Как работают различные виды стабилизаторов напряжения. Какие схемы используются в релейных, сервоприводных и инверторных стабилизаторах. Как рассчитать основные параметры стабилизатора. Особенности компенсационных, параметрических и импульсных схем.
Принцип работы основных видов стабилизаторов напряжения
Стабилизаторы напряжения предназначены для поддержания постоянного уровня напряжения в электрической сети при его колебаниях. Существует несколько основных типов стабилизаторов, которые различаются по принципу действия:
- Релейные
- Сервоприводные
- Инверторные
- Электронные (симисторные)
Рассмотрим принцип работы каждого из этих видов стабилизаторов.
Как работает релейный стабилизатор напряжения
Релейный стабилизатор содержит несколько обмоток трансформатора, которые переключаются с помощью электромагнитных реле. Принцип его работы:
- Входное напряжение измеряется специальным датчиком
- Если напряжение отклоняется от нормы, подается сигнал на переключение обмотки трансформатора
- Реле подключает нужную обмотку, корректируя выходное напряжение
Достоинства релейных стабилизаторов — низкая цена и простота конструкции. Недостатки — ступенчатая регулировка и шум при переключении реле.
Принцип действия сервоприводного стабилизатора
В сервоприводном стабилизаторе используется автотрансформатор с подвижным контактом. Его перемещение осуществляет электродвигатель (сервопривод). Алгоритм работы:
- Измеряется входное и выходное напряжение
- При отклонении от нормы сервопривод перемещает контакт автотрансформатора
- Меняется коэффициент трансформации, корректируя выходное напряжение
Преимущества — плавная регулировка и высокая точность. Недостатки — высокая цена и чувствительность к перегрузкам.
Как работает инверторный стабилизатор напряжения
Инверторный стабилизатор работает по принципу двойного преобразования энергии:
- Входное переменное напряжение выпрямляется в постоянное
- Постоянное напряжение преобразуется инвертором обратно в переменное стабилизированное
Достоинства — высокая точность и скорость стабилизации. Недостатки — сложность конструкции и высокая стоимость.
Схемы и особенности компенсационных стабилизаторов напряжения
Компенсационные стабилизаторы используют принцип отрицательной обратной связи для поддержания постоянного выходного напряжения. Существуют два основных типа схем:
Последовательная схема компенсационного стабилизатора
В последовательной схеме регулирующий элемент (обычно транзистор) включен последовательно с нагрузкой. Принцип работы:
- Выходное напряжение сравнивается с опорным
- При отклонении формируется сигнал рассогласования
- Этот сигнал изменяет сопротивление регулирующего элемента
- Изменяется падение напряжения на регулирующем элементе
- Выходное напряжение стабилизируется
Параллельная схема компенсационного стабилизатора
В параллельной схеме регулирующий элемент подключен параллельно нагрузке. Алгоритм стабилизации:
- Выходное напряжение сравнивается с опорным
- При отклонении изменяется ток через регулирующий элемент
- Изменяется падение напряжения на балластном резисторе
- Выходное напряжение поддерживается постоянным
Параллельная схема менее эффективна, но проще в реализации.
Особенности параметрических стабилизаторов напряжения
Параметрические стабилизаторы используют нелинейные элементы (обычно стабилитроны) для поддержания постоянного напряжения. Их работа основана на свойстве стабилитрона сохранять почти неизменное напряжение при изменении тока через него.
Принцип работы параметрического стабилизатора
Схема параметрического стабилизатора содержит:
- Балластный резистор
- Стабилитрон
- Нагрузку
Алгоритм стабилизации:
- При увеличении входного напряжения растет ток через резистор и стабилитрон
- Напряжение на стабилитроне меняется незначительно
- Основное изменение напряжения падает на балластном резисторе
- Напряжение на нагрузке остается почти постоянным
Достоинства и недостатки параметрических стабилизаторов
Преимущества:
- Простота конструкции
- Надежность
- Отсутствие пульсаций выходного напряжения
Недостатки:
- Низкий КПД
- Малая выходная мощность
- Нестабильность при изменении температуры
Импульсные стабилизаторы напряжения: принцип работы и схемы
Импульсные стабилизаторы используют ключевой режим работы регулирующего элемента. Это позволяет получить высокий КПД.
Как работает импульсный стабилизатор напряжения
Принцип работы импульсного стабилизатора:
- Входное напряжение подается на ключевой элемент (транзистор)
- Ключ периодически замыкается и размыкается
- При замыкании ключа энергия накапливается в дросселе или конденсаторе
- При размыкании ключа энергия отдается в нагрузку
- Изменяя скважность импульсов, регулируют выходное напряжение
Основные типы импульсных стабилизаторов
Существует несколько базовых схем импульсных стабилизаторов:
- Понижающий (Buck)
- Повышающий (Boost)
- Инвертирующий (Buck-Boost)
Выбор схемы зависит от соотношения входного и выходного напряжения.
Как рассчитать параметры стабилизатора напряжения
При разработке стабилизатора напряжения необходимо рассчитать его основные параметры. Рассмотрим пример расчета для параметрического стабилизатора.
Расчет элементов параметрического стабилизатора
Исходные данные:
- Входное напряжение: Uвх = 15 В
- Выходное напряжение: Uвых = 9 В
- Ток нагрузки: Iн = 50 мА
Алгоритм расчета:
- Выбираем стабилитрон с напряжением стабилизации 9 В
- Определяем минимальный ток стабилитрона: Iст.мин = 5 мА
- Рассчитываем ток через балластный резистор: Iр = Iн + Iст.мин = 55 мА
- Находим сопротивление балластного резистора: R = (Uвх — Uвых) / Iр = 109 Ом
- Проверяем мощность рассеивания на резисторе: P = (Uвх — Uвых) * Iр = 0,33 Вт
Расчет коэффициента стабилизации
Коэффициент стабилизации показывает, во сколько раз стабилизатор уменьшает колебания входного напряжения. Он рассчитывается по формуле:
Kст = (ΔUвх / Uвх) / (ΔUвых / Uвых)
где ΔUвх и ΔUвых — изменения входного и выходного напряжения.
Применение интегральных микросхем в стабилизаторах напряжения
Современные стабилизаторы напряжения часто строятся на основе специализированных интегральных микросхем. Это позволяет упростить конструкцию и повысить надежность устройства.
Популярные серии интегральных стабилизаторов
Наиболее распространенные серии интегральных стабилизаторов:
- 78xx — положительные стабилизаторы (7805, 7812 и т.д.)
79xx — отрицательные стабилизаторы (7905, 7912 и т.д.)- LM317 — регулируемый положительный стабилизатор
- LM337 — регулируемый отрицательный стабилизатор
Особенности применения интегральных стабилизаторов
При использовании интегральных стабилизаторов следует учитывать:
- Необходимость установки фильтрующих конденсаторов на входе и выходе
- Ограничения по входному напряжению и току нагрузки
- Необходимость теплоотвода при больших токах нагрузки
- Возможность параллельного включения для увеличения выходного тока
Сравнение эффективности различных типов стабилизаторов напряжения
Разные типы стабилизаторов имеют свои преимущества и недостатки. Сравним их по основным параметрам:
КПД стабилизаторов напряжения
КПД показывает, какая часть входной мощности передается в нагрузку:
- Линейные стабилизаторы: 30-60%
- Импульсные стабилизаторы: 80-95%
- Феррорезонансные стабилизаторы: 85-90%
Точность стабилизации напряжения
Точность стабилизации определяет, насколько выходное напряжение может отклоняться от номинального:
- Релейные стабилизаторы: ±5-10%
- Сервоприводные стабилизаторы: ±0,5-2%
- Электронные стабилизаторы: ±1-3%
- Инверторные стабилизаторы: ±1-2%
Выбор типа стабилизатора зависит от конкретной задачи и требований к стабильности напряжения, КПД и другим параметрам.
Виды и схемы стабилизаторов напряжения
Автор: Александр Старченко
Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.
Содержание:
- Виды стабилизаторов напряжения
Виды стабилизаторов напряжения
В настоящее время применяются следующие виды стабилизаторов:
- Феррорезонансные;
- Сервоприводные;
- Релейные;
- Электронные;
- Двойного преобразования.
Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.
Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.
Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.
Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.
Стабилизаторы двойного преобразования, в отличие от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.
Электромеханический стабилизатор
Сервоприводный стабилизатор состоит из следующих узлов:
- Входной фильтр;
- Плата измерения напряжения;
- Автотрансформатор;
- Серводвигатель;
- Графитовый скользящий контакт;
- Плата индикации.
В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.
Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.
При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.
Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.
Релейный стабилизатор
В релейном стабилизаторе имеется почти такой же набор основных узлов:
- Сетевой фильтр;
- Плата контроля и управления;
- Трансформатор;
- Блок электромеханических реле;
- Устройство индикации.
В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.
Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.
Пример схемы релейного стабилизатора
Еще одна схема стабилизатора релейного типа
Электронный стабилизатор
Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:
- Фильтр сети;
- Плата измерения напряжения и управления;
- Трансформатор;
- Блок силовых электронных ключей;
- Плата индикации.
Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.
Стабилизатор двойного преобразования
Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.
Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:
- Фильтр сетевых помех;
- Корректор мощности – выпрямитель;
- Блок конденсаторов;
- Инвертор;
- Узел микропроцессора.
Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.
Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.
Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.
На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.
С этим читают:
Понравилась статья? Поделись с друзьями в соц сетях!Стабилитрон. Параметрические стабилизаторы напряжения | HomeElectronics
Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Показатель | Линейный источник питания | Импульсный источник питания |
Стоимость | Низкая | Высока |
Масса | Большая | Небольшая |
ВЧ-шум | Отсутствует | Высокий |
КПД | 35 — 50 % | 70 — 90 % |
Несколько выходов | Нет | Есть |
Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.
Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.
Вольт-амперная характеристика диода
Принцип работы стабилитрона
Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).
Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом
Обозначение стабилитрона
Основные параметры стабилитрона
Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.
Вольт-амперная характеристика стабилитрона
Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.
Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.
Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.
Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.
Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.
Параметрический стабилизатор
Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.
Схема включения стабилитрона
Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.
Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.
Расчёт параметрического стабилизатора.
Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:
входное напряжение U0;
выходное напряжение U1 = Ust – напряжение стабилизации;
выходной ток IH = IST;
Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.
1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).
2. Определяем необходимое балластное сопротивление R1:
3. Определяем коэффициент стабилизации:
4. Определяем коэффициент полезного действия
Увеличение мощности параметрического стабилизатора
Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.
Параллельный стабилизатор
Схема ПСН с параллельным включением транзистора
Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h31e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.
Коэффициент стабилизации будет равен
где RVT – входное сопротивление эмиттерного повторителя
где Re и Rb – сопротивления эмиттера и базы транзистора.
Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.
Последовательный стабилизаттор
Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.
Схема ПСН с последовательным включением транзистора
Выходное напряжение стабилизатора:
Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.
Коэффициент стабилизации схемы
где Rk – сопротивление коллектора биполярного транзистора.
Обычно kST ≈ 15…20.
Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.
Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
микросхема, импульсный, интегральный и простой
Содержание статьи:
Стабилизаторы напряжения предотвращают поломки оборудования и бытовой техники от колебания нагрузки. Устройство совместимо с однофазной и трехфазной сетью, подходит для квартиры и частного дома. Схема стабилизатора напряжения может понадобиться при самостоятельном подключении прибора или обустройстве электросети.
Принцип работы стабилизаторов
Различные типы стабилизаторов напряжения
Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:
- Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
- Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
- Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
- Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.
Функция байпаса или транзита позволяет стабилизаторам подавать напряжение на выход до момента пресечения установленного предела.
Принцип действия релейных моделей
Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.
Погрешность устройств – 5-10 %.
Как работают сервоприводные приборы
Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.
Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.
Точность приборов – 1 %.
Принцип работы инверторных устройств
Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:
- Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
- Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.
Выходное напряжение остается стабильным.
Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.
Диапазон регулирования аппарата снижается, если нагрузка увеличивается.
Особенности расчета характеристик
Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:
- Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
- Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
- Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h31Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
- Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом. Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.
Цифры и расчеты предоставлены для резисторов с сопротивлением 1 Ом.
Схема для компенсационного стабилизатора
Компенсационные схемы объясняют подключение с обратной связью. Сами устройства имеют точное напряжение на выходе без привязки к току нагрузки.
Последовательная схема
Компенсационный стабилизатор напряжения последовательного типа
По обозначениям из справочника можно идентифицировать:
- регулирующий узел – Р;
- источник эталонного номинала напряжения – И;
- сравниваемые показатели – ЭС;
- усилитель постоянных токов – У.
Для вычисления напряжения на выходе понадобится знать особенности работы устройства. Один транзистор будет регулировать, а второй – стабилизировать. Стабилитрон является источником опорного. Разность мощностей – напряжение на участке между эмиттером и базой.
При подаче коллекторного тока на резистор напряжение падает, имеет обратную полярность для эмиттерного узла. В результате происходит падение коллекторного и эмиттерного токов. Чтобы регулировка была плавной, для линии стабилизатора используется делитель. Ступенчатое регулирование достигается при помощи напряжения опоры стабилитрона.
Параллельная схема
Компенсационный стабилизатор напряжения параллельного типа
Если напряжение отклонилось от номинала, возникает импульс рассогласования. Это разница между показателями выхода и опоры. Поскольку узел регулировки расположен параллельно нагрузке, он усиливает сигнал. Происходит изменение тока на элементе-регуляторе, падение напряжения резистора и сохранение постоянного номинала на выходе.
Схема параметрического стабилизатора
Схема, объясняющая процесс стабилизации опорного напряжения, будет основной для параметрических моделей. Делитель напряжения прибора представляет собой балластный резистор и стабилитрон с параллельным сопротивлением нагрузки. При колебании номинала напряжения питания и токовой нагрузки стабилизируется напряжение.
Если данный показатель возрастает на входе, увеличивается ток, проходящий через стабилитрон и резистор. Благодаря вольт-амперным показателям номинал стабилитрона почти не меняется, как и напряжение сопротивления нагрузки. Все колебания касаются только резистора.
Специфика импульсного устройства
Простой импульсный стабилизатор напряжения
Импульсный аппарат отличается высоким КПД даже в условиях большого диапазона напряжения. Схема устройства включает ключ, энергетический накопитель и цепь управления. Элемент регулировки подключается в режиме импульса. Принцип действия прибора:
- От второго коллектора через второй конденсатор к базе подается положительное напряжение обратной связи.
- Коллектор №2 открывается после насыщения током от резистора №2.
- На переходе от коллектора к эмиттеру насыщение меньше, и он остается открытым.
- Усилитель подключается на коллектор №3 через стабилитрон №2.
- Подсоединение базы осуществляется к делителю.
- Первый стабилитрон управляет открытием/закрытием второго коллектора по сигналу от третьего.
Когда второй стабилитрон открыт, энергия накапливается в дросселе, поступая поле закрытия на нагрузку.
Стабилизаторы на микросхемах
Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.
Последовательные стабилизаторы
Последовательный стабилизатор на биополярном транзисторе
Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:
- С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
- С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.
Самые популярные последовательные стабилизаторы – интегральные.
Специфика параллельного стабилизатора
Простой мощный параллельный стабилизатор на транзисторах
Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.
Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.
Особенности приборов с тремя выводами
Стабилизаторы для переменного напряжения отличаются небольшими габаритами, выпускаются в пластиковом или металлическом корпусе. Они оснащаются каналами для входа, заземления и вывода. Конденсаторы прибора для уменьшения пульсаций запаиваются с двух сторон.
Напряжение на выходе составляет около 5 В, на входе – около 10 В, мощность рассеивания – 15 Вт.
Трехвыводные модификации позволяют получить вольтаж нестандартного номинала, необходимое для запитки макетов, маломощных АКБ, при починке или модернизации аппаратуры.
Алгоритм самостоятельной сборки аппарата
Для самостоятельного изготовления целесообразно использовать схему симистора – эффективного прибора. Он выравнивает номинал подаваемого тока при напряжении от 130 до 270 В. Сделать прибор можно на основе печатной платы из фольгированного текстолита. Сборка устройства осуществляется так:
- Подготовка магнитопровода и нескольких кабелей.
- Создание обмотки из провода диаметром 0,064 мм – понадобится 8669 витков.
- Остальные проводники диаметром 0,185 мм нужны для оставшихся обмоток. Количество витков каждой – 522.
- Последовательное соединение трансформаторов на 12 В.
- Организация 7-ми отводов. Первые 3 изготавливаются из провода диаметром 3 мм, другие – из шин с сечением 18 мм2. Так самодельный аппарат не будет нагреваться.
- Установка контроллерной микросхемы на платиновый теплоотвод.
- Монтаж симисторов и светодиодов.
Для устройства понадобится прочный корпус, прикрепленный к жесткому каркасу. Самый простой вариант – полимерные или алюминиевые пластины.
Схема подключения стабилизатора
Схема подключения стабилизатора напряжения
Ввод стабилизатора в частный дом выполняется при помощи трехжильного ВВГнг-кабеля, трехпозиционного выключателя и провода ПУГВ. Установка производится до счетчика, в отдельном или распределительном щитке:
- Открыть контакты, подняв лицевую крышку.
- Пропустить на выход и вход кабель. Фазу входа затянуть на клемме Lin, нулевой (синий) проводник – на клемме Nin, землю – на винтовой зажим с соответствующим обозначением.
- При отсутствии земли закрутить эту жилу под винт на корпусе прибора.
- Вернуть стабилизированное напряжение в общий щиток. Фаза подводится на выход Lout, ноль – к Nout, земля – к заземлению на входе.
- Протестировать схему в режиме без нагрузки.
Для теста отключаются все автоматы, кроме вводного и направленного на стабилизатор.
Стабилизатор, подключенный между сетью и нагрузкой, подходит для частного или дачного дома, квартиры, производства. Прибор защищает оборудование от выхода из строя, устраняет влияние на электролинию перегрузки и коротких замыканий.
Стабилизаторы напряжения: классификация, схемы, параметры, достоинства
Параметры стабилизаторов напряжения
Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.
Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]
где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.
Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.
Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина Kст составляет единицы, а у более сложных — сотни и тысячи.
Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|
где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.
Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.
Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения Рвх: ηст = Рн / Рвх
Традиционно стабилизаторы разделяют на параметрические и компенсационные.
Интересное видео о стабилизаторах напряжения:
Параметрические стабилизаторы
Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.
Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.
Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир): Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].
Kст= ( ∆uвх/ uвх) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]
Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.
Компенсационные стабилизаторы
Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).
Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.
В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.
В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.
Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).
Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.
В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).
В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.
Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:
uR3= uст, т.е. iR3· R3= uст
uR2 = uR3 – uвых
iR2 = − iR3 = − uст/ R3
Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)
Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).
Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.
Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.
В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.
Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.
Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.
Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.
В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.
Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.
К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.
Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.
В качестве ключа S часто используют биполярный или полевой транзистор.
Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.
Ещё одно интересное видео о стабилизаторах:
Расчет параметрического стабилизатора напряжения на транзисторах
Приведена техника упрощенного расчета параметрического стабилизатора напряжения на транзисторах. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе показана на рисунке 1.
Простой параметрический стабилизатор напряжения
Входное напряжение Uвх должно быть существенно выше напряжения стабилизации стабилитрона VD1. А чтобы стабилитрон не вышел из строя ток через него ограничен постоянным резистором R1. Выходное напряжение Uвых будет равно напряжению стабилизации стабилитрона, а с выходным током ситуация сложнее.
Дело в том, что у каждого стабилитрона есть некий диапазон рабочего тока через него, например, минимальный ток стабилизации 5 mA, а максимальный 25 mA. Если мы подключаем на выходе такого стабилизатора нагрузку, то часть тока начинает протекать через неё.
И величина максимального значения этого тока будет зависеть и от сопротивления R1 и от минимального тока стабилизации стабилитрона, — максимальный ток нагрузки будет уменьшен на минимальный ток стабилизации стабилитрона. То есть, получается, что чем меньше сопротивление R1, тем больший ток можно отдать в нагрузку. В то же время, ток через R1 не должен быть больше максимального тока стабилизации стабилитрона.
Рис. 1. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе.
Так как, во-первых, стабилитрону необходим некий запас на поддержания напряжения на выходе стабильным, а во-вторых, стабилитрон может выйти из строя при превышении максимального тока стабилизации, что может при отключении нагрузки или её работе на режиме с низким током потребления.
Стабилизатор по такой схеме очень не эффективен и годится для питания только цепей, потребляющих ток не более максимального тока стабилитрона. Поэтому стабилизаторы по схеме на рис.1 используются только в схемах с небольшим током нагрузки.
Стабилизатор напряжения с применением транзистора
Если нужно обеспечить более-менее значительный ток нагрузки и снизить его влияние на стабильность нужно усилить выходной ток стабилизатора при помощи транзистора, включенного по схеме эмиттерного повторителя (рис.2).
Рис. 2. Схема параметрического стабилизатора напряжения на одном транзисторе.
Максимальный ток нагрузки данного стабилизатора определяется по формуле:
Ін = (Іст — Іст.мин)*h31э.
где Іст. — средний ток стабилизации используемого стабилитрона, h31э — коэффициент передачи тока базы транзистора VT1.
Например, если использовать стабилитрон КС212Ж (средний ток стабилизации = (0,013-0,0001 )/2 = 0,00645А), транзистор КТ815А с h31 э — 40) мы сможем получить от стабилизатора по схеме на рис.2 ток не более: (0,006645-0,0001)40 = 0,254 А.
К тому же, при расчетах выходного напряжения нужно учитывать, что оно будет на 0,65V ниже напряжения стабилизации стабилитрона, потому что на кремниевом транзисторе падает около 0,6-0,7V (примерно берут 0,65V).
Попробуем рассчитать стабилизатор по схеме на рисунке 2.
Возьмем такие исходные данные:
- Входное напряжение Uвх = 15V,
- выходное напряжение Uвых = 12V,
- максимальный ток через нагрузку Ін = 0,5А.
Возникает вопрос, что выбрать — стабилитрон с большим средним током или транзистор с большим h31э?
Если у нас есть транзистор КТ815А с h31э = 40, то, следуя формуле Ін = (Іст -Іст.мин)h31э, нам потребуется стабилитрон с разницей среднего тока и минимального 0,0125А. По напряжению он должен быть на 0,65V больше выходного напряжения, то есть 12,65V. Попробуем подобрать по справочнику.
Вот, например, стабилитрон КС512А, напряжение стабилизации у него 12V, минимальный ток 1 мА, максимальный ток 67 мА. То есть средний ток 0,033А. В общем подходит, но выходное напряжение будет не 12V, а 11,35V.
Нам же нужно 12V. Остается либо искать стабилитрон на 12,65V, либо компенсировать недостаток напряжения кремниевым диодом, включив его последовательно стабилитрону как показано на рисунке 3.
Рис.3. Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом.
Теперь вычисляем сопротивление R1:
R = (15 -12) / 0,0125А = 160 Ом.
Несколько слов о выборе транзистора по мощности и максимальному току коллекто-ра. Максимальный ток коллектора Ік.макс. должен быть не менее максимального тока нагрузки. То есть в нашем случае, не менее 0,5А.
А мощность должна не превышать максимально допустимую. Рассчитать мощность, которая будет рассеиваться на транзисторе можно по следующей формуле:
Р=(Uвх — Uвых) * Івых.
В нашем случае, Р= (15-12)*0,5=1,5W.
Таким образом, Ік.макс. транзистора должен быть не менее 0,5А, а Рмакс. не менее 1,5W. Выбранный транзистор КТ815А подходит с большим запасом (Ік.макс.=1,5А, Рмакс.=10W).
Схема на составном транзисторе
Увеличить выходной ток без увеличения тока через стабилитрон можно только увеличив h31э транзистора. Это можно сделать если вместо одного транзистора использовать два, включенных по составной схеме (рис.4). В такой схеме общий h31э будет примерно равен произведению h31э обоих транзисторов.
Рис. 4. Принципиальная схема стабилизатора напряжения на основе составного транзистора.
Транзистор VT1 берут маломощный, а VT2 на мощность и ток, соответствующий нагрузке. Все рассчитывается примерно так же, как и в схеме по рисунку 3. Но теперь у нас два кремниевых транзистора, поэтому выходное напряжение снизится не на 0,65V, а на 1,ЗV.
Это нужно учесть при выборе стабилитрона, — его напряжение стабилизации (при использовании кремниевых транзисторов) должно быть на 1,ЗV больше требуемого выходного напряжения. К тому же появился резистор R2. Его назначение — подавлять реактивную составляющую транзистора VТ2, и обеспечивать надежную реакцию транзистора на изменение напряжения на его базе.
Величина этого сопротивления слишком уж существенного значения не имеет, но и за пределы разумного выходить не должна. Обычно его выбирают примерно в 5 раз больше сопротивления R1.
Иванов А. РК-11-17.
Параметрический стабилизатор — основные параметры
В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы. Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.
Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.
Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.
Схема стабилизатора
Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.
Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.
Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD. На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1. Такой принцип действия схемы позволяет сделать расчет всех параметров.
Принцип действия стабилитрона
Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер. При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя. Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.
Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:
Параметры стабилитрона
Его главные параметры можно увидеть по характеристике напряжения и тока.
- Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
- Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
- Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
- Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.
Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.
Расчет параметрического стабилизатора
Добротность функционирования прибора вычисляется по коэффициенту стабилизации, который вычисляется по формуле: Кст U = (ΔUвх / Uвх) / (ΔU вых / Uвых).
Далее расчет стабилизатора с применением стабилитрона производится в сочетании с балластным резистором в соответствии с типом применяемого стабилитрона. Для расчета используются рассмотренные ранее параметры стабилитрона.
Определим порядок расчета на примере. Возьмем исходные данные:
- U вых=9 В;
- I н =10мА;
- ΔI н = ±2мА;
- ΔU вх = ± 10% Uвх
По справочнику подбираем стабилитрон Д 814Б, свойства которого:
- U ст = 9 В;
- I ст. макс = 36 мА;
- I ст. мин = 3 мА;
- R д = 10 Ом.
Далее вычисляется входное напряжение: Uвх = nст *Uвых, где nст – коэффициент передачи. Функционирование стабилизатора станет эффективнее, если этот коэффициент будет в пределах 1,4-2. Если nст =1,6, то U вх= 1,6 * 9 = 14,4 В.
На следующем шаге производится расчет балластного резистора. Используется формула: R о = (U вх – U вых) / (I ст + I н). Величина тока I ст выбирается: I ст ≥ I н. При изменении U вх на величину Δ Uвх и Iн на ΔIн, не может быть больше тока стабилитрона величин I ст. макс и I ст. мин. Поэтому, I ст берется в качестве среднего допустимой величины в этом интервале и равно 0,015 ампер.
Значит, балластный резистор равен: R о = (14,4 – 9)/(0,015+0,01 )= 16 Ом. Ближнее стандартное значение составляет 220 Ом. Для выбора типа сопротивления, выполняется расчет рассеиваемой мощности на корпусе. Применяя формулу Р = I*2 R о, определяем величину Р = (25*10-3) * 2 * 220 = 0,138 ватт. Другими словами, стандартная мощность сопротивления равна 0,25 ватт.
Поэтому лучше подойдет сопротивление МЛТ — 0,25 — 220 Ом. После осуществления расчетов необходимо проверить правильность выбора режима действия стабилитрона в схеме параметрического прибора. В первую очередь определяется его наименьший ток: Iст. Мин = (U вх – ΔU вх – U вых) / Rо – (I н + ΔI н), с практическими параметрами определяется величина I ст.мин = (14,4–1,44–9) * 103 / 220–(10+2) = 6 миллиампер.
Такая же процедура производится для вычисления наибольшего тока: I ст. макс=(Uвх+ΔUвх–Uвых)/Rо–(Iн–ΔIн). По исходным параметрам, наибольший ток составит: Iст.макс=(14,4 + 1,44 – 9) * 103 / 220–(10 – 2)=23 миллиампер. Если в результате вычисленные значения наименьшего и наибольшего тока превосходят допустимые границы, то необходимо заменить I ст или резистор R о. Иногда требуется замена стабилитрона.
Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения.
В статье расскажем про компенсационный стабилизатор напряжения, о расчёте стабилизатора напряжения. Предоставим практические советы конструкторам. Нарисуем схему стабилизатора.
При проектировании источников питания электронной аппаратуры предъявляются высокие требования к стабильности питающего напряжения. Как медленные, так и быстрые колебания (нестабильности и пульсации) напряжения питания существенно изменяют режимы и параметры работы радиоэлектронных схем. Причинами нестабильности могут быть колебания напряжения и частоты питающей сети, изменения нагрузки, пульсации выпрямленного напряжения, колебания влажности окружающей среды. Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания не хуже 0,01%.
Компенсационный стабилизатор
Различают компенсационные стабилизаторы напряжения непрерывного и импульсного действия. Стабилизаторы напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой фактическое значение выходного напряжения сравнивается с заданным значением эталонного (опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, представляющий собой цепочку, состоящую из резистора и стабилитрона. Это было рассмотрено в предыдущей статье Стабилизаторы напряжения, их расчёт.
В зависимости от способа включения регулирующего элемента различают компенсационные стабилизаторы последовательного и параллельного типов.
Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. Схему, состоящую из регулирующего элемента и сопротивления нагрузки можно представить как делитель напряжения, в котором определённая часть входного напряжения «падает» на сопротивлении нагрузки, а всё остальное напряжение – на регулирующем элементе. При этом, и все изменения входного напряжения отражаются не на нагрузке, а на регулирующем элементе.
Опорное стабилизированное напряжение формируется источником опорного напряжения ИОН. Схема сравнения СС сравнивает выходное напряжение Uн с опорным напряжением Uоп. Разностный сигнал рассогласования Uн — Uоп, формируемый схемой сравнения СС, поступает на вход усилителя постоянного тока У, усиливается и воздействует на регулирующий элемент РЭ.
Если в нагрузке оказывается напряжение Uн большее, чем опорное Uоп – имеет место положительный сигнал рассогласования (Uн — Uоп) > 0, тогда внутреннее сопротивление РЭ возрастает и падение напряжения Uрэ на нем увеличивается. Так как регулирующий элемент и нагрузка включены последовательно, то при увеличении Uрэ выходное напряжение уменьшается.
При уменьшении выходного напряжения Uн, отрицательном сигнале рассогласования (Uн — Uоп) < 0, наоборот, внутреннее сопротивление РЭ и падение напряжения на нем уменьшаются, что приводит к возрастанию выходного напряжения Uн.
Принципиальная схема компенсационного стабилизатора напряжения последовательного типа на транзисторах приведена на следующем рисунке. Для более простого понимания того, как работает схема, мы рассмотрим её работу поэлементно.
Источник опорного напряжения выполнен на резисторе Rб и стабилитроне VD. Как он работает и как рассчитывать элементы этой цепи, описывалось ранее в статье Стабилизаторы напряжения, их расчёт.
Схема сравнения выполнена по принципу измерительного моста. Это – типовая измерительная схема сравнения, которая довольно часто применяется в различных схемах, поэтому актуальна не только в стабилизаторах напряжения.
Рассмотрим измерительный мост более подробно. Для этого мы изобразим его отдельно от остальных элементов стабилизатора.
Источник опорного напряжения Rб-VD и делитель напряжения R1-R2-R3 подключены к выходу стабилизатора параллельно. Переменный резистор R2 для наглядности поделен на схеме на две половины – два постоянных резистора R2/1 и R2/2. Если к средним точкам этих цепочек подключить вольтметр, то он будет реагировать на разность напряжений, между этими точками. А если использовать вольтметр со шкалой, у которой нуль находится посередине, тогда наглядно будет видно в какой средней точке напряжение выше, а в какой ниже. Основное состояние измерительного моста, которое используется в стабилизаторе напряжения, это — явление баланса моста, состояние, при котором значение напряжения в средних точках равно.
Предположим, что сопротивление резисторов R1 и R3 равны, а «ползунок» резистора R2 находится в среднем положении. Тогда сопротивления плеч R1+R2/1 и R2/2+R3 равны. Это означает, что на выводе «ползунка» резистора R2 будет ровно половина находящегося на клеммах напряжения. Предположим, что мы подали на клеммы ровно 9 вольт, тогда в средней точке резисторов будет 4,5 вольта (ровно половина). Источник опорного напряжения мы поставим на напряжение стабилизации 4,5 вольта – равное значению средней точки делителя на резисторах R1, R2, R3. Поэтому, по причине отсутствия разности потенциалов в средних точках стрелка вольтметра будет стоять на нуле.
Если мы увеличим напряжение до 10 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение поднимется до 5 вольт, а на источнике опорного напряжения оно так и останется 4,5 вольта (стабилитрон не позволит увеличиться напряжению на своём кристале) и стрелка вольтметра отклонится влево на 0,5 вольта.
Если наоборот, мы уменьшим напряжение до 8 вольт, то в средней точке делителя R1+R2/1 и R2/2+R3 напряжение уменьшится до 4 вольт, а на источнике опорного напряжения оно по-прежнему останется 4,5 вольта и теперь, стрелка вольтметра отклонится вправо на 0,5 вольта.
А теперь вернёмся к схеме стабилизатора напряжения. В ней функцию вольтметра выполняет транзистор VT2, который в процессе работы схемы стабилизации используется в «рабочем» усилительном режиме (полуоткрытом состоянии). Роль регулирующего элемента в этой схеме стабилизатора играет транзистор VT1. Его задача – в случае нарушения баланса измерительного моста, определяемого базо-эмиттерным переходом, восстановить этот баланс путём изменения сопротивления перехода эмиттер-коллектор управляющего элемента, и как следствие — уменьшение, или увеличение выходного напряжения.
При увеличении Uвх, выходное напряжение возрастает по абсолютному значению, создавая отрицательный сигнал рассогласования напряжения Uэ62 на входе усилителя постоянного тока, выполненного на транзисторе VT2. Транзистор, подключенный к средним точкам измерительного моста «приоткрывается». Ток коллектора транзистора VT2 возрастает, а потенциал коллектора VT2 становится более положительным относительно потенциала земли. Напряжение эмиттер-база транзистора VT1 уменьшается, что приводит к возрастанию внутреннего сопротивления транзистора VT1 и падению напряжения на нем. Выходное напряжение при этом уменьшается, стремясь к прежнему значению.
При уменьшении входного напряжения Uвх наоборот, транзистор VT2 «призакрывается», что приводит к увеличению напряжения база-эмиттер транзистора VT1, в результате чего сопротивление транзистора уменьшается и выходное напряжение повышается, стремясь к номинальному напряжению стабилизации.
Обратите внимание, что на схемах изображалась «точка» подключения к какому то источнику напряжения Е0. Для повышения коэффициента стабилизации схемы резистор Rк, определяющий базовый ток регулирующего транзистора VT1, подключается к стабильному источнику напряжения – Е0. Если Е0 не стабилен, то его колебания передаются через резистор Rк на базу регулирующего транзистора VT1 и ухудшают коэффициент стабилизации схемы. Довольно часто встречаются радиолюбительские схемы стабилизаторов, в которых резистор Rк подключен напрямую ко входному контакту -Uвх. В результате этого, стабилизатор работает в качестве автоматического регулятора «среднего» выходного напряжения, и абсолютно не подавляет никакие пульсации сетевого напряжения.
Лучшим источником стабильного напряжения является гальванический элемент, но его использование в большинстве случаев – не оправдывает себя. В сложных устройствах с несколькими источниками стабилизированного питания часто для целей стабилизированного смещения одного более мощного стабилизатора используют выходное напряжение другого стабилизатора, но с меньшей нагрузкой.
Наиболее простой способ – использовать дополнительный источник стабильного опорного напряжения, как показано на рисунке. Для исключения кратковременных скачков напряжения стабилизации, которые могут быть вызваны бросками входного напряжения, или сопротивления нагрузки, параллельно стабилитрону добавлен конденсатор С. Практически постоянно в радиолюбительской практике упускается важность этого источника опорного напряжения. В простейшем случае, как я писал, резистор Rк подключается напрямую к -Uвх, без всяких стабилитронов. Выбирать Вам – допускать пульсацию, или нет. Я думаю три дополнительных радиоэлемента – резистор, стабилитрон и конденсатор в этой схеме стабилизатора не помешают.
Расчёт стабилизатора постоянного напряжения компенсационного типа и практические советы конструкторам
Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.
Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.
1. Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n.
2. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.
3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.
4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.
5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.
6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.
Расчёт
Исходные данные (допустим, к разрабатываемому ИП предъявлены такие требования):
— среднее выходное напряжение стабилизатора – 12 вольт;
— максимальный ток нагрузки стабилизатора – 2 ампера;
— используется трансформатор достаточной мощности, с выходным напряжением 25 вольт.
При расчётах сложных схем, обычно идут «с конца к началу», поэтому, предлагаю начать с расчёта схем опорного напряжения и сравнения.
1. Выберем стабилитрон измерительного моста Стабилитрон VD1 выбирается со значением напряжения стабилизации, равном половине выходного напряжения стабилизатора:
12в / 2 = 6 вольт.
При этом условии обеспечивается наилучшая стабилизация. Но стабилитрон на такое напряжение в рознице отсутствует, поэтому выбираем стабилитрон, максимально близкий по напряжению стабилизации – КС156А, у которого Uст = 5,6 вольт, Iст = 10 мА.
2. Найдём резистор Rб:
На резисторе падает напряжение:
URб = Uвых – Uст = 12в – 5,6в = 6,4вЗная падение напряжения и ток стабилизации, по закону Ома определяем сопротивление резистора:
Rб = URб / = 6,4в/0,01А = 640 ОмБлижайшее значение сопротивления резистора по номинальному ряду — 620 Ом.
Мощность резистора находим из условия РRб = URб * Iст * 2 = 6,4в * 0,01А * 2 = 0,128 Вт
Если кто не знает, что в формуле обозначает цифра 2, поясню, это коэффициент запаса по мощности (чтобы резистор не грелся). Более подробно написано в статье Резистор . Ближайшее наибольшее значение мощности резистора по номинальному ряду – 0,125 Вт.
Таким образом, параметры Rб – 620 Ом на 0,125 Вт.
3. Определим возможные значения выходного напряжения стабилизатора, при которых стабилизация происходит.
Они ограничены предельными токами стабилитрона, стоящего в мостовой измерительной цепи.
а) Определим минимальное (регулируемое) напряжение стабилизации: По справочнику минимальный ток стабилизации КС156А = 3 мА, при этом токе значение выходного напряжения стабилизатора составит:
Uвых.min = Uст + (Iст.min * Rб) = 5,6 в + (0,003 * 620) = 7,46 вольтб) Определим максимальное (регулируемое) напряжение стабилизации:
По справочнику максимальный предельный ток стабилизации КС156А = 55 мА. Это большой ток, при котором стабилитрон будет греться и нужны дополнительные меры защиты, поэтому ограничимся значением, в 2 раза превышающем номинальное — 20 мА. При этом токе значение выходного напряжения стабилизатора составит:
Uвых.max = Uст + (Iст.max * Rб) = 5,6 в + (0,02 * 620) = 18 вольтПоскольку мощность прикладываемая к резистору возросла, для того, чтобы резистор Rб не сгорел от большой прикладываемой мощности, его мощность следует увеличить до значения:
РRб = URб * Iст * 2 = 12,4 в * 0,02 А * 2 = 0,5 ВтЕсли Вы хотите, чтобы Ваш стабилизатор выдавал 18 вольт, то мощность резистора необходимо увеличить, но если Вы делаете стабилизатор на фиксированное напряжение (в данном случае 12 вольт), то этого можно не делать, удовлетворившись расчётом, приведённым в пункте 2.
4. Рассчитаем делитель R1,R2,R3:
Нам известно, что на стабилитроне КС156А падает – 5,6 вольта. А ещё мы знаем (см. статью Биполярный транзистор), что в режиме стабилизации, транзистор VT1 находится в «рабочей точке», это означает, что на его переходе база-эмиттер «падает» напряжение 0,65 вольта. А это в свою очередь означает, что на базе должно быть всегда 5,6 + 0,65 = 6,25 вольта относительно корпуса стабилизатора. База соединена с «ползунком» среднего регулировочного резистора, значит, это напряжение 6,25 вольта всегда присутствует на его «ползунке».
Исходя из этого, можно составить, систему уравнений с тремя неизвестными, но это Вас только запутает, поэтому мы пойдем по более простому, но практичному пути.
При максимальном напряжении стабилизации Uвых.max = 18 вольт, ползунок находится в нижнем по схеме положении, ток стабилизации Iст.max = 0,02 A, а ток делителя R1,R2,R3 в 10 раз меньше: Iцепи = 0,002 А , следовательно:
R3 = 6,25 / Iцепи = 6,25 / 0,002 = 3,125 кОм;R1 + R2 = (Uвых.max — UR3) / Iцепи = 11,75 / 0,002 = 5,875 кОм.
Суммарное сопротивление R1 + R2 + R3 = 5 875 + 3 125 = 9 кОм
При минимальном напряжении стабилизации Uвых.min = 7,46 вольта, ток делителя будет:
Iцепи = Uвых.min / (R1 + R2 + R3) = 7,46 / 9000 = 0,00083 Анайдем значение R1 = (Uвых.min – 6,25) / Iцепи = (7,46 – 6,25) / 0,00083 = 1,46 кОм,
отсюда значение R2 = 5,88 – 1,46 = 4,42 Ом,
округлим значения резисторов до значений номинального ряда: R1 = 1,5 кОм, R2 = 4,3 кОм (переменный), R3 = 3 кОм
5. Рассчитаем второй источник опорного напряжения и смещения VT2.
В качестве стабилитрона выбираем Д816А, у которого Uст = 22 вольта, Iст = 10 мА.
Найдём Rсм.
Выходное напряжение трансформатора после выпрямления и сглаживания фильтром = 25 вольт, тогда Rсм = (Uтр. — Uст) / Iст = 25 – 22 / 0,01А = 300 Ом.
Мощность резистора РRсм = URсм / Iст = 3 *0,01 = 0,03 Вт, ближайшая из номинального ряда — 0,125 Вт
Для стабильной работы цепи опорного напряжения Rсм VD2, необходимо, чтобы Rк не оказывал на эту цепь шунтирующего действия. Поэтому ток Rк должен быть не менее, чем в 2 раза меньше тока стабилитрона. Кроме того, на нём падает разность между входным и выходным напряжением: URк = Uтр. — Uвых. = 25 – 12 = 13 вольт,
отсюда: Rк = URк / (Iст/2) = 13 / 0,005 = 2,7 кОм.
Мощность РRк = URк * Iст / 2 = 13 *0,005 = 0,0325 Вт, ближайший 0,125 Вт.
6. Наконец дело дошло до транзисторов.
В качестве VT1 подойдёт транзистор КТ315Г. Он удовлетворяет требованиям:
— достаточно высокий коэффициент усиления (передачи) h31Э = 50…350;
— допустимое напряжение коллектор-эмиттер – 35 вольт.
В качестве VT2 подойдёт транзистор КТ815 с любым буквенным индексом. Коэффициент передачи h31Э = 40 – 70 , обеспечивает усиление тока резистора Rк с 5 мА до 250 мА;
В качестве VT3 попробуем взять не то, что надо искать, а то, что есть — например КТ809А. Коэффициент передачи h31Э = 15…100 , что обеспечивает усиление тока с 250 мА до 3,7 А, но максимальный ток коллектора – 3 А это по справочнику – предел, нет «запаса прочности», поэтому ставим два транзистора в параллель. При выходном напряжении = 12 вольт и токе 2 ампера, на них должно падать 13 вольт, таким образом, общая мощность рассеивания транзисторов: РVT3 = UVT3 * I VT3 = 2 * 13 = 26 Вт.
Это вполне приемлемое значение. Для выравнивания мощностей на транзисторах придётся использовать два резистора в эмитерных цепях выходных транзисторов. 0,05…1 Ом с мощностью по 2 Вт.
7. Остался один резистор Rэ. Его расчет приведён в предыдущей статье Простейшие стабилизаторы напряжения. Rэ = 0,65 / 2 * 50 = 16 Ом,
где 0,65 – падение на переходе база-эмиттер, 2 – номинальный ток нагрузки = 2 ампер), 50 — усреднённое значение коэффициента передачи транзистора.
Рисуем схему нашего стабилизатора
Дополнения к статье
1. При выборе стабилитронов возможно последовательное их соединение, например два КС156А (по 5,6 вольта) можно соединить последовательно для получения стабилитрона на напряжение стабилизации 11,2 вольта;
2. Для возможности регулировки выходного напряжения в более широких пределах цепочку источника опорного напряжения R3, VD6 (см. схему) подключают не к выходу, а на вход стабилизатора с применением цепей сглаживания (по аналогии с R1, VD5 и С2). Естественно, необходимо пересчитать резистор R3. Как это делается описано в этой статье и предыдущей статье Простейшие стабилизаторы напряжения. В результате этого, входное напряжение ИОН не зависит от выходного напряжения, поэтому ток стабилизации номинальный и постоянен. Другой вариант расширения диапазона стабилизируемых напряжений — использование в качестве одного резистора Rб – галентного переключателя с несколькими резисторами;
3. Для повышения нагрузочных свойств стабилизатора, и как следствие повышения надёжности рекомендую вместо двух КТ809А поставить один составной КТ827А без резисторов R4 – R6.
4. Никогда не брезгуйте рассчитать мощность резисторов, иначе это может Вам выйти кучей сгоревших дорогих элементов;
5. В приведённой схеме стабилизатора имеется защита по первичной обмотке трансформатора, а во вторичных цепях защита отсутствует. В простейшем случае поставьте на выходе стабилизатора двух-трехватный предохранитель, но лучше сделать более интеллектуальную схему защиты;
6. В этой статье указаны простейшие правила и условия, соблюдение которых позволит проектировать и собирать действующие стабилизаторы. И тогда у Вас не будет возникать вопросов типа тех, на которых и существует половина интернет-Форумов: Я вместо конденсатора поставил резистор, а он как конденсатор работать не хочет!? Или: Почему резистор, предназначенный в схеме для выполнения одной функции, не выполняет другую функцию?
Расчёт с первого взгляда выглядит нудноватым, но это самый простейший расчёт. Поняв принципы работы и расчёта транзисторных каскадов, Вы сможете конструировать и рассчитывать более сложные схемы.
Схема и объяснение удвоителя напряженияУдвоитель напряжения — это схема, в которой мы получаем удвоенное входное напряжение, например, если мы подаем напряжение 5 В, мы получим 10 вольт на выходе. Обычно трансформаторы используются для повышения или понижения напряжения, но иногда использование трансформаторов невозможно из-за их размера и стоимости. Итак, вот быстрое, простое и практичное решение для удвоения напряжения с использованием микросхемы таймера 555.
Компоненты
- 555 таймер IC
- Диоды -2 (1N4007)
- Резисторы- 10к, 33к
- Емкость двигателя — 22 мкФ (2), 0.01 мкФ (2)
- Источник питания 3-12В
Схема и пояснения удвоителя напряжения
Мы можем разделить схему на две части: первая часть состоит из ИС 555 в нестабильном режиме, для генерации прямоугольной волны, а вторая часть состоит из 2 диодов и 2 конденсаторов для удвоения выходного напряжения.
Мы настроили микросхему таймера 555 в режиме нестабильного мультивибратора для генерации прямоугольной волны прибл. 2 кГц, эта частота определяется резистором R1, R2 и конденсатором C1.Ниже приведены формулы для того же:
F = 1,44 / (R1 + 2 * R2) * C1
Когда на выходе PIN 3 микросхемы 555 низкий уровень, диод D1 смещается в прямом направлении, а конденсатор C3 заряжается через D1. Конденсатор C3 заряжается до того же напряжения на источнике, в нашем случае 5В.
Теперь, когда выходной сигнал на контакте 3 становится высоким, D1 смещается в обратном направлении и блокирует разряд конденсатора C3, и в то же время D2 смещается в прямом направлении и позволяет конденсатору C4 заряжаться.Теперь конденсатор C4 заряжается объединенным напряжением конденсатора C3 и напряжением входного источника, то есть 5 В конденсатора C3 и 5 В входного питания, поэтому он заряжается до 10 В (вдвое больше напряжения входного источника). Но на практике мы получаем выходное напряжение вдвое меньше входного, например, в нашем случае мы получаем прибл. 8,76 В вместо 10 В.
У данной схемы удвоителя напряжения есть и недостатки. :
- Однако эта схема очень полезна для генерирования более высокого напряжения от источника малой мощности, но она может обеспечить ток только до 50 мА.Поэтому его следует использовать только для приложений с низким током.
- Также выходное напряжение может быть нестабильным, поэтому можно использовать регулятор напряжения (IC78XX) соответствующего номинала, регулирующий и плавный выход. Но стабилизатор напряжения IC сам потребляет некоторый ток и снижает выходной ток (не должен превышать 70 мА).
Примечания:
- Входное напряжение должно быть в пределах 3–12 вольт, более высокое напряжение приведет к повреждению микросхемы таймера 555.
- Нагрузка на выходе не должна потреблять ток более 70 мА.
- Напряжение не будет удваиваться мгновенно, но будет увеличиваться медленно и через некоторое время установится в два раза больше входного напряжения.
- Номинальное напряжение конденсатора C4 должно как минимум в два раза превышать входное напряжение.
- Выходное напряжение не вдвое больше входного напряжения, оно будет меньше входного напряжения. Например, у нас есть 8,76 В для входного питания 5 В, а если вы примените 12 В, выходное напряжение будет 18-20 В.
Проектирование цепей источника питания — от простейшего до самого сложного
В статье подробно рассказывается, как спроектировать и построить хорошую схему источника питания рабочего стола — от базовой конструкции до достаточно сложного источника питания с расширенными функциями.
Проектирование рабочего места Источник питания незаменим
Будь то новичок в области электроники или опытный инженер, всем необходим этот незаменимый элемент оборудования, называемый блоком питания.
Это связано с тем, что никакая электроника не может работать без питания, а точнее, низковольтного источника постоянного тока, а блок питания — это устройство, которое специально предназначено для выполнения этой цели.
Если это оборудование так важно, всем в этой области необходимо изучить все мельчайшие подробности этого важного члена электронного семейства.
Давайте начнем и узнаем, как спроектировать схему источника питания, сначала простейшую, вероятно, для новичков, которые сочтут эту информацию чрезвычайно полезной.
Базовая схема источника питания требует трех основных компонентов для обеспечения желаемых результатов.
Трансформатор, диод и конденсатор.Трансформатор — это устройство с двумя наборами обмоток, одна первичная, а другая вторичная.
Сеть 220 В или 120 В подается на первичную обмотку, которая передается на вторичную обмотку для создания там более низкого наведенного напряжения.
Низкое пониженное напряжение, доступное на вторичной обмотке трансформатора, используется для предполагаемого применения в электронных схемах, однако, прежде чем это вторичное напряжение можно будет использовать, его необходимо сначала выпрямить, что означает, что напряжение должно быть преобразовано в постоянный ток. первый.
Например, если вторичная обмотка трансформатора рассчитана на 12 вольт, то полученные 12 вольт от вторичной обмотки трансформатора будут 12 вольт переменного тока через соответствующие провода.
Электронная схема никогда не может работать с переменным током, поэтому это напряжение должно быть преобразовано в постоянное.
Диод — это одно устройство, которое эффективно преобразует переменный ток в постоянный, есть три конфигурации, с помощью которых могут быть сконфигурированы основные конструкции источника питания.
Использование одного диода:
Самая простая и грубая форма конструкции источника питания — это тот, в котором используется один диод и конденсатор.Поскольку один диод выпрямляет только половину цикла сигнала переменного тока, для этого типа конфигурации требуется большой конденсатор выходного фильтра для компенсации вышеуказанного ограничения.
Фильтрующий конденсатор гарантирует, что после выпрямления на участках падения или убывания результирующей схемы постоянного тока, где напряжение имеет тенденцию к падению, эти участки заполняются и покрываются накопленной энергией внутри конденсатора.
Вышеупомянутая компенсация за счет накопленной энергии конденсаторов помогает поддерживать чистый выход постоянного тока без пульсаций, что было бы невозможно только с помощью диодов.
Для конструкции источника питания с одним диодом вторичная обмотка трансформатора должна иметь только одну обмотку с двумя концами.
Однако вышеупомянутая конфигурация не может считаться эффективной конструкцией источника питания из-за ее грубого полуволнового выпрямления и ограниченных возможностей преобразования выхода.
Использование двух диодов:
Использование пары диодов для создания источника питания требует трансформатора с центральной вторичной обмоткой с ответвлениями. На схеме показано, как диоды подключаются к трансформатору.
Хотя два диода работают в тандеме и обрабатывают обе половины сигнала переменного тока и производят двухполупериодное выпрямление, используемый метод неэффективен, поскольку в любой момент используется только одна половина обмотки трансформатора. Это приводит к плохому насыщению сердечника и ненужному нагреву трансформатора, что делает этот тип конфигурации источника питания менее эффективной и обычной конструкцией.
Использование четырех диодов:
Это лучшая и общепринятая форма конфигурации источника питания в том, что касается процесса выпрямления.
Умное использование четырех диодов делает работу очень простой, достаточно всего лишь одной вторичной обмотки, насыщение сердечника идеально оптимизировано, что приводит к эффективному преобразованию переменного тока в постоянный.
На рисунке показано, как создается двухполупериодный выпрямленный источник питания с использованием четырех диодов и конденсатора фильтра с относительно низким номиналом.
Этот тип диодной конфигурации широко известен как мостовая сеть. Возможно, вы захотите узнать, как построить мостовой выпрямитель.
Все вышеперечисленные конструкции источников питания обеспечивают выходы с обычным регулированием и поэтому не могут считаться идеальными, они не обеспечивают идеальных выходов постоянного тока и поэтому нежелательны для многих сложных электронных схем. Кроме того, эти конфигурации не включают функции управления переменным напряжением и током.
Однако вышеупомянутые функции могут быть просто интегрированы в вышеуказанные конструкции, а не в последнюю двухполупериодную конфигурацию источника питания за счет введения одной ИС и нескольких других пассивных компонентов.
Использование IC 317 или LM338:
IC LM 317 — универсальное устройство, которое обычно объединяется с источниками питания для получения хорошо регулируемых и регулируемых выходных напряжений / токов. Несколько примеров схем источника питания, использующих эту микросхему
Поскольку указанная выше микросхема может поддерживать максимум 1,5 А, для более высоких выходных токов можно использовать другое подобное устройство, но с более высокими номиналами. IC LM 338 работает точно так же, как LM 317, но может выдерживать ток до 5 ампер.Ниже показан простой дизайн.
Для получения фиксированных уровней напряжения ИС серии 78ХХ могут использоваться с описанными выше схемами питания. ИС 78XX подробно описаны для вашего обращения.
В настоящее время бестрансформаторные источники питания SMPS становятся фаворитами среди пользователей из-за их высокой эффективности, высокой мощности, обеспечивающей функции при удивительно компактных размерах.
Хотя создание схемы источника питания SMPS в домашних условиях, безусловно, не для новичков в этой области, инженеры и энтузиасты, обладающие всесторонними знаниями в этой области, могут заняться построением таких схем дома.
Вы также можете узнать об аккуратной конструкции блока питания с переключателем режимов.
Есть несколько других форм источников питания, которые могут быть построены даже начинающими любителями электроники и не требуют трансформаторов. Хотя эти типы цепей питания очень дешевы и просты в изготовлении, они не могут поддерживать большой ток и обычно ограничиваются 200 мА или около того.
Конструкция бестрансформаторного источника питания
Две концепции вышеупомянутых схем безтрансформаторного источника питания обсуждаются в следующих двух публикациях:
С использованием высоковольтных конденсаторов,
С помощью Hi-End ICs и FET
Обратная связь от одного из преданных читателей этого блога
Дорогой Свагатам Маджумдар,
Я хочу сделать блок питания для микроконтроллера и его зависимых компонентов…
Я хочу получить стабильный выход + 5В и + 3,3В от блока питания, я не уверен в возрасте усилителя, но думаю, что всего 5А должно быть достаточно, также будет 5В Mouse и 5V Клавиатура, 3 микросхемы SN74HC595 и 2 статических ОЗУ по 512 Кб … Так что я действительно не знаю, к какой амперметре нужно стремиться ….
Думаю, 5 ампер достаточно? использовать и какие ДИОДЫ использовать? Я выбрал трансформатор после того, как прочитал где-то в Интернете, что мостовой выпрямитель вызывает ПАДЕНИЕ НАПРЯЖЕНИЯ на 1.4V в целом и в вашем блоге выше вы заявляете, что мостовой чтец вызовет повышение напряжения? …
ТАК Я не уверен (в любом случае не уверен, что я новичок в электронике) ….. ПЕРВЫЙ трансформатор, который я выбрал был этот. Пожалуйста, посоветуйте мне, какой из них ЛУЧШЕ для моих нужд и какие ДИОДЫ тоже использовать …. Я хотел бы использовать блок питания для платы, очень похожей на эту …. подходящий сетевой блок питания 220/240 В, который дает мне СТАБИЛЬНЫЕ 5 В и 3,3 В для использования с моим дизайном.Заранее спасибо.
Как получить постоянные 5 В и 3 В от цепи питания
Здравствуйте, вы можете добиться этого, просто используя микросхему 7805 для получения 5 В и добавив пару диодов 1N4007 к этим 5 В для получения примерно 3,3 В.
5 ампер выглядит слишком высоко, и я не думаю, что вам потребуется такой большой ток, если только вы не используете этот источник питания с внешним каскадом драйвера, несущим более высокие нагрузки, такие как светодиод высокой мощности или двигатель и т. Д.
Я уверен, что ваше требование может быть легко выполнено с помощью вышеупомянутых процедур.
для питания MCU с помощью описанной выше процедуры вы можете использовать 0-9 В или 0-12 В с током 1 ампер, диоды могут быть 1N 4007 x 4 контакта
Диоды упадут на 1,4 В, когда на входе будет постоянный ток, но когда это будет AC как от трафарета, то выход будет увеличен в 1,21 раза.
обязательно используйте конденсатор 2200 мкФ / 25 В после моста для фильтрации.
Надеюсь, эта информация просветит вас и ответит на ваши вопросы.
На следующем изображении показано, как получить 5 В и 3.Постоянная 3В от заданной цепи питания.
Получение переменного выходного сигнала 9 В от IC 7805
Обычно IC 7805 рассматривается как фиксированный стабилизатор напряжения 5 В. Однако с помощью основного обходного пути ИС можно превратить в схему переменного регулятора напряжения от 5 В до 9 В, как показано выше. Здесь мы видим, что предустановка на 500 Ом добавлена к центральному контакту заземления ИС, что позволяет ИС выдавать повышенное выходное значение до 9 В с током 850 мА. Предустановку можно было отрегулировать для получения выходных сигналов в диапазоне от 5 до 9 В.
Создание фиксированной схемы стабилизатора 12 В
На приведенной выше диаграмме мы можем увидеть, как обычная микросхема стабилизатора 7805 может быть использована для создания фиксированного регулируемого выхода 5 В.
Если вы хотите получить фиксированный регулируемый источник питания 12 В, ту же конфигурацию можно применить для получения требуемых результатов, как показано ниже:
Регулируемый источник питания 12 В, 5 В
Теперь предположим, что у вас есть схемы, которым требуется двойное питание в диапазоне фиксированных 12 В и регулируемых 5 В.
Для таких приложений описанная выше конструкция может быть просто изменена путем использования ИС 7812, а затем ИС 7805 для получения вместе требуемых выходных регулируемых источников питания 12 В и 5 В, как указано ниже:
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!
Что такое индукционный регулятор напряжения? Определение и типы
Определение: Индукционный регулятор напряжения — это тип электрической машины, в которой выходное напряжение может изменяться от нуля до определенного максимального значения в зависимости от соотношения витков в первичной и вторичной обмотках. обмотка подключается к регулируемой цепи, а вторичная обмотка включается последовательно с цепью.
Типы индукционных регуляторов напряжения
Индукционные регуляторы напряжения в основном подразделяются на два типа: i.е., однофазный индукционный регулятор напряжения и трехфазный индукционный регулятор напряжения.
Однофазный индукционный регулятор напряжения
Принципиальная схема однофазного индукционного регулятора напряжения представлена на рисунке ниже. Первичная обмотка подключена к однофазному источнику питания, а вторичная — последовательно с отходящими линиями. В системе индуцируется переменный поток, и когда оси двух обмоток совпадают, весь поток первичной обмотки связывается со вторичными обмотками, и максимальное напряжение индуцируется во вторичной обмотке.
Когда ротор вращается на 90º, первичный поток не связан с вторичными обмотками и, следовательно, никакой поток не связан с вторичными обмотками. Если ротор продолжает вращаться, направление наведенной ЭДС становится отрицательным. Таким образом, регулятор добавляет или вычитает напряжение цепи в зависимости от относительного положения двух обмоток регуляторов.
Однофазный регулятор напряжения не вызывает сдвига фаз. Первичные обмотки помещаются в пазы в поверхностном сердечнике многослойного цилиндрического сердечника, поскольку он должен пропускать небольшие токи и имеет небольшую площадь проводника.Ротор регулятора состоит из компенсационных обмоток, также называемых территориальными обмотками.
Магнитная ось компенсационных обмоток всегда находится на 90º от оси первичных обмоток, чтобы нейтрализовать вредное последовательное реактивное сопротивление вторичной обмотки. Вторичные обмотки, соединенные последовательно с отходящей линией, размещаются в пазах статора из-за большой площади проводника.
Трехфазный индукционный регулятор напряжения
Трехфазные асинхронные двигатели имеют три первичные и три вторичные обмотки, которые должны находиться на расстоянии 120º друг от друга.Первичные обмотки помещаются в паз многослойного сердечника ротора и подключаются к трехфазному источнику переменного тока. Вторичные обмотки находятся в пазах многослойного сердечника статора и последовательно соединены с нагрузкой.
Для регулятора не требуются первичные и компенсационные обмотки, поскольку каждая вторичная обмотка регулятора магнитно связана с одной или несколькими первичными обмотками регулятора. В этом регуляторе создается вращающееся магнитное поле постоянной величины, благодаря которому наведенное во вторичной обмотке напряжение имеет постоянную величину.Фазы регулятора меняются при изменении положения ротора на статоре.
Векторная диаграмма индукционного регулятора показана на рисунке выше. Где V 1 — напряжение питания, V r — индуктивное напряжение во вторичной обмотке, а V 2 — выходное напряжение на каждую фазу. Выходное напряжение получается как векторная сумма напряжения питания и индуцированного напряжения для любого угла смещения ротора θ.
Геометрическое место круга, следовательно, представляет собой окружность с центром на краю напряжения питания и радиусом V r .Максимальное выходное напряжение получается, когда индуцированное напряжение находится в фазе с напряжением питания, а минимальное выходное напряжение получается, когда индуцированное напряжение находится в противофазе с напряжением питания.
Полная векторная диаграмма для трех фаз показана на рисунке ниже. A, B и C — входной терминал, а a, b и c — выходной терминал индукционного регулятора. Напряжение питания и выходной линии находятся в фазе только в положениях максимального повышения и минимального понижения, а для всех других положений существует сдвиг фаз между линией питания и выходным напряжением.
.Анализ узлового напряжения— как использовать его в схемной сети
Анализ схемной сети является важной частью при проектировании или работе с предварительно спроектированными схемами, которая имеет дело с током и напряжением в каждом узле или ветви схемной сети. Однако этот процесс анализа для определения тока, напряжения или мощности узла или ветви немного сложен, поскольку многие компоненты соединены вместе. Правильный анализ также зависит от выбранной нами техники для определения силы тока или напряжения. Основными методами анализа являются анализ тока сетки и анализ узлового напряжения .
Эти два метода следуют разным правилам и имеют разные ограничения. Прежде чем приступить к анализу схемы надлежащим образом, важно определить, какой метод анализа лучше всего подходит с точки зрения сложности и необходимого времени для анализа.
Что использовать — анализ сетки или узловой анализ?
Ответ кроется в том факте, сколько источников напряжения или тока доступно в конкретной цепи или сети.Если целевая электрическая сеть состоит из источников тока, то узловой анализ будет менее сложным и простым. Но если в цепи есть источники напряжения, то метод анализа сетки идеален и требует меньше времени на расчет.
Во многих цепях доступны источники как тока, так и напряжения. В тех ситуациях, если количество источников тока больше, чем источников напряжения, то узловой анализ по-прежнему является лучшим выбором, и необходимо преобразовать источники напряжения в эквивалентные источники тока.
Ранее мы объясняли анализ тока сетки, поэтому здесь, в этом руководстве, мы обсуждаем анализ узлового напряжения и то, как его использовать в схемной сети .
Узловой анализ
Как следует из названия, Узел происходит от термина узел. Теперь что такое узел ?
Схема может иметь различные типы схемных элементов, компонентных выводов и т. Д. Схема, в которой, по меньшей мере, два или более схемных элемента или выводов соединены вместе, называется узлом. Узловой анализ выполняется на узлах.
В случае анализа сетки существует ограничение, заключающееся в том, что анализ сетки может выполняться только в схеме планировщика. Схема Planner — это схема, которую можно нарисовать на плоской поверхности без пересечения. Но для узлового анализа такого ограничения нет, потому что каждому узлу может быть назначено напряжение, которое является важным параметром для анализа узла с использованием метода анализа узлов.
При анализе узлов первым шагом является определение количества узлов, существующих в схемной сети, , будь то строгальная схема или нерубанка.
После обнаружения узлов, поскольку он имеет дело с напряжением, o ne требуется контрольная точка для назначения уровней напряжения каждому узлу. Почему? Потому что напряжение — это разность потенциалов между двумя узлами. Поэтому для дифференциации требуется ссылка. Это различие выполняется с помощью общего или общего узла, который действует как ссылка. Этот опорный узел должен быть равен нулю, чтобы получить идеальный уровень напряжения, отличного от опорного заземления контура.
Итак, если сеть с пятью узлами имеет один опорный узел.Затем для решения оставшихся четырех узлов необходимо четыре узловых уравнения. В общем, для решения схемной сети с использованием техники узлового анализа, который имеет N номеров всех узлов, необходимо N-1 количество узловых уравнений. Если все это доступно, решить схемную сеть действительно просто.
Следующие шаги необходимы для решения схемы сети с использованием Техники узлового анализа .
- Обнаружение узлов в цепи
- Вычисление уравнений N-1
- Обнаружение напряжения Н-1
- Применение действующего закона Кирхгофа или KCL
Определение напряжения в цепи с помощью узлового анализа — пример
Чтобы понять узловой анализ, рассмотрим следующую схему сети:
Приведенная выше схема является одним из лучших примеров для понимания узлового анализа.Эта схема довольно проста. Всего шесть элементов схемы. I1 — источник тока, а R1, R2, R3, R4, R5 — пять резисторов. Рассмотрим эти пять резисторов как пять резистивных нагрузок.
Эти шесть составных элементов создали три узла . Итак, как обсуждалось ранее, количество узлов было найдено.
Теперь количество узлов N-1 означает, что в схеме доступно 3-1 = 2 узла.
В указанной выше схемной сети Узел-3 рассматривается как опорный узел .Это означает, что напряжение узла 3 имеет опорное напряжение 0В . Итак, оставшимся двум узлам, узлу 1 и узлу 2, необходимо назначить напряжение. Таким образом, уровень напряжения Узла-1 и Узла-2 будет относиться к Узлу-3.
Теперь давайте рассмотрим следующее изображение, на котором текущий поток каждого узла показан .
На изображении выше применяется действующий закон Кирхгофа. Сила тока, входящего в узлы, равна току, выходящему из узлов.Стрелки указали поток токов Inodes как в Узле-1, так и в Узле-2. Источник тока схемы — I1.
Для узла 1 величина входящего тока равна I1, а величина выходящего тока является суммой тока через R1 и R2.
По закону Ома ток R1 равен (V1 / R1), а ток R2 равен ((V1 — V2) / R2).
Итак, применяя закон Кирхгофа, уравнение Узла 1 равно
.I1 = V1 / R1 + (V1 - V2) / R2 …… [Уравнение: 1]
Для узла 2 токи через R2 равны (V1 — V2) / R2, ток через R3 равен V 2 / R 3 , а резисторы R4 и R5 могут быть объединены для получения одного сопротивления, которое R4 + R5, ток через эти два резистора будет V2 / (R4 + R5).
Следовательно, применяя текущий закон Кирхгофа, уравнение Узла 2 можно составить как
(V2-V1) / R2 + V2 / R3 + V2 / (R4 + R5) = 0 ……………… [Уравнение: 2]
Решая эти два уравнения, можно без каких-либо дополнительных сложностей найти напряжения в каждом узле.
Пример анализа узлового напряжения
Давайте посмотрим на практический пример —
В приведенной выше схеме 4 резистивные нагрузки создают 3 узла .Узел Node-3 является опорным узлом , имеющим потенциальное напряжение 0 В. Есть один источник тока, I1, который обеспечивает ток 10 А, и один источник напряжения, который обеспечивает напряжение 5 В.
Для решения этой схемы и определения тока в каждой ветви будет использоваться метод анализа узлов. Во время анализа , поскольку остается два узла, требуются 2 уравнения отдельных узлов.
Для узла 1 , в соответствии с действующим законом Кирхгофа и законом Ома,
I1 = VR1 + (V1- V2) / R2
Следовательно, указав точное значение,
10 = V1 / 2 + (V1 - V2) / 1 или, 20 = 3V1 - 2V2 …….[Уравнение: 1]
То же для узла 2
(V2 - V1) / R2 + V2 / R3 + V2 / (R4) = 0 или, (V2 - V1) / 1+ V2 / 5+ (V2 - 5) / 3 = 0 или, 15V2 - 15V1 + 3V2 + 5V2 - 25 = 0 -15V1 + 23V2 = 25 ………………. [Уравнение: 2]
Решая два уравнения, мы получаем значение V1 13,08 В и значение V2 9,61 В .
Схема дополнительно построена и смоделирована в PSpice для проверки результатов расчетов с результатами моделирования.И мы получили те же результаты, что и рассчитанные выше, проверьте результаты моделирования на картинке ниже:
Вот как можно рассчитать напряжение в разных узлах схемы с помощью Nodal Voltage Analysis .
.