Схемы стабилизаторов тока: Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Содержание

Стабилизаторы тока » PRO-диод

Стабилизаторы тока

Стабилизаторы тока

25.10.2013 | Рубрика: Электроника

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).

Схема и применение показаны на рисунках ниже

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КРЕН в качестве зярядного устройства

Стабилизатор тока на КРЕН в качестве зярядного устройства

Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.

Стабилизатор тока на транзисторах

Стабилизатор тока на транзисторах

Зарядка аккумуляторов

Зарядка аккумуляторов

Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.

Стабилизатор тока на полевом транзисторе

Стабилизатор тока на полевом транзисторе

Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:

Стабилизатор тока на полевом транзисторе

Стабилизатор тока на полевом транзисторе

В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.

Стабилизатор тока на операционном усилителе (на ОУ)

Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:

Стабилизатор тока на операционном усилителе

Стабилизатор тока на операционном усилителе

В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.

Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.

В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.

Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме

Осциллограмма стабилизатора тока на ОУ

Осциллограмма стабилизатора тока на ОУ

На осциллограмме луч 1 (желтый) показывает напряжение нагружаемого ИП (источника питания), луч 2 (голубой) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.

Стабилизатор тока на микросхеме импульсного стабилизатора напряжения

Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.

Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771:

  • Напряжение питяния 2…16,5В
  • Собственное потребление 110uA
  • Выходная мощность до 15W
  • КПД при токе нагрузки 10mA…1A достигает 90%
  • Опорное напряжение 1,5V

На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.

MAX771 включен как повышающий стабилизатор напряжения

MAX771 включен как повышающий стабилизатор напряжения

Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.

Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.

Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.

Схема стабилизатора тока на MAX771
Схема стабилизатора тока на MAX771
Нагрузка для стабилизатора тока
Нагрузка для стабилизатора тока

При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.

Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.

Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.

Заключение

Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.

Метки:: Стабилизатор тока

Как из простого преобразователя сделать стабилизатор тока. Как сделать стабилизатор тока своими руками. Описание и схема

Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.

Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками.

Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором.

Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально "из палок и веревок", например для питания светодиодов, заряда аккумуляторов и прочего.
В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео.

Собран он по простейшей схеме.
При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.

Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта.
Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.
Транзистор, используемый в данной схеме - BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему "наизнанку", то и КТ315.

В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА.

Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.
Но мы пойдет другим путем.

Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)
Красным цветом выделена показанная выше платка.

Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.
На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4.

Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко.

Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.
На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока.

Отлично, ток в цепи получился 650 мА, все работает отлично.

В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).
А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом.

Выше я писал насчет аккумуляторов.
Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда.

В качестве дополнения я снял видео, возможно будет полезно.

На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.

Эту страницу нашли, когда искали:
стабилизатор тока с малым падением напряжения на моп схема, схема регулятора напряжения на 12 вольт, мощный стабилизатор напряжения и тока своими руками, схема стабилизатор напряжения 10-20 вольт 10а, стабилизатор напряжения на 3 18 вольт своими руками, схема стабилизации напряжения со светодиодом, стабилизатор на лм317, как работает стабилизатор тока на транзисторе, стабилизация высокого напряжения на мосфетах схемы, транзисторный стабилизатор тока, стабилизатор тока на 3а схема, бортовой стабилизатор напряжения 6 v своими руками, самодельный повышающе понижающий импульсный стабилизатор тока и напряжения с защитой от кз схемы, высоковольтный стабилизатор постоянного тока на полевом транзисторе саоими руками, схема понижающего преобразователя с датчиком тока и стабилизацией тока, повышающий стабилизатор напряжения своими руками, сделать из повышающего преобразователя стабилизатор тока, понижающий стабилизатор напряжения 20 5в своими руками, делаем стаб тока светодиода на 3 вольта, шим стабилизаторы тока и напряжения на 10 ампер схема, стабилизатор тока из последовательных модулей, стабилизатор тока на микросхеме ixcp10m45s, стабилизатор повышающий напряжения своими руками, самодельный стабилизатор напряжения 15 вольт 5 ампер, стабилизатор тока tp8016 даташит, стабилизатор тока своими руками, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА

   Когда собирается первый блок питания, схема берётся самая простая – чтобы всё получилось наверняка. Когда удастся его запустить и получить аж целых 12 регулируемых вольт и току под пол ампера радиолюбитель проникается смыслом фразы «И будет тебе счастье!». Только счастье это длиться не очень долго и вскоре становиться совершенно очевидным, что в БП обязательно должна быть возможность регулирования силы тока на выходе. Доработкой уже имеющегося блока питания это достижимо, но несколько хлопотно – уж лучше собрать ещё один, более «продвинутый». Есть интересный вариант. К маломощному блоку питания можно изготовить приставку для регулировки тока в интервале от 20 mA и до максимума того, что он способен дать, вот по этой схеме:

Схема стабилизатора постоянного тока

Схема стабилизатора постоянного тока

   Такое устройство собрал почти год назад.

Приставка для БП - стабилизатор тока

   Токовый стабилизатор действительно нужная вещица. Например, поможет зарядить любой аккумулятор, рассчитанный на напряжение до 9 вольт включительно, причём замечу, зарядить качественно. Вот только измерительной головки у неё явно не хватает. Решаюсь на модернизацию и разбираю на составные части свою самоделку, где, пожалуй, самый значительный компонент это переменный резистор ППБ-15Е с максимальным сопротивлением 33 Ома.

 БП - стабилизатор тока

   Новый корпус сориентирован исключительно под размеры индикатора от магнитофона, который и будет выполнять функции миллиамперметра.

разборка индикатора от магнитофона

   Для этого у него «рисуется» новая шкала (выбрал ток полного отклонения стрелки в 150 mA, а можно сделать и по максимуму).

ток полного отклонения стрелки в 150 mA

      Затем на стрелочный прибор ставиться шунт. 

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА самодельный

   Шунт сделал из нихромовой нагревательной спирали диаметром 0,5 мм. Транзистор КТ818 обязательно поставить на радиатор охлаждения.

В стабилизаторе транзистор поставить на радиатор

   Соединение (сочленение) приставки с блоком питания производиться при помощи, интегрированной в корпус импровизированной вилки, штыри которой взяты от обычной сетевой вилки, на одном из концов которых нарезана резьба М4, посредством которой и двух гаек каждый из них прикручен к корпусу.

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА

   Итоговое изображение того, что получилось. Однозначно вышло более совершенное творение. Светодиод выполняет не только функцию индикации, но отчасти и освещения шкалы стабилизатора тока. С пожеланием успеха, Babay.

cxema.org - Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях. 

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока - неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться. 

Стабилизаторы тока, шунты

Первая схема отличается максимальной простотой и доступностью компонентов.  Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Простой стабилизатор тока на транзисторах, схема

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Простой стабилизатор тока на транзисторахПростой стабилизатор тока на транзисторах

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему. 

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта - эта схема является стабилизатором тока.

Простой стабилизатор тока на lm358, схема

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Простой стабилизатор тока на lm358Простой стабилизатор тока на lm358

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Стабилизатор тока на LM317

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Стабилизатор тока на LM317, шунтСтабилизатор тока на LM317, шунт

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

Стабилизатор тока на LM317Стабилизатор тока на LM317

Небольшое видео

Печатные платы 

 

Стабилизатор тока на полевом транзисторе

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет - 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Рисунок 2.

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37x18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

Рисунок 3.

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Таблица1 – перечень компонентов.

Позиционное обозначение

Наименование

Аналог/замена

R1

Резистор 10к.

SMD типоразмер 0805

R2-R6

Резисторы шунта.

SMD типоразмер 1206

VD1

Стабилитрон 9,1В.

Корпус SOD80

VT1

Транзистор биполярный BC846. Структура – n-p-n.

Корпус SOT23.

VT2

Транзистор полевой P0903BDG. Структура - n-канальный.

Корпус DPAK

Резюмирую. Во всех моих разработках со светодиодами обязательно есть стабилизатор тока. Он или простой, как в тот, что описан в статье или на операционном усилителе. Светодиоды обычно подключаю параллельно или последовательно-параллельно, всё зависит от конкретной задачи. В этой же статье рассказал, как сделать несложный стабилизатор тока для светодиодов на полевом транзисторе. Постарался объяснить, чем отличается стабилизатор напряжения от стабилизатора тока для светодиодов и что лучше. Надеюсь у меня получилось. Привёл принципиальную схему стабилизатора тока и печатную плату. Все файлы можно скачать с сайта. Приятных разработок!

Ну и фото напоследок.

Печатная плата стабилизатора тока фото

Стабилизатор тока и светодиоды фото

Стабилизатор тока и светодиоды фото

Крылья ангела со светодиодами фото

Печатная плата стабилизатора тока(8шт) фото

Стабилизатор тока и светодиоды фото

Стабилизатор тока и светодиоды фото

Оформление костюмов светодиодами фото

Оформление костюмов светодиодами фото

Печатная плата с двумя  стабилизаторами токов для костюмов Мелифисенты фото

Оформление костюмов Мелифисенты светодиодами фото

BC846 datasheet.

P0903BDG datasheet.

Архив с проектом.

Стабилизатор переменного тока

Стабилизаторы переменного тока, гораздо реже применяются радиолюбителями, чем стабилизаторы напряжения и регуляторы мощности. Во многом это связано с более сложной схемотехникой традиционных источников тока. Однако объективный анализ показывает, что в ряде случаев предпочтительнее применение именно источников тока. Главное достоинство источника тока — нечувствительность к короткому замыканию нагрузки.

Достаточно часто встречаются случаи, когда надо поддерживать постоянное значение переменного тока, например, при включении мощных ламп накаливания. Такая мера в несколько раз продлевает срок их службы. Регулируемый стабилизатор может оказать неоценимую помощь при проверке и налаживании устройств токовой защиты.

Вниманию читателей предлагается несложная схема стабилизатора переменного тока, с возможностью плавной регулировкой его величины. Ток можно регулировать от нескольких миллиампер до 8 Ампер. При соответствующем выборе элементов схемы максимальный стабилизируемый ток можно увеличить до 70-80 А.

принципиальная схема стабилизатора переменного тока

принципиальная схема стабилизатора переменного тока

В основу схемы положен токо-стабилизирующий двухполюсник, данное схемотехническое решение известно довольно давно, однако долгое время было чисто теоретическим (вспомните, что представляли собой МОП-транзисторы лет 10-15 назад). Ситуация изменилась с появлением в продаже мощных МОП-транзисторов (MOSFET). Их применение позволяет создавать источники тока с хорошими характеристиками и предельно простыми.

Собственно стабилизатор тока собран на операционном усилителе (ОУ) DA1, транзисторе VT1 и резисторах R1, R2, R4. Делитель R1-R2 представляет собой «задатчик» тока. В данном случае ток в амперах численно равен напряжению на движке R2, умноженному на 10. Это позволяет выбрать напряжение датчика тока R4 весьма малым. Для работы с переменным током в схему введен диодный мост, в одну из диагоналей которого включен токостабилизирующий двухполюсник. Такое включение эквивалентно последовательному соединению нагрузки и двухполюсника, и, следовательно, обеспечивает одинаковый ток через них.

Рассмотрим процесс стабилизации тока более подробно. Так как выпрямленное напряжение не фильтруется, напряжение на стоке транзистора VT1 — однополярное, пульсирующее. Когда напряжение на стоке (рисунок 2А) равно нулю, ток через VT1 не протекает, и падение напряжения на резисторе датчика R4 также равно нулю. Транзистор VT1 при этом полностью открыт. По мере роста напряжения в сети, напряжение, снимаемое с датчика, также увеличивается (пропорционально протекающему току), приближаясь к напряжению «задатчика». Транзистор VT1 начинает закрываться. При совпадении напряжений на датчике R4 и на «задатчике» R1-R2 происходит ограничение дальнейшего роста тока. ОУ DA1 поддерживает одинаковое напряжение на своих входах, изменяя сопротивление канала VT1. Тем самым обеспечивается стабилизация тока. Форма тока через VT1 совпадает с напряжением на «задатчике» и имеет трапецеидальную форму (рисунок 2Б). Такой же по форме, только переменный, ток протекает через нагрузку (рисунок 2В). Элементы VD1, R3, C1, C2 образуют параметрический стабилизатор для питания ОУ.

график стабилизации напряжения

график стабилизации напряжения

Если надо изменить диапазон стабилизируемых токов, следует соответствующим образом выбрать тип транзистора VT1 и диодов VD2-VD5, а также скорректировать напряжение «задатчика» тока или сопротивление датчика R4.

Ток стабилизации определяется по формуле:
Iст.=Uзад./R4

Налаживание схемы сводится к контролю напряжения «задатчика» (чтобы ток не вышел за пределы 7…8 А) и градуировке органа управления (резистора R2). Для визуального контроля в цепь тока можно включить амперметр.

ОУ DA1 подойдет любой широкого применения (К140УД6, К140УД7, mA741 и т.п.). От применения быстродействующих ОУ с полевыми транзисторами лучше воздержаться, поскольку с ними стабилизатор может самовозбудиться, что неминуемо выведет из строя ОУ, транзистор VT1 и диоды моста (именно так отреагировала схема у автора на установку К544УД2). Транзистор VT1 следует выбирать ориентируясь на максимально допустимые ток стока и напряжение сток-исток. Стабилитрон VD1 — любой прецизионный, с напряжением стабилизации 9…15 В. От его стабильности зависит стабильность напряжения «задатчика» и, как следствие стабилизируемого тока.

Транзистор VT1 следует укрепить на массивном радиаторе. К остальным деталям особых требований не предъявляется. Резистор R4 удобно изготовить из промышленного шунта для измерительных приборов. Это обеспечит требуемую точность и термостабильность. При его монтаже следует уделить особое внимание надежности соединения инверсного выхода ОУ и R4. Обрыв этого соединения вызывает выход стабилизатора из строя.

скачать архив

Генератор пилообразного напряжения.Часть 2.Стабилизаторы тока

Всем доброго времени суток. В предыдущей статье я описывал простейший генератор пилообразного напряжения и приводил его расчет. Данная статья продолжает первую часть, сегодня вы узнаете, как улучшить параметры генераторов и какие для этого применяются схемы.

Как известно из предыдущей статьи основными параметрами для оценки качества генератора пилообразного напряжения являются коэффициент нелинейности и коэффициент использования напряжения питания. Первый коэффициент характеризует нестабильность тока, который заряжает конденсатор, поэтому для обеспечения коэффициента нелинейности ξ интегрирующие цепи наиболее линейный заряд конденсатора происходит в начальный период времени (примерно первые 10 % от времени заряда). Поэтому для лучшей линейности в простейших генераторах пилообразного напряжения с зарядным (или разрядным) резистором приходится использовать напряжение питания в несколько десятков раз выше, чем амплитуда выходного импульса.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Простой стабилизатор тока

Стабилизатор тока (источник тока, генератор тока) называется устройство, которое автоматически поддерживает заданный ток в нагрузке под действием дестабилизирующих факторов. В качестве основного элемента в генераторе тока в большинстве случаев используется биполярный транзистор. В простейшем случае схема представляет собой однокаскадный усилитель, который показан ниже


Простейшая схема стабилизатора токаПростейшая схема стабилизатора тока
Простейшая схема стабилизатора тока.

Работает схема следующим образом. Делитель напряжения R1R2 создаёт на базе транзистора VT1 напряжение UB, которое может быть представлено, как сумма напряжений UBE (напряжение на переходе база-эмиттер) и UE – напряжение на эмиттере VT1, тогда

[math]U_{E} = U_{B} — U_{BE}[/math]

При этом напряжение на базе выбирается в пределах UB ≈ (0,3…0,5)* EПИТ

А ток эмиттера будет равен

[math]I_{E} = \frac{U_{E}}{R3} = \frac{U_{B} — U_{BE}}{R3}[/math]

Так как ток коллектора транзистора практически такой же, как и ток эмиттера, то, если ток эмиттера поддерживать постоянным, то ток коллектора также будет постоянным, несмотря на изменение напряжения на коллекторе. Данная схема является основой для различных источников постоянного тока. При расчёте данной схемы необходимо, чтобы ток делителя R1R2 был в 5…10 раз больше, чем базовый ток транзистора, то есть

[math]I_{R1R2} \ge (5…10)*I_{B} = \frac{(5..10)*I_{E}}{1 + h_{21e}}[/math]

Данная схема достаточно эффективна во многих случаях, но иногда возникают проблемы в связи с нестабильностью источника питания и по этой причине возможно изменение напряжения на базе транзистора UB, как следствие и тока эмиттера IE.

Расчёт простого стабилизатора тока

Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА, напряжение источника питания ЕПИТ = 10 В.

  1. Выберем транзистор типа КТ315 со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh31e = 250 МГц, h21e = 20…90 (примем h21e = 50).
  2. Рассчитаем сопротивление эмиттера R3[math]R3 = \frac{U_{E}}{I_{E}} = \frac{U_{B} — U_{BE}}{I_{E}}[/math]

    где UBE = 0,6 – 0,8 B,

    [math]U_{B}=(0,3…0,5)*E_{PIT} = (0,3…0,5)*10 = 3…5 B[/math]

    Примем UB = 3 В, тогда

    [math]R3 = \frac{3 — 0,7}{0,01} = 230 Om[/math]
  3. Расчитаем сопротивление резисторов R1 и R2.[math]I_{R1R2} \ge (5…10)*I_{B} = \frac{(5..10)*I_{E}}{1 + h_{21e}} = \frac{(5..10)*0,01}{1 + 50} \approx 0,98…1,96 mA[/math]

    Примем IR1R2 = 1 мА

    [math]R1 + R2 = \frac{E_{PIT}}{I_{R1R2}} = \frac{10}{0,001} = 10 kOm[/math]
    [math]\frac{R2}{R1 + R2} = \frac{U_{B}}{E_{PIT}} = \frac{3}{10} = 0,3[/math]
    [math]R2 = 10 * 0,3 = 3 kOm[/math]
    [math]R1 = 10 — 3 = 7 kOm[/math]

    Примем R1 = 6,8 кОм, R2 = 3,3 кОм

Стабилизатор тока с диодным смещением

Как указывалось выше простой стабилизатор тока вследствие нестабильности напряжения питания, может иметь невысокую стабильность тока коллектора, кроме того через делитель напряжения R1R2 протекает достаточно большой ток, что приводит к потере мощности. Поэтому для уменьшения влияния этих факторов применяется диодная стабилизация (или диодное смещение) напряжения на базе. Схема, иллюстрирующая диодное смещение приведена ниже


Стабилизатор тока с диодным смещениемСтабилизатор тока с диодным смещением
Стабилизатор тока с диодным смещением.

Работает данная схема, как и предыдущая, но с учётом того, что напряжение на базе транзистора VT1 создается стабилитроном. Расчёт данной схемы выполняется также как и предыдущей, только с учётом параметров стабилитрона, то есть напряжения стабилизации UНОМ и ток стабилизации ICT. При выборе стабилитрона источника тока необходимо руководствоваться следующими ограничениями

  • максимальное напряжение стабилизации стабилитрона
    [math]U_{ST} \le \/E_{PIT} — I * R_{HMAX}[/math]
    где EPIT – напряжение питания источника тока,
    I – расчётный ток источника тока
    RНmax – максимальное сопротивление коллекторной нагрузки.
  • минимальное напряжение стабилизации не должно быть меньше, чем напряжение насыщение база-эмиттер[math]U_{ST} \ge \/U_{BE}[/math]

В данной схеме по возможности необходимо использовать стабилитроны с небольшим значением напряжения стабилизации, потому что при напряжении стабилизации стабилитрона(UСТ.НОМ) близком к Ust уменьшается значение сопротивления резистора R1, что в свою очередь приводит к увеличению потребляемой мощности этим резистором.

Расчёт стабилизатора тока с диодным смещением

Необходимо рассчитать источник тока, обеспечивающий IС = 10 мА на нагрузке Rн = 150 Ом, напряжение источника питания ЕПИТ = 10 В.

  1. Выберем транзистор типа КТ315 со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh31e = 250 МГц, h21e = 20…90 (примем h21e = 50).
  2. Выберем стабилитрон[math]U_{ST} \le \/E_{PIT} — I * R_{HMAX} = 10 — 0,01 * 150 = 10 — 1,5 = 8,5 B[/math]
    [math]U_{ST} \ge \/U_{BE}[/math]

    Выберем стабилитрон типа КС139Г со следующими параметрами Uст.ном. = 3,9 В, Iст.ном. = 5 мА.

  3. Рассчитаем сопротивление резистора R1
    [math]R1 = \frac{E_{PIT} — U_{CT.HOM}}{I_{CT.HOM}}[/math]

    Примем R1 = 1,2 кОм

  4. Рассчитаем сопротивление резистора R2
    [math]R2 = \frac{U_{E}}{I_{E}} = \frac{U_{ST} — U_{BE}}{I_{E}} = \frac{3,9 — 0,7}{0,01} = 320 Om[/math]

    Выберем R2 = 330 Ом

Токовое зеркало (отражатель тока)

Как указывалось выше, уменьшение напряжения стабилизации стабилитрона приводит к уменьшению потребляемого тока. Как известно минимальное напряжение на базе транзистора для его работы в качестве усилителя составляет UBE = 0,7 В – падение напряжения на p-n переходе база-эмиттер. Чтобы обеспечить такое напряжение достаточно между базой и эмиттером транзистора включить обычный диод, но лучше всего использовать транзистор с закороченным коллекторным переходом, причём необходимо стараться подобрать пару транзисторов с очень близкими параметрами (h21e, ICBO и т.д.). Такая схема, показанная ниже, называется токовым зеркалом или отражателем тока


Схема токового зеркалаСхема токового зеркала
Схема токового зеркала (отражатель тока)

Рассмотрим работу схемы, основными элементами которой являются резистор R1 и транзисторы VT1 и VT2. Коллектор и база транзистора VT1 соединены, и поэтому данный транзистор выполняет роль диода. Коллекторный ток VT1 ограничен резистором R1, а как известно напряжение UBE и ток эмиттера IE транзистора связывает логарифмическая зависимость

[math]U_{BE} = U_{T} *ln (\frac{I_{E}}{I_{EO}})[/math]
[math]I_{E} \approx \/I_{C}[/math]

где UT – напряжение на p-n переходе зависящее от температуры,
IEO – обратный ток насыщения эмиттера.

Таким образом, если транзисторы VT1 и VT2 имеют одинаковые параметры, то падение напряжение UBE транзистора VT1 вызовет такое же падение напряжения UBE транзистора VT2, а следовательно и коллекторный ток транзистора VT2 будет примерно равным коллекторному току транзистора VT1. Таким образом, коллекторный ток VT2 с большой степенью точности задаётся («программируется») коллекторным током VT1.

[math]I_{CVT2} \approx \/I_{CVT1} = \frac{E_{PIT} — U_{BE}}{R1}[/math]

Генератор пилообразного напряжения со стабилизатором тока

От схем стабилизаторов тока пора перейти к применению стабилизаторов в генераторах пилообразного напряжения. Тут всё достаточно просто, необходимо вместо зарядного (разрядного) резистора вставить в схему стабилизатор тока. Для примера возьмём стабилизатор тока с диодным смещением и добавим его в схему простого генератора пилообразного напряжения. Получившаяся схема изображена ниже


Схема генератора пилообразного (линейно растущего) напряжения со стабилизатором токаСхема генератора пилообразного (линейно растущего) напряжения со стабилизатором тока
Схема генератора пилообразного (линейно растущего) напряжения со стабилизатором тока.

Данная схема состоит из стабилизатора тока на транзисторе VT1, стабилитроне VD1 и резисторах R1, R2, а также разрядного транзистора VT2 и конденсатора C1.
Схемы генераторов пилообразного напряжения позволяют получить коэффициент нелинейности ξ ≤ 10 %, а коэффициент использования напряжения ε ≈ 0,9. Как же работает такая схема? Как известно VT1. То есть дифференциальное сопротивление коллектора будет очень высоким

[math]r_{K} = \frac{\DELTA \/U_{BC}}{\DELTA \/I_{C}}[/math]

в случае стабилизатора тока rK ≈ 0,5…1 МОм.

После подачи питания Епит в схему, конденсатор C1 начинает заряжаться постоянным током IС ≈ IE = const, которой обеспечивается стабильным напряжением UST за счёт стабилитрона VD1

[math]I_{C} \approx \/I_{E} = \frac {U_{ST} — U_{BE}}{R2}[/math]

Таким образом, конденсатор зарядится до напряжения

[math]U_{0} = U_{BbIX} = E_{PIT} — R2 * I_{C}[/math]

которое будет являться выходным напряжением данной схемы генератора. После того как на вход схемы (базовый вывод VT2) приходит положительный импульс (UBX > UBbIX) транзистор VT2 насыщается и конденсатор C1 разряжается

Амплитуду выходного напряжения можно определить по следующей формуле

[math]U_{m} = \frac {I_{C} T_{P}}{C1} = \frac{h_{21b} E_{R2} T_{P}}{R2 C1} \approx \frac {E_{R2} T_{P}}{R2 C1}[/math]

Коэффициент нелинейности будет равен

[math]\xi = \frac{T_{p}}{r_{K} C1}[/math]

Таким образом, исходя из вышесказанного, можно сделать вывод, что данный генератор при работе на высокоомную нагрузку обеспечивает небольшой коэффициент нелинейности и большой коэффициент использования напряжения, который растёт с уменьшением напряжения стабилизации стабилитрона, а также обеспечивает большой диапазон длительности рабочего хода и небольшое время обратного хода.

Одним из недостатков данного типа генератора является то, что необходимо иметь запускающий импульс со значительным уровнем напряжения (UBX > UBbIX), а также транзисторы с разными типами проводимости.

В отличии от генератора линейно растущего напряжения, генератор линейно падающего напряжения можно собрать на транзисторах одного типа проводимости, что иногда имеет некоторое преимущество.


Генератор пилообразного (линейно падающего) напряжения со стабилизатором токаГенератор пилообразного (линейно падающего) напряжения со стабилизатором тока
Генератор пилообразного (линейно падающего) напряжения со стабилизатором тока.

Расчёт номиналов элементов данной схемы ведётся идентично генератору линейно растущего напряжения.

Расчёт генератора пилообразного напряжения с токовым стабилизирующим элементом

Рассчитать параметры элементов схемы генератора пилообразного напряжения со стабилизатором тока, который обеспечивает следующие характеристики выходного сигнала: длительность рабочего хода ТР = 500 мкс, амплитуда выходного напряжения Um = 5 В, напряжение питания схемы EK = 10 В коэффициент нелинейности ξ = 1 %.

  1. Определим ёмкость конденсатора С[math]C = \frac{T_{P}}{r_{K} \xi}[/math]

    где rK – дифференциальное сопротивление коллекторного перехода, rK = ΔUCB/ΔIC. Для простейших расчётов можно полагать, что rK = 0,5 … 1 Мом

    [math]C = \frac{0,0005}{(500000…1000000) * 0,01}=0,1…0,05 \mu F[/math]

    Выберем С1 = 51 нФ.

  2. Найдём величину тока необходимого для обеспечения заданной амплитуды выходного импульса
    [math]I_{ST} = \frac {U_{m}*C1}{T_{P}} = \frac {5 * 51 * 10^{-9}}{0,0005} = 0,51 mA[/math]
  3. Выберем и рассчитаем стабилизатор тока:
    • Выберем транзистор типа КТ315 со следующими параметрами: UCEmax = 30 В, ICmax = 100 mA, ICBO = 1 mkA, fh31e = 250 МГц, h21e = 20…90 (примем h21e = 50).
    • Выберем стабилитрон
      [math]U_{ST} = E_{K} — U_{m} = 10 — 5 = 5 B[/math]
      [math]U_{ST} \ge \/U_{BE} = 0,7 B[/math]

      Выберем стабилитрон типа КС147 со следующими параметрами Uст.ном. = 4,7 В, Iст.ном. = 5 мА.

    • Рассчитаем сопротивление резистора R1
      [math]R3 = \frac{E_{K} — U_{CT.HOM}}{I_{CT.HOM}} = \frac{10 — 4,7}{0,005} = 1060 Om[/math]

      Примем R1 = 1 кОм

    • Рассчитаем сопротивление резистора R2
      [math]R2 = \frac{U_{CT.HOM} — U_{BE}}{I_{E}} = \frac{4,7 — 0,7}{0,00051} \approx 7843 Om[/math]

      Выберем R2 = 8,2 кОм

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Цепь стабилизатора напряжения

SMPS | Самодельные схемотехнические проекты

В статье описана схема твердотельного импульсного стабилизатора напряжения сети без реле, использующая повышающий преобразователь с ферритовым сердечником и пару схем полумостовых драйверов. Идея была предложена мистером Макэнтони Бернардом.

Технические характеристики

В последнее время я начал искать стабилизаторы напряжения, которые используются в домашних условиях для регулирования подачи электроэнергии, повышения напряжения при низком уровне энергоснабжения и снижения при высоком уровне энергоснабжения.

Он построен на сетевом трансформаторе (железный сердечник), намотанном в стиле автотрансформатора, с множеством ответвлений 180 В, 200 В, 220 В, 240 В, 260 В и т. Д.

цепь управления с помощью реле выбирает правильное нажмите для вывода. Я думаю, вы знакомы с этим устройством.

Я задумал реализовать функцию этого устройства с помощью SMPS. Который будет иметь преимущество выдачи постоянного 220 В переменного тока и стабильной частоты 50 Гц без использования реле.

Я приложил к этому письму блок-схему концепции.

Пожалуйста, дайте мне знать, что вы думаете, есть ли смысл идти по этому пути.

Будет ли он действительно работать и служить той же цели? .

Также мне понадобится ваша помощь в секции преобразователя постоянного тока высокого напряжения.

С уважением
McAnthony Bernard

Конструкция

Предлагаемую схему стабилизатора сетевого напряжения на основе твердотельного ферритового сердечника без реле можно понять, обратившись к следующей диаграмме и последующему объяснению.

RVCC = 1K.1 Вт, CVCC = 0,1 мкФ / 400 В, CBOOT = 1 мкФ / 400 В

На приведенном выше рисунке показана фактическая конфигурация для реализации стабилизированного выхода 220 В или 120 В независимо от колебаний входного сигнала или перегрузки при использовании пары неизолированных каскадов процессора повышающего преобразователя.

Здесь две микросхемы МОП-транзисторов с драйвером полумоста становятся ключевыми элементами всей конструкции. Используемые микросхемы - это универсальный IRS2153, который был разработан специально для управления МОП-транзисторами в режиме полумоста без необходимости использования сложных внешних схем.

Мы можем видеть два идентичных каскада драйвера полумоста, где левый драйвер используется в качестве каскада повышающего драйвера, а правая сторона настроена для обработки повышающего напряжения в синусоидальный выходной сигнал 50 Гц или 60 Гц в сочетании с внешним сигналом. цепь управления напряжением.

Микросхемы внутренне запрограммированы на выполнение фиксированного 50% рабочего цикла на выходных выводах через топологию тотемного полюса. Эти распиновки связаны с силовыми МОП-транзисторами для реализации предполагаемых преобразований.Микросхемы также оснащены внутренним генератором для включения требуемой частоты на выходе, частота которой определяется внешней сетью Rt / Ct.

Использование функции отключения

В ИС также имеется функция отключения, которая может использоваться для остановки выхода в случае перегрузки по току, перенапряжения или любой внезапной катастрофической ситуации.

Для получения дополнительной информации о микросхемах драйвера полумоста th is , вы можете сослаться на в этой статье: IC IRS2153 (1) D - Распиновка выводов, пояснения по применению

Выходы этих микросхем чрезвычайно сбалансирован благодаря высокотехнологичной внутренней загрузке и обработке мертвого времени, которые обеспечивают безупречную и безопасную работу подключенных устройств.

В обсуждаемой схеме стабилизатора сетевого напряжения SMPS левый каскад используется для генерации около 400 В из входа 310 В, полученного путем выпрямления входа сети 220 В.

Для входа 120 В каскад может быть настроен на генерирование около 200 В через показанную катушку индуктивности.

Индуктор может быть намотан на любой стандартный узел EE сердечник / бобина с использованием 3 параллельных (бифилярных) жил 0,3 мм суперэмалированного медного провода и примерно 400 витков.

Выбор частоты

Частота должна быть установлена ​​путем правильного выбора значений Rt / Ct таким образом, чтобы высокая частота около 70 кГц была достигнута для левой ступени повышающего преобразователя на показанной катушке индуктивности.

Правая ИС драйвера позиционируется для работы с вышеупомянутым 400 В постоянного тока от повышающего преобразователя после соответствующего выпрямления и фильтрации, как можно видеть на схеме.

Здесь значения Rt и Ct выбраны для захвата приблизительно 50 Гц или 60 Гц (в соответствии со спецификациями страны) на выходе подключенных МОП-транзисторов

Однако выход правого каскада драйвера может достигать 550 В и его необходимо отрегулировать до желаемого безопасного уровня, около 220 В или 120 В

Для этого включена простая конфигурация усилителя ошибки операционного усилителя, как показано на следующей диаграмме.

Схема коррекции перенапряжения

Как показано на диаграмме выше, на этапе коррекции напряжения используется простой компаратор операционного усилителя для обнаружения состояния перенапряжения.

Схема должна быть настроена только один раз, чтобы получить постоянное стабилизированное напряжение на заданном уровне, независимо от колебаний входа или перегрузки, однако они не могут быть превышены за пределы указанного допустимого предела конструкции.

Как показано, питание усилителя ошибки поступает от выхода после соответствующего выпрямления переменного тока в чистый стабилизированный малым током 12 В постоянного тока для схемы.

Вывод №2

обозначен как вход датчика для ИС, в то время как неинвертирующий вывод №3 привязан к фиксированному напряжению 4,7 В через цепь фиксирующих стабилитронов.

Вход считывания извлекается из нестабилизированной точки в цепи, а выход ИС подключается к контакту Ct правой ИС драйвера.

Этот вывод функционирует как вывод выключения для ИС, и как только он достигает низкого уровня ниже 1/6 своего Vcc, он мгновенно блокирует выходные сигналы, подаваемые на МОП-транзисторы, останавливая работу.

Предварительная установка, связанная с контактом № 2 операционного усилителя, соответствующим образом регулируется таким образом, что выходной сетевой переменный ток устанавливается на уровне 220 В с доступного выхода 450 или 500 В или до 120 В с выхода 250 В.

Пока на выводе №2 оказывается более высокое напряжение по сравнению с выводом №3, он продолжает поддерживать низкий уровень на выходе, что, в свою очередь, дает команду ИС драйвера отключиться, однако "выключение" мгновенно корректирует вход операционного усилителя, вынуждая его отозвать свой выходной сигнал низкого уровня, и цикл продолжает самокорректировать выходной сигнал до точных уровней, как определено предустановленной установкой контакта №2.

Схема усилителя ошибки стабилизирует этот выход, и поскольку схема имеет преимущество в виде значительного 100% запаса между напряжением источника входного сигнала и значениями регулируемого напряжения, даже в условиях чрезвычайно низкого напряжения выходам удается обеспечить фиксированное стабилизированное напряжение до нагрузки независимо от напряжения, то же самое происходит в случае, когда на выходе подключена несогласованная нагрузка или перегрузка.

Улучшение вышеуказанной конструкции:

Тщательное исследование показывает, что вышеуказанная конструкция может быть изменена и значительно улучшена для повышения ее эффективности и качества вывода:

  1. Катушка индуктивности на самом деле не требуется и может быть удалена
  2. Выход должен быть модернизирован до полной мостовой схемы, чтобы мощность была оптимальной для нагрузки
  3. Выход должен быть чисто синусоидальным, а не модифицированным, как можно ожидать в приведенной выше схеме

Все эти особенности были учтены и позаботились о в следующей обновленной версии схемы твердотельного стабилизатора:

Работа схемы

  1. IC1 работает как обычная схема нестабильного мультивибратора, частота которой может быть отрегулирована путем изменения значения R1 соответствующим образом.Это определяет количество «столбов» или «рубок» для вывода SPWM.
  2. Частота от IC 1 на его контакте №3 подается на контакт №2 IC2, который подключен как генератор ШИМ.
  3. Эта частота преобразуется в треугольные волны на выводе №6 микросхемы IC2, который сравнивается с выборочным напряжением на выводе №5 микросхемы IC2
  4. На вывод №5 микросхемы IC2 подается образец синусоиды с частотой 100 Гц, полученной от мостового выпрямителя. , после соответствующего снижения напряжения сети до 12 В.
  5. Эти образцы синусоидального сигнала сравниваются с треугольными волнами на выводе №7 микросхемы IC2, что приводит к пропорционально уменьшенному SPWM на выводе №3 микросхемы IC2.
  6. Теперь, ширина импульса этого SPWM зависит от амплитуды синусоидального сигнала выборки от мостового выпрямителя. Другими словами, когда сетевое напряжение переменного тока выше, создает более широкие SPWM, а когда сетевое напряжение переменного тока ниже, оно уменьшает ширину SPWM и пропорционально сужает его.
  7. Вышеупомянутый SPWM инвертируется транзистором BC547 и применяется к затворам МОП-транзисторов нижнего уровня полной мостовой драйверной сети.
  8. Это означает, что, когда уровень сети переменного тока упадет, отклик на затворах МОП-транзистора будет в форме пропорционально более широких SPWM, а когда напряжение в сети переменного тока возрастет, затворы будут испытывать пропорциональное ухудшение SPWM.
  9. Приведенное выше приложение приведет к пропорциональному увеличению напряжения на нагрузке, подключенной между сетью H-моста, всякий раз, когда входная сеть переменного тока падает, и, наоборот, нагрузка будет испытывать пропорциональное падение напряжения, если переменный ток имеет тенденцию подниматься выше опасного уровня. .

Как настроить схему

Определите приблизительную центральную точку перехода, в которой ответ SPWM может быть идентичен уровню сетевого переменного тока.

Предположим, вы выбрали 220 В, а затем отрегулируйте предустановку 1K так, чтобы нагрузка, подключенная к H-мосту, получала примерно 220 В.

Вот и все, настройка завершена, все остальное будет сделано автоматически.

В качестве альтернативы можно таким же образом исправить вышеуказанную настройку в сторону более низкого порогового уровня напряжения.

Предположим, что нижний порог составляет 170 В, в этом случае подайте 170 В в схему и отрегулируйте предустановку 1K, пока не найдете примерно 210 В на нагрузке или между плечами Н-моста.

Эти шаги завершают процедуру настройки, а остальные автоматически регулируются в соответствии с изменениями входного уровня переменного тока.

Важно : Подключите высокоэффективный конденсатор порядка 500 мкФ / 400 В через выпрямленную линию переменного тока, подаваемую в сеть H-моста, чтобы выпрямленный постоянный ток мог достигать до 310 В постоянного тока через ШИНУ H-моста. линий.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Схема автоматического стабилизатора напряжения для телевизоров и холодильников

Здесь мы рассмотрим конструкцию простого автоматического стабилизатора сетевого напряжения переменного тока, который может применяться для защиты таких приборов, как телевизор и холодильник, от колебаний напряжения.

Стабилизатор напряжения - это устройство, которое предназначено для определения несоответствующих колебаний напряжения на входах сети переменного тока и их коррекции для получения стабилизированного напряжения для подключенных устройств или устройств.

Принцип работы схемы

Обращаясь к рисунку, мы обнаруживаем, что предлагаемая схема автоматического стабилизатора напряжения сконфигурирована с одним операционным усилителем IC 741.Он становится управляющей частью всей конструкции. Операционный усилитель подключен как компаратор, все мы знаем, насколько хорошо этот режим подходит для IC 741 и других операционных усилителей. Два входа подходят для указанных операций.

На вывод №2 ИС устанавливается опорный уровень, создаваемый резистором R1 и стабилитроном, в то время как на вывод №3 подается напряжение выборки от трансформатора или источника питания.

Это напряжение становится напряжением считывания для ИС и прямо пропорционально изменяющемуся входному переменному току нашей сети.

Предустановка используется для установки точки срабатывания или пороговой точки, при которой напряжение может считаться опасным или несоответствующим. Мы обсудим это в разделе процедуры настройки.

Вывод №6, который является выходом ИС, переходит в высокий уровень, как только контакт №3 достигает уставки и активирует ступень транзистора / реле.

В случае, если сетевое напряжение пересекает заданный порог, неинвертирующая ИС обнаруживает это, и на ее выходе сразу же становится высокий уровень, включая транзистор и реле для желаемых действий.

Реле, которое является реле типа DPDT, имеет свои контакты, подключенные к трансформатору, который является обычным трансформатором, модифицированным для выполнения функции стабилизирующего трансформатора.

Первичная и вторичная обмотки соединены между собой таким образом, что при соответствующем переключении отводов трансформатор может добавлять или вычитать определенную величину сетевого напряжения переменного тока и создавать результирующую для выходной подключенной нагрузки.

Контакты реле соответствующим образом интегрированы в отводы трансформатора для выполнения вышеуказанных действий в соответствии с командами, подаваемыми на выход операционного усилителя.

Таким образом, если входное напряжение переменного тока имеет тенденцию к увеличению установленного порогового значения, трансформатор вычитает некоторое напряжение и пытается не допустить, чтобы напряжение достигло опасных уровней, и наоборот в ситуациях низкого напряжения.

Полная принципиальная схема

Расчеты операционных усилителей

Если вместо стабилитрона на выводе №2 использовался резисторный делитель, соотношение между опорным уровнем на выводе №2 операционного усилителя с резисторным делителем и Vcc можно было бы представить следующим образом:

Vref = (R2 / R1 + R2) x Vcc

Где R2 - резистор, используемый вместо Z1.

Схема электрических соединений трансформаторного реле

Список деталей

Для изготовления этой самодельной схемы автоматического стабилизатора сетевого напряжения вам потребуются следующие компоненты:

R1, R2 = 10K,

R3 = 470K или 1M, (более низкие значения позволят быстрее коррекции напряжения)

C1 = 1000 мкФ / 25 В

D1, D2, D3 = 1N4007,

T1 = BC547,

TR1 = 0-12 В, 500 мА,

TR2 = 9-0-9 В , 5 А, IC1 = 741,
Z1, Z2 = 4,7 В / 400 мВт

Реле = DPDT, 12 В, 200 или более Ом, приблизительное выходное напряжение для данных входов

Пропорции стабилизированного выхода и нестабилизированного входного напряжения

ВХОД ------ ВЫХОД

200 В -------- 212 В
210 В -------- 222 В
220 В -------- 232 В
225 В ----- --- 237V
230V -------- 218V
240V -------- 228V
250V -------- 238V

Как настроить схему

Обсуждаемый простой автоматическое напряжение st Схема abilizer может быть настроена с помощью следующих шагов:

Изначально не подключайте трансформаторы к цепи, также оставьте R3 отключенным.

Теперь, используя переменный источник питания, запитайте цепь через C1, положительный вывод питания идет на линию контакта №7 операционного усилителя, а отрицательный - на линию отрицательного контакта №4 операционного усилителя.

Установите напряжение примерно на 12,5 напряжения и отрегулируйте предустановку так, чтобы выход IC просто становился высоким и запускал реле.

Помните, здесь мы предположили, что выход постоянного тока 12,5 В от TR1 соответствует входу примерно 225 В переменного тока от сети .... Для вашей схемы обязательно подтвердите это перед выполнением этой процедуры настройки.Это означает, что если предположим, что вы обнаружите, что ваш выход постоянного тока TR1 соответствует 13 В для входа 225 В, то завершите эту процедуру, используя 13 В ... и так далее.

Теперь при понижении напряжения примерно до 12 В операционный усилитель должен отключить реле в исходное состояние или обесточить его.

Повторите и проверьте действие реле, изменив напряжение с 12 до 13 вольт, что должно заставить реле срабатывать соответственно.

Ваша процедура настройки окончена.

Теперь вы можете подключить трансформатор в соответствующие положения со схемой, а также восстановить соединения R3 и реле в их исходных точках.

Ваша простая самодельная схема стабилизатора напряжения сети готова.

При установке реле срабатывает, когда входное напряжение превышает 230 вольт, доводя выходное напряжение до 218 вольт, и поддерживает это расстояние постоянно, когда напряжение достигает более высоких уровней.

Когда напряжение снова падает до 225, реле обесточивается, повышая напряжение до 238 вольт, и сохраняет разницу при дальнейшем падении напряжения.

Вышеупомянутое действие поддерживает выходное напряжение устройства в диапазоне от 200 до 250 вольт с колебаниями в диапазоне от 180 до 265 вольт.

Предупреждение: единичное неправильное подключение может привести к возгоранию или взрыву, поэтому будьте осторожны. Всегда используйте 100-ваттную защитную лампу последовательно с линией питания, которая изначально идет к стабилизирующему трансформатору. После подтверждения операций вы можете снять эту лампочку.

2) Вся цепь не изолирована от сети, поэтому пользователям рекомендуется соблюдать особую осторожность при тестировании устройства в открытом положении и при включенном питании, чтобы избежать смертельного поражения электрическим током.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *