Регулятор оборотов кулера схема: Простой регулятор скорости вращения вентилятора

Содержание

Регулятор оборотов кулера с терморезистором

РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >

Регулятор оборотов кулера с терморезистором

        Уважаемые коты, наступил март. Сегодня орал под окном… И вчера… и…

        Но в прошлом месяце удалось собрать полезную и очень простую для повторения схему для регулирования оборотов вентилятора.  

        Переделывая импульсный блок питания ATX в регулируемый, столкнулся с проблемой охлаждения. Выходное напряжение 0-20 Вольт. Ток до 10А. Естественно до 3х вольт вентилятор не вращается и с выхода взять его не получится. Изучая вопрос, было решено делать регулируемый стабилизатор напряжения из того, что было под лапой. А именно термисторы из контроллера батареи ноутбука ACER и TL431, который не так давно выпаял из того же блока питания ATX.

        Что нужно коту для счастья:

  • Термистор (NTC) – сопротивление уменьшается при нагреве.
  • TL431
  • КТ805 (815,817,819 и др. n-p-n )
  • Питаться все это дело будет от дежурки.

        И так приступим:

        Берем сметану из даташита:

 

 

        Здесь по формуле видно что минимальное напряжение на выходе будет 2.5 вольт, т.к. TL-ка обладает источником опорного напряжения V(ref)=2.5в. При Таком напряжении кулер не крутится. Я его и хвостом и лапой подталкивал но нет… Заменяем R2 термистором.

Кошачим модель в Proteus используя аналог КТ805 – 2N3054:

 

 

Подстроечный резистор нужно взять >= сопротивлению термистора.

После сборки подключаем к питанию и подстроечником выставляем бесшумный режим при комнатной температуре. Термистор крепим на радиатор

          Печатная плата рисовалась после сборки устройства, поэтому фото не выкладываю. Мой вариант платы не претендует на звание самой лучшей, но кому не захочется заниматься этим вполне сгодится. К тому же с таким количеством деталей можно использовать навесной монтаж.

 

 

 Всем удачных разводок! 

Файлы:
Печатная плата
Модель в proteus

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Простой регулятор скорости вращения вентилятора 12В

Предлагаемый регулятор скорости вращения вентилятора можно расширить для работы нескольких кулеров независимо друг от друга. Преимуществами схемы являются простота конструкции, приемлемая стоимость и работа в режиме ШИМ, поэтому можно использовать небольшие переключающие транзисторы. В оригинале стоит биполярный, но и полевые Мосфет сюда отлично подходят, включенные по такому принципу схемотехники.

Схема блока управления вентиляторами охлаждения 12 В

Верхняя часть принципиальной схемы представляет собой классический генератор пилообразных частот. Частота с заданными значениями элементов R4, C1 составляет около 220 Гц — её можно выбирать в широком диапазоне. Резисторы R1, R2 и R3 рассчитаны примерно на 50% скважности при 20 C, и 100% при 55 C. Питается стабилизированным источником питания 12 В.

Сигнал генератора сравнивается вторым усилителем (работающим в качестве компаратора) с выходным напряжением датчика LM35, который должен быть термически связан с охлаждаемым элементом (радиатором).

  • Когда напряжение пилы ниже, чем напряжение от LM35, исполнительный транзистор проводит ток на кулер.
  • Когда пила превышает значение напряжения от LM35 — транзистор отключается.

Таким простым способом получается нужная форма сигнала ШИМ для управления вентилятором, пропорциональная текущей температуре охлаждаемого элемента — чем выше напряжение от LM35 (т.е. чем выше контролируемая температура), тем больше коэффициент заполнения напряжения питания вентилятора, и он соответственно вращается быстрее.

Добавляя дополнительные блоки контроллера (нижняя часть схемы), можно управлять последующими вентиляторами. Таким образом, получается управлять одним вентилятором от одной ОУ LM358, двумя вентиляторами от двух LM358 или одним LM324, тремя также от одной микросхемы LM324 и так далее. 

Плата, сделанная на одной LM358, представляет собой компактный кубик для подключения к проводам вентилятора. Печатная плата приводится далее.

Транзисторы BC327 должны выдерживать токи нагрузки 500 мА, может потребоваться заменить R5 и R6 на меньшие, в зависимости от коэффициента усиления транзистора. Для управления вентиляторами большего размера и тока выходная цепь должна быть перестроена, например, под силовой транзистор MOSFET с каналом P-типа — для такого транзистора резистор R6 не нужен, а R5 можно заменить перемычкой. Также должны увеличить значение C2. Слишком высокая его ёмкость приведет к работе на полной скорости вентилятора независимо от температуры. Также стоит помнить, что вентилятор и радиатор должны иметь запас рассеивания тепла по отношению к рассеиваемой мощности. Слишком маленький вентилятор и радиатор приведут к тому, что съхема будет работать на 100% постоянно. 

Чип LM35 является датчиком тепла в корпусе TO92 (как и BC547), который выполняет функции преобразователя температуры в напряжение. Изменяя напряжение на инвертирующем входе нижнего усилителя, заполнение скважности тоже изменяется, потому что оно работает в схеме компаратора напряжения. Схема великолепна своей простотой, но она будет более полезна в случае больших обычных двигателей, чем компьютерных вентиляторов, предназначенных для питания от постоянного тока, тогда как здесь импульсный.

LM35 измеряет температуру давая на выходе 10 мВ для каждого положительного градуса Цельсия — то есть для 20 градусов он дает 200 мВ. Если хотите использовать регулятор для обычных щеточных (коллекторных) двигателей, С2 следует заменить на соответствующий диод (гасим обратный ток).

Регулирование оборотов вентилятора радиатора hot end

Вентилятор hot end один из самых маленьких в 3D принтере, но зачастую является одним из самых шумных вентиляторов. К тому же он обычно подключается напрямую к 12 вольтовой линии блока питания и молотит без перерыва, даже тогда, когда принтер не печатает, а просто включен в розетку.

Китайские вентиляторы, работающие на полных оборотах при простое принтера, приносят нам не только неприятное жужжание, но и осаждают лишнюю пыль на радиаторе hot end.

К тому же, во многих случаях не требуется работа этого вентилятора на полных оборотах. Если запитать его от 5 вольт шум значительно уменьшается, но это заканчивается забитым расплавленным пластиком трактом в процессе печати. Охлаждения перестает хватать во время печати участков с большим количеством откатов или просто из за повышенной температуры в помещении.

Хочу поделиться своим решением регулировки оборотов с обратной связью

1) Позволяет полностью остановить вентилятор, когда радиатор остынет до комнатной температуры

2) Во время печати вентилятор преимущественно работает на низких бесшумных оборотах

3) Обороты повышаются с ростом температуры на радиаторе hot end, например, во время частых откатов или при печати в закрытой камере

Реализация максимально проста и не требует подключения к ШИМ на плате управления (RAMPS) и внесения изменения в прошивку принтера или G-код.

Схема

Потребуется два резистора и транзистор, но резисторы не простые:

1) Терморезистор, такой же, как и в нагревательном блоке hot end. Если в хозяйстве его нет, то советую в любом случае заказать десяток — пригодится при ремонте нагревательного блока или стола.

2) Переменный резистор номинала порядка 30КОм

3) n-p-n транзистор, например КТ315, широко распространенный на постсоветском пространстве. Можно мощнее, но слабее нельзя, КТ315 работает на пределе.

Установка

Установку рассмотрю на примере китайского e3d v6.

1) На кусочке фольгированного с одной стороны текстолита размером 10 на 8 мм или в виде ‘вороньего гнезда’ собирается схема.

Монтаж на плате фото 1

Монтаж на плате фото 2

‘Воронье гнездо’

2) На ножки терморезистора надеваются изоляторы, хороший вариант использовать тефлоновые, но у меня нормально себя зарекомендовали и обычные кусочки изоляции снятые с проводников витой пары.

3) В двух нижних пластинах радиатора, прямо над нагревательным блоком, просверливается два отверстия диаметром 2.5мм. В одном из отверстий нарезается резьба под М3. Терморезистор крепится по тому же принципу что и в нагревательном блоке — выводы прижаты головкой винтика. Перед установкой терморезистора рекомендую его обильно смазать термопастой.

Отверстия для терморезистора

Терморезистор прижат винтом

4) Подключается вентилятор и питание, переменный резистор выкручивается в положение в котором вентилятор начинает вращаться.

5) Дать радиатору остыть до комнатной температуры и плавно вращая переменный резистор найти положение в котором вентилятор начнет останавливаться и в итоге остановится.

Вид в сборе

Будьте аккуратны при сборке схемы, особенно в виде ‘вороньего гнезда’, КТ315 легко сжечь подав на базу больше 6 вольт. Пока отлаживался, убил не один транзистор, благо он сам копеечный и ничего за собой не тянет. Лучше изолируйте цепь базы.

Видео демонстрации работы

Характеристики и надёжность

Данный регулятор трудится у меня уже довольно давно, экструдер успел пропустить через себя не один килограмм PLA и ABS. Проверено временем.

Специально для вас провел ‘лабораторную работу’ чтобы снять зависимость тока проходящего через вентилятор и температур радиатора и нагревательного блока. Ток замерял миллиамперметром в разрыве цепи вентилятора, а температура радиатора замерялась термопарой зажатой между второй и третьей пластиной. Каждый из режимов выдерживался более 10 минут.

Т блока (град.С) Т радиатора (град.С) Ток (мА) Комментарий

27 27 10 Вентилятор не вращается

60 35 30 Вентилятор не вращается

100 35 40 Вентилятор начал вращение

150 39 44 Обороты возросли, и будут расти далее

210 44 50

260 49 55 Максимальные обороты не достигнуты (70ма по паспорту вентилятора)

В заключение хочу показать высоту плавления PLA и ABS в тракте экструдера, прутки извлечены после 10 минут простоя в экструдере на 210 и 260 градусов соответственно. Пластик не вытекал под собственным весом т.к. сопло было закрыто столом. Белый кусочек прутка это ABS, зеленый — PLA.

Система автоматического управления вентилятором.

Система автоматического управления вентилятором своими руками.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить  вентилятор на полные обороты. Но это не самый лучший выход-шум  вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления  вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –«делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

Система автоматического управления  вентилятором №1.

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и  VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе  микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3  можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры  n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

Система автоматического управления  вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1  может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания  схемы.

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве  VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь   цепь  R5, R6,VD2     позволяет  установить    минимальные  обороты    вентилятора  при   нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет  необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную  работу.

[spacer height=»20px»]

Обновление от 13.01.2020

Изготовил еще два варианта подобных регуляторов. Без использования терморезисторов.

Статья с подробным описанием здесь.
[spacer height=»20px»]

Дополнение от 19.02.2020.

Проделал лабораторную работу с целью определения возможности работы термоуправляемого регулятора, собранного по схеме №2 (см. текст статьи), от напряжения +27 В вместо штатных +12 В.

Делать эту работу пришлось, так как у некоторых коллег что-то там не получается и работает наоборот, и вовсе не так…

Схему собрал упрощенную-всего три детали. В качестве регулирующего транзистора применил IRF630.

Схема получилась такая:

В качестве нагрузки использован 27-ми вольтовый электродвигатель ДП25-1,6-3-27.

Всё заработало сразу, и как положено-при нагреве терморезистора двигатель начинает вращаться, при охлаждении останавливается. Порог срабатывания устанавливается подстроечным резистором 10 кОм. Причем, можно выставить так, что схема будет срабатывать даже от нагрева терморезистора дыханием.

Вывод-все проверено и все работает.

Регулятор скорости вращения вентилятора на 220 В: схемы и принцип работы

Регулятор скорости и оборотов РС 1 300 (RS 1 300)Для эффективного режима работы вентилятора, получающего питание от промышленной сети, применяют регулятор скорости вращения. Вентилятор на 220 Вольт, использующий регулировку, может стать практически бесшумными и повысить комфортность обслуживаемого им помещения. Чтоб регулировать обороты, необязательно покупать готовый прибор, даже без специальных знаний его несложно собрать самостоятельно.

Принцип работы вентилятора

Согласно техническому определению, вентилятор — это прибор, служащий Подключение регулятора скоростидля перемещения газа путём создания избыточного давления или разрежения. По своему конструктивному исполнению он разделяется на осевой и радиальный. Практически все вентиляторы, применяемые в быту, представляют собой осевой тип конструкции. Использование этого вида характеризуется удобством получения направленного воздуха различной силы и давления. Вентиляторы разделяют по месту использования, они могут быть:

  • многозональные;
  • канальные;
  • напольные;
  • потолочные;
  • оконные.

Осевые, иное название аксиальные, вентиляторы в качестве основного узла используют Осевой вентиляторрабочее колесо. Это колесо располагается на оси электродвигателя, содержит внешний ротор и имеет в своей конструкции лопатки, расположенные под углом с учётом аэродинамических свойств. Благодаря такому расположению и происходит создание и формирование воздушного потока.

В качестве электродвигателя применяют однофазный асинхронный двигатель, ось которого повторяет движения нагнетаемого или разряжаемого им потока воздуха. Такой электромотор состоит из ротора, размещённого внутри статора. Промежуток между ними составляет не более двух миллиметров. Статор имеет вид сердечника с пазами, через которые намотана обмотка. Ротор выглядит как подвижная часть с валом, содержащая в своём составе сердечник с короткозамкнутой обмоткой. Такая конструкция напоминает беличье колесо.

Центробежный вентиляционный блок.При подаче переменного тока на обмотку статора, согласно законам физики, появляется переменный магнитный поток. На помещённом внутрь этого потока замкнутом проводнике возникает электромагнитная индукция (ЭДС), а значит, появляется и ток. Благодаря чему в переменном магнитном поле оказывается проводник с током. Это приводит к вращению проводника, то есть ротора.

Таким образом, чтоб создать регулятор оборотов вентилятора на 220 В, понадобится изменять величину воздействующего на ротор магнитного поля. В свою очередь, значение магнитного поля зависит от величины тока, а значит при снижении его величины уменьшается и скорость вращения.

Ещё один параметр, от которого зависит число оборотов электродвигателя, является частота переменного напряжения. Частотные преобразователи, изменяющие частоту, характеризуются сложностью изготовления и дороговизной, по сравнению с изменяющими уровень напряжения. В бытовых условиях применяются редко, хоть позволяют достигать лучших результатов в точности настройки.

По виду используемой схемотехники приборы, управляющие скоростью вращения, разделяются на:

  • тиристорные;
  • трансформаторные.

Схемы вращения

Регулятор оборотов электродвигателяТак как в основе работы вентилятора используется явление ЭДС, то это приводит к тому, что возникают паразитные вихревые токи, нагревающие металлические части электродвигателя, при изменении формы сигнала напряжения сети. Использование диммеров, служащих для управления светосилой яркости ламп, не рекомендуется из-за повышенного нагрева двигателя. Поэтому при изготовлении регулятора скорости вентилятора на 220 В, применяются полупроводниковые элементы.

Регулятор скорости на симисторе

Подключение симисторного управляющего блокаРегулирующим полупроводником служит симистор. Работает он в ключевом режиме, то есть или включён, или выключен. Симистор состоит из двух тиристоров, включённых встречно — параллельным способом. Каждый тиристор пропускает через себя только одну полуволну сигнала. Такая схема обладает маленькими размерами и имеет низкую стоимость.

В таком регуляторе используется принцип фазового управления, изменение момента включения и выключения симистора относительно фазового перехода в нулевой точке.

Подключение простейшего управляющего блокаУправление симистором осуществляется с помощью переменного резистора, в зависимости от поворота последнего задаётся порог срабатывания полупроводникового прибора. В результате чего отсекается часть синусоидального сигнала, поступающего на электродвигатель вентилятора, величина значение напряжения уменьшается и соответственно обороты двигателя тоже уменьшаются.

При управлении частотой вращения электродвигателя контроль работы тиристора происходит длительными импульсами.

Благодаря чему, кратковременные отключения активной нагрузки не изменяют режим работы схемы. Схема подразумевает разделение включения электродвигателя с тиристором VS2 и питающего напряжения 220 вольт, через диодный мост.

Управление тиристором осуществляется с помощью генератора, собранного на транзисторе VT1. Питание генератора реализуется сигналом трапециевидной формы, полученным после прохождения через стабилитрон VD1 с частотой 100 кГц. В то время как на конденсаторе C1 появится напряжение, величины которого станет достаточно для открытия транзистора, на управляющий электрод тиристора поступит положительный сигнал. Тиристор VS2 откроется и с него поступит напряжение на электродвигатель, приводящее к его запуску.

Резисторы R1, R2, R3, образуют цепочку разряда конденсатора C1. Управляя значением сопротивления R1, в качестве которого используется переменный резистор, изменяется скорость разряда конденсатора, а значит и частота оборотов вентилятора. Диод VD2, подключённый параллельно к обмотке L1, предотвращает ложное срабатывание тиристора, возникающее из-за использования нагрузки индуктивного рода.

Управление с использованием автотрансформатора

В качестве основного элемента схемы используется автотрансформатор. Он представляет собой трансформатор, в котором соединение первичной и вторичной обмотки выполнено напрямую. В результате чего одновременно осуществляется магнитная и электрическая связь. Обмотка автотрансформатора имеет несколько ответвлений с разными на них значениями величины напряжения. Преимущество такого использования заключается в достижении более высокого коэффициента полезного действия из-за преобразования лишь части мощности.

Принцип работы регулятора, скорости вращения вентилятора состоит в следующем. На первичную обмотку автотрансформатора T1 поступает питающее напряжение сети. Обмотка имеет как минимум три ответвления от части витков. При подсоединении нагрузки к разным ответвлениям получается уменьшенное напряжение питания. Используя переключатель SW1, двигатель вентилятора M коммутируется к одной из части обмотки, при этом его скорость вращения меняется. При такой работе выходной сигнал не изменяет своей формы, оставаясь синусоидальным, что положительно влияет на обмотки двигателя.

Переключатель представляет собой ступенчатую шкалу, не позволяя плавно управлять скоростью вращения. Устройства такого типа имеют большие габариты и массу, по сравнению с другими видами.

Усовершенствованной моделью является использование электронного управления.

В основе работы лежит принцип широтно-импульсной модуляции. Изменяя состояние режима работы ключевых транзисторов, образовываются импульсы, позволяющие совершать плавную регулировку выходного сигнала. Чем меньше длительность импульса и длиннее период, тем меньше мощности передаётся вентилятору, а значит и обороты вращения его снижаются. В качестве ключей применяются малошумящие полевые транзисторы, имеющие значительно большие входные сопротивления по сравнению с биполярными.

Из-за плохой помехозащищенности узел автотрансформатора выполняется непосредственно в близости от вентилятора, но обладает компактными размерами и невысокой стоимостью.

Покупка готового регулятора

Подключение регуляторов осуществляется последовательно перед электродвигателем вентилятора в разрыв цепи. В зависимости от своего вида, прибор может располагаться в любом удобном месте, встраиваться в щиток на DIN рейку, монтироваться вместо розетки, быть отдельно стоящим блоком. При этом сам блок управления и пульт регулировки могут быть как совмещены, так и разделены между собой в пространстве.

В торговых точках представлены регуляторы различного вида и ценовой стоимости в зависимости от плавности регулировки, места расположения, дополнительных функций. Наиболее популярными производителями являются:

  • Selpo.
  • Vents.
  • Vortice.
  • Soler & Palau.
  • Venmatika.
  • ЭРА.

Некоторые приборы оснащаются дополнительными функциями в виде подсветки или цифрового экрана, показывающего процентное содержание установленной скорости от максимума. Переключение скорости, в зависимости от схемотехники устройства, производится поворотом ручки с помощью галетного переключателя или кнопками.

Существуют устройства, позволяющие одним регулятором управлять сразу несколькими вентиляторами, при этом важно, чтобы общий ток не превышал ток регулятора. В них можно установить время выключения регулятора, обычно в диапазоне одного часа. Подключённое устройство запоминает и сохраняет настройки даже при его выключении.

Управлять скоростью вращения вентилятора можно используя несложные приборы, которые легко собираются самостоятельно. Затратив немного времени, получится сэкономить на покупке готового устройства.

При самостоятельном изготовлении, конечно, важно соблюдать технику безопасности, так как существует возможность попадания под опасное напряжение сети. При отсутствии желания или возможности приобретается готовое устройство, работа которого будет подкреплена гарантией от производителя. Купленное устройство имеет вид полностью законченного и эстетически оформленного прибора.

3 Объяснение простых схем контроллера скорости двигателя постоянного тока

Схема, которая позволяет пользователю линейно управлять скоростью подключенного двигателя, вращая присоединенный потенциометр, называется схемой контроллера скорости двигателя.

Здесь представлены 3 простые в сборке схемы регулятора скорости для двигателей постоянного тока: одна с использованием полевого МОП-транзистора IRF540, вторая с использованием IC 555 и третья концепция с IC 556 с обработкой крутящего момента.

Дизайн №1: Контроллер скорости двигателя постоянного тока на основе Mosfet

Очень крутая и простая схема контроллера скорости двигателя постоянного тока может быть построена с использованием всего одного МОП-транзистора, резистора и потенциометра, как показано ниже:

Использование Эмиттерный повторитель BJT

Как видно, mosfet настроен как повторитель источника или общий режим стока, чтобы узнать больше об этой конфигурации, вы можете обратиться к этому сообщению, в котором обсуждается версия BJT, тем не менее принцип работы остается тем же .

В приведенной выше конструкции контроллера двигателя постоянного тока регулировка потенциометра создает изменяющуюся разность потенциалов на затворе МОП-транзистора, а вывод истока МОП-транзистора просто следует за значением этой разности потенциалов и соответствующим образом регулирует напряжение на двигателе.

Это означает, что источник всегда будет на 4 или 5 В отстать от напряжения затвора и будет меняться вверх / вниз с этой разницей, представляя переменное напряжение на двигателе от 2 до 7 В.

Когда напряжение затвора составляет около 7 В, вывод источника будет подавать минимум 2 В на двигатель, вызывая очень медленное вращение двигателя, и 7 В будет доступно на выводе источника, когда регулировка потенциометра генерирует полное напряжение 12 В на затворе. МОП-транзистора.

Здесь мы можем ясно видеть, что вывод истока mosfet, кажется, «следует» за затвором и, следовательно, за повторителем источника имени.

Это происходит потому, что разница между затвором и истоком МОП-транзистора всегда должна составлять около 5В, чтобы МОП-транзистор работал оптимально.

В любом случае, указанная выше конфигурация помогает обеспечить плавное регулирование скорости двигателя, и конструкция может быть построена довольно дешево.

BJT может также использоваться вместо MOSFET, и фактически BJT будет обеспечивать более высокий диапазон регулирования от 1 В до 12 В на двигателе.

Видео-демонстрация

Когда дело доходит до управления скоростью двигателя равномерно и эффективно, контроллер на основе ШИМ становится идеальным вариантом, здесь мы узнаем больше о простой схеме для реализации этой операции.

Дизайн № 2: ШИМ-управление двигателем постоянного тока с помощью IC 555

Конструкцию простого контроллера скорости двигателя, использующего ШИМ, можно понять следующим образом:
Первоначально, когда схема запитана, контакт триггера находится в низком логическом положении, поскольку конденсатор С1 не заряжен.

Вышеупомянутые условия инициируют цикл колебаний, переводя выходной сигнал на высокий логический уровень.
При высоком выходном сигнале конденсатор заряжается через D2.

При достижении уровня напряжения, составляющего 2/3 напряжения питания, вывод 6, который является порогом срабатывания триггера IC.
Момент срабатывает на контакте №6, на контактах №3 и №7 устанавливается низкий логический уровень.

При низком уровне на выводе №3 C1 снова начинает разряжаться через D1, и когда напряжение на C1 падает ниже уровня, составляющего 1/3 напряжения питания, выводы №3 и №7 снова становятся высокими, вызывая цикл следовать и повторять.

Интересно отметить, что C1 имеет два дискретно установленных пути для процесса зарядки и разрядки через диоды D1, D2 и через резистивные плечи, устанавливаемые потенциометром соответственно.

Это означает, что сумма сопротивлений, с которыми сталкивается C1 во время зарядки и разрядки, остается неизменной независимо от того, как установлен потенциометр, поэтому длина волны выходного импульса всегда остается неизменной.

Однако, поскольку периоды времени зарядки или разрядки зависят от значения сопротивления, встречающегося на их пути, горшок дискретно устанавливает эти периоды времени в соответствии с его настройками.

Поскольку периоды времени заряда и разряда напрямую связаны с рабочим циклом выхода, они меняются в зависимости от настройки потенциометра, давая форму предполагаемым изменяющимся импульсам ШИМ на выходе.

Средний результат отношения метка / пространство дает выход ШИМ, который, в свою очередь, управляет скоростью двигателя постоянного тока.

Импульсы ШИМ подаются на затвор МОП-транзистора, который реагирует и регулирует ток подключенного двигателя в ответ на настройку потенциометра.

Уровень тока двигателя определяет его скорость и, таким образом, реализует управляющий эффект через потенциометр.

Частоту на выходе ИС можно рассчитать по формуле:

F = 1,44 (VR1 * C1)

МОП-транзистор можно выбрать в соответствии с требованиями или током нагрузки.

Принципиальная схема предлагаемого регулятора скорости двигателя постоянного тока представлена ​​ниже:

Прототип:

Видео-тестовое подтверждение:

В приведенном выше видеоролике мы можем увидеть, как устроена конструкция на основе IC 555. используется для управления скоростью двигателя постоянного тока.Как вы можете видеть, хотя лампочка отлично работает в ответ на ШИМ и меняет свою интенсивность от минимального свечения до максимально слабого, двигатель этого не делает.

Двигатель изначально не реагирует на узкие ШИМ, а запускается с рывком после того, как ШИМ настроены на значительно большую длительность импульса.

Это не означает, что в цепи есть проблемы, это потому, что якорь двигателя постоянного тока плотно зажат между парой магнитов. Чтобы инициировать запуск, якорь должен совершить скачок своего вращения через два полюса магнита, что не может произойти при медленном и плавном движении.Он должен начинаться с укола.

Именно поэтому двигатель изначально требует более высоких настроек ШИМ, и как только начинается вращение, якорь получает некоторую кинетическую энергию, и теперь достижение более низкой скорости становится возможным с помощью более узких ШИМ.

Тем не менее, перевод в состояние «еле-еле медленно» может оказаться невозможным по той же причине, что описана выше.

Я изо всех сил старался улучшить отклик и добиться максимально медленного управления ШИМ, сделав несколько модификаций на первой диаграмме, как показано ниже:

Сказав это, двигатель мог бы показать лучшее управление на более медленных уровнях, если бы двигатель прикреплен или обвязан грузом через шестерни или систему шкивов.

Это может произойти из-за того, что нагрузка действует как демпфер и помогает обеспечить контролируемое движение во время регулировки более низкой скорости.

Дизайн № 3: Использование IC 556 для улучшенного управления скоростью

Изменение скорости двигателя постоянного тока может показаться не таким сложным, и вы можете найти множество схем для этого.

Однако эти схемы не гарантируют постоянных уровней крутящего момента при более низких скоростях двигателя, что делает их работу весьма неэффективной.

Кроме того, на очень низких скоростях из-за недостаточного крутящего момента двигатель имеет тенденцию останавливаться.

Еще одним серьезным недостатком является то, что в этих схемах нет функции реверсирования двигателя.

Предлагаемая схема полностью лишена вышеперечисленных недостатков и способна создавать и поддерживать высокие уровни крутящего момента даже при минимально возможных скоростях.

Работа схемы

Прежде чем обсуждать предлагаемую схему контроллера двигателя с ШИМ, мы также хотели бы изучить более простую альтернативу, которая не так эффективна. Тем не менее, его можно считать достаточно хорошим, если нагрузка на двигатель невелика, и пока скорость не снижается до минимального уровня.

На рисунке показано, как можно использовать одну микросхему 556 IC для управления скоростью подключенного двигателя, мы не будем вдаваться в подробности, единственным заметным недостатком этой конфигурации является то, что крутящий момент прямо пропорционален скорости двигателя. .

Возвращаясь к предлагаемой схеме контроллера скорости с высоким крутящим моментом, здесь мы использовали две микросхемы 555 вместо одной или, скорее, одну микросхему 556, которая содержит две микросхемы 555 в одном корпусе.

Принципиальная схема

Основные характеристики

Вкратце предлагаемый контроллер двигателя постоянного тока включает в себя следующие интересные особенности:

Скорость можно плавно изменять от нуля до максимума, без остановки.

На крутящий момент не влияют уровни скорости и он остается постоянным даже при минимальных уровнях скорости.

Вращение двигателя можно перевернуть или изменить за доли секунды.

Скорость изменяется в обоих направлениях вращения двигателя.

Две микросхемы 555 выполняют две отдельные функции. Одна секция конфигурируется как нестабильный мультивибратор, генерирующий такты прямоугольной волны 100 Гц, который подается на предыдущую секцию 555 внутри корпуса.

Указанная выше частота отвечает за определение частоты ШИМ.

Транзистор BC 557 используется в качестве источника постоянного тока, который поддерживает заряженным соседний конденсатор на его плече коллектора.

Развивает зубчатую вольту

.

Как сделать ШИМ-контроллер скорости двигателя постоянного тока с использованием таймера 555 IC

В этом руководстве мы узнаем, как сделать ШИМ-контроллер скорости двигателя постоянного тока с использованием таймера 555. Мы подробно рассмотрим, как работает схема генератора ШИМ с таймером 555, как использовать ее для управления скоростью двигателя постоянного тока и как сделать для нее специальную печатную плату.

Обзор

Мы можем контролировать скорость двигателя постоянного тока, контролируя входное напряжение двигателя. Для этого мы можем использовать ШИМ или широтно-импульсную модуляцию.

PWM DC Motor Speed Control Input Voltage

ШИМ — это метод, с помощью которого мы можем генерировать переменное напряжение путем включения и выключения питания, которое подается на электронное устройство с высокой скоростью. Среднее напряжение зависит от рабочего цикла сигнала или количества времени, в течение которого сигнал включен, по сравнению с количеством времени, в течение которого сигнал отключен за один период времени.

PWM Working Principle - Pulse Width Modulation How It Works

Таймер 555 может генерировать ШИМ-сигнал при установке в нестабильный режим. Если вы не знакомы с таймером 555, вы можете проверить мое предыдущее руководство, где я подробно объяснил, что находится внутри и как работает микросхема таймера 555.

Вот базовая схема таймера 555, работающего в нестабильном режиме, и мы можем заметить, что выходной сигнал ВЫСОКИЙ, когда конденсатор C1 заряжается через резисторы R1 и R2.

555 Timer Astable Mode Formulas Calculations Time and Frequency

С другой стороны, выход ИС НИЗКИЙ, когда конденсатор С1 разряжается, но только через резистор R2. Таким образом, мы можем заметить, что если мы изменим значения любого из этих трех компонентов, мы получим разные времена включения и выключения или другой рабочий цикл выходного сигнала прямоугольной формы.Простой и мгновенный способ сделать это — заменить резистор R2 на потенциометр и дополнительно добавить в схему два диода.

555 Timer PWM DC Motor Speed Controller Circuit

В этой конфигурации время включения будет зависеть от резистора R1, левой стороны потенциометра и конденсатора C1, а время отключения будет зависеть от конденсатора C1 и правой стороны потенциометра. Мы также можем заметить, что в этой конфигурации период одного цикла, следовательно, частота, всегда будет одинаковой, потому что полное сопротивление во время зарядки и разрядки останется неизменным.

555 Timer PWM DC Motor Speed Control Potentiometer

Обычно сопротивление R1 намного меньше, чем сопротивление потенциометра, например, 1 кОм по сравнению с 100 кОм потенциометра. Таким образом, у нас есть 99% контроль над сопротивлением зарядки и разрядки в цепи. Управляющий вывод таймера 555 не используется, но он подключен к конденсатору емкостью 100 нФ, чтобы устранить любые внешние помехи от этого вывода. Сброс, контакт номер 4, активен на низком уровне, поэтому он подключен к VCC, чтобы предотвратить любой нежелательный сброс выхода.

Выход таймера 555 может потреблять или подавать ток 200 мА в нагрузку. Поэтому, если двигатель, которым мы хотим управлять, превышает это значение, нам нужно использовать транзистор или MOSFET для управления двигателем. В этом примере я использовал транзистор Дарлингтона (TIP122), который может выдерживать ток до 5А.

PWM DC Motor Speed Control with 555 Timer IC

Выход микросхемы необходимо подключить к базе транзистора через резистор, и в моем случае я использовал резистор 1 кОм. Для предотвращения скачков напряжения, создаваемых двигателем, нам необходимо использовать обратный диод, который подключен параллельно двигателю.

Теперь мы можем перейти к разработке специальной печатной платы для этой схемы. Для этого я буду использовать бесплатное онлайн-программное обеспечение EasyEDA. Здесь мы можем начать с поиска и размещения компонентов на пустом холсте. Библиотека содержит сотни тысяч компонентов, поэтому у меня не возникло проблем с поиском всех необходимых компонентов для этой схемы ШИМ-контроллера скорости двигателя постоянного тока.

PWM DC Motor Speed Control with 555 Timer IC

После вставки компонентов нам нужно создать контур платы и начать размещение компонентов.Два конденсатора должны быть размещены как можно ближе к таймеру 555, в то время как другие компоненты могут быть размещены где угодно, но все же в логическом порядке в соответствии с принципиальной схемой.

PWM DC Motor Speed Control with 555 Timer IC

Используя инструмент отслеживания, нам нужно соединить все компоненты. Инструмент отслеживания интуитивно понятен и с ним легко работать. Мы можем использовать как верхний, так и нижний слой, чтобы избежать перекрестков и сделать пути короче.

EasyEDA tracking tool

Контактные площадки компонентов, которые необходимо подключить к заземлению, устанавливаются на заземление на вкладке «Свойства контактной площадки», где нам нужно ввести GND в метку «Сеть», когда контактная площадка выбрана.

Мы можем использовать слой Silk, чтобы добавить текст на доску. Также мы можем вставить файл изображения, поэтому я добавляю изображение логотипа моего сайта, которое будет напечатано на доске. В конце, используя инструмент «Медная область», нам нужно создать область заземления печатной платы.

555 Timer PWM DC Motor Speed Control PCB Design

Здесь вы можете найти файлы проекта EasyEDA для этого проекта.

Как только мы закончим проектирование, нам просто нужно нажать кнопку «Вывод Gerber», сохранить проект, и мы сможем загрузить файлы Gerber, которые используются для изготовления печатной платы.Мы можем заказать печатную плату у JLCPCB, которая является услугой по изготовлению печатных плат EasyEDA, а также является спонсором этого видео.

JLCPCB Custom PCB manufacturing service

Здесь мы можем просто перетащить загруженный zip-файл с файлами gerber. После загрузки мы можем еще раз просмотреть печатную плату в программе просмотра Gerber. Если все в порядке, мы можем выбрать до 10 печатных плат и получить их всего за 2 доллара.

JLCPCB Custom PCB manufacturing service

Тем не менее, через неделю печатные платы прибыли, и я должен признать, что создание собственной конструкции печатной платы весьма приятно.Качество печатных плат отличное, все точно так же, как и в дизайне.

555 Timer DC Motor Speed PCB Manufactured

Хорошо, теперь мы можем перейти к вставке компонентов на печатную плату.

Вы можете получить компоненты, необходимые для этого примера, по ссылкам ниже:

Раскрытие информации: это партнерские ссылки. Как партнер Amazon я зарабатываю на соответствующих покупках.

Сначала я вставил более мелкие компоненты, резисторы, диоды и конденсаторы.

555 Timer DC Motor Speed PCB Manufactured

Я согнул их выводы с другой стороны, чтобы они оставались на месте, когда я переворачиваю плату для пайки.Что касается более крупных компонентов, я использовал малярную ленту, чтобы удерживать их на месте при переворачивании платы.

Вот окончательный вид платы, и теперь осталось подключить двигатель постоянного тока и подходящий источник питания для него.

555 Timer DC Motor Speed PCB Manufactured

Я использовал двигатель постоянного тока с высоким крутящим моментом 12 В, который я питал от литий-ионных батарей 3,7 В, соединенных последовательно, что дает около 12 В. Итак, теперь, используя потенциометр, мы можем контролировать скорость двигателя постоянного тока или сигнал ШИМ, создаваемый микросхемой таймера 555.

555 Timer PWM Generator PCB

Надеюсь, вам понравилось это руководство и вы узнали что-то новое. Не стесняйтесь задавать любой вопрос в разделе комментариев ниже.

555 Timer PWM Generator PCB.

3-канальный контроллер скорости вентилятора охлаждения ПК для корпуса процессора Вентилятор жесткого диска VGA с кронштейном PCI Питание от 12 В, 4 контакта | контроллер 12 В | скорость вентилятора контроллера скорость контроллера

HTB1v0jRi_nI8KJjy0Ffq6AdoVXaf

Описание

Увеличивайте скорость, чтобы снизить температуру компонентов компьютера, когда компоненты компьютера заняты.

Уменьшите скорость, чтобы уменьшить шум и энергопотребление, когда компоненты компьютера свободны.

Поддерживает компоненты компьютера с охлаждающим вентилятором, такие как ЦП, жесткий диск, DDR, VGA и т. Д.

Поддерживает входное напряжение 12 В

Поддержка 3-х канальной регулировки скорости вращения вентилятора одновременно, всего 18 Вт макс.

Поддерживает скорость вращения вентилятора от 30% до 100%.

Кронштейн PCI доступен для установки контроллера скорости вращения вентилятора.

Имеется регулируемая ручка для регулировки скорости вращения вентилятора охлаждения.

Доступны 4-контактные разъемы типа «папа» и «мама» для питания. Длина кабеля: 35 см

3-контактный разъем вентилятора для 3-контактного или 4-контактного разъема вентилятора.Длина кабеля: 35 см

Пакет включает в себя:

1 шт. 3 канала ПК кулер контроллер скорости вентилятора охлаждения для корпуса процессора HDD DDR VGA вентилятор

HTB1el5CdlfM8KJjSZFOq6xr5XXat

012123 (2) 012123 (3) 012123 (4) 012123 (5) 012123 (6) 012123 (7)

HTB19brai9_I8KJjy0Foq6yFnVXa4

.Контроллер скорости вентилятора настольного компьютера

, концентратор скорости вращения вентилятора корпуса контроллера вентилятора с битом 3 PCI | |

https://ae01.alicdn.com/kf/HTB1ziMSSwHqK1RjSZJnq6zNLpXaw.jpg

https://ae01.alicdn.com/kf/HTB1nL0dSNnaK1RjSZFtq6zC2VXab.jpg

О нас

Мы предоставляем хороший продукт по лучшей цене, мы поддерживаем оптовую / прямую доставку.

1. Для заказа прямой доставки, пожалуйста, отметьте «дропшиппинг», мы будем отдавать ему приоритет.

2.Для оптовой / прямой доставки заказы, если у вас есть идеи о цене или упаковке, пожалуйста, свяжитесь с заранее, мы предоставим вам лучший сервис для удовлетворения ваших требований.

us

Об оплате

Если у вас возникнут какие-либо проблемы при совершении платежа, обратитесь в центр обслуживания клиентов AliExpress, чтобы попросить о помощи: https://helppage.aliexpress.com/buyercenter/index.htm

payment

О поставках

1.Мы отправим заказы Как можно скорее в течение 2-5 дней (кроме выходных и национальных праздников) после вашего оплата происходит нормально.

2. напишите, пожалуйста, ваше полное адрес доставки с правильным номером телефона и почтовым индексом, особенно Покупатели из России и Беларуси, пожалуйста, подтвердите свое полное имя.

3.Пожалуйста, обратите внимание, что мы не несем ответственности за таможенные пошлины. Пожалуйста, сделайте таможенное оформление самостоятельно.

4.Мы предоставляем как почту Доставка и экспресс-доставка. Для большинства стран доставка осуществляется почтой. Около 25-35 рабочих дней и дольше для некоторых стран, таких как Бразилия, Перу.

Экспресс-доставка через DHL, EMS, Премиум доставка AliExpress и специальные линии, такие как Aramex. Занимает Около 7 дней. (Это задержится, если в вашей стране возникнут проблемы, работник забастовка, погодные проблемы и т. д.)

О послепродажном обслуживании

Мы надежный продавец и у нас есть наше профессиональное послепродажное обслуживание для всех наших обычаев.Если есть любой вопрос о заказе, пожалуйста, свяжитесь с нами заранее, мы всегда здесь, пока не получишь счастливый ответ.

service

Об обратной связи

1. Пожалуйста, внимательно проверьте упаковку и товар, чтобы убедиться, что нет проблем.

2. Если у вас возникли проблемы или не совсем доволен вашей посылкой, пожалуйста, не стесняйтесь Свяжитесь с нами, прежде чем оставлять отрицательный отзыв.Мы решим проблема, чтобы удовлетворить вас.

3. Если нет проблем, пожалуйста, оставьте нам 5 звезд положительный отзыв.

fb

fb

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *