Реле схема: принцип работы прибора, особенности подсоединения к электроцепи

Содержание

принцип работы прибора, особенности подсоединения к электроцепи

Реле нашли широкое применение не только в промышленности, но и в быту. Эти устройства предназначены для коммутирования электрических сетей и управления различными электроприборами. Если разобраться в их конструктивных особенностях, принципе работы, а также в схеме реле, то появится возможность самостоятельно решать различные практические задачи.

Принцип действия

Реле классифицируются по различным признакам. В соответствии с принципом работы, приборы могут быть электромагнитными, электронными, тепловыми и т. д. Так как в быту чаще всего используются устройства первых двух типов, то их и стоит рассмотреть подробнее.

Магнитное устройство

Реле этого типа имеют довольно простую конструкцию и привлекательную стоимость. При подаче тока на катушку в ее обмотке создается ЭДС. Это приводит к появлению в сердечнике магнитного поля, притягивающего якорь. Этот элемент конструкции соединен с подвижными контактами, которые и замыкают неподвижные. Если сила тока падает до определенной величины, пружина возвращает якорь в начальное положение и цепь размыкается.

Для обеспечения более высокой точности работы в конструкцию электромагнитного прибора часто вводятся резисторы. Также эти устройства оснащаются средствами защиты от перепадов напряжения и искрения.

Решить поставленные задачи можно с помощью конденсаторов. Среди преимуществ электромагнитных реле можно отметить невысокую стоимость, устойчивость к помехам, а также возможность коммутировать электроцепи с большими нагрузками, имея при этом компактные габариты.

Однако есть у прибора и некоторые недостатки:

  • Сравнительно невысокая скорость срабатывания. Это существенно ограничивает область применения реле в роли защитного устройства.
  • Поверхности контактов подвержены окислению и деформации под воздействием искр. В результате срок эксплуатации прибора сокращается.
  • Во время работы возникают помехи. Для защиты электронных блоков реле приходится экранировать.

Электронный прибор

Использование полупроводников при изготовлении реле позволяет избавиться от многих недостатков, свойственных электромагнитным моделям. Транзистор является тем элементом, который способен отлично справляться с ролью коммутатора. При подаче на переход база-эмиттер напряжения с определенными характеристиками через цепь коллектор-эмиттер начнет проходить электроток.

Его номинальное значение будет значительно выше в сравнении с цепью базы. Именно это свойство транзисторов используется для усиления сигналов. Если сравнивать электромагнитные и электронные реле, то вторые обладают следующими преимуществами:

  • Полупроводниковые переходы не теряют работоспособность с течением времени.
  • Обладают небольшими габаритами и весом.
  • Высокая скорость срабатывания.
  • Даже при сотнях тысяч переключений в секунду электронные приборы не выходят из строя.

К сожалению, здесь также не обошлось без недостатков. Среди них основным является неустойчивость к электромагнитным помехам. Некоторые устройства могут быть выведены из строя статическим зарядом.

Кроме этого, во время работы прибора выделяется большое количество тепловой энергии, которую необходимо отводить.

Особенности подключения

Существует много видов реле. Изучить схему подключения реле можно на примере промежуточного устройства. Оно нашло широкое применение в различных системах автоматики и управления. Подсоединить прибор к электроцепи можно параллельно либо последовательно. Чаще всего устройства оснащены несколькими парами контактов. Следует помнить, что они могут быть двух типов:

  • Нормально открытые. Обозначаются литерами NO.
  • Нормально закрытые. Маркируются буквами NC.

За нормальное состояние прибора принимается отсутствие сигнала на обмотке. Так как у катушек нет определенной полярности, то контакты можно подсоединять в произвольном порядке. Прибор устанавливается между исполнительным механизмом либо устройством и источником задачи. Однако он может использоваться и в качестве контактора.

Это устройство оснащено четырьмя группами контактов. Три из них используются для управления нагрузкой, а одна необходима для удержания электротока на обмотке. Также можно подключить реле к датчику движения для автоматического управления системой освещения помещения. Схема такого подсоединения довольно проста:

  • Катушка прибора соединяется с датчиком.
  • Силовой контакт подключается к системе источников света.

Следует помнить, что универсальной рекомендации по подключению приборов нет. Схемы подсоединения подбираются в соответствии с решаемыми задачами. Они во многом похожи, и если разобраться с одной из них, проблем при использовании других возникнуть не должно.

Схема Подключения Четырехконтактного Реле — tokzamer.ru

На контакт 85 подаём выход с сигнализации. Удачи Вам в творчестве!!!


Диапазон электропитания: 8…16В. Ток управления: не более 0,2А.

Простейшие электронные устройства, которые возможно создать самостоятельно, просты и удобны в эксплуатации, работают бесперебойно и надежно.
Установка дополнительного реле стартера на Ваз 2112

Если PN-переход повреждается — напряжение включаемой цепи может попасть на цепь управления, если это кнопка — ничего страшного, а если это микросхема или микроконтроллер — они, скорее всего, тоже выйдут из строя, поэтому реализуется дополнительная гальваническая развязка через оптопару или трансформатор. При ее нажатии напряжение подается на один из управляющих контактов реле, и оно замыкает силовую цепь — лампы в фарах зажигаются.


Определенные неудобства создает пластмассовый корпус электронного реле, который не всегда помещается на штатное место расположения.

Напряжение подается на управляющие контакты реле обмотку , обмотка притягивает силовые контакты реле друг к другу, реле срабатывает и замыкает или размыкает электрическую цепь своими силовыми контактами.

Силовые контакты маркируются всегда как 30, 87 и 87а. Напряжение срабатывания катушки.

Благодаря этому, данными устройствами можно управлять маленькими красивыми кнопочками вместо грубых и больших рубильников.

Подключение четырехконтактного реле

Электронное реле: схема и принцип работы

Периодичность мигания напрямую связана с емкостью конденсатора. Исключение составляет схема соединения реле поворотов типа РС и его аналогов, применяемых на грузовых автомобилях. Пока оценок нет.


Диапазон электропитания: 8…16В. Клемма которая расположена в другом направлении относительно остальных — это 30 или 87?

Реле как бы разделяет провод, идущий от блока предохранителей к насосу на две части, которые могут замыкаться внутри реле при подаче напряжения на управляющие контакты магнита. Подключение электронного реле от электромагнитнотеплового отличается лишь наличием вывода соединённого с массой автомобиля.

Схема блокировки двигателя с самоподхватом самоблокировкой.

А может и 3-канальным, что позволит подключать 4 полюса к нагрузке например, три фазы В 4.

Это обусловлено способом подключения контрольных ламп.

Для крепления корпуса имеются отверстия и проушины под болтовые соединения. Поэтому, любые изменения конструкции транспортного средства вы производите на свой страх и риск.
как подключается автомобильный сигнал

Смотрите также: Сп прокладка кабельных линий

Как правильно подключить 4 контактное реле. Как правильно подключить. Kak-PravilnoDelat

Я тоже думаю, что ничего сложного тут нет.

Эти элементы используют для защиты управляющих цепей от перегрузок возникающих в момент размыкания цепи катушки реле. Клемма которая расположена в другом направлении относительно остальных — это 30 или 87? Я не рекомендую подключение ДХО по такой схеме.

В данных схемах реле включается последовательно с сигнальными лампами через переключатель поворотов. При управлении штатным органом для разблокировки, кнопка или геркон не нужны, диод D2 необходим.

Провода на противотуманные фары идут от блока предохранителей, но по пути они проходят через реле. Если нам надо из слаботочного отрицательного выхода сигнализации в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.


Краткий обзор отечественных стандартных реле в корпусах как изображено ниже на фотографии. На авторство не претендую, но до этого додумывался сам.

Реле электромагнитное 12V 4-х контактное с кронштейном АВАР


Чем ниже сопротивление контактов, тем меньше теряется напряжения на них и меньше нагрев. Прежде чем изучать схему подключения какого-либо автомобильного устройства через реле, нужно знать, что такое реле вообще и как оно работает.

В некоторых случаях значительно снижается уровень громкости звука, сопровождающего работу прибора. Схема реле содержащее диод и подключение его обмотки: При подаче напряжения на контакты управления реле срабатывает и замыкает или размыкает электрическую цепь силовыми контактами. Часто эти диоды устанавливают в разъеме, ответная часть — колодка или soket в который вставляется реле. Если на корпусе реле изображен значок диода, значит при его включении необходимо соблюдать полярность на контактах управления. Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до В с током до 10 А.

Данная статья пригодится всем любителям доработок тюнинга в части электрооборудования автомобиля. Когда включается сигнал поворота, происходит замыкание цепи.
Как работает и устроено 5 — ти контактное реле

Войти на сайт

Включаем габариты или ближний свет, ДХО тухнут.

Первая группа контактов замыкает цепь, где имеется контрольная лампочка, расположенная на панели приборов. Подключение контактов осуществляется по принципу обычного выключателя, то есть последовательно с лампочкой. Для управления реле блокировки можно использовать секретную кнопку, пару геркон-магнит или штатный орган управления выдающий сигнал управления положительной полярности при включенном зажигании например силовой сигнал на стеклоподъёмнике или обогрев заднего стекла.

Принцип работы электронного реле очень простой. Пока оценок нет.

Данные недостатки устраняются путем замены штатного прибора на электронную конструкцию. Это связано с особенностями дугообразования при коммутации разных электроцепей. А чисто противотуманки можешь подключить через обычное реле.

Статья по теме: Глубина прокладки кабеля

А это собственно и сама схема подключения стандартного 4-х контактного реле:

Питание на него подается блоком управления двигателем дальше — компьютером и, чтобы дорожки платы компьютера выдержали ток, потребляемый насосом, их пришлось бы делать чересчур мощными. В этом случае, вы имеете право установить ДХО без каких-либо согласований с сертифицирующими органами. Белые точки — пробой нагара искрой при подключении потребителя, через эти места ответный контакт может привариваться, оставляя подключенным потребитель.

Силовые реле, импортные и отечественные, выполняют одинаковую функцию. Именно на него надо подавать напряжение для питания потребителей; Контакты 87 и 87А — контакты присоединения потребителей. Кроме этого, в отдельных случаях, реле позволяет экономить на проводах. Это будет расцениваться как внесение изменений в конструкцию транспортного средства.

Они являются составными элементами задающего генератора и цепей управления. У вас нет возможности отключить ДХО до тех пор, пока вы не вытащите ключ из замка зажигания. Частота мигания не зависит от мощности лампочек, поэтому в схему можно включать светодиодные, галогенные и другие лампы.

Обычно реле имеет 5 контактов бывают и 4-хконтактные и 7-ми и т. Варианты схемных решений подключения реле. Схема реле содержащее диод и подключение его обмотки: При подаче напряжения на контакты управления реле срабатывает и замыкает или размыкает электрическую цепь силовыми контактами. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче. Работа реле основана на работе магнитного поля.
Схема подключения 4х контактного реле

Схема монтажа — Подкапотный блок R6

Схема внешних выводов

Обозначение внешних выводов

Устройство выпускается с текстовой или цветной маркировкой

GNDМасса (–)
BATПитание (+)
IGNЗажигание (+)
NOНормально разомкнутый контакт реле (НР)
NCНормально замкнутый контакт реле (НЗ)
COMОбщий контакт реле
UNLOCKОткрытие замка капота
LOCKЗакрытие замка капота
INPUTВход концевого выключателя капота (–)
OUTPUT

Выход на сирену (+)

EXT

Вход датчика температуры

Провод IGN — вход подключения к зажиганию автомобиля. На проводе IGN должен быть потенциал +12 В во время включения зажигания и работы двигателя. 

Провода NO, NC, COM — выходы встроенного электромеханического реле, подключаются к блокируемой цепи.  Для осуществления блокировок можно использовать как нормально замкнутые (COM и NC), так и нормально разомкнутые (COM и NO) контакты. При монтаже цепей необходимо следить за длиной и сечением проводов, используемых при коммутации, поскольку коммутируемый ток может быть значительным. Если ток в блокируемой цепи превышает 10 А, то необходимо использовать дополнительное внешнее реле.


Провода UNLOCK, LOCK — силовые выходы управления электроприводом замка капота. Выходы построены по силовой схеме (максимальный выходной ток 12А), поэтому для управления замками не требуются дополнительные силовые модули. При отпирании замка капота на проводе UNLOCK появляется импульс +12 В на 0,8с. При запирании замка капота на проводе LOCK появляется импульс +12 В на 0,8с.

ВыходИмпульс «Открыть»Импульс «Закрыть»
UNLOCK+
LOCK+

Провод INPUT —  подключается к  концевому выключателю капота, это позволит системе отслеживать состояние  капота.

Провод OUTPUT — выход управления сиреной. Максимальный допустимый ток 2 А. Для подключения соедините один из проводов сирены с проводом OUTPUT, а второй провод соедините с «массой».

Провод EXT — вход подключения датчика температуры. Двухпроводной датчик температуры подключается к проводам EXT и GND, полярность подключения не важна.

Места подключения проводов датчика температуры должны находиться как можно ближе к блоку, чтобы обеспечить максимальную точность измерений датчика температуры двигателя.

Устройство, схема и подключение промежуточного реле. Часть 2

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.

5. Основные параметры электромагнитных реле.

Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.

Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.

1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.

Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:

2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.

Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.

3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.

4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.

Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.

5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).

Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.

Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.

6. Подключение промежуточных реле.

Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.

Разберем подключение реле на примере простых схем.

6.1. Схема с нормально разомкнутым контактом.

Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.2. Схема с нормально замкнутым контактом.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.

При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.

В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.

При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.

Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.

6.4. Схема с гальванической развязкой.

На схеме показаны две цепи – управляющая и исполнительная (силовая):

управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;

исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.

6.5. Схема технологической сигнализации.

А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.

Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.

Рассмотрим упрощенную схему с одним контролируемым параметром.

Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.

При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.

Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.

Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.

И в дополнение к статье видеоролик о промежуточных реле.

Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!

Литература:

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Подключение промежуточного реле: видео, схема, инструкция

Промежуточное реле необходимо для выполнения вспомогательных функций. Оно широко применяется в системах управления и автоматики. Основное назначение элемента – это распределение и переключение нагрузок в электросетях. Реле необходимо для преобразования или передачи одного сигнала в другой. Используется как для постоянного, так и для переменного тока. Как правило, изделие применяют для управления более мощными устройствами: силовыми контакторами, исполнительными устройствами системы автоматики и сигнализации. В этой статье мы расскажем читателям сайта Сам Электрик о том, как выполняют подключение промежуточного реле, предоставив схему монтажа и видео инструкцию.

Способы включения устройства

Как подключить механизм в систему? Подключение приспособления в электрическую цепь происходит по двум вариантам:

  1. Параллельно подключенные. При таком способе устройства бывают основные выходные и быстродействующие. У последних время срабатывания составляет 0,02 секунды. Как правило, у механизма стандартное время срабатывания колеблется между 0,02 и 0,1 секундой.
  2. Последовательно подключенные. Используется в случаях мгновенного кратковременного срабатывания.

Когда есть нормальное стабильное напряжение источника питания, то промежуточное реле должно надежно срабатывать. Помимо этого, предусмотрена надежная их работа при аварийном понижении напряжения до 40–60%. По особенности в конструкции такой элемент преобразования может быть с одной обмоткой, двумя или тремя (последние встречаются крайне редко).

Подключение промежуточного реле является важным для любого оборудования или прибора. Ведь это позволяет не только автоматически прерывать цепь, но и с его помощью можно расширять функциональные способности других реле, которые расположены в этой электрической цепи.

Долговечность устройства зависит от количества его срабатывания. То есть она характеризуется численностью циклов срабатывания и возвратом в свое первоначальное положение. Степень защищенности аппаратуры от различных нежелательных факторов, что окружают конструкцию, оценивается по такому критерию, как время перехода контактов из одного положения в другое.

Схемы подключения

После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.

Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:

На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.

Как подключить приспособление указано на рисунке ниже:

В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:

Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.

Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:

Еще один вариант установки электронного пускателя – к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):

В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот и все, что хотелось рассказать вам о том, как правильно подключить данный аппарат. Надеемся, предоставленная видео инструкция и схемы подключения промежуточного реле были для вас полезными!

Материалы по теме:

Проверка реле холодильника на работоспособность: схема, описание принципа работы

Почти во всех домашних холодильниках установлены однофазные электродвигатели, для старта которых используется пусковое устройство. Когда оно выходит из строя, компрессор не запускается. При условии наличия инструментов и зная, как проверить реле холодильника, можно попытаться устранить неисправность.

Всё о пусковом реле в холодильнике

Статья написана для специалистов с соответствующей компетенцией. Диагностика и ремонт холодильника должны выполняться профессионалами. Самостоятельный ремонт может быть опасен для здоровья и губителен для техники.

Дисклеймер

Схема подключения пускового реле холодильника

Эта деталь нужна для запуска асинхронного однофазного мотора компрессора. В подключении реле нет никаких сложностей. К статору двигателя подходит пусковая и рабочая обмотки. Первая участвует в пуске и запуске компрессора, вторая поддерживает ротор в рабочем состоянии, непрерывно подает переменный ток. Имеется пускозащитное реле, которое регулирует подачу и отключает питание на рабочую и пусковую обмотку.

Индукционное замыкание

На вход устройства подают питание: «ноль» и «фазу», на выходе последняя делится на 2 линии. Одна через пусковой контакт подходит к пусковой обмотке, другая соединяется с рабочей обмоткой мотора. В реле на рабочую обмотку подается ток через пружину, сопротивление которой довольно высокое, затем через соединение с биметаллической перемычкой. Этот элемент обладает свойством изгибаться в одном направлении под воздействием повышенной температуры. Как только в цепи ток сильно увеличивается, к примеру, если происходит замыкание между витками или заклинивает двигатель, пружина, которая соприкасается с перемычкой, нагревается. Последняя меняет форму, после чего контакт размыкается и компрессор выключается.

Для того чтобы запустить мотор в данной схеме используют катушку, последовательно подключенную в цепь с рабочей обмоткой. Когда ротор находится в неподвижном состоянии, подается напряжение, которое провоцирует повышение тока на катушке. Образуется магнитное поле, оно притягивает подвижный сердечник, он в свою очередь замыкает пусковой контакт. После того как ротор наберет обороты, происходит понижение тока в сети, уменьшение магнитного поля. Пусковой контакт размыкается компенсирующей пружиной либо силой тяжести.

Позисторное включение

Пускатель состоит из конденсатора и позистора, который является разновидностью теплового резистора. В схеме компрессора конденсатор установлен между шинами стартовой и рабочей обмотки. Этот механизм обеспечивает смещение фазы, которое нужно для того, чтобы включился мотор компрессора. Со стартовой обмоткой позистор подключен последовательно. При пуске его сопротивление незначительное, в эту минуту через обмотку протекает большой ток. Когда он проходит, позистор нагревается и сильно повышается его сопротивление. Из-за этого почти полностью блокируется вспомогательная обмотка. Остывает деталь после того, как  на компрессор прекращается подача напряжения.

Как проверить пусковое реле холодильника

Проверку пускового реле холодильника проводят, если:

  • после недолгой работы отключается мотор;
  • прибор не включается при наличии тока и исправных проводов;
  • температура в камерах выше, чем положено.

Дома отремонтировать реле можно, если возникли проблемы с контактами: они обгорели, окислились, покрылись ржавчиной. Перед тем как проверить пусковое реле холодильника на работоспособность, надо уточнить правильно ли расположено это устройство. Оно должно находиться строго вертикально. В наклонном положении сердечник катушки не успевает за отведенное время втянуться. Если реле включения компрессора холодильника стоит, как ему положено, причина в другом. Деталь снимают, у модели ДХР ее располагают клеммами в свою сторону, LS-08В – вверх тыльной поверхностью, РТК-Х и РТП-1 – стрелкой вниз. Проверяют, в каком состоянии находятся контакты. Сильно грязные либо окисленные работать нормально не могут. Если на гнездах есть горелые следы, проводить диагностику не имеет смысла, реле подлежит замене.

Тестером проверяют, есть ли между клеммами контакт. Если нет, то концы зачищают наждачной бумагой. Пластину поднимают, чтобы осмотреть направляющий шток. При наличии ржавчины обрабатывают специальным раствором.

При отсутствии перечисленных выше проблем, проверяют поступление напряжения. Следует прозвонить устройство, воспользовавшись мультиметром либо омметром.

Принцип работы реле холодильника

Пусковое электромагнитное реле работает по принципу замыкания контакта, который предназначен для того, чтобы сквозь пусковую обмотку пропускать ток. Главным действующим элементом является соленоидная катушка. В цепь с основной обмоткой мотора она подключена последовательно. Когда компрессор запускают при статичном роторе, по этой катушке проходит высокий стартовый ток. Это приводит к созданию магнитного поля. Оно двигает сердечник, на который поставлена планка, проводящая ток. Она замыкает контакт на пусковой обмотке. Ротор начинает разгоняться. Как только число его оборотов повышается, ток и напряжение уменьшаются. Сердечник под воздействием силы тяжести либо компенсирующей пружины становится на первоначальное место. Это приводит к размыканию контакта. Электродвигатель поддерживает вращение ротора, пропускает ток через рабочую обмотку. Потому реле срабатывает лишь после того, как ротор остановится.

Схема термореле холодильника

В электрической схеме термореле есть 2 входа от источника питания: один – ноль, второй – фаза. Последний вход расходится тоже на два: напрямую на рабочую обмотку и через разъединяющиеся контакты на пусковую обмотку.

При отсутствии для реле посадочного места, подключая его к компрессору, нужно четко знать, как соединять контакты. В этом поможет приложенная документация, но можно разобрать компрессор, чтобы понять расположение проходных контактов.

Возле выходов имеются символьные значения:

  • общий выход – С;
  • рабочая обмотка – R;
  • пусковая обмотка – S.

Реле на моделях холодильников различаются методом крепления на компрессоре или на раме прибора. У этих устройств собственные токовые характеристики. Если предстоит менять реле, это необходимо учитывать.

Следует подбирать устройство с полным совпадением характеристик, желательно такой же модели.

Как проверить реле холодильника на работоспособность мультиметром

В современных холодильниках устанавливают позисторное реле. Для проверки его работоспособности надо воспользоваться мультиметром. Его щупы соответственно подводят к клеммам рабочей и пусковой обмотки, между которыми находится позистор. Если показатель сопротивления примерно 30 Ом, устройство исправно.

Можно проверить другим способом. Вскрывают корпус реле, к сторонам диска позистора подводят щупы тестера и замеряют сопротивление. Заодно смотрят, чтобы на нем не было трещин и сколов. Если компрессор находится в рабочем состоянии, однако не включается по команде блока управления, значит, на пусковой обмотке статора нет напряжения. Такое может случиться, если перегрелся позистор, возникли проблемы с контактной планкой или произошел разрыв цепи, а также сработала система защиты, которая потом не вернулась в прежнее положение.

Бывают ситуации, когда аппарат включается на несколько секунд, потом отключается. Такое в основном происходит из-за того, что срабатывает защитный механизм реле. Проблема может скрываться в неисправности рабочей обмотки мотора. Также при неисправном механизме и небольшом нагреве происходит ложное срабатывание. Нужно проводить полное диагностирование пускозащитного реле, потому что существует много причин поломки.

В индукционном устройстве достают соленоид, проверяют контакты. Если они окислены, то зачищают при помощи наждачной бумаги. Сломанный сердечник меняют, спиртом протирают поверхности, которые соприкасаются.

Индукционное реле ставят строго в направлении, которое указано стрелкой.

После всех этих действий реле подсоединяют к компрессору и включают холодильник. Мотор должен заработать. Если этого не произошло, надо проверять компрессор.

Как проверить РТП-1 и РТК-Х

Чтобы осуществить проверку, реле ставят стрелкой вверх и прозванивают мультиметром первый и третий контакты. Если звуковой сигнал есть, устройство находится в рабочем состоянии. В моделях РТП-1 и РТК-Х желательно проводить визуальный осмотр, потому часто случается замыкание через пластину, которая держит контакты.

Как проверить ДХР и LS-08B

ДХР кладут планкой с клеммами вверх, мультиметром прозванивают между первой и четвертой либо первой и третьей клеммами. LS-08B располагают вверх внутренней стороной, прозванивают между второй и всеми клеммами или третьей и всеми. Там, где они не прозваниваются, необходимо искать неисправность.

Проверка термореле

Если холодильник не хочет включаться, долго не выключается, либо работает без перерыва, причину надо искать в терморегуляторе. Его демонтируют, на контакты насаживают перемычку. Если включение произошло, то проверяют термостат. Деталь опускают в холодную воду, измеряют выходное сопротивление или прозванивают выходы.  Если есть сопротивление, либо сигнал отсутствует, термореле меняют.

Пусковое реле имеет несложную конструкцию, поэтому найти и устранить неисправности не трудно. Только нужно делать все аккуратно и точно, потому что от того как будет все сделано зависит работоспособность холодильника. Однако раскрошившийся в процессе работы корпус, особенно там, где крепятся клеммы, или негодный позистор отремонтировать невозможно.

Схемы включения реле и пускателей

Схемы включения реле и пускателей

Программа КИП и А

Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.

Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.

Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Простая схема управления реле / пускателем

Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.


Рисунок 1. Простая схема управления реле / пускателем


K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами.
SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом
SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом
K1.1 – нормально разомкнутый контакт реле K1
K1.2…K1.4 – контакты реле K1 для коммутации силовых цепей

Принцип действия

При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.

Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.

При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.

Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.

Схема управления реверсивным электродвигателем

Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.


Рисунок 2. Схема управления реверсивным электродвигателем


K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым.
SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом.
SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом

Принцип действия

При нажатии кнопки SB1Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.

Оно замыкает свой контакт самоподхвата K1.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

При нажатии кнопки SB2Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2.1, удерживая таким себя во включенном состоянии.

Кроме того, оно размыкает нормально замкнутый контакта K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».

Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.

При нажатии кнопки SB3Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.

Замечания.

Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).

 

Что такое реле? — Основы схемотехники

Реле — это электромагнитный переключатель, который размыкает и замыкает цепи электромеханическим или электронным способом. Относительно небольшой электрический ток, который может включать или выключать гораздо больший электрический ток, приводит в действие реле. Реле работают как некоторые электрические изделия, поскольку они получают электрический сигнал и отправляют сигнал другому оборудованию, включая и выключая переключатель. Даже если контакт реле нормально замкнутый или нормально разомкнутый, они не находятся под напряжением.Его состояние изменится, только если на контакты подать электрический ток.

Реле

используются во многих приложениях. Электромагнитные реле защищают различное оборудование переменного и постоянного тока. Он также используется в качестве вспомогательных реле в контактных системах схем защитных реле, для дифференциальной защиты и защиты от максимального или минимального тока различного оборудования переменного и постоянного тока. Текущая схема ретрансляции пилот-сигнала несущей защищает линии передачи.

Как работают реле

Конструкция реле

На рисунке выше показана схема внутренних секций реле.Катушка управления окружает железный сердечник. Электромагнит начинает подавать питание, когда ток проходит через катушку управления, а затем усиливает магнитное поле. Электромагнит подключается к источнику питания через контакты нагрузки и управляющего переключателя. Верхний контактный рычаг притягивается к нижнему фиксированному рычагу и затем замыкает контакты, что приводит к короткому замыканию. Затем контакт перемещается в противоположном направлении и создает разрыв цепи после обесточивания реле.

Подвижный якорь вернется в исходное положение при отключении тока катушки. Сила, вызывающая его движение, будет почти такой же, как половина силы магнитного поля. Пружина и гравитация обеспечивают эту силу.

Реле

могут работать двумя способами. Первый — в приложении низкого напряжения, а другой — в приложении высокого напряжения. Он используется для снижения шума всей цепи в системах с низким напряжением. С другой стороны, реле уменьшают искрение в высоковольтных приложениях.

Что такое обратный ход индуктора?

Обратный ход индуктора — это скачок напряжения, создаваемый индуктором при отключении или уменьшении источника питания. Скачок напряжения происходит, когда ток, протекающий через катушку индуктивности, постоянный. Постоянная времени индуктора ограничивает скорость изменения тока точно так же, как постоянная времени конденсатора ограничивает скорость изменения напряжения на его выводах.

Всплеск напряжения обратного хода

Обратное напряжение, создаваемое индуктивными нагрузками, повредит компонент, используемый для размыкания и замыкания цепи.Индуктор найдет способ заставить ток соответствовать его кривой рассеяния. Как показано на рисунке выше, падение напряжения на резисторе путем переключения его полярности будет поддерживать ток, протекающий в катушке индуктивности. Для этого используется энергия магнитного поля. Ток по-прежнему не будет течь с идеальной скоростью катушки индуктивности, даже если уже есть падение напряжения на резисторе зазора. Перед размыканием переключателя индуктор хочет, чтобы ток составлял 99%. Однако умножение небольшого тока на такое большое сопротивление приведет к огромному напряжению.Как показано на рисунке, катушка индуктивности использовала избыток накопленной энергии для создания огромного отрицательного потенциала на одной стороне резистора зазора для достижения большого падения напряжения. Следовательно, ток течет согласно кривой диссипации.

Зачем реле нужен ограничитель переходных процессов?

Реле

нуждается в ограничителе переходных процессов, чтобы предотвратить возможность выхода из строя коммутационного устройства в цепи из-за индуктивного обратного хода. Он обеспечивает протекание тока после отключения индуктора.

Замкнутый контур с обратным диодом

На рисунке выше полярность источника питания и диода противоположна друг другу. Таким образом, диод находится в обратном смещении всякий раз, когда переключатель замкнут. Поскольку это обратное смещение, это не повлияет на схему, потому что диод не пропускает ток.

Обрыв цепи с обратным диодом

На рисунке выше показана разомкнутая цепь, в которой катушка индуктивности поменяла полярность, а диод находится в прямом смещении.В этой установке диод позволяет течь и рассеивать ток с той скоростью, которую хочет индуктор. Добавление диода дает возможность протеканию тока. Таким образом, катушка индуктивности должна создавать лишь небольшое падение напряжения для развития идеального протекания тока, поскольку диоды имеют почти нулевое сопротивление при прямом смещении. При такой настройке коммутационное устройство не будет повреждено. Следовательно, когда переключатель разомкнут, обратная полярность индуктора будет соответствовать полярности диода и предотвратит скачок напряжения обратного хода.

Нормально открытый, нормально закрытый и общий зажим

  • Нормально открытый (NO) терминал — подключите ваше устройство (например, светодиод или любую нагрузку) к этому терминалу, если вы хотите, чтобы устройство было выключено, когда реле не запитано, и включено, когда реле запитано.
  • Нормально замкнутый (NC) терминал — подключите к этому терминалу, если вы хотите, чтобы ваше устройство было выключено, когда реле включено, и нормально включалось, когда реле не запитано.
  • Общий терминал — это терминал реле, к которому вы подключаете первую часть вашей цепи.Когда реле находится под напряжением, а переключатель замкнут, общая клемма и нормально разомкнутая клемма имеют целостность. С другой стороны, когда реле не запитано, а переключатель разомкнут, общая клемма и нормально закрытая клемма имеют целостность.
  • COIL — клеммы, на которые подается напряжение для подачи питания на катушки, которые в конечном итоге замыкают переключатель. Здесь полярность не важна. Любая из сторон может быть отрицательной или положительной. Однако при использовании диода полярность имеет значение.

Контакты в реле 5 В SRD-05VDC-SL-C

Пример схемы с использованием реле 5 В SRD-05VDC-SL-C

S-контактный разъем является входом. Контакт + подключается к источнику питания +5 В постоянного тока, а контакт — подключается к заземлению источника питания. Реле и светодиод будут работать при наличии высокого сигнала на входе S. Диод на катушке реле предназначен для предотвращения ЭДС от катушки. Транзистор обеспечивает усиление по току, а небольшой входной ток может переключать относительно большой ток, необходимый для работы катушки реле.Вы можете подключить вход S платы реле к любому из цифровых выходов Arduino Uno. В данном случае он подключен к выводу 13, который можно включать и выключать. Лампочка и аккумулятор 12 В подключены последовательно к общей клемме и нормально разомкнутым штыревым контактам на модуле реле. Реле сработает и включит лампочку, когда на выходе Arduino высокий уровень. Если добавить еще одну лампочку к нормально замкнутому штыревому контакту реле, будут попеременно мигать лампочки.


Релейные схемы

»Примечания по электронике

При использовании реле, электромеханических реле или герконов необходимо соблюдать некоторые меры предосторожности для обеспечения максимальной надежности цепей и работы.


Технология реле включает:
Основы реле Герконовое реле Характеристики герконового реле Цепи реле Твердотельное реле


Реле, включая герконовые реле, очень просты в использовании, однако при их использовании можно предпринять несколько простых мер предосторожности, чтобы обеспечить наилучшие характеристики и максимальную надежность.

Понимание некоторых схемотехники, необходимой для реле, может иметь большое значение, особенно при сопряжении реле с другими электронными схемами.

Рассмотрение схем реле можно разделить на две основные области: схемы драйверов и коммутируемые схемы.

Применение правильных компонентов и защиты для обоих может существенно повлиять на работу схемы, а также на надежность реле.

Цепи управления реле

В релейных схемах, используемых для управления реле, часто используются полупроводниковые устройства.Хотя в простейших релейных схемах просто включается переключатель, замыкающий цепь, для применения реле часто требуется слабый сигнал, возможно, от какой-либо схемы микроконтроллера или другого устройства для приведения в действие реле.

При такой работе необходим полупроводниковый драйвер. Самый простой — биполярный транзистор, хотя полевые транзисторы работают одинаково хорошо.

Цепь реле с общим эмиттером NPN
Реле приводится в действие катушкой. Это создает магнитное поле, которое используется для приведения в действие реле, будь то герконовое реле или электромеханическое реле.Может означает, что когда полупроводниковый переключатель находится во включенном состоянии, ток начнет течь. Оно будет постепенно увеличиваться в результате индуктивности, и это будет означать, что до срабатывания реле пройдет определенное время. Однако, когда переключатель внезапно открывается, возникает большая обратная ЭДС. Он может быть достаточно большим, чтобы повредить драйвер.

Уровень генерируемой обратной ЭДС будет равен -L di / dt — другими словами, чем выше скорость изменения, тем больше генерируемое напряжение обратной ЭДС.Даже при низких значениях питающей шины генерируемые противо-ЭДС могут возрасти до нескольких сотен вольт, если переключение происходит достаточно быстро. Этого более чем достаточно, чтобы разрушить полупроводниковый прибор.

Простая схема управления реле на транзисторе с общим эмиттером

Для подавления этой обратной ЭДС поперек катушки обычно устанавливается диод. Поскольку обратная ЭДС будет иметь полярность, противоположную нормальному напряжению на катушке, диод, который при нормальной работе имеет обратное смещение, перейдет в прямую проводимость, и весь ток, вызванный, кроме обратной ЭДС, рассеется, тем самым подавляя обратную ЭДС. .Используя схему диодной защиты для драйвера реле, на него будет воздействовать только максимальное напряжение питания плюс напряжение прямой проводимости диода, которое составляет 0,6 или 0,7 вольт.

В идеале ограничивающий диод должен располагаться как можно ближе к катушке реле. В случае схем герконового реле код можно даже поместить внутри мю-металлического экрана — это помогает снизить уровень генерируемых радиочастотных помех и может улучшить характеристики ЭМС.

Когда эта схема используется в типичной схеме драйвера общего эмиттера, которая, вероятно, является наиболее обычной формой, можно видеть, что диод подключается непосредственно к катушке реле.

Когда на вход подается высокое напряжение, это приводит к тому, что ток течет в цепи базы, включая транзистор, заставляя ток течь через катушку реле и приводя в действие переключатель.

В этой конкретной схеме резистор последовательной базы выбран равным 2 кОм. Это обеспечивает достаточный базовый ток для включения транзистора реле. В схеме требуется ограничить базовый ток. Резистор от базы до 0В выбран равным 22 кОм. Это должно быть примерно в десять раз больше, чем у последовательного резистора, и это необходимо для обеспечения возврата базы к нулю вольт, если база разомкнута или напряжение возбуждения снято.

Значения следует выбирать для конкретных условий схемы, коэффициента усиления транзистора, рабочего тока реле и т. Д.

Также возможно использовать транзисторы PNP вместо показанной версии NPN. При этом, очевидно, необходимо поменять местами источники питания, но также необходимо поменять полярность диодов.

Схема реле эмиттерного повторителя NPN
Хотя схема реле с общим эмиттером будет самой популярной, иногда бывает полезно использовать конфигурацию с общим коллектором или эмиттерным повторителем для схемы реле.

Эта схема реле просто заменяет резистор эмиттера катушкой реле. И снова диод включен в цепь реле, чтобы предотвратить повреждение от обратной ЭДС, индуцированной при выключении.

Базовый резистор помещается в схему для ограничения тока базы, хотя во многих случаях это может не требоваться.

Простая схема управления реле с эмиттерным повторителем

Как и в схеме с общим эмиттером, в этой схеме также может использоваться PNP-транзистор, но с обратной полярностью диода и питанием.

В некоторых случаях может потребоваться более высокий уровень усиления по току. Решить эту проблему можно с помощью транзистора Дарлингтона. Однако имейте в виду, что падение напряжения на базе эмиттера в два раза больше, чем у одиночного транзистора, то есть 1,2 В вместо 0,6 В для кремниевого транзистора и Дарлингтона.

Реле коммутируемых цепей

Несмотря на то, что важно правильно спроектировать цепи для управления реле, есть также моменты, которые следует отметить в отношении цепей, которые также переключаются реле.Это особенно важно для герконовых реле, контакты которых более подвержены повреждению.

Одной из ключевых областей важности является текущее состояние после закрытия контактов. Даже при управлении цепями, которые могут считаться слаботочными, пусковой ток, вызванный конденсаторами, используемыми для развязки, и т. Д. Может привести к сильным скачкам тока переключения. Это может значительно сократить срок службы герконового реле, поскольку пусковой ток может во много раз превышать номинальный максимальный ток.

Даже относительно небольшие конденсаторы могут использовать пики тока на многих ампер, и это может значительно сократить срок службы контактов реле, особенно герконов.

Этот факт можно уменьшить, сбалансировав степень развязки и выбрав минимальное значение, совместимое с применением хорошей развязки на шинах напряжения или линиях, которые переключаются. Также можно использовать резисторы малой серии для уменьшения перенапряжения. Здесь необходимо рассчитать падение напряжения на последовательном резисторе, и если какой-либо ток проходит, его необходимо удерживать в допустимых пределах.

Есть много разных схем, которые можно использовать с реле. Фактическая схема реле, которая лучше всего, будет зависеть от многих факторов и часто возникает из-за окружающих цепей, которые добавляют общие требования.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Что такое реле, его функции, типы и схема подключения реле

Все мы знаем о пультах телевизора, на которых мы можем нажать одну кнопку, чтобы включить функцию, реле работают аналогично этому. Реле используются, чтобы исключить прямую связь пользователей с электронным оборудованием, чтобы защитить их от ожидаемого высокого напряжения. Если сосредоточены крупные отрасли промышленности, они используют реле большей мощности для оптимизации работы двигателей и насосов.

Общее назначение реле можно понять, проанализировав включение фар.Кнопку переключения фар можно найти на приборной панели автомобиля, и при перемещении она подает небольшое значение тока на катушку, что приводит к включению контактора. Затем срабатывает реле, управляя нагрузкой большой мощности (фары). Есть много других распространенных примеров реле из нашей повседневной жизни.

У каждого дома есть холодильник и реле, управляющие оборудованием, отвечающим за работу и производство холода. Светофоры — еще одно применение реле, где они используются в качестве переключающего компонента.Движение и направление автоматических гаражных ворот также используют реле для оптимального переключения контактов.

Можно с уверенностью сказать, что реле отвечают за подачу питания на электронное оборудование и работают над их функционированием для обеспечения оптимальной работы. Они облегчили нам жизнь, добавив факторы автоматизации наряду с безопасной и бесперебойной работой электронного оборудования. Это означает, что нет никаких угроз, связанных с высоким напряжением, поскольку во время поломки электроники не будет контакта.

На диаграмме основное внимание уделяется внутреннему участку реле в цепи. Контрольная монета ограничена железным сердечником. Источник питания соединяется с электромагнитом через контакты нагрузки и переключатель управления. Когда энергия подводится к цепи через управляющую катушку, магнитные поля усиливаются при включении питания. Таким образом, верхние контактные рычаги притягиваются к нижнему фиксированному рычагу, который замыкает контакты, приводящие к короткому замыканию. Однако, если реле было обесточено, возникает разрыв цепи с противоположным движением контакта.

Когда ток в катушке прекращается, подвижный якорь возвращается в исходное положение с силой, равной половине магнитной силы и электрической силы. Основными причинами этой силы являются сила тяжести и пружина.

Реле выполняют две основные функции, такие как приложение высокого напряжения и приложение низкого напряжения. В случае высокого напряжения искрение уменьшается, в то время как в приложениях с низким напряжением общий шум схемы снижается до минимума.

Теперь отпустите кнопку START, и ток начнет течь вокруг открытого переключателя START.Чтобы выключить свет, нажимаем на кнопку СТОП, и это обесточит катушку. Как только кнопка СТОП отпущена, кнопка СТАРТ будет нажата, и в этом вся суть схемы реле!

Если вам нужно реле Omron, вы можете связаться с нами в Electgo, чтобы купить реле Omron по относительно низким ценам. Если вы авторизуетесь на нашем сайте, вам будет предоставлена ​​скидка. Мы — лучший выбор, потому что у нас есть собственная команда инженеров, которые лучше всех предоставляют техническую поддержку нашим клиентам.После того, как вы купите реле у нас, мы также предоставим техническое описание реле для предоставления информации.

Тема, которая может вас заинтересовать:

Базовый рабочий лист электромагнитных реле — Основное электричество

Позвольте электронам сами дать вам ответы на ваши собственные «практические проблемы»!

Примечания:

По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом. С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, с которыми они могут проверить свою работу.Хотя такой подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: студенты должны построить свои собственные «практические задачи» с реальными компонентами и попытаться предсказать различные логические состояния. Таким образом, теория реле «оживает», и учащиеся получают практические навыки, которые они не получили бы, просто решая булевы уравнения или упрощая карты Карно.

Другой причиной для использования этого метода практики является обучение студентов научному методу : процессу проверки гипотезы (в данном случае предсказания логического состояния) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся. Обсудите эти вопросы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, вместо того, чтобы просто говорить им, что они должны и не должны делать.Я никогда не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

Примечание для тех инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое ученикам для построения реальных схем вместо того, чтобы просто математически анализировать теоретические схемы:

Какова цель студентов, посещающих ваш курс?

Если ваши ученики будут работать с реальными схемами, то они должны учиться на реальных схемах, когда это возможно.Если ваша цель — обучить физиков-теоретиков, то во что бы то ни стало придерживайтесь абстрактного анализа! Но большинство из нас планируют, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

Кроме того, когда студенты создают свои собственные практические задачи, они учатся выполнять первичные исследования , тем самым давая им возможность продолжить свое образование в области электротехники / электроники в автономном режиме.

В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их студенты применяли передовую математику в реальных экспериментах, не представляющих опасности для безопасности и стоивших меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставьте своих учеников практиковать математику на множестве реальных схем!

Схема драйвера транзисторного реле

с формулой и расчетами

В этой статье мы подробно изучим схему драйвера транзисторного реле и узнаем, как спроектировать ее конфигурацию, вычисляя параметры по формулам.

Важность реле

Реле — один из самых важных компонентов в электронных схемах. Реле играют основную роль в выполнении операций, особенно в цепях, где задействована передача большой мощности или переключение сетевой нагрузки переменного тока.

Здесь мы узнаем, как правильно управлять реле, используя транзистор, и применить конструкцию в электронной системе для переключения подключенной нагрузки без проблем.


Для более глубокого изучения того, как работает реле , пожалуйста, прочтите эту статью


Реле, как мы все знаем, представляет собой электромеханическое устройство, которое используется в форме переключателя.

Он отвечает за переключение внешней нагрузки, подключенной к его контактам, в ответ на относительно меньшую электрическую мощность, подаваемую на соответствующую катушку.

Обычно катушка наматывается на железный сердечник, когда к катушке прикладывается небольшой постоянный ток, она возбуждает и ведет себя как электромагнит.

Подпружиненный контактный механизм, расположенный в непосредственной близости от катушки, немедленно реагирует и притягивается к силе электромагнита катушки, находящейся под напряжением. В процессе контакт соединяет одну из своих пар вместе и разъединяет дополнительную пару, связанную с ним.

Обратное происходит, когда на катушку отключается постоянный ток, и контакты возвращаются в исходное положение, соединяя предыдущий набор дополнительных контактов, и цикл может повторяться столько раз, сколько возможно.

Электронной схеме обычно требуется драйвер реле, использующий каскад транзисторной схемы, чтобы преобразовать ее коммутационный выход постоянного тока малой мощности в коммутационный выход переменного тока большой мощности.

Однако сигналы низкого уровня от электроники, которые могут быть получены из каскада IC или каскада слаботочного транзистора, могут быть неспособны напрямую управлять реле.Поскольку для реле требуются относительно более высокие токи, которые обычно могут быть недоступны от источника IC или низкотокового транзисторного каскада.

Для решения вышеупомянутой проблемы ступень релейного управления становится обязательной для всех электронных схем, которые нуждаются в этой услуге.

Драйвер реле — это не что иное, как дополнительный транзисторный каскад, присоединенный к реле, которое необходимо задействовать. Транзистор обычно и исключительно используется для управления реле в ответ на команды, полученные от предыдущего каскада управления.

Принципиальная схема

Ссылаясь на приведенную выше принципиальную схему, мы видим, что конфигурация включает только транзистор, базовый резистор и реле с обратным диодом.

Однако есть несколько сложностей, которые необходимо решить, прежде чем проект можно будет использовать для требуемых функций:

Поскольку базовое напряжение возбуждения на транзисторе является основным источником для управления работой реле, его необходимо точно рассчитать для оптимальные результаты.

Значение базового резистора id прямо пропорционально току на выводах коллектор / эмиттер транзистора, или, другими словами, ток катушки реле, который является нагрузкой коллектора транзистора, становится одним из основных факторов и напрямую влияет на него. номинал базового резистора транзистора.

Расчетная формула

Основная формула для расчета базового резистора транзистора определяется выражением:

R = (Us — 0,6) hFE / ток катушки реле,

  • Где R = базовый резистор транзистор,
  • Us = Источник или напряжение запуска на базовом резисторе,
  • hFE = Коэффициент усиления транзистора по прямому току,

Последнее выражение, которое является «током реле», можно найти, решив следующий закон Ома :

I = Us / R, где I — требуемый ток реле, Us — напряжение питания реле.

Практическое применение

Сопротивление катушки реле можно легко определить с помощью мультиметра.

Us также будет известным параметром.

Допустим, напряжение питания Us = 12 В, сопротивление катушки 400 Ом, тогда

Ток реле I = 12/400 = 0,03 или 30 мА.

Также можно предположить, что Hfe любого стандартного низкосигнального транзистора составляет около 150.

Применяя вышеуказанные значения в фактическом уравнении, мы получаем

R = (Ub — 0.6) × Hfe ÷ Ток реле

R = (12 — 0,6) 150 / 0,03

= 57000 Ом или 57 К, ближайшее значение 56 К.

Диод, подключенный к катушке реле, никак не связан с Приведенный выше расчет, его все же нельзя игнорировать.

Диод следит за тем, чтобы обратная ЭДС, генерируемая катушкой реле, была закорочена через него, а не попала в транзистор. Без этого диода обратная ЭДС попыталась бы найти путь через коллектор-эмиттер транзистора и в течение нескольких секунд навсегда повредила бы транзистор.

Релейный драйвер Схема с использованием PNP BJT

Транзистор лучше всего работает в качестве переключателя, когда он подключен к общей конфигурации эмиттера, то есть эмиттер BJT всегда должен быть подключен непосредственно к линии «земли». Здесь «земля» относится к отрицательной линии для NPN и положительной линии для PNP BJT.

Если в цепи используется NPN, нагрузка должна быть соединена с коллектором, что позволит включать / выключать ее путем включения / выключения отрицательной линии.Это уже объяснялось в вышеупомянутых обсуждениях.

Если вы хотите включить / выключить положительную линию, в этом случае вам придется использовать PNP BJT для управления реле. Здесь реле может быть подключено через отрицательную линию питания и коллектор PNP. Точную конфигурацию см. На рисунке ниже.

Однако для запуска PNP потребуется отрицательный триггер в его основе, поэтому, если вы хотите реализовать систему с положительным триггером, вам, возможно, придется использовать комбинацию как NPN, так и PNP BJT, как показано на следующем рисунке. :

Если у вас есть какие-либо конкретные вопросы относительно вышеупомянутой концепции, пожалуйста, не стесняйтесь выражать их в комментариях для получения быстрых ответов.

Драйвер реле энергосбережения

Обычно напряжение питания для срабатывания реле рассчитывается таким образом, чтобы обеспечить оптимальное втягивание реле. Однако требуемое удерживающее напряжение обычно намного ниже.

Обычно это даже не половина напряжения втягивания. В результате большинство реле могут работать без проблем даже при этом пониженном напряжении, но только тогда, когда гарантируется, что при начальном напряжении активации достаточно высокое для втягивания.

Схема, представленная ниже, может быть идеальной для реле, рассчитанных на работу с током 100 мА или ниже и при напряжении питания ниже 25 В.Использование этой схемы обеспечивает два преимущества: во-первых, реле функционирует при существенно низком токе; на 50% ниже номинального напряжения питания, а ток снижен примерно до 1/4 от фактического номинального значения реле! Во-вторых, реле с более высоким номинальным напряжением можно использовать с более низкими диапазонами питания. (Например, реле на 9 В, которое требуется для работы с напряжением 5 В от источника TTL).

Видно, что цепь подключена к источнику питания, способному надежно удерживать реле. Пока S1 открыт, C1 заряжается через R2 до напряжения питания.R1 подключен к клемме +, а T1 остается выключенным. В момент, когда S1 задан, база T1 подключается к общей цепи питания через R1, так что она включается и приводит в действие реле.

Положительный вывод C1 подключается к общей земле через переключатель S1. Учитывая, что этот конденсатор изначально был заряжен до напряжения питания, его клемма в этой точке становится отрицательной. Таким образом, напряжение на катушке реле в два раза превышает напряжение питания, и это втягивает реле.Разумеется, переключатель S1 можно заменить любым транзистором общего назначения, который можно включать и выключать по мере необходимости.

Принципиальная схема реле блокировки

Что такое реле с фиксацией?

Блокировочное реле — это двухпозиционный переключатель с электрическим приводом.Он управляется двумя переключателями или датчиками мгновенного действия, один из которых «устанавливает» реле, а другой «сбрасывает» реле. Блокировочное реле сохраняет свое положение после отпускания исполнительного переключателя, поэтому оно выполняет базовую функцию памяти.

Реле с фиксацией похоже на двухпозиционный («двойной ход») тумблер. Ручка тумблера физически переводится в одно положение и остается в этом положении до тех пор, пока не будет переведена в противоположное положение. Блокирующее реле электрически «установлено» в одно положение, и оно остается «заблокированным» в этом положении до тех пор, пока оно не будет электрически «сброшено» в противоположное положение.

Есть два типа реле блокировки:
Реле с электрической фиксацией — это стандартное реле с одним из собственных контактов, подключенных к цепи катушки. Внешний переключатель сначала включает реле, а затем удерживает его включенным собственным контактом. Внешний переключатель сброса прерывает подачу питания на реле, которое выключает его. Бистабильное реле или реле с механической фиксацией обычно имеет две внутренние катушки и внутренний механизм защелки.При подаче питания на одну катушку контакты «устанавливаются» в одно положение, и контакты остаются в этом положении до тех пор, пока не будет подано напряжение на катушку «сброса».
Отличия:
Реле с электрической фиксацией —
• Использует стандартное реле с одной катушкой,
• Всегда сбрасывается при отключении питания,
• Один контакт предназначен для управления фиксацией,
• Переключатель «Set» — нормально разомкнутый контакт,
• Переключатель «Сброс» — нормально замкнутый контакт.
Реле с механической фиксацией —
• Использует механизм с двумя катушками или поляризованными одиночными катушками,
• Сохраняет свое положение при отключении питания, поэтому схема будет в том же состоянии при повторном включении питания,
• Все контакты доступны для других функций цепи,
• Переключатели «Set» и «Reset» являются нормально разомкнутыми контактами.

На двух схемах подключения ниже показано, как подключить цепь реле с электрической фиксацией. Это создает базовую функцию памяти … реле «запоминает», какой переключатель был нажат последним.

Для реле с механической фиксацией, нажмите здесь .

В этих схемах переключатель «Set» — это любой нормально разомкнутый переключатель или релейный контакт, например, детектор поезда MRD1.Переключатель «Сброс» — это любой нормально замкнутый переключатель или релейный контакт. При нажатии переключателя «Set» реле включается. Реле остается включенным даже после того, как переключатель «Set» был отпущен, потому что катушка реле (контакты K1 и K2) теперь получает питание через свой собственный контакт (контакты 2C и 2NO).

При нажатии переключателя «Сброс» питание катушки реле прерывается, в результате чего реле выключается. Это разрывает соединение через контакт 2C-2NO, поэтому реле остается выключенным.

Этот тип схемы памяти называется «энергозависимой» памятью, потому что при выключении источника питания реле возвращается в выключенное состояние. При повторном включении источника питания реле будет оставаться в выключенном состоянии до тех пор, пока не будет нажат переключатель «Set».

Используемое здесь реле — это любое стандартное реле с двумя или более наборами контактов или «полюсов» (DPDT, 3PDT, 4PDT и т. Д.), Такое как реле вспомогательного питания MRAPR. Реле MRAPR включает диоды на катушке для защиты контактов переключателя от «обратного» напряжения, и его можно использовать как в цепях переменного, так и постоянного тока.

См. Примечание о номинальных характеристиках контактов переключателя.

Эта первая схема представляет собой схему, в которой переключатель «Set» имеет приоритет. Это означает, что если одновременно нажать кнопки «Set» и «Reset», реле включится.

На следующей схеме показана схема, в которой переключатель «Сброс» имеет приоритет. Если одновременно нажать переключатели «Set» и «Reset», реле выключится.



Для реле с механической фиксацией, нажмите здесь .

© Copyright 2009-2020 ООО «Азатракс», Лонгмонт, Колорадо

Что такое реле? | Схема контактов релейного переключателя

Реле управляют цепями путем размыкания и замыкания контактов в другой цепи. Для работы катушки требуется относительно небольшое количество энергии, но оно само может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии.

Эти переключатели используются для электромеханического или электронного размыкания и замыкания цепей. Когда контакт разомкнут, он не запитан. Когда он замкнут, есть замкнутый контакт, когда он не запитан. В любом случае подача электрического тока на контакты изменит их состояние.

Они обычно используются для переключения меньших токов в цепи управления и обычно не управляют устройствами, потребляющими мощность, за исключением небольших двигателей и соленоидов, потребляющих низкий ток.Тем не менее, он может «контролировать» большие напряжения и амперы, оказывая усиливающий эффект, потому что небольшое напряжение, приложенное к катушке, может привести к коммутации большого напряжения контактами.

Схема выводов

Релейный переключатель DPDT Релейный переключатель DPDT

Защитные реле могут предотвратить повреждение оборудования путем обнаружения электрических аномалий, включая перегрузки по току, минимальный ток, перегрузки и обратные токи. Кроме того, они также широко используются для включения пусковых катушек, нагревательных элементов, контрольных ламп и звуковой сигнализации.

Типы:

В электромеханических реле (ЭМИ) контакты размыкаются или замыкаются с помощью магнитов. Твердотельные реле (SSR) не имеют контактов, а переключение полностью электронное. Функции, выполняемые тяжелым оборудованием, часто требуют коммутационных возможностей электромеханических реле. SSR переключает ток с помощью неподвижных электронных устройств, таких как кремниевые выпрямители.

SSR не должен возбуждать катушку или размыкать контакты. Им требуется меньшее напряжение для переключения, они включаются и выключаются быстрее, потому что в них нет движущихся физических частей.

Хотя отсутствие контактов и движущихся частей означает, что SSR не подвержены искрению и не изнашиваются. Контакты на электромеханических реле могут быть заменены, тогда как весь SSR должен быть заменен, когда какая-либо часть выходит из строя. Из-за конструкции SSR существует остаточное электрическое сопротивление и / или утечка тока независимо от того, разомкнуты или замкнуты переключатели.

Существует много типов релейных переключателей, но часто транзисторы и полевые МОП-транзисторы используются в качестве основного переключающего устройства.Транзисторы обеспечивают быстрое переключение катушки от различных источников.

Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи токовыми устройствами, если ток не течет в базу, то ток не будет проходить через катушку.

Цепи релейного переключателя

Цепь переключателя реле NPN

Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет и он обесточивается, потому что, будучи токовыми устройствами, если ток не течет в базу, то ток не будет проходить через катушку.

Цепь релейного переключателя NPN

Цепь релейного переключателя NPN Дарлингтона

Два NPN-транзистора соединены так, что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2.Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2.

Цепь переключателя реле Дарлингтона

Цепь переключателя реле повторителя эмиттера

Конфигурация

с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса (~ сотни тысяч Ом) при относительно низком выходном сопротивлении для переключения катушки.

Цепь переключателя реле повторителя эмиттера

Цепь переключателя реле Дарлингтона эмиттера

Очень небольшой положительный базовый ток, приложенный к TR1, вызывает гораздо больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta.

Реле Дарлингтона эмиттера с цепью

Цепь переключателя реле PNP

Эта схема требует разной полярности рабочего напряжения. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, более отрицательным, чем на эмиттере. Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру.

Цепь релейного переключателя PNP

Цепь релейного переключателя коллектора PNP

Релейная нагрузка подключена к коллектору транзисторов PNP.Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен».

Цепь переключателя коллекторного реле PNP

Цепь переключателя N-канального MOSFET-реле

Схема релейного переключателя MOSFET подключена в конфигурации с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ».

Схема переключателя реле N-канального полевого МОП-транзистора

Схема переключателя реле P-канального полевого МОП-транзистора

Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный MOSFET будет выключен.Выключенный E-MOSFET имеет очень высокое сопротивление канала и действует почти как разомкнутая цепь. Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный MOSFET будет включен.

Схема релейного переключателя P-канального полевого МОП-транзистора

Цепь релейного переключателя с логическим управлением

Относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его высокоимпедансном затворе заставляет его начать проводить ток от своего вывода стока к его выводу истока. В отличие от биполярного переходного транзистора, который требует тока базы для его включения, e-MOSFET требует только напряжения на затворе, поскольку из-за его изолированной конструкции затвора нулевой ток течет в затвор.

Схема релейного переключателя с логическим управлением

BJT — это хорошие и дешевые схемы переключения реле, но они являются устройствами, управляемыми током. Они преобразуют небольшой ток базы в больший ток нагрузки, чтобы запитать катушку. Однако переключатель MOSFET работает лучше как электрический переключатель, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением.

Цепь переключателя реле микроконтроллера


Дополнительные основные статьи доступны в учебном уголке.

Эта статья была впервые опубликована 5 июня 2017 г. и обновлена ​​до 18 августа 2020 г.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *