представляют собой закрытые конструкции, которые отделяют ротор от зазора с целью увеличения индуктивной составляющей сопротивления.

Ротор в виде фазного исполнения или типа характеризуются обмоткой, концы ее соединены по типу «звезда» и присоединены к контактным кольцам (на валу), по которым скользят графитовые щетки. Для устранения вихревых токов поверхность обмоток покрывается оксидной пленкой. Кроме того, в цепь обмотки ротора добавляется резистор, позволяющий изменять активное сопротивление (R) роторной цепи для уменьшения значений пусковых токов (Iп). Пусковые токи отрицательно влияют на электрическую и механическую части электромотора. Переменные резисторы, используемые для регулирования Iп:

  1. Металлические или ступенчатые с ручным переключением.
  2. Жидкостные (за счет погружения на глубину электродов).

Щетки, выполненные из графита, изнашиваются, и некоторые модели оборудованы короткозамкнутым конструктивным исполнением, которое поднимает щетки и замыкает кольца после запуска мотора. АД с фазным ротором являются более гибкими в плане регулирования Iп.

Конструктивные особенности

Асинхронный двигатель не имеет выраженных полюсов в отличие от электромотора постоянного тока. Число полюсов определяется количеством катушек в обмотках неподвижной части (статор) и способом соединения. В асинхронной машине с 4-мя катушками проходит магнитный поток. Статор выполняется из листов спецстали (электротехническая сталь), сводящих к нулю вихревые токи, при которых происходит значительный нагрев обмоток. Он приводит к массовому межвитковому замыканию.

Железняк или сердечник ротора напрессовывается непосредственно на вал. Между ротором и статором существует минимальный воздушный зазор. Обмотка ротора выполняется в виде «беличьей клетки» и сделана из медных или алюминиевых стержней.

В электромоторах мощностью до 100 кВт применяется алюминий, обладающий незначительной плотностью — для заливки в пазы сердечника ротора. Но несмотря на такое устройство, двигатели этого типа греются. Для решения этой проблемы используются вентиляторы для принудительного охлаждения, которые насаживаются на вал. Эти двигатели просты и надежны. Однако двигатели потребляют при пуске большой ток, в 7 раз больше номинального. Из-за этого они имеют низкий пусковой момент, так как большая часть энергии электричества идет на нагрев обмоток.

Электромоторы, у которых повышенный момент пуска, отличаются от обыкновенных асинхронных конструкцией ротора. Ротор изготавливается в виде двойной «беличьей клетки». Эти модели имеют сходство с фазными типами изготовления ротора. Он состоит из внутренней и наружной «беличьих клеток», причем наружная является пусковой и обладает большим активным и малым реактивным R. Наружная обладает незначительным активным и высоким реактивным R. При увеличении частоты вращения I переключается на внутреннюю клетку и работает в виде короткозамкнутого ротора.

Принцип работы

При протекании I по статорной обмотке в каждой из них создается магнитный поток (Ф). Эти Ф сдвинуты на 120 градусов относительно друг друга. Полученный Ф является вращающимся, создающим электродвижущую силу (ЭДС) в алюминиевых или медных проводниках. В результате этого и создается пусковой магнитный момент электромотора, и ротор начинает вращаться. Этот процесс называется еще в некоторых источниках скольжением (S), показывающим разность частоты n1 электромагнитного поля стартера, которое становится больше, чем частота, полученная при вращении ротора n2. Вычисляется в процентах и имеет вид: S = ((n1-n2)/n1) * 100%.

Значение S при начальном старте электромотора равно примерно 1, но при возрастании значений n2 становится меньше. В этот момент I в роторе уменьшается, следовательно, и ЭДС становится меньше номиналом. При холостом ходе S минимально, но при увеличении момента статического взаимодействия ротора и статора эта величина достигает критического значения. Если выполняется неравенство: S > Sкр, то мотор работает нормально, однако при превышении значения Sкр он может «опрокинуться». Опрокидывание вызывает нестабильную работу, но с течением времени исчезает.

Методы настройки оборотов

Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:

  1. Изменение значения R цепи ротора.
  2. Изменение U в обмотке статора.
  3. Изменение частоты U.
  4. Переключение полюсов.

При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.

При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.

Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:

  1. В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
  2. Обмотка состоит из двух частей, соединенных параллельно или последовательно.

Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.

Виды и критерии выбора

Для выбора регулятора нужно руководствоваться определенными характеристиками для конкретного случая. Среди всех критериев можно выбрать следующие:

  1. По типу управления. Для двигателей коллекторного типа применяются регуляторы с векторной или скалярной системой управления.
  2. Мощность является основным параметром, от которого нужно отталкиваться.
  3. По диапазону U.
  4. По диапазону частот. Нужно выбирать модель, которая соответствует требованиям пользователя для конкретного случая.
  5. Прочие характеристики, в которые включены гарантия, габариты, комплектация.

Кроме того, регулятор подбирается мощнее, чем сам электродвигатель по формуле: Pрег = 1,3 * Pдвиг (Pрег, Pдвиг — мощность регулятора и двигателя соответственно). Его нужно выбирать на разные диапазоны U, так как универсальность играет важную роль.

Устройство на тиристорах

В этой модели, представленной на схеме 1, применяются 2 тиристора, включенных встречно-параллельно, хотя их можно заменить одним симистором.

Схема 1 — Тиристорная регулировка оборотов коллекторного двигателя без потери мощности.

Эта схема производит регулирование с помощью открытия или закрытия тиристоров (симистора) при фазовом переходе через нейтраль. Для корректного управления коллекторным двигателем применяют следующие способы модификации схемы 1:

  1. Установка защитных LRC-цепей, состоящих из конденсаторов, резисторов и дросселей.
  2. Добавление на входе емкости.
  3. Использование тиристоров или симистора, ток которых превышает номинальное значение силы тока двигателя в диапазоне от 3..8 раз.

Этот тип регуляторов имеет достоинства и недостатки. К первым относятся низкая стоимость, маленький вес и габариты. Ко вторым следует отнести следующие:

  • применение для моторов небольшой мощности;
  • происходит шум и рывки мотора;
  • при использовании схемы на симисторах происходит попадание постоянного U на двигатель.

Этот тип регулятора ставится в вентиляторы, кондиционеры, стиральные машины и электродрели . Отлично выполняет свои функции, несмотря на недостатки.

Транзисторный тип

Еще одним названием регулятора транзисторного типа является автотрансформатор или ШИМ-регулятор (схема 2). Он изменяет номинал U по принципу широтно-импульсной модуляции (ШИМ) при помощи выходного каскада, в котором применяются транзисторы типа IGBT.

Схема 2 — Транзисторный ШИМ-регулятор оборотов.

Коммутация транзисторов происходит с высокой частотой и благодаря этому можно изменить ширину импульсов. Следовательно, при этом изменится и значение U. Чем длиннее импульс и короче паузы, тем выше значение U и наоборот. Положительные аспекты применения этой разновидности следующие:

  1. Незначительный вес прибора при низких габаритах.
  2. Довольно низкая стоимость.
  3. При низких оборотах отсутствие шума.
  4. Управление за счет низких значений U (0..12 В).

Основной недостаток применения заключается в том, что расстояние до электромотора должно быть не более 4 метров.

Регулирование за счет частоты

Регулирование оборотов моторов различных типов за счет частоты получило широкое применение. Частотное преобразование занимает лидирующую позицию на рынке сбыта устройств-регуляторов оборотов и осуществления плавного пуска. Благодаря своей универсальности возможно влиять на мощность, производительность и скорость любого устройства с электродвигателем. Эти устройства применяются для однофазных и трехфазных двигателей. Применяются такие виды частотных преобразователей:

  1. Специализированные однофазные.
  2. Трехфазные без конденсатора.

Для регулирования оборотов используется конденсатор, включенный с обмотками однофазного двигателя (схема 3). Этот преобразователь частоты (ПЧ) имеет емкостное R, которое зависит от частоты протекающего переменного тока. Выходной каскад такого ПЧ выполнен на IGBT-транзисторах.

Схема 3 — Частотный регулятор оборотов.

У специализированного ПЧ есть свои преимущества и недостатки. Преимуществами являются следующие:

  1. Управление АД без участия человека.
  2. Стабильность.
  3. Дополнительные возможности.

Существует возможность управлять работой электромотора при определенных условиях, а также защита от перегрузок и токов КЗ. Кроме того, возможно расширять функционал при помощи подключения цифровых датчиков, мониторинга параметров работы и использования PID-регулятора. К минусам можно отнести ограничения при управлении частотой и довольно высокую стоимость.

Для трехфазных АД применяются также устройства регулирования частоты (схема 4). Регулятор имеет на выходе три фазы для подключения электромотора.

Схема 4 — ПЧ для трехфазного двигателя.

У этого варианта тоже есть свои сильные и слабые стороны. К первым можно отнести следующие: низкую стоимость, выбор мощности, широкий диапазон частотной регуляции, а также все преимущества однофазных преобразователей частоты. Среди всех отрицательных сторон можно выделить основные: предварительный подбор и нагрев при пуске.

Изготовление своими руками

Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.

Схема 5 — Простой регулятор оборотов на симисторе.

Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.

Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.

Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.

Схема 6 — Устройство тиристорного регулятора.

Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.

Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.

Принцип работы схемы:

  1. С1 заряжается до U пробоя динистора D1 через R2.
  2. D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.

​Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.

Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.

“>

Как управлять скоростью электродвигателя переменного тока

Электродвигатель переменного тока — это электродвигатель, приводимый в действие переменным током (AC), и состоит из двух основных частей: внешнего статора с катушками, на которые подается переменный ток для создания вращающегося магнитного поля. и внутренний ротор, прикрепленный к выходному валу, создающий второе вращающееся магнитное поле. Возможность управлять скоростью двигателя имеет множество преимуществ, и в этом руководстве будут рассмотрены несколько способов управления скоростью двигателя.

Как отмечалось выше, управление скоростью электродвигателя переменного тока имеет ряд преимуществ, включая снижение слышимого шума, энергоэффективность и улучшенное управление приложением двигателя. Несмотря на то, что они являются устройствами с постоянной скоростью, скорость двигателя переменного тока может изменяться при изменении частоты, входного напряжения или обмоток, которые заставляют двигатель вращаться.

Распространенным и эффективным средством изменения скорости двигателя является изменение частоты с использованием инвертора в качестве источника питания.Благодаря технологическому прогрессу и снижению стоимости силовых инверторов, это часто используемый и популярный вариант. Способы снижения напряжения на обмотках двигателя с помощью трансформаторов, резисторов или отводов обмоток двигателя также все еще используются.

Если вы планируете использовать инвертор для питания электродвигателя переменного тока, важно выбрать такой, который может обеспечивать не только напряжение двигателя и рабочий ток, но и пусковой ток. Используйте диапазон изменения скорости, необходимый для выбора диапазона частоты, которую инвертор должен обеспечивать.Элементы управления инвертора могут использоваться для изменения частоты, подаваемой на двигатель, и скорость двигателя будет соответственно изменяться.

Если полностью точное регулирование скорости не критично для двигателя, можно также добавить переменное сопротивление в цепь двигателя, чтобы снизить напряжение на основной обмотке. «Проскальзывание» двигателя — разница между синхронной скоростью магнитного поля электродвигателя и скоростью вращения вала — которая обычно близка к нулю, будет увеличиваться, поскольку на двигатель подается уменьшенная мощность.Кроме того, полюса двигателя не получают достаточной мощности для создания силы, необходимой для поддержания нормальной скорости, и в этом методе двигатель должен быть рассчитан на высокое скольжение.

Более эффективным вариантом является использование трансформатора переменного напряжения. Этот метод изменит напряжение, подаваемое на главную обмотку, что приведет к большому скольжению и уменьшению напряжения управления скоростью. Трансформатор переменного напряжения имеет низкие потери по сравнению с переменным резистором. Использование трансформатора может иметь серию ответвлений, которые изменяют соотношение напряжений для управления скоростью двигателя.Эти ответвления можно менять вручную, или трансформатор может иметь устройство переключения ответвлений с электроприводом. В любом случае скорость двигателя изменяется дискретно, и конкретная конструкция зависит от установки, в которой используется трансформатор.

Другой метод управления скоростью двигателя переменного тока — использование двигателя переменного тока с ответвленными обмотками для изменения скорости. Этот метод чаще всего встречается в домашних вентиляторах с переключателями высокой, средней и низкой скорости. Эти двигатели имеют заданное количество ответвлений на основной обмотке, что позволяет им работать с различными напряжениями, приложенными к его магнитному полю.Количество ступеней и скоростей, доступных для двигателя, обычно не превышает четырех. Точная скорость в этих типах приложений не является критичной, и регулирование скорости с помощью этой опции очень экономично.

Частотно-регулируемый привод (VFD) — это еще один вариант, который представляет собой контроллер двигателя переменного тока, который управляет двигателем, изменяя подаваемую на него частоту и напряжение. Частота (или герц) напрямую связана со скоростью двигателя (об / мин), поэтому чем выше частота, тем выше частота вращения. Если приложение двигателя не требует, чтобы он работал на полной скорости, можно использовать частотно-регулируемый привод для уменьшения частоты и напряжения в соответствии с требованиями к нагрузке двигателя.Когда требования к скорости двигателя в приложении меняются, частотно-регулируемый привод будет эффективно уменьшать или увеличивать скорость двигателя, удовлетворяя требованиям к скорости. Использование частотно-регулируемого привода может обеспечить снижение энергопотребления и затрат, увеличение производства за счет более жесткого контроля процесса и продление срока службы оборудования при одновременном снижении требований к техническому обслуживанию.

Наконец, регулировка величины напряжения на клеммах двигателя с помощью широтно-импульсной модуляции (ШИМ) также может управлять скоростью двигателя. Как следует из этого термина, ШИМ-регулирование скорости работает путем управления двигателем с помощью быстрой серии импульсов «ВКЛ» и «ВЫКЛ» и изменения рабочего цикла.Мощность, подаваемая на двигатель, регулируется путем изменения ширины этих приложенных импульсов, что, в свою очередь, изменяет среднее напряжение, подаваемое на клеммы двигателя. Модулируя или изменяя синхронизацию этих импульсов, можно управлять скоростью двигателя. Таким образом, чем дольше импульс «включен», двигатель будет вращаться быстрее, и, наоборот, чем короче время, в течение которого импульс «включен», тем медленнее будет вращаться двигатель.

С помощью нескольких простых регулировок или изменений можно управлять скоростью электродвигателя переменного тока.Посетите Zoro.com, где представлен широкий спектр регуляторов скорости переменного тока от ведущих поставщиков.

Регулятор скорости двигателя переменного тока

анонимно Регулятор скорости двигателя переменного тока 26 сентября 2014 г. 22:20:34
, пожалуйста, меня тоже интересует вышеуказанный проект. регулятор скорости двигателя переменного тока. Кто-нибудь может предоставить заметки о том, как работает схема. заранее спасибо
Мохаммед Али Регулятор скорости двигателя переменного тока 20 декабря 2012 г. 7:58:28
Проект очень хороший и он мне нравится, но в нем отсутствуют заметки о том, как работает схема, может кто-нибудь, плиз, прислал мне схему работы.Спасибо заранее.
Бакос Ги R13 Регулятор скорости двигателя переменного тока 1 ноября 2012 г. 19:12:29
R13 не 0,47 Ом? Я имею в виду, что на полном ходу написанный двигатель мощностью 250 Вт потребляет более одного ампера, считая, что на этот 1 ампер U = I * R = 1 * 47 = 47 Вольт, P = U * I = 47 * 1 = 47 Вт ???? !!!
черное дерево Регулятор скорости двигателя переменного тока 19 мая 2012 г. 8:17:06
Проект в порядке, и мне он нравится, но в нем отсутствуют заметки о том, как работает схема, можете ли вы, плиз, прислали мне заметки о работе схемы на мою электронную почту.Спасибо заранее.
ануш Регулятор скорости двигателя переменного тока 12 марта 2011 г. 21:51:30
Замечательная схема. возможно ли использовать эту схему на 220В?
томал Регулятор скорости двигателя переменного тока 1 марта 2011 г. 22:02:27
Полагаю, количество витков трансформатора Т1 должно быть вдвое меньше для 220В.Пожалуйста, поправьте меня, если я ошибаюсь. Пробую построить на 220В …
Селвин Регулятор скорости двигателя переменного тока 17 февраля 2011 г. 6:03:42
Кто-то задал вопрос по этому проекту по преобразованию схемы на 220в. Есть предложения по стоимости компонентов?
Сандип Регулятор скорости двигателя переменного тока 4 января 2011 г. 12:14:40
Уважаемый сэр, у меня есть привод с асинхронным двигателем переменного тока, а также есть входная цепь (раньше я использовал двигатель постоянного тока), но проблема в том, что он не работает с приводом переменного тока.Вы можете предложить это. Я могу предоставить технические детали и фотографии всей системы. жду твоего скорейшего ответа.
ветровая техника из Пайн-Ридж Регулятор скорости двигателя переменного тока 31 июля 2010 г. 23:54:57
О диактерии, используемой в регуляторе скорости (для человека, который ищет совпадение с симистором) Диакеты не сильно различаются в зависимости от части # они только суровы, чтобы позволить симистору запускаться симметрично при обеих полярностях стробирующего сигнала.Они не будут пропускать ток до тех пор, пока сигнал запуска затвора не поднимется выше среднего диапазона двадцати вольт при любом напряжении +/-.
мадху Регулятор скорости двигателя переменного тока Вторник, 2 марта 2010 г. 8:26:13
Этот сайт очень полезен не только для техников, но и для всех, кто интересуется электрическими машинами, что является одной из сложных тем, а также помогает в улучшении знаний.

Принципы проектирования и примеры схем

Двигатель постоянного тока (DC) — это самый старый тип электродвигателя, который получил широкое распространение в различных электронных устройствах и оборудовании.Двигатели постоянного тока имеют различное устройство и особенности работы.

Общей чертой и обязательным условием всех двигателей постоянного тока является создание переменного магнитного поля, обеспечивающего их безостановочную работу. В двигателе переменного тока (AC) магнитное поле само меняет полярность.

Двигатель постоянного тока имеет ряд существенных преимуществ, одно из которых — простота системы управления. Здесь мы расскажем, как работает контроллер двигателя постоянного тока и как его использовать.Кроме того, мы поделимся нашим личным опытом и расскажем вам о конструкции и проблемах, с которыми вы можете столкнуться при создании собственного контроллера.

В этой статье мы сосредоточились в основном на щеточных контроллерах двигателей постоянного тока (BDC). Чтобы узнать больше о контроллере двигателя BLDC, его конструкции и принципах работы, вы можете прочитать соответствующую статью в нашем блоге.

Контроллер мотора предназначен для управления производительностью электродвигателя. Независимо от типа двигателя, это электронное устройство может выполнять следующие функции:

  • запускать / останавливать двигатель;
  • изменить направление вращения;
  • контроль скорости и крутящего момента;
  • обеспечивают защиту от перегрузки;
  • предотвращает электрические неисправности.

Характеристики контроллера двигателя постоянного тока зависят от типа двигателя ( щеточный , бесщеточный , шаговый ) и функциональности устройства, которое использует этот двигатель. Например, контроллер двигателя постоянного тока электромобиля для бесщеточного двигателя постоянного тока (BLDC) имеет другую конструкцию и принципы работы по сравнению с промышленным контроллером двигателя постоянного тока щеточного двигателя.

Двумя основными компонентами любого двигателя постоянного тока являются статор и якорь или ротор .Также могут быть другие компоненты, выполняющие важные функции. Таким образом, щеточный электродвигатель постоянного тока состоит из следующих узлов:

статор с обмотками или постоянными магнитами;

якорь, или ротор с обмотками;

Коммутатор или коллектор со щетками, соединяющими якорь с источником постоянного тока.

Ток, протекающий через якорь, вызывает электромагнитное поле, которое заставляет его вращаться. При вращении якоря одинаковые полюса магнитных полей, создаваемых вокруг статора и ротора, отталкиваются друг от друга и обеспечивают однонаправленное движение.

Как только противоположные полюса встречаются, коммутатор переключает ток, подаваемый на якорь. Это создает обратную полярность магнитного поля, и якорь продолжает вращаться.

Принцип работы щеточного двигателя постоянного тока

Контроллер щеточного двигателя постоянного тока управляет скоростью и крутящим моментом двигателя, регулируя подаваемые в него ток и напряжение. Основная конструкция и принципы работы контроллеров двигателей BDC могут различаться в зависимости от их типа.

Существуют различные типы контроллеров двигателей постоянного тока, а также принципы их классификации. Инфографика ниже показывает это разнообразие.

Принципы классификации контроллеров двигателя постоянного тока

Во-первых, контроллеры различаются в зависимости от типа двигателя постоянного тока. Например, в отличие от щеточного двигателя постоянного тока, бесщеточный двигатель постоянного тока (BLDC) имеет электронный коммутатор без щеток. Он имеет ротор с постоянными магнитами и статор с обмотками.

Контроллер бесщеточного двигателя постоянного тока использует датчики для определения положения ротора.Он переключает ток в обмотках с помощью транзисторов. В нашей статье, посвященной контроллеру мотора BLDC, мы подробно описываем принципы его работы и конструктивные особенности.

Шаговый двигатель относится к группе бесщеточных двигателей постоянного тока, но его отличительной особенностью является то, что он вращается ступенчато или ступенчато. После каждого шага ротор останавливается под определенным углом. Это позволяет устройству, приводимому в действие этим двигателем, с высокой точностью сдвигать и фиксировать положение. Контроллер шагового двигателя подает импульсный ток, возбуждая полюса статора и заставляя ротор двигаться.

Остальные классификации типичны почти для любого контроллера электродвигателя. Давайте кратко рассмотрим их на примере щеточного контроллера двигателя постоянного тока.

Контроллер двигателя BDC регулирует скорость и крутящий момент, изменяя мощность, подаваемую на двигатель. Этого можно добиться с помощью линейного или импульсного регулятора напряжения. Это может быть часть контроллера или отдельная система.

Основная идея линейного регулятора — обеспечить стабильное выходное напряжение.Он сохраняет свою величину постоянной независимо от входного напряжения, подаваемого от источника питания. Импульсный регулятор использует метод с широтно-импульсной модуляцией (ШИМ) .

ШИМ-контроллер двигателя постоянного тока позволяет подавать напряжение импульсами, изменяя его коэффициент заполнения (отношение импульса к периоду импульса). Таким образом, вы можете регулировать скорость двигателя, регулируя различные рабочие циклы. Импульсный регулятор имеет более высокий КПД и меньшие потери мощности. ШИМ широко используется в конструкции регуляторов скорости для двигателей постоянного тока.

Мощность двигателя зависит от тока, подаваемого источником питания. Таким образом, для маломощного двигателя BDC необходим слаботочный контроллер, и наоборот. Сильноточный контроллер двигателя постоянного тока обычно использует импульсный регулятор.

В зависимости от напряжения, необходимого для работы двигателя, вы можете выбрать регулятор низкого или высокого напряжения. Импульсный стабилизатор хорошо подходит для контроллеров с широким диапазоном рабочего напряжения. Линейный регулятор лучше подходит для низковольтного контроллера двигателя постоянного тока, поскольку чрезмерное входное напряжение может вызвать потерю мощности и даже тепловую перегрузку.

Контроллеры

делятся на цифровые и аналоговые версии. Основное различие между цифровым контроллером двигателя постоянного тока и его аналоговым вариантом состоит в том, что первый состоит из аппаратного и микропрограммного обеспечения на основе микроконтроллера (MCU).

Некоторые типы контроллеров двигателей постоянного тока могут получать обратную связь от двигателей, обнаруживать ошибки и исправлять их, приводя значения в соответствие с уставками. Они называются контроллерами с обратной связью или с обратной связью .

В качестве альтернативы, контроллер с разомкнутым контуром или без обратной связи не может повлиять на ситуацию, даже если произойдет сбой, поскольку он не обнаружит его. Такие контроллеры можно встретить в простых системах, не нуждающихся в автоматическом управлении.

Системы с обратной связью и с обратной связью являются фундаментальными концепциями теории управления. В зависимости от требований или сложности электронного устройства вы можете реализовать систему управления с обратной связью или без нее. Например, шаговый двигатель может работать с контроллером без обратной связи.Контроллер серводвигателя постоянного тока, используемый для точного позиционирования в высокопроизводительных приложениях, представляет собой систему с обратной связью.

Системы управления с обратной связью и с обратной связью

На рисунке выше показаны примеры систем управления с обратной и обратной связью. В первом случае контроллер мотора робота получает обратную связь и регулирует скорость в соответствии с ландшафтными условиями. В случае системы без обратной связи контроллер мотора не получает обратной связи. Таким образом, скорость робота уменьшается по мере того, как он достигает плато.

Двигатели постоянного тока могут найти применение в различных устройствах и системах в зависимости от их характеристик. Таким образом, шаговые и серводвигатели приводят в действие машины, требующие точного позиционирования, такие как: роботы

  • ;
  • принтеры;
  • фотоаппараты;
  • Станки с ЧПУ.

Помимо управления с обратной связью, усовершенствованные серводвигатели постоянного тока с контроллером двигателя постоянного тока с регулируемой скоростью демонстрируют высокую производительность и надежность в сложных промышленных приложениях.

Отсутствие щеток, которые являются деталями, подверженными износу, делает двигатели BLDC более долговечными.Кроме того, электронный коммутатор не создает искр и снижает электромагнитные помехи (EMI) . Таким образом, эти двигатели широко применяются в электромобилях, системах отопления и вентиляции из-за своей надежности. Вы можете узнать больше о конструкции и применении бесщеточных двигателей в нашей статье о контроллере двигателя BLDC.

Двигатели постоянного тока с щеткой используются уже около двухсот лет. Хотя более современные технологии частично заменили их, они по-прежнему популярны в различных отраслях и приложениях.

Двигатели BDC могут иметь очень простую конструкцию и легкие в управлении (для некоторых из них может даже не потребоваться контроллер). Это экономичное решение, которое идеально подходит для низковольтных устройств, работающих от литий-ионных батарей, включая робототехнику и бытовую электронику.

При создании автономной газонокосилки-робота мы установили реверсивный контроллер двигателя постоянного тока с импульсным ШИМ-регулятором для щеточного двигателя постоянного тока, выбранного заказчиком. Идея заключалась в разработке экономичной системы с низким энергопотреблением.

Робот мог легко двигаться в любом направлении, избегать препятствий, останавливаться и немедленно двигаться снова. Мы достигли этого с помощью контроллера двигателя постоянного тока с широтно-импульсной модуляцией, который регулировал скорость и направление вращения двигателя.

Прототипы печатных плат газонокосилки-робота

Доступность и простота реализации двигателей BDC и их контроллеров делают их подходящим решением для ряда проектов. В этой статье мы хотели бы поделиться нашим собственным опытом в разработке и реализации контроллера щеточного двигателя постоянного тока.Вы также узнаете о проблемах, с которыми можете столкнуться, если решите построить его самостоятельно.

Традиционная схема контроллера мотора BDC — это H-мост . Это электронная схема с четырьмя переключателями открытия / закрытия, которые по очереди подают положительное и отрицательное напряжение. При включении переключателей на стороне высокого и низкого давления по диагонали двигатель вращается в одном направлении. Направление вращения изменится, как только эти переключатели разомкнуты, а противоположные переключатели замкнуты.

Если вам нужен двигатель с однонаправленным вращением, вы можете построить контроллер двигателя BDC, используя более простую схему с одним переключателем открытия / закрытия.Выбирая транзисторный ключ, убедитесь, что он соответствует требуемым параметрам двигателя, например, максимальному току. В противном случае транзистор перегорит.

Соответствие системным требованиям — это основной принцип, которому вы должны следовать при выборе компонентов для схемы контроллера двигателя постоянного тока. Это относится к микроконтроллерам, драйверам затворов, необходимым для управления транзисторами, и другим компонентам.

Можно использовать интегральную схему (ИС) или дискретные компоненты.С точки зрения разработчика, микросхема контроллера двигателя постоянного тока — более простое и удобное решение. С дискретной схемой потребуется время и усилия для сборки и пайки компонентов. Однако конструкция интегральной схемы довольно дорога, и она может заработать только в случае массового производства.

Интегрированный драйвер H-моста представляет собой схему со встроенными силовыми транзисторами. Несмотря на простоту и надежность конструкции, ИС драйвера затвора предназначена для низковольтных и маломощных приложений.Кроме того, такие драйверы затвора не взаимозаменяемы. Если они будут сняты с производства, вам придется перепроектировать схему вместе с печатной платой.

Н-мостовая схема контроллера двигателя постоянного тока

Конструкция схемы контроллера двигателя постоянного тока зависит от типа сигнала, регулирования мощности, системы управления и других характеристик. Вы можете выбрать один из различных вариантов в зависимости от ваших технических характеристик и ограничений бюджета.

В сотрудничестве с Basicmicro Motion Control мы создали щеточные контроллеры двигателей BDC для комплектов для самостоятельного изготовления роботов.Это был регулируемый контроллер двигателя постоянного тока с импульсным регулятором напряжения. Важной особенностью контроллера является то, что он может использовать как систему с обратной связью, так и систему с обратной связью.

С помощью наших 2-канальных контроллеров двигателей BDC пользователи могут управлять роботами удаленно через модуль беспроводной связи. Наша команда обеспечила электронный дизайн и разработку встроенного программного обеспечения для проекта.

Контроллеры двигателей BDC компании Integra для домашних роботов

Мы использовали Н-мостовую схему для контроллеров.Поскольку это была дискретная схема, инженерам Integra пришлось выбрать микроконтроллеры и драйверы затворов с отдельными полупроводниковыми переключателями. Мы выбрали силовые полевые МОП-транзисторы , которые хорошо подходят для контроллеров низкого напряжения, из-за следующих преимуществ:

  • — высокая скорость переключения;
  • низкая цена;
  • простота обслуживания;
  • высокая эффективность.

При разработке схемы контроллера сильноточного двигателя постоянного тока мы использовали IGBT , который сочетает в себе функции силовых полевых МОП-транзисторов и биполярных переключателей.Он обеспечивает высокий уровень тока и хорошо подходит для сложных систем силовой электроники.

Другой вариант, который вы можете выбрать для своего проекта, — это транзистор GaN , сделанный из твердого и чрезвычайно прочного полупроводникового материала. Он может выдерживать высокие температуры и работать в очень высоких диапазонах частот и напряжений. GaN используются в мощной электронике, промышленных и аэрокосмических приложениях. Однако стоимость их производства по-прежнему очень высока, так что это также повысит стоимость вашей схемы.

В результате был разработан программируемый контроллер двигателя постоянного тока с несколькими режимами работы. Управлять им можно с помощью аналоговых и цифровых сигналов. Кроме того, он может использовать систему с обратной связью и считывать данные с цифрового квадратурного кодировщика , установленного на роторе.

Энкодер в разобранном виде

Энкодер преобразовал скорость и направление вращения двигателя в цифровые сигналы, распознаваемые контроллером. Когда произошли изменения, контроллер при необходимости скорректировал управляющие воздействия.

Для обеспечения безопасной работы двигателя наши разработчики реализовали системы защиты от перегрузки по току, перенапряжения и перегрева. Для этого мы добавили соответствующие датчики в конструкцию контроллера двигателя постоянного тока.

Создание контроллера мотора BDC может быть довольно простым делом, но все же сопряжено с некоторыми трудностями. Это может относиться как к проектированию схем, так и к разработке микропрограмм. Давайте посмотрим на вещи, которые могут потребовать вашего особого внимания.

Как мы упоминали ранее, переключатели разомкнуты и замкнуты по диагонали в H-мостовой схеме, но эти действия не могут происходить одновременно.Всегда будет момент, когда все транзисторы открыты. Это может привести к потере напряжения и мощности или даже короткому замыканию, если противоположные верхний и нижний переключатели находятся во включенном положении.

Чтобы избежать этой ситуации, вы можете ввести мертвое время . Это короткий промежуток времени, когда все переключатели цепи H-моста замкнуты. Используя время простоя, вы можете убедиться, что верхний переключатель размыкается только после замыкания нижнего переключателя.

Мостовая схема Half-H и сигнал ШИМ с мертвым временем

Частота ШИМ (количество периодов импульсов в секунду) — важный параметр, который вы должны правильно настроить.Чем ниже частота, тем выше потери мощности, и наоборот. Однако, если частота ШИМ слишком высока, у MCU могут возникнуть проблемы с генерацией сигналов ШИМ требуемого значения. Кроме того, очень высокая частота может привести к неисправности драйвера затвора и транзисторных ключей, поскольку они могут быть несовместимы с ним.

При написании прошивки не забудьте установить правильную частоту ШИМ, чтобы обеспечить бесперебойную работу вашего контроллера мотора.

При работе с щеточным двигателем постоянного тока вы можете столкнуться с проблемой чрезмерных электромагнитных помех.Возникает из-за постоянного переключения коммутатора, влияет на соседние электронные компоненты. Чтобы уменьшить его, вы можете реализовать различные фильтры, защищающие провода от электромагнитных помех.

При разработке контроллеров двигателей BDC для нашего проекта робототехники нам пришлось столкнуться с некоторыми проблемами.

Основными требованиями заказчика были широкие диапазоны рабочего напряжения и тока. На тот момент не существовало подходящих готовых интегрированных драйверов затвора или полупроводников на основе GaN. Кроме того, этот диапазон был слишком низким для IGBT.Таким образом, нам пришлось искать решение среди дискретных силовых полевых МОП-транзисторов.

Наша команда рассмотрела несколько вариантов схем и выбрала стандартный драйвер затвора с внешними полевыми МОП-транзисторами. Реализовав это решение с дискретными компонентами, мы упростили схематическое проектирование и сократили затраты на разработку. В результате инженеры компании «Интегра» добились стабильной работы контроллера мотора BDC в диапазоне от 6 до 24 вольт и до 25 ампер.

Как только мы использовали дискретную схему, ответственность за основные функции контроллера мотора BDC возлагалась на MCU.Наши инженеры реализовали алгоритмы, которые генерируют сигналы ШИМ с необходимыми рабочими циклами и мертвым временем.

При внедрении системы управления с обратной связью мы столкнулись с проблемой с микроконтроллером, который не мог обрабатывать выходные сигналы энкодера. Поэтому нам пришлось добавить CPLD , который мог считывать высокочастотные сигналы. Если вы планируете создать щеточный контроллер двигателя постоянного тока с обратной связью, убедитесь, что ваш MCU может предоставить такую ​​возможность.

Щеточный двигатель постоянного тока — один из наиболее распространенных типов электродвигателей.Он широко используется в бытовой электронике, робототехнике, маломощных промышленных и автомобильных приложениях. Двигатель BDC, как и его система управления, имеет простую конструкцию и легкую реализацию.

Сейчас, когда доступны некоторые жизнеспособные альтернативы, двигателю BDC становится все труднее оставаться конкурентоспособным в мощной электронике. Кроме того, в его контроллере есть щетки, и вам со временем придется заменять эти носимые детали. Однако при правильном использовании и обслуживании он может обеспечить эффективную и длительную работу.

Если вам нужен контроллер для двигателя BDC, вы можете использовать готовое устройство, полностью соответствующее вашим требованиям. Или вы можете создать собственное решение с индивидуальной схемой и нестандартной прошивкой. Производители электроники и полупроводников предлагают широкий выбор аппаратных и программных компонентов, которые вы можете использовать в своем проекте. Например, при создании схемы контроллера двигателя BDC для газонокосилки-робота мы использовали STM32F4, который является частью экосистемы STM32 для управления двигателем.

Поручая свой проект внешней команде инженеров, убедитесь, что они обладают соответствующими навыками и опытом. Опытный разработчик учтет каждый нюанс и разберется, как спроектировать контроллер двигателя постоянного тока для вашего конкретного проекта.

Компания Integra предоставила услуги по проектированию схем, компоновке печатных плат и разработке микропрограмм для 150+ проектов , включая преобразователи мощности, регуляторы напряжения и средства управления двигателями. За наш более чем 7-летний опыт работы мы работали с широким спектром микроконтроллеров и полупроводниковых устройств.Мы создали схемы для приложений, которые работают во всем диапазоне тока, напряжения и частоты коммутации.

Если вы планируете создать контроллер двигателя постоянного тока для электромобиля, робота или бытовой техники, напишите нам и получите помощь в проектировании электроники, разработке прошивки и сопутствующих услугах.

Схема регулятора скорости двигателя

постоянного тока с использованием NE555.

Цепь управления двигателем постоянного тока

с использованием NE555

Вы знакомы со всеми областями применения схем таймера 555? Если нет, мы можем вам помочь.Все мы знаем, что для лучшего понимания лучший источник — это аутентифицированная книга по этому вопросу. CircuitsToday представляет собой интернет-магазин, в котором есть обзоры 3 книг, которые считаются лучшими в предоставлении основ и приложений таймера 555 IC. Мы их подробно рассмотрели. Вы можете проверить их и купить здесь: — 3 замечательные книги для изучения схем и проектов таймера 555.

Описание.

Здесь показана простая схема контроллера двигателя постоянного тока с использованием NE555.Здесь опубликовано множество схем управления скоростью двигателя постоянного тока, но это первая схема, в которой используется микросхема таймера NE555. Помимо управления скоростью двигателя, с помощью этой схемы также можно изменить его направление вращения.

Схема ШИМ на основе таймера NE555 является сердцем этой схемы. NE555 подключен как нестабильный мультивибратор, рабочий цикл которого можно регулировать, изменяя POT R1. Выход IC1 связан с базой транзистора Q1, который управляет двигателем в соответствии с сигналом ШИМ, доступным на его базе.Чем выше рабочий цикл, тем выше будет среднее напряжение на двигателе, что приведет к более высокой скорости двигателя и наоборот. Изменение направления двигателя постоянного тока достигается с помощью переключателя DPDT S1, который при применении просто переключает полярность, приложенную к двигателю.

Принципиальная схема контроллера двигателя постоянного тока.

Контроллер двигателя постоянного тока с использованием NE555

Примечания.

  • Схема может быть собрана на плате Vero или на печатной плате.
  • Используйте 12 В постоянного тока для питания ИС.
  • Вм — источник питания для двигателя, и его значение зависит от номинального напряжения двигателя. В любом случае максимальное напряжение Vceo для BD139 составляет 80 В, поэтому напряжение Vm не должно превышать 80 В.
  • Максимальный ток коллектора, с которым может работать BD139, составляет 1,5 А, поэтому не используйте двигатель, потребляющий ток более 1,5 ампер.
  • Для BD139 необходим радиатор.

Несколько других схем управления скоростью двигателя постоянного тока, которые могут вас заинтересовать:

1. Контроллер шагового двигателя

2.Цепь управления скоростью двигателя с ШИМ

3. Регулятор скорости сверла для печатных плат

Как управляются двигатели постоянного тока? — Контроль скорости двигателей постоянного тока

Электродвигатели

постоянного тока питаются от постоянного тока. Они имеют широкий спектр применения в таких продуктах, как бытовая техника, автомобили и фабрики. Можно сказать, что они играют жизненно важную роль в нашей жизни.

Однако многие пользователи выражают неуверенность в том, как управлять скоростью двигателей постоянного тока. На этой странице представлено простое введение в то, как это делается.

Что такое двигатель постоянного тока?

Во-первых, электродвигатель — это машина, которая использует электричество для вращения вала, тем самым преобразуя электрическую энергию в механическую. Электродвигатели в общих чертах делятся на следующие три типа.

  • Двигатели постоянного тока
  • Двигатели переменного тока
  • Шаговые двигатели
Двигатели

переменного тока приводятся в движение переменным током, а шаговые двигатели — импульсами электроэнергии. С другой стороны, двигатели постоянного тока питаются от постоянного тока и имеют следующие особенности.

  • Высокий пусковой момент и возможность вращения на высоких скоростях
  • Мощность двигателя пропорциональна приложенному напряжению
Двигатели постоянного тока

подразделяются на щеточные двигатели постоянного тока и бесщеточные двигатели постоянного тока. Щеточные двигатели постоянного тока имеют катушки в роторе и изменяют способ протекания тока через катушки на основе механизма, использующего коммутаторы и щетки. Щеточные двигатели постоянного тока генерируют электрический и акустический шум и требуют частого обслуживания, поскольку их щетки и коммутатор являются расходными частями.Но они также имеют простую конструкцию и могут работать без электронной схемы привода, если регулирование скорости не требуется.

Бесщеточный двигатель постоянного тока, напротив, избавляет от необходимости в коммутаторе и щетках за счет наличия постоянного магнита в роторе. Это, однако, означает, что они требуют схемы возбуждения. Они также отличаются низкими эксплуатационными расходами, бесшумной работой и длительным сроком службы.

Характеристики двигателей постоянного тока

В отличие от двигателей переменного тока, двигатели постоянного тока очень просты в использовании из-за легкости изменения их скорости.Итак, как этого добиться на практике? Следующее объяснение начинается с рассмотрения характеристик двигателя постоянного тока.

Характеристики двигателя постоянного тока представлены кривой крутящего момента-скорости, которая наклоняется вниз вправо, с крутящим моментом в качестве горизонтальной оси и скоростью в качестве вертикальной оси. Скорость максимальна при отсутствии нагрузки, она снижается вправо до достижения максимального крутящего момента при нулевой скорости.

Крутящий момент и скорость меняются в зависимости от нагрузки, как показано этой кривой крутящего момента-скорости.Глядя на график ниже, давайте рассмотрим двигатель, вращающийся со скоростью ω0 с крутящим моментом T0. Если крутящий момент нагрузки затем увеличивается до T1, скорость двигателя будет следовать за крутящим моментом до новой скорости ω1. Аналогично, если крутящий момент нагрузки затем увеличивается до T2, скорость падает до ω2.

Крутящий момент и скорость двигателя постоянного тока

Взгляд на соотношение между крутящим моментом и током показывает, что они пропорциональны друг другу. Отношение между ними является постоянным для двигателя, причем соотношение остается неизменным независимо от изменений скорости двигателя или напряжения привода.Это означает, что измерения силы тока двигателя достаточно для определения крутящего момента двигателя.

Кривая крутящего момента-скорости двигателя постоянного тока и крутящего момента-тока

Что происходит при изменении напряжения привода?

Итак, что происходит с кривой крутящий момент-скорость при изменении напряжения, используемого для привода двигателя постоянного тока? На приведенном ниже графике показаны кривые крутящий момент-скорость для различных напряжений. Удвоение напряжения привода увеличивает вдвое скорость двигателя без нагрузки и пусковой крутящий момент (крутящий момент, когда двигатель заблокирован в исходном положении).Другими словами, увеличение напряжения сдвигает кривую крутящий момент-скорость параллельно вверх. Кривая крутящего момента-скорости для двигателя постоянного тока может быть отрегулирована по желанию путем изменения напряжения, подаваемого на двигатель.

Кривая напряжения и крутящего момента привода двигателя

Как заставить двигатель постоянного тока вращаться с необходимой скоростью

Теперь, учитывая эти характеристики, как можно вращать двигатель с требуемой скоростью при любом заданном моменте нагрузки?

Кривая крутящего момента двигателя постоянного тока преобразуется с изменениями напряжения привода.Это означает, что вышеуказанная цель может быть достигнута путем простой регулировки напряжения возбуждения. Если посмотреть на график ниже, если требуется вращение со скоростью ω1, когда крутящий момент нагрузки равен T0, например, напряжение привода V4 слишком низкое, что приводит к скорости ω2. Напряжение возбуждения V0 слишком велико, что приводит к скорости ω0. Однако управление двигателем при промежуточном напряжении V3 является правильным для достижения желаемой скорости ω1.

Напряжение и скорость привода двигателя

Регулируя таким образом напряжение привода, двигатель постоянного тока может вращаться с желаемой скоростью независимо от момента нагрузки.

Методы управления напряжением привода

Два способа регулировки напряжения привода: линейное управление и ШИМ-управление.

Линейное управление работает путем включения переменного резистора последовательно с двигателем и регулировки сопротивления для изменения напряжения на двигателе. Хотя в качестве последовательно подключенного переменного резистора можно использовать транзистор или другое полупроводниковое устройство, этот подход имеет низкую эффективность из-за большого количества тепла, выделяемого сопротивлением (полупроводник), и поэтому в наши дни он редко используется.

Альтернативный способ — управление ШИМ. Напряжение, подаваемое на двигатель, можно изменять путем включения и выключения полупроводникового переключателя (например, транзистора или полевого транзистора) на высокой скорости, при этом напряжение определяется шириной импульса включения и выключения. Высокая эффективность этого метода делает его наиболее распространенным в настоящее время.

Линейное управление

ШИМ-контроль

Контроль скорости двигателя

Использование этих методов позволяет гибко регулировать скорость двигателя постоянного тока.Однако требуется дополнительное управление, чтобы двигатель работал с постоянной скоростью. Это связано с тем, что момент нагрузки двигателя изменяется из-за самой нагрузки, а также других факторов, таких как температура, влажность и изменения во времени. Простое управление двигателем с постоянным напряжением приведет к колебаниям его скорости при изменении нагрузки.

Поддержание постоянной скорости, несмотря на переменную нагрузку, требует постоянной регулировки напряжения привода в ответ на эти изменения нагрузки.На приведенном ниже графике показан пример, в котором момент нагрузки для двигателя, работающего со скоростью ω0, уменьшается с T1 до T0, и в этом случае уменьшение напряжения привода до V0 поддерживает скорость двигателя на уровне ω0. Если вместо этого крутящий момент увеличивается до T2, поддержание постоянной скорости двигателя ω0 требует увеличения напряжения привода до V2.

Контроль скорости

Скорость измеряется датчиком, прикрепленным к двигателю. Вычисляется разница между измеренной и желаемой скоростью двигателя (погрешность скорости), и напряжение привода регулируется таким образом, что оно увеличивается, если скорость слишком низкая, и уменьшается, если скорость слишком высокая.Это позволяет поддерживать постоянную скорость двигателя. В то время как в прошлом для управления напряжением привода использовались операционные усилители или другие аналоговые схемы, в последние годы использование микрокомпьютеров стало нормой.

Принципиальная схема управления скоростью двигателя постоянного тока

Схема управления скоростью бесщеточного двигателя постоянного тока

  1. Датчик скорости

    Выводит сигнал, указывающий скорость двигателя. Для этого используются датчики на эффекте Холла, энкодеры и тахогенераторы.

  2. Цепь определения скорости

    Рассчитывает скорость двигателя по сигналу датчика скорости.

  3. Задание скорости

    Выводит заданную скорость двигателя.

  4. Компаратор

    Вычисляет разницу между заданной скоростью и измеренной скоростью.

  5. Схема расчета управляющего напряжения

    Рассчитывает напряжение привода двигателя на основе вычисленной ошибки скорости.

  6. Цепь привода

    Схема, которая регулирует напряжение, подаваемое на двигатель, в соответствии с сигналом напряжения привода.

Двигатель постоянного тока может достигать стабильной работы, контролируя его скорость, чтобы оставаться постоянной независимо от изменений нагрузки.Эти двигатели также подходят для самых разных методов управления, которые можно реализовать с помощью микрокомпьютера. Двигатели постоянного тока находят применение во многих различных приложениях, в которых используется простота управления.

Двигатели постоянного тока: простые в использовании двигатели с простой регулировкой скорости

Двигатели

постоянного тока питаются от постоянного тока, и, в отличие от двигателей переменного тока, их скорость легко регулируется. Характеристики двигателя постоянного тока представлены его кривой крутящего момента-скорости, в которой скорость и крутящий момент нагрузки обратно пропорциональны.Эта кривая крутящего момента-скорости транслируется с изменениями напряжения привода. Соответственно, регулируя напряжение, подаваемое на двигатель постоянного тока, можно заставить его работать с любой скоростью независимо от момента нагрузки.

Для изменения напряжения привода двигателя можно использовать линейное или ШИМ-управление. ШИМ-управление стало преобладать в последние годы из-за его превосходной эффективности. ШИМ-управление изменяет напряжение путем включения и выключения полупроводникового переключателя с высокой скоростью таким образом, чтобы изменение ширины импульса включения и выключения изменяло напряжение.

Преодоление проблем с бесщеточными двигателями постоянного тока

ASPINA поставляет не только автономные бесщеточные двигатели постоянного тока, но и системные продукты, которые включают системы привода и управления, а также механическую конструкцию. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым для различных отраслей промышленности, приложений и продуктов клиентов, а также для конкретных производственных условий.

ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних этапах разработки. Вы боретесь со следующими проблемами?

Выбор двигателя
  • У вас еще нет подробных спецификаций или чертежей, но нужна консультация по двигателям?
  • У вас нет сотрудников, имеющих опыт работы с двигателями, и вы не можете определить, какой двигатель лучше всего подойдет для вашего нового продукта?
Разработка двигателей и связанных компонентов
  • Хотите сосредоточить свои ресурсы на основных технологиях и передать на аутсорсинг приводные системы и разработку двигателей?
  • Хотите сэкономить время и силы, связанные с изменением конструкции существующих механических компонентов при замене двигателя?
Уникальное требование
  • Вам нужен двигатель, изготовленный по индивидуальному заказу, но ваш обычный поставщик отказался от него?
  • Не можете найти двигатель, который дает вам необходимый контроль, и вот-вот теряете надежду?

Ищете ответы на эти проблемы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.

Ссылки на глоссарий и страницы часто задаваемых вопросов

AB-026: Бездатчиковый стабилизатор скорости для двигателя постоянного тока

Введение

Скорость двигателя — это параметр двигателя постоянного тока, который часто измеряется и регулируется, обычно с помощью дополнительных датчиков и с обратной связью по замкнутому контуру. Для этого метода управления скоростью требуется какой-либо датчик скорости, обычно устанавливаемый на валу двигателя. Некоторые из наших двигателей постоянного тока и мотор-редукторов имеют задние валы специально для этой цели, например, 212-109.

Система управления с обратной связью для скорости двигателя постоянного тока

Эта блок-схема представляет собой типичную систему управления с обратной связью, которая может быть разработана для работы в аналоговом или цифровом режиме.

Оптические датчики

-го обычно используются с цифровыми контроллерами, в то время как аналоговые схемы часто используют тахогенераторы. С помощью ШИМ-управления можно достичь хорошей точности, гибкости и снизить потери мощности. Однако это происходит за счет дополнительного компонента и, возможно, модификации механической конструкции, если вы планируете использовать его в существующем продукте.

Для щеточных двигателей постоянного тока можно измерять и регулировать скорость без каких-либо датчиков на двигателе, используя основную характеристику — напряжение обратной ЭДС, зависящее от скорости.

Бессенсорное аналоговое измерение скорости двигателя

Двигатель постоянного тока моделируется как последовательное соединение внутреннего сопротивления и источника напряжения обратной ЭДС. Напряжение на клеммах двигателя складывается из обратной ЭДС и падения напряжения, превышающего сопротивление катушки.

Связаться

Поговорите с членом нашей команды.


Каталог двигателей

Ищете нашу продукцию?

Надежные и экономичные миниатюрные механизмы и двигатели, отвечающие вашим требованиям.

Эквивалентная схема электродвигателя постоянного тока с щеткой

Падение напряжения на внутреннем сопротивлении якоря зависит от тока двигателя (и, следовательно, от момента нагрузки). Невозможно измерить скорость напрямую, измеряя только напряжение на клеммах двигателя.

Сопротивление обмотки Ra обычно постоянно — хотя оно имеет небольшую температурную зависимость, мы можем компенсировать его, чтобы падение напряжения на якоре двигателя было пропорционально току двигателя.

Поскольку невозможно измерить обратную ЭДС напрямую, нам необходимо рассчитать ее по следующему уравнению: 𝑉𝑚𝑜𝑡𝑜𝑟 = 𝑉𝑏𝑒𝑚𝑓 + (𝐼𝑎 × 𝑅𝑎)

К сожалению, напрямую измерить напряжение якоря также невозможно — однако мы можем подключить дополнительный (внешний) резистор последовательно с двигателем. Измерение падения напряжения на этом последовательном резисторе позволяет нам определить обратную ЭДС.

Эквивалентная схема щеточного двигателя постоянного тока с последовательным резистором

Если мы установим значение последовательного резистора равным сопротивлению в двигателе, мы гарантируем, что любое изменение падения напряжения на последовательном резисторе будет равно падению напряжения в якоре: 𝑉𝑎 = 𝐼𝑎 × 𝑅𝑎𝑉𝑠 = 𝐼𝑎 × 𝑅𝑠𝑅𝑠 = 𝑅𝑎𝑉𝑠 = 𝑉𝑎

Итак, сначала нам нужно узнать или измерить сопротивление якоря двигателя.Это можно сделать путем измерения сопротивления на клеммах двигателя с помощью омметра или путем измерения тока остановки с известным напряжением питания. При использовании последнего предпочтительнее использовать низкое напряжение питания, чтобы избежать повреждения из-за перегрузки по току.

Например, при питании двигателя 1,2 В и измерении 100 мА во время остановки сопротивление якоря рассчитывается как: = 𝐼𝑠𝑡𝑎𝑙𝑙 × 𝑅𝑎𝑅𝑎 = 𝑉𝑠𝑢𝑝𝑝𝑙𝑦𝐼𝑠𝑡𝑎𝑙𝑙𝑅𝑎 = 1,2𝑉100𝑚𝐴𝑅𝑎 = 12 Ом

При использовании омметра для измерения оконечного сопротивления снимите среднее значение нескольких показаний при различных положениях ротора.

Напряжение питания будет равно напряжению последовательного резистора, напряжению сопротивления якоря и напряжению обратной ЭДС. = 𝑉𝑠 + 𝑉𝑎 + 𝑉𝑏𝑒𝑚𝑓

Напряжение обратной ЭДС можно рассчитать, вычтя удвоенное падение напряжения на последовательном резисторе из напряжения питания. = 𝑉𝑠𝑢𝑝𝑝𝑙𝑦– (2 × 𝑉𝑠)

Чтобы уменьшить потери мощности, мы можем использовать более низкое значение последовательного сопротивления, но резистор в конечном итоге снизит напряжение, воспринимаемое двигателем. Используя мостовую схему, мы можем сохранить высокую чувствительность измерения и компенсировать потери мощности в двигателе:

Мостовая схема для измерения напряжения противо-ЭДС

Правая опора моста состоит из последовательно соединенных электродвигателя M и резистора Rs .Левая ножка представляет собой последовательное соединение резисторов R1 и R2 , каждая ножка подключена к источнику питания. Напряжение обратной ЭДС измеряется между точками A и B .

Rload представляет входное сопротивление нашей измерительной цепи. Поскольку он будет состоять из операционного усилителя, его входное сопротивление будет намного больше, чем другие сопротивления в этой схеме (идеальные операционные усилители имеют бесконечное входное сопротивление).

Нам необходимо убедиться, что напряжение между точками A и B не зависит от тока двигателя и напряжения питания и зависит только от скорости двигателя и входного сопротивления измерительной цепи ( Rload ).

Начнем с анализа схемы без обратной ЭДС, т.е. когда двигатель остановлен. Чтобы мост был сбалансирован, напряжение между точками A и B должно быть нулевым. Это происходит, пока соотношение между R1 и R2 такое же, как Rs и Ra : 𝑅2𝑅1 = 𝑅𝑎𝑅𝑠

h — коэффициент усиления нашего моста: ℎ = 𝑅1𝑅2 = 𝑅𝑠𝑅𝑎

Если мы выведем двигатель из состояния остановки, напряжение обратной ЭДС пропорционально скорости: 𝑉𝑏𝑒𝑚𝑓 = 𝑘𝑒 × 𝑛

, где ke, — электрическая постоянная для нашего двигателя, а n — скорость двигателя.

Если двигателю разрешено вращаться со скоростью холостого хода, для идеального двигателя мы ожидаем, что Ia равно 0. Это потому, что идеальные двигатели игнорируют сопротивление воздуха и трение подшипников. Напряжение на скорости холостого хода: 𝑉𝑟𝑝𝑚𝑁𝐿 = 𝑘𝑒 × 𝑛𝑁𝐿

Отсюда Vbemf можно подписать как: 𝑉𝑏𝑒𝑚𝑓 = 𝑉𝑟𝑝𝑚𝑁𝐿 × 𝑛𝑛𝑁𝐿 = 𝑉𝑟𝑝𝑚𝑁𝐿 × 𝐾

Где K — коэффициент пропорциональности между Vbemf и V_rpm в нашей схеме.

Теперь мы можем составить систему уравнений для нашей схемы:

Текущие уравнения

Решение для I5 : 𝐼5 = ℎ (ℎ + 1) 𝑉𝑟𝑝𝑚𝑁𝐿 × 𝐾2ℎ (𝑅𝑎 + 𝑅2) + (ℎ + 1) 2 × 𝑅𝑙𝑜𝑎𝑑

Таким образом, выходное напряжение равно: 𝑉𝑟𝑝𝑚 = 𝐼5 × 𝑅𝑙𝑜𝑎𝑑 = ℎ (ℎ + 1) × 𝑉𝑟𝑝𝑚𝑁𝐿 × 𝐾2ℎ (𝑅𝑎 + 𝑅2) + (ℎ + 1) 2 × 𝑅𝑙𝑜𝑎𝑑 × 𝑅𝑙𝑜𝑎𝑑

А для работы без нагрузки: 𝑉𝑟𝑝𝑚 = ℎℎ + 1 × 𝑉𝑟𝑝𝑚𝑁𝐿 × 𝐾

Выходное напряжение между точками A и B не зависит от источника питания и тока двигателя, как без нагрузки, так и при работе под нагрузкой.Он зависит от х , и при увеличении выходное напряжение также увеличивается.

Как упоминалось ранее, сопротивление якоря будет изменяться в зависимости от температуры, что приводит к разбалансировке моста и влиянию на выходную мощность В об / мин . Чтобы свести к минимуму этот эффект, мост следует настраивать, когда двигатель находится при рабочей температуре.

Этот метод стабилизации скорости был популярным решением для контроллеров скорости вращения ротора регулятора, используемых в магнитофонах, использующих аналоговую электронику.В эпоху магнитофонов многие компании производили микросхемы для управления двигателем постоянного тока, чтобы лента двигалась с постоянной скоростью. Это было интересное решение, потому что оно работало линейно и не создавало шума, как контроллеры на основе ШИМ.

Общие ИС включают LA5586, TDA7274, BA6220 и AN6550. К сожалению, производство большинства из них было снято с производства, и теперь они доступны только на вторичном рынке. Схемы в микросхемах немного отличались, но принцип работы по-прежнему основан на мостовой схеме, описанной выше.

LA5586 Эквивалентная схема регулятора скорости двигателя и прикладная схема

Обратите внимание, что эквивалентная схема нарисована с источниками тока и постоянным коэффициентом тока. Коэффициент текущей ликвидности составляет от 20 до 40, в зависимости от конкретной ИС, и обозначен как K . В интегральных схемах легко сделать два источника тока с одинаковыми температурными параметрами.

Двигатель подключен к одной ветви моста, а вторая ветвь содержит резистор со значением K, в раза превышающим внутреннее сопротивление двигателя.

Цепь установившегося состояния для контроллера мотора

В установившемся режиме ток двигателя в К, в раза больше, чем ток через Rt . Отрицательный вход операционного усилителя подключен к источнику напряжения, поэтому падение напряжения на резисторе Rt всегда будет ниже, чем напряжение двигателя. Разница будет равна Vref . Напряжение в точке A (относительно земли) всегда будет выше, чем напряжение в точке B .

Без Rs ток через Rt в 40 раз меньше тока двигателя. Когда нагрузка двигателя увеличивается, напряжение в точке B увеличивается, и выходное напряжение усилителя также увеличивается. Более высокое напряжение усилителя вызывает более высокий ток двигателя, что увеличивает крутящий момент двигателя. Регулировка скорости может быть достигнута путем добавления шунтирующего резистора — напряжение между точками A и B всегда равно опорному напряжению, поэтому легко контролировать дополнительный ток, добавленный к Rt .

Эта схема будет сбалансирована, когда напряжение двигателя равно сумме напряжений на Rt и Rs ( Vref ). Уравнение установившегося состояния: 𝐼𝑚 × 𝑅𝑚 + 𝑉𝑏𝑒𝑚𝑓 = 𝑅𝑇 × 𝐼𝑠 + 𝑅𝑇 × 𝐼𝑠 + 𝐼𝑚𝐾 + 𝑉𝑟𝑒𝑓

Отсюда уравнение для обратной ЭДС: 𝑉𝑏𝑒𝑚𝑓 = 𝑉𝑟𝑒𝑓 + (1 + 1𝐾) × 𝑅𝑇 × 𝐼𝑠 + 𝑅𝑇𝐾 – 𝑅𝑚 × 𝐼𝑚

Предположим: 𝐾 × 𝑅𝑚 = 𝑅𝑇

, то количество оборотов, определяемое Vbemf , составляет: 𝑉𝑏𝑒𝑚𝑓 = 𝑉𝑟𝑒𝑓 + 𝑅𝑇 × (1 + 1𝐾) × 𝐼𝑠

Важно, чтобы во всех случаях Rt было меньше, чем K x Rm , иначе цепь будет чрезмерно компенсированной и нестабильной.

Аналоговый регулятор скорости с отрицательным сопротивлением

Увеличение нагрузки на двигатель приводит к увеличению потребляемого тока и падению скорости. Также уменьшается обратная ЭДС и напряжение на двигателе, этот метод управления известен как регулятор отрицательного вывода.

В этом случае мы используем операционный усилитель для управления скоростью, поэтому наш R_load будет на тысячи больше, чем другое сопротивление в этой цепи, и его снова можно опустить.

Из предыдущего раздела мы знаем, что напряжение источника питания не изменилось В об / мин , что позволяет нам запитать нашу схему от мощного операционного усилителя или добавить транзистор к выходу стандартного операционного усилителя. .Подключив инвертирующий вход к ножке моста между двигателем и последовательным резистором, мы можем управлять источником питания моста с помощью напряжения, подключенного к неинвертирующему выходу.

Цепь управления напряжением двигателя

Входное напряжение подается на неинвертирующий вход операционного усилителя, а инвертирующий вход подключается непосредственно к клемме двигателя. Мы пока не можем контролировать скорость с помощью схемы, в связи с чем наш усилитель работает как буфер (или повторитель напряжения) с коэффициентом усиления равным 1.По сути, входное напряжение определяет напряжение двигателя.

Можно изменить скорость двигателя, установив напряжение Vin, но это не поддерживает постоянную скорость при изменении нагрузки. При постоянном входном напряжении двигатель будет вращаться быстрее при малых нагрузках и медленнее при увеличении нагрузки. Нам нужно еще несколько компонентов для стабилизации скорости двигателя.

Падение напряжения на Rs пропорционально падению напряжения на сопротивлении якоря двигателя, мы будем использовать это напряжение для компенсации падения напряжения на сопротивлении якоря.Это можно сделать, добавив модификацию схемы к приведенной ниже — добавив R1 и R2 и подключив их среднюю точку к неинвертирующему входу операционного усилителя.

Цепь регулятора скорости двигателя

Соотношение R1 и R2 должно быть таким же, как Rs и Ra для обеспечения стабилизации скорости. На изображении выше показана полная схема и ее эквивалент для руководства, управляющее напряжение должно быть таким же, как напряжение обратной ЭДС при желаемой скорости.

Коэффициент компенсации определяется значением Rs , но удобнее использовать стандартное значение сопротивления, а затем изменить R1 или R2 соответственно.

Если скорость двигателя уменьшается при приложении нагрузки, значение R2 должно быть увеличено (или R1 должно быть уменьшено). Если скорость двигателя начинает колебаться (или имеет тенденцию к увеличению) при приложении нагрузки, R2 следует уменьшить или ( R1 следует увеличить).

Чтобы спроектировать эту схему, нам нужно знать, какое значение обратной ЭДС при желаемой скорости:

  1. Чтобы найти напряжение обратной ЭДС на желаемой скорости, вал двигателя может быть установлен на бурильщик и приведен в движение. После достижения желаемой скорости (проверенной тахометром) измерьте напряжение на клеммах двигателя с помощью высокоомного вольтметра.
  2. Измерить внутреннее сопротивление обмотки с помощью омметра на клеммах двигателя, полезно получить среднее значение из нескольких различных измерений положения ротора.
  3. Выберите значение для Rs из стандартных значений, оно может быть меньше сопротивления двигателя.
  4. Выберите R1 и R2 , чтобы соотношение было таким же, как соотношение между Rs и Ra . Фактические значения резистора должны быть больше Rs и Ra для экономии тока. Поскольку эквивалентное сопротивление плеч моста будет другим, операционный усилитель должен быть с низким входным током.
  5. Подайте управляющее напряжение, равное желаемой обратной ЭДС.
  6. Проверьте скорость и соответствующим образом компенсируйте (указано в абзаце перед этим списком).

Для температурной компенсации можно выбрать Rs с тем же температурным коэффициентом, что и обмотки двигателя — для меди это 3400 частей на миллион. Этот резистор следует размещать как можно ближе к двигателю, чтобы поддерживать тот же температурный режим.

Простая схема стабилизации скорости двигателя также может быть выполнена только на транзисторах:

Транзисторный регулятор скорости

В этой схеме Т2 работает как выходной каскад, а Т1 как усилитель ошибки.Сигнал на коллекторе T1 является выходным сигналом, эмиттер работает как инвертирующий вход, а база как неинвертирующий вход.

Сигнал напряжения на двигателе подключен к неинвертирующему входу, потому что выходной каскад инвертирует этот сигнал, что означает, что больший сигнал на коллекторе вызывает меньший ток двигателя.

Диоды D1 и D2 создают опорное напряжение, напряжение на эмиттере T1 всегда ниже, чем напряжение на выводах двигателя.Напряжение компенсации берется из R3 и вычитается из напряжения питания моста, которое измеряется делителем напряжения R4 , R5 и R1 .

R7 и C2 — это схема запуска, помогающая преодолеть статическое трение, а C1 — конденсатор компенсации частоты, предотвращающий высокочастотные колебания.

Поскольку нам необходимо точное измерение обратной ЭДС, которое зависит от контактного сопротивления между коммутатором и щетками, лучше всего использовать двигатели с металлическими щетками.Большинство двигателей Precision Microdrive имеют металлические щетки и подходят для этого метода управления скоростью.

Регулятор скорости со специализированным IC

Эта схема основана на AN6651, специализированном контроллере двигателя, который ранее был популярен в магнитофонах.

AN6651 работает по тому же принципу, что и описанный выше LA5586. Контакты 2 и 4 являются выходами источника тока, соотношение между управляющим выходом (контакт 2) и выходом двигателя (контакт 4) составляет 40: 1.

Сопротивление R1 , подключенное между контактом 2 и источником питания, должно быть в 40 раз больше внутреннего сопротивления двигателя для того же падения напряжения на R1 , что и на внутреннем сопротивлении двигателя: 𝐾 = 40𝑅1 = 𝐾 × 𝑅𝑚

AN6651 работает по тому же принципу, что и описанный выше LA5586.Контакты 2 и 4 являются выходами источника тока, соотношение между управляющим выходом (контакт 2) и выходом двигателя (контакт 4) составляет 40: 1.

Сопротивление R1 , подключенное между контактом 2 и источником питания, должно быть в 40 раз больше внутреннего сопротивления двигателя для того же падения напряжения на R1 , что и на внутреннем сопротивлении двигателя: 𝐾 = 40𝑅1 = 𝐾 × 𝑅𝑚

Например, используя стандартное значение 390 Ом для R1 (меньшее значение снижает склонность к возникновению колебаний), нам нужно найти значения для последовательного соединения R2 и R3.Давайте возьмем двигатель постоянного тока 132-100 и установим целевую скорость 2400 об / мин. Для начала нам нужны некоторые технические детали:

  • Сопротивление двигателя, = 10 Ом
  • Входное напряжение без нагрузки при скорости 2400 об / мин, 𝑉𝑚 = 3,87𝑉
  • Ток без нагрузки при скорости 2400 об / мин, 𝐼𝑚 = 23𝑚𝐴

Мы можем рассчитать падение напряжения на внутреннее сопротивление как: 23𝑚𝐴 × 10Ω = 0,23𝑉

, и мы также можем вычислить Vbemf как: 3,87𝑉 − 0,23𝑉 = 3,65𝑉

В установившемся режиме, когда цепь сбалансирована, уравнение цепи имеет следующий вид: 𝐼𝑚 × 𝑅𝑚 + 𝑉𝑏𝑒𝑚𝑓 = 𝑅1 × (𝐼𝑅2𝑅3 + 𝐼𝑅2𝑅3 + 𝐼𝑚𝐾 + 𝑉𝑟𝑒𝑓

Из этого уравнения мы можем вычислить обратную ЭДС: 𝑉𝑏𝑒𝑚𝑓 = 𝑉𝑟𝑒𝑓 + 𝑅1 × (1 + 140) × 2𝑅3

Как мы знаем из даташита Vref = 1V, поэтому: 𝐼𝑅2𝑅3 = 𝑉𝑏𝑒𝑚𝑓 – 𝑉𝑟𝑒𝑓𝑅1 × (1 + 140)

Для нашего мотора имеем: 𝐼𝑅2𝑅3 = 3.64–1390 × (1 + 140) 𝐼𝑅2𝑅3 = 0,0051𝐴 = 5,1𝑚𝐴

С помощью этого значения можно рассчитать последовательное сопротивление R2 и R3 : 𝐼𝑅2𝑅3 = 𝑉𝑟𝑒𝑓𝑅2 + 𝑅3𝑅2 + 𝑅3 = 𝑉𝑟𝑒𝑓𝐼𝑅2𝑅3𝑅2 + 𝑅3 = 195 Ом

Мы можем использовать постоянный стандартный резистор 150 Ом плюс потенциометр 100 Ом, что дает нам диапазон для точной настройки. Расчетные значения являются приблизительными, в реальной цепи ток внутреннего источника опорного напряжения также имеет значение (между 0,8 — 2 мА для AN6651), это вызовет изменение тока двигателя.

Добавление потенциометра позволяет установке регулировать скорость и должно быть откалибровано через некоторое время, чтобы двигатель прогрелся до рабочей температуры, чтобы минимизировать результирующий сдвиг сопротивления.

132-100 и AN6651 Цепь регулятора скорости
Прецизионные микроприводы 132-100 PCB с AN6651
Прецизионные микроприводы 132-100 PCB с AN6651

Регулятор скорости с дискретным операционным усилителем

Это улучшенная версия схемы операционного усилителя, описанной выше, с использованием специальной ИС.Основное улучшение — это работа при низком напряжении, благодаря использованию опорного сигнала с малой шириной запрещенной зоны. Использование этого дискретного компонента минимизирует размер схемы, что идеально подходит для современных небольших корпусов.

В этой схеме напряжение компенсации снимается с последовательного резистора R8 , значение которого меньше внутреннего сопротивления двигателя, чтобы уменьшить потери мощности. Вторая опора моста образована из R6 и R7 . Соотношение этих резисторов должно быть таким же, как R8 и сопротивление обмотки двигателя.В качестве типичного значения можно выбрать R8 , тогда следует выбрать R6 и R7 для компенсации внутреннего падения напряжения. Для стабильной работы коэффициент R7 / R6 должен быть больше Rm / R8 .

Эта схема должна подходить для небольших двигателей с номинальным напряжением 1 В ~ 2 В.

Схема на основе ОУ для стабилизации скорости двигателя

Регулятор скорости с транзисторами

Эта недорогая схема построена на транзисторах для управления скоростью двигателя, хотя она не обеспечивает такой же точности, как операционный усилитель, ее можно сделать очень маленькой и полезной для недорогих приложений.

В этой схеме опорное напряжение составляет 1,2 В, и D1 работает как опорное напряжение. Обратная ЭДС двигателя больше опорного напряжения — в зависимости от R2 , R3 и R4 делитель напряжения :

  1. Во-первых, нам нужно установить коэффициент делителя напряжения, наше опорное напряжение составляет 1,2 В, а когда желаемая обратная ЭДС составляет 3,6 В, делитель напряжения R2 , R3 и R4 должен иметь коэффициент: 3.61,2 = 3
  2. Итак, у нас есть максимальный диапазон для точной настройки схемы, это нужно делать, когда потенциометр ( R3 ) находится в среднем положении. Теперь нам нужно разделить оставшееся значение между каждым из других резисторов.
  3. Когда мы знаем наш коэффициент делителя напряжения, выбрать R6 и R8 легко. У нас должно быть одинаковое соотношение между делителем напряжения R6 , R8 и внутренним сопротивлением двигателя.

Этот контур разработан для одной постоянной скорости, и изменение скорости с помощью триммера влияет на компенсацию скорости.Таким образом, триммер следует использовать только для настройки этой схемы в диапазонах очень низких скоростей. Чтобы использовать эту схему с широким диапазоном настройки скорости, нам необходимо внести некоторые изменения:

Двухтранзисторный регулятор скорости двигателя
Трехтранзисторный регулятор скорости двигателя

Эта схема работает по тем же правилам, что и предыдущая версия с двумя транзисторами, но основным улучшением является увеличение коэффициента усиления для опорного напряжения транзистором Q2 . Это позволяет нам использовать источник опорного напряжения с малой шириной запрещенной зоны, который более стабилен, чем стандартные диоды.Еще одно улучшение от добавления Q2 — это температурная компенсация Vbe между транзисторами Q1 и Q2 .

Расчет этой схемы начинается с задания напряжения обратной ЭДС. В этой схеме опорное напряжение равно LM385 — 2,5 В и напряжение Vbe из Q2 : 𝑉𝑟𝑒𝑓 = 𝑉𝑏𝑔𝑟𝑒𝑓 + 𝑉𝑏𝑒 = 1,2𝑉 + 0,7𝑉 = 1,9𝑉

.

Если нам нужно, чтобы Vbemf составлял 3,8 В, коэффициент делителя напряжения R2 , R4 и R3 должен быть равен 2: 1.Потенциометр ( R3 ) предназначен для точной настройки этого напряжения, но в этой схеме изменение скорости с помощью триммера вызовет изменение компенсации. Таким образом, R3 предназначен только для окончательной настройки скорости в небольшом диапазоне, скажем, 5% или меньше, и должен использоваться только для компенсации допуска других значений компонентов.

После установки этого делителя напряжения выбрать значение R6 и R7 легко, когда мы знаем внутреннее сопротивление двигателя. Эквивалентное параллельное соединение R6 , R7 и сопротивление двигателя должны иметь такое же соотношение, что и делитель напряжения R2 , R3 и R4 (с потенциометром R3 , установленным в среднее положение).

Прецизионные микроприводы Трехтранзисторный контроллер скорости двигателя
Прецизионные микроприводы Трехтранзисторный контроллер скорости двигателя

Режим переключения аналогового регулятора скорости

В этой статье описывается простая реализация аналогового регулятора скорости двигателя, основанная на измерении обратной ЭДС и управляющем сигнале ШИМ.

При использовании ШИМ с двигателем постоянного тока все еще можно управлять скоростью двигателя без каких-либо датчиков. Используя типичный недорогой драйвер с одним полевым МОП-транзистором, можно измерить обратную ЭДС, когда двигатель вращается, а транзистор выключен.

Управление частотой вращения двигателя с использованием обратной ЭДС в режиме переключения по аналоговой схеме

Этот контроллер состоит из модулятора ШИМ, выходного транзистора и схемы «выборки и удержания» (иногда известной как схемы «слежения и удержания»). Модулятор ШИМ имеет управляющий вход, который позволяет изменять рабочий цикл. Если вы не знакомы, это может показаться сложным, но общая идея довольно проста:

  • , когда транзистор включен, напряжение питания подключено к клеммам двигателя, ток двигателя Im протекает через двигатель, заставляя его ускоряться.
  • , когда транзистор выключен, двигатель действует как генератор, а Vm равно до Vbemf , который пропорционален скорости двигателя.Срабатывает схема выборки и хранения, которая сохраняет выборку Vbemf в конденсаторе

Узел суммирования затем вычисляет разность между желаемой скоростью и текущей скоростью, поскольку обе представлены напряжением (желаемое напряжение и Vbemf соответственно). Это напряжение ошибки используется для управления скоростью двигателя путем увеличения или уменьшения рабочего цикла модулятора PWM.

Из-за индуктивной природы двигателей постоянного тока измерение обратной ЭДС невозможно сразу после выключения транзистора.Когда транзистор переключается, генерируется сильный индуктивный всплеск, и индуктивный рециркуляционный ток Ir течет через реверсивный диод. Необходима небольшая задержка, пока напряжение обратной ЭДС не станет стабильным:

Измерение сигнала ШИМ на клеммах двигателя

Этот метод управления может быть выполнен с использованием только аналоговых компонентов или с помощью цифрового микроконтроллера. Практическая реализация контроллера, основанного на этом методе и использующего двигатель постоянного тока 132-100, показана ниже:

Регулятор скорости двигателя на основе измерения обратной ЭДС и выхода ШИМ

В этой схеме напряжение на R2 представляет желаемую скорость, IC1A работает как усилитель ошибки и ПИД-регулятор.

Схема ШИМ-модулятора построена на IC1B и IC2 , где IC1B работает как генератор треугольных волн с частотой, определяемой R12 и C4 .

IC2 действует как компаратор, который сравнивает напряжение треугольного сигнала с выхода IC2 с установочным напряжением от потенциометра R15 . Когда напряжение сигнала треугольника ниже, чем напряжение от R15 , выход компаратора высокий, и двигатель запитан.

Цепь выборки и хранения состоит из C3 , R10 , D2 , Q1 , R13 . Когда двигатель питается от T1 , Q2 включен, а узел R13 и D2 закорочен на землю, что не позволяет ему сделать выборку, когда на двигатель подается напряжение Vcc. Диод D2 предотвращает разряд C3 , когда Q1 включен.

Когда T1 выключен, Q2 также выключен, и Vbemf может заряжать конденсатор C3 .Напряжение на C3 находится на неинвертирующем входе усилителя ошибки, IC1A . Этот усилитель вычитает текущее напряжение скорости из желаемого напряжения скорости (устанавливается потенциометром R2 ). При увеличении обратной ЭДС выходное напряжение на IC1A также увеличивается — это смещает уровень сигнала треугольника вверх пропорционально ошибке скорости. Если уровень сигнала треугольника увеличивается, то время, когда выходной транзистор включен, уменьшается, и коэффициент заполнения ШИМ также уменьшается.

Этот усилитель ошибки работает как схема ПИД-регулирования, где коэффициент усиления определяется как 5𝑅5 + 10, а постоянная времени определяется параметрами R5 и C2 .

Схема выборки и хранения очень проста, потому что время выборки равно состоянию выключения в рабочем цикле ШИМ, поэтому напряжение выборки напрямую зависит от рабочего цикла. Кроме того, это менее важно, если схема используется для управления приложением, которое не использует полный диапазон скорости двигателя.Его также можно уменьшить по выбору, изменив значения R10 , C3 и R13 , которые позволяют изменять время заряда / разряда C3 .

Диапазон изменения рабочего цикла ШИМ (от приложенного напряжения ошибки) определяется соотношением от R7 до R8 || R9 , однако, поскольку схема Sample & Hold настолько проста, этот диапазон не должен быть очень широким.

Эта схема предназначена для работы в малом диапазоне ШИМ, максимальная нагрузка ШИМ снижается за счет задержки индуктивной нагрузки двигателя, и с ограничением схемы выборки и удержания этот метод не следует использовать для широкого диапазона. диапазон регулирования скорости.

Это демонстрирует принцип работы, поэтому для практического использования настоятельно рекомендуется улучшить простую схему выборки и хранения. Например, схема на основе недорогого LF398 может обеспечить время выборки 10 мкс.

По сравнению с аналоговой схемой отрицательной обратной связи этот метод:

  • снижает потери мощности
  • может быть более стабильным, поскольку температура не влияет на напряжение обратной ЭДС (за счет изменения сопротивления обмотки)

Однако это также:

  • не подходит для двигателей с высокой индуктивностью
  • имеет узкий диапазон регулирования скорости
  • имеет тенденцию к колебаниям

Информационный бюллетень

Подпишитесь, чтобы получать новые блоги, тематические исследования и ресурсы — прямо на свой почтовый ящик.


Подробнее

Ресурсы и руководства

Ознакомьтесь с замечаниями по применению наших продуктов, руководствами по дизайну, новостями и тематическими исследованиями.

Примеры из практики

Изучите нашу коллекцию тематических исследований, примеры нашей продукции в различных областях применения.

Прецизионные микроприводы

Нужен ли вам компонент двигателя или полностью проверенный и протестированный сложный механизм — мы всегда готовы помочь. Узнайте больше о нашей компании.

Подано в: С тегами: Контроллер мотора

переменного тока на постоянный ток

18,86 долларов США. Настройка P1 определяет фазу запускающего импульса, запускающего симистор. Однако они по-прежнему довольно дороги. В особых случаях, когда этот процесс происходит часто (например, в системах управления двигателями лифтов), экономично включить специальные функции в моторный привод, чтобы эта энергия могла подаваться обратно в сеть переменного тока. Лучшие боксы для подписки — прямо к вашим дверям, © 1996-2021, Amazon.com, Inc. или ее аффилированных лиц. Триак BT136 Контроллеры двигателей переменного тока Curtis регулируют крутящий момент, создаваемый двигателем переменного тока. Подключите левый контакт потенциометра к дренажному контакту МОП-транзистора … Существуют контроллеры для щеточных двигателей постоянного тока, бесщеточных двигателей постоянного тока, а также универсальных двигателей, и все они позволяют операторам устанавливать желаемое поведение двигателя, даже если их механизмы для выполнения так различаются. Отключите его, прежде чем приблизиться к печатной плате. Контроллер мотора: Измените количество полюсов (дискретными шагами — неэффективно и редко). Измените частоту сигнала переменного тока. Измените скольжение.! Сначала напишу цитату: СТОП !! ! Эта схема подключена к напряжению 110-220 мА. Итак, что мы можем сделать, чтобы контролировать скорость асинхронного двигателя переменного тока? Регуляторы скорости двигателя переменного тока в постоянный Используйте эти элементы управления с двигателями, которые вращаются вперед и назад, например, с двигателями конвейерных лент. Код Arduino. Подключите потенциометр. Однако регулирование скорости переменного тока было сложной задачей. Недавно просмотренные вами товары и избранные рекомендации. Выберите отдел, в котором вы хотите выполнить поиск. Цена и другие сведения могут отличаться в зависимости от размера и цвета.Эта схема контроллера скорости двигателя переменного тока 220 В на основе симистора предназначена для управления скоростью небольших бытовых двигателей, таких как сверлильные станки. Контроллеры двигателей можно классифицировать по типам двигателей, для которых они предназначены, например: Промывка закрытых регуляторов скорости двигателя переменного и постоянного тока. Бесплатная доставка. Преобразователь переменного тока в переменный с приблизительно синусоидальными входными токами и двунаправленным потоком мощности может быть реализован путем подключения выпрямителя с широтно-импульсной модуляцией (ШИМ) и инвертора с ШИМ к звену постоянного тока. Приводы постоянного тока обеспечивают регулирование скорости для двигателей постоянного тока, что идеально для приложений, требующих управления низкой скоростью, крутящим моментом и мощностью.Закрытая обратная промывка Заменяет традиционную механику, состоящую из трения щеток о коммутатор для подачи питания на обмотки якоря двигателя постоянного тока. Как и все другие двигатели, двигатели BLDC также состоят из ротора и статора, которые можно увидеть на рисунке 1. Наши статьи о параллельных двигателях постоянного тока, двигателях постоянного тока с последовательной обмоткой и бесщеточных двигателях постоянного тока содержат подробные объяснения того, как работают машины постоянного тока. Место хранения. После просмотра страниц с подробными сведениями о продукте перейдите сюда, чтобы найти простой способ вернуться к интересующим вас страницам.Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока. Вы можете использовать бытовую технику, например сверлильный станок, для управления скоростью его вращения. (EV) посредством изменения потока энергии от источников питания к двигателю. Контроллер мотора — это устройство или группа устройств, которые могут заданным образом координировать работу электродвигателя. Создание электронной схемы для управления скоростью двигателя постоянного тока может показаться довольно простым, и вы сможете найти много таких обычных схем, связанных с регулированием скорости.Вкратце, скорость / крутящий момент cu… Контроллер двигателя может включать в себя ручные или автоматические средства для запуска и остановки двигателя, выбора прямого или обратного вращения, выбора и регулирования скорости, регулирования или ограничения крутящего момента и защиты от перегрузок и электрические неисправности. В этом методе магнитный поток, создаваемый обмотками возбуждения, варьируется для того, чтобы … Однако на практике вы обнаружите, что более простые схемы имеют один серьезный недостаток — они не могут плавно регулировать скорость двигателя на более низких уровнях и в соответствии с желаемым скорость уменьшается, крутящий момент двигателя также уменьшается пропорционально.(количественная скидка для опций / вариантов рассчитывается на товарном поддоне), настенные системы хранения энергии на литиевых батареях, системы хранения энергии на литиевых батареях 50–300 кВт, сменные вставные для свинцово-кислотных аккумуляторов на 12 В. используются для регулирования крутящего момента, создаваемого двигателем электромобиля. Они имеют корпус, соответствующий требованиям NEMA 4X, чтобы выдерживать коррозию и промывки. Контроллер электродвигателя переменного тока мощностью 200 кВт для электромобилей: электромобили — это будущее, и они начинают набирать обороты сегодня. Вы можете заказать контроллер curtis на странице HPEVS AC Motors для удобства или просто заказать контроллер здесь.const int pwm = 2; // инициализация вывода 2 как pwm const int in_1 = 8; константа int in_2 = 9; … Этот контроллер скорости двигателя использует одну микросхему LM1014 для управления скоростью двигателя постоянного тока. Или лучшее предложение. Трехфазный двигатель переменного тока является абсолютным стандартом для автомобильных компаний при производстве электромобилей. Регулятор скорости двигателя 4000 Вт, плата управления двигателем Регулируемый регулятор напряжения 110 В переменного тока SCR Регулятор яркости высокой мощности Регулятор яркости Монитор регулировки яркости HiLetgo 2000 Вт ШИМ Модуль управления скоростью двигателя переменного тока Регулятор скорости затемнения Регулируемый регулятор напряжения 50–220 В, электронный регулятор скорости вентилятора Cdmall Регулируемый регулятор для гидропоники Канальные вытяжные потолочные вентиляторы с кабелем длиной 6 футов, 120 В, 15 А, регулятор скорости маршрутизатора для тяжелых условий эксплуатации, 20 А, MLCS 9410, KB Electronics 8811007 Твердотельное управление электродвигателем переменного тока с переменной скоростью, 6.0 Макс. Ампер, 115 В, # K177-1006, QWORK AC 110V 400W Регулятор скорости двигателя DC 0-90V Регулируемый регулируемый регулятор скорости для двигателей DC 90V, AC 110V 120V 220V 230V 10000W Контроллер скорости двигателя высокой мощности SCR Регулятор напряжения Регулировка яркости Попытка терморегуляции , Регулятор напряжения, цифровой регулятор напряжения SCR на 10000 Вт, регулятор скорости, диммер, термостат, 220 В переменного тока, 80 А, контроллер скорости, 50-220 В переменного тока, 2000 Вт, 25 А, контроллер скорости двигателя, SCR, мощный электронный модуль регулятора напряжения, светодиодные диммеры двигателя, с ручкой управления скоростью (5 шт.), Синхронный мотор-редуктор 60KTYZ Электродвигатель переменного тока с двумя подшипниками, 30 об / мин, управление по часовой / против часовой стрелки, 115 В, 60 Гц, 10 Вт, Akozon AC 220 В, 6000 Вт, контроллер скорости двигателя с регулируемым током высокой мощности, 6000 Вт, регулятор напряжения, попытка затемнения, плата терморегуляции, контроллер переменной скорости WFLNHB, подходящий для реостата электродвигателя вентилятора маршрутизатора, переменного тока 1500 Вт / 120 вольт / 15 ампер, tatoko AC 110 В 120 В 220 В 230 В 10000 Вт Контроллер скорости двигателя SCR высокой мощности Регулятор напряжения Попытка затемнения Терморегулирующая плата, 220 В переменного тока Регулируемый цифровой регулятор напряжения SCR мощностью 6000 Вт, регулятор скорости электродвигателя, диммер, диммер, термостат, модуль AC Infinity CLOUDLINE S4, тихий 4-дюймовый канальный вентилятор с регулятором скорости — вытяжной вентилятор для обогрева, охлаждающего усилителя, палаток для выращивания, гидропоники, частотно-регулируемого привода, MYSWEETY AC 220 В / 2.2KW 3HP 10A VFD преобразователь частоты для управления скоростью двигателя шпинделя (1 фаза на входе и 3 фазы на выходе), ICQUANZX контроллер скорости двигателя постоянного тока с ШИМ 12 В ~ 48 В 40 А Модуль управления скоростью регулятора щеточного двигателя Электрический контроллер 1200 Вт 25 кГц, контроллер скорости двигателя, 110 В переменного тока 220 В Регулятор напряжения 4000 Вт, диммер двигателя SCR, регулятор температуры, монитор мощности, монитор затемнения, SongHe AC 110 В 120 В 220 В 230 В 10000 Вт Регулятор напряжения контроллера скорости двигателя SCR высокой мощности 10000 Вт Попытка регулирования яркости Плата терморегуляции, частотно-регулируемый привод, TwoWin AC 2.2KW 220V VFD 3HP 10A VFD Inverter Frequency Converter для управления скоростью двигателя шпинделя (1 фаза на входе 220 В и 3 фазы на выходе 220 В), AC Infinity CLOUDLINE S6, тихий 6-дюймовый канальный вентилятор с регулятором скорости — вытяжной вентилятор для обогрева охлаждающего усилителя, Grow Палатки, гидропоника, AC 110V 400W Регулятор скорости мотора с ручкой DC 0-90V Регулируемое управление токарным станком, VIVOSUN Регулируемый регулятор скорости вентилятора VIVOSUN Регулятор скорости встроенного воздуховода, 2000 метров междугородний беспроводной переключатель дистанционного управления высокой мощности Водяной насос Освещение двигателя Промышленный беспроводной пульт дистанционного управления Переключатель AC 110V 220V Релейный переключатель Передатчик High Range 6600ft, PWM контроллер скорости двигателя постоянного тока, модуль управления драйвером двигателя щетки DC 9V-60V 12V 24V 36V 48V 60V Регулятор широтно-импульсной модуляции двигателя 20A 1200W PWM Monitor Dimmer Governor.Растущая популярность бесщеточных двигателей постоянного тока (BLDC) обусловлена ​​использованием электронной коммутации. Измените частоту переменного тока … щетки, как двигатель постоянного тока. Модель Curtis AC F2-C — это интегрированный системный контроллер тяги переменного тока и насос постоянного тока. ПРЕДУПРЕЖДЕНИЕ!! Контроллер AC F2-C обеспечивает непревзойденную производительность, а тиристор ведет себя как электронная защелка при использовании в качестве переключателя, потому что при срабатывании один раз он остается в состоянии проводимости до тех пор, пока не будет сброшен вручную. Тиристор может использоваться для управления большими токами постоянного тока и нагрузками.Для этого используются три основных компонента: выпрямитель,… Бесплатная доставка. Не создавайте это, если вы не уверены в том, что делаете. В дополнение к электрическим приводам двигателей переменного / постоянного тока мы предлагаем другие продукты для управления двигателями переменного и постоянного тока, такие как электродвигатели (двигатели переменного тока, двигатели постоянного тока), устройства плавного пуска, панели (ЧРП в корпусе, ЧРП с байпасом) и аксессуары (Линия переменного тока Реакторы, дроссели звена постоянного тока, динамическое торможение, опции привода). Проще говоря, контроллер двигателя постоянного тока — это любое устройство, которое может управлять положением, скоростью или крутящим моментом двигателя постоянного тока.Корпус, соответствующий требованиям NEMA 4X, защищает эти органы управления от коррозии и мытья. Он определяет увеличение тока двигателя, когда его вращение замедляется из-за нагрузки. Инструкции по программированию включены на каждую страницу контроллера. сервопривод, магнит, последовательный, с независимым возбуждением, постоянный ток (DC) и переменный ток (AC). Позвольте мне добавить здесь более сильное предупреждение: эта схема безопасна, если она построена и реализована только… Curtis производит исключительно контроллеры двигателей переменного тока, в то время как все 3 производят контроллеры двигателей постоянного тока.Простая схема управления скоростью электродвигателя переменного тока с использованием симистора BT136 Эта схема контроллера скорости электродвигателя переменного тока работает на основе симистора и Diac. Контроллер скорости двигателя, 220 В переменного тока 400 Вт Регулятор скорости двигателя Точечный регулятор скорости двигателя в прямом и обратном направлении, регулятор напряжения EUGNN 220 В переменного тока 10000 Вт SCR Драйвер управления скоростью Диммер Диммер Термостат Регулирующий регулятор температуры Контроллер двигателя вентилятора, KB Electronics KBMD-240D (9370D) Многоприводная переменная Управление двигателем постоянного тока, NEMA-1, AC Infinity, регулятор скорости вращения вентилятора для осевых охлаждающих вентиляторов для маффинов от 100 до 125 В переменного тока, один разъем, для самостоятельных проектов с вытяжной вентиляцией, AC Infinity CLOUDLINE T4, тихий 4-дюймовый канальный вентилятор с контроллером температуры и влажности — Вытяжной вентилятор для обогрева, охлаждающего усилителя, палаток для выращивания, гидропоники, AC Infinity CLOUDLINE T6, тихий 6-дюймовый канальный вентилятор с регулятором температуры и влажности VentirPro-S2 с контроллером температуры и влажности, временным циклом, контролем скорости, для чердака, гаража, сарая, подполья, подвалов, 240 куб. Футов в минуту (Выход воздуха), регулятор скорости двигателя постоянного тока, модуль управления драйвером двигателя щетки Hima DC 9V-60V 12V 24V 36V 48V 60V Широтно-импульсный модулятор двигателя 20A 1200W ШИМ-монитор Регулятор яркости с переключателем и ручкой, AC Infinity AIRLIFT T14, вытяжной вентилятор 14 дюймов с регулятором температуры и влажности — настенная вентиляция и охлаждение для навесов, чердаков, мастерских, Yosoo Health Gear 2000 Вт ШИМ Модуль управления скоростью двигателя переменного тока Диммер Регулятор скорости 50–220 В Контроллер скорости двигателя Регулируемый регулятор напряжения, 50–220 В переменного тока, 2000 Вт, 25 А, импульсный Регулировка ширины SCR Регулируемый регулятор напряжения Управление скоростью двигателя (Регулируемое управление скоростью двигателя регулятора), Мини-электродвигатель CHANCS 775 DC 12 В / 24 В со сверлильным патроном и ШИМ-регулятором скорости двигателя постоянного тока, Регулятор скорости электродвигателя переменного тока BEMONOC 110 В 120 Вт для контроллера мотора-редуктора переменного тока, XLX 5PCS AC 220V 2000W SCR Модуль электронного регулятора напряжения высокой мощности Регулируемый регулятор скорости двигателя Регулировка 25A Ультра маленький светодиодный диммер с ручкой управления скоростью, Lheng AC Мощный электронный тиристорный регулятор двигателя SCR 4000 Вт 110–220 В Регулирование скорости двигателя Напряжение питания Регулятор температуры Регулятор Термостат Диммер, LEDMOMO 1203BB 6 В 12 В 24 В 3A 80 Вт Регулятор скорости двигателя постоянного тока (PWM) Регулируемый реверсивный переключатель драйвера двигателя, Инверторный преобразователь частоты 4KW 220 В VFD Контроллер драйвера преобразователя 5HP, 3-фазный выход, 18 А VSD с удлинительным кабелем 2 м для управления приводом шпинделя / гравировально-фрезерный станок с ЧПУ, uniquegoods AC 50-220 В 2000 Вт (макс.) 25 А SCR Постоянное напряжение Контроллер скорости двигателя переменного тока Светодиодные диммеры, TerraBloom ECMF-100 , 4-дюймовый канальный вентилятор с электронно-коммутируемым двигателем с регулируемой скоростью 0–100%, металлический корпус, энергосберегающий.Потенциометр P1 изменяет скорость двигателя. Регулятор скорости двигателя постоянного тока на основе Mosfet. Скорость двигателя можно контролировать, изменяя настройку P1. Они преобразуют входящую электрическую мощность переменного тока в мощность постоянного тока с переменным напряжением, что позволяет регулировать выходную скорость двигателя в широком диапазоне. Контроллеры для автомобильных двигателей сделаны очень крутой и простой схемой регулятора скорости двигателя постоянного тока… Для повышения вентиляции, нагрева, влажности и вытяжного вентилятора для палаток для выращивания, с векторным управлением ЧПУ VFD Контроллер преобразователя частоты преобразователя инвертора 220 В 5.5 кВт 7,5 л.с. для управления скоростью двигателя шпинделя Серия HUANYANG GT (220 В, 5,5 кВт), контроллер AC Infinity 67, интеллектуальный контроллер вентилятора с контролем температуры, влажности и таймера, для CLOUDLINE Airift CLOUDRAY Охлаждение и вентиляция, 12 В — 110 В переменного тока / 15 -160V DC 300W PWM Плата регулятора скорости двигателя, модуль регулятора драйвера двигателя для вентилятора, насоса, воздуходувки, гравера, DIGITEN Регулятор скорости электрического двигателя для воздуховода Встроенный вентилятор Вентиляционный вентилятор HVAC управляет выхлопом гидроэлектрического генератора, Bringsmart 60ktyz 50 об / мин, двигатель переменного тока с низким уровнем шума Редукторный электродвигатель Барбекю с высоким крутящим моментом и низкой скоростью 110 В синхронный редукторный двигатель переменного тока (110 В, 50 об / мин), переключатель 30А регулятора скорости двигателя постоянного тока RioRand 7-70V PWM, uniquegoods 1803BKW 1.8v 3v 5v 6v 7.2v 12v 2A 30W регулятор скорости двигателя постоянного тока (PWM) Регулируемый переключатель драйвера, регулятор скорости двигателя постоянного тока tatoko 10V-55V 12V 24V 36V 40A Бесступенчатый регулятор скорости двигателя постоянного тока с переключателем прямого / обратного торможения, регулируемым потенциометром и цифровым дисплеем. … Универсальные пускатели двигателей — это специализированные коммутационные блоки, используемые с более крупными двигателями, которые подключают клеммы двигателя непосредственно к источнику питания. Контроллер двигателя AC F2-C в сочетании с полумостовым гидравлическим насосом постоянного тока и системой управления пропорциональным клапаном использует двойные высокопроизводительные микропроцессоры ARM Cortex в компактном корпусе…. 10-55V 60A 5000W Реверсивный регулятор скорости двигателя постоянного тока с ШИМ-управлением Мягкий пуск США. Специализируется на литиевых батареях, зарядных устройствах, солнечных батареях. Статор двигателя BLDC изготовлен из многослойной стали, уложенной друг на друга для переноса обмоток. Не прикасайтесь к нему во время работы. Samgold AC 110V 400W Ручка регулятора скорости двигателя DC-51 Регулировка управления токарным станком. Используйте их для преобразования входного напряжения переменного тока в выходное напряжение постоянного тока и управления скоростью двигателей постоянного тока с постоянными магнитами.
комфортно онемел, трудно играть, Трэвис Скотт, кнопка с подсветкой, Mk14 Pubg Mobile, Расписание мессы Святого Искупителя, Шум бегуна за перчаточным ящиком, Рвота белыми кусками после питья молока, Когда выйдет Zombies 3 в 2021 году, .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *